Symbolic breadth-first planning algorithms

 $\text{symbolic} \sim \text{logical/formula-based}$

- 1. Breadth-first traversal of the state space (forward or backward)
 - = computation of exact distances of (all) states
- 2. Sets of states and transition relations are formulae.
- 3. Implementation typically with binary decision diagrams BDDs.

Jussi Rintanen	May 24, AI Planning	1/20

A symbolic bread-first planning algorithm

Compute sets of states reachable in $\leq i$ time steps from I and test whether G intersects these sets:

$$\begin{split} \iota &:= \bigwedge \{ p | p \in P, I(p) = 1 \} \cup \{ \neg p | p \in P, I(p) = 0 \}; \\ D_0 &:= \iota; \, i := 0; \\ \text{REPEAT} \\ i &:= i + 1; \\ D_i &:= D_{i-1} \lor ((\exists P.(D_{i-1} \land \mathcal{R}_1(P, P')))[p_1/p'_1, p_2/p'_2, \dots, p_n/p'_n]); \\ \text{UNTIL } D_{i-1} &\equiv D_i \text{ OR } D_i \land G \in \text{SAT}; \\ \text{IF } D_i \land G \in \text{SAT THEN plan exists}; \end{split}$$

```
Jussi Rintanen
```

```
May 24, AI Planning 2/20
```

Image of states w.r.t. an operator/relation

The image of a set S of states w.r.t. a transition relation R:

$$img_R(S) = \{s' | s \in S, \langle s, s' \rangle \in R\}$$

Computation in the propositional logic:

$$\operatorname{img}_{\mathcal{R}(P,P')}(\phi) = (\exists P.(\phi \land \mathcal{R}(P,P')))[p_1/p'_1,\ldots,p_n/p'_n]$$

Jussi Rintanen

May 24, AI Planning 3/20

Pre-image of states w.r.t. an operator/relation

The (weak) preimage of a set S of states w.r.t. a transition relation R:

wpreimg_R(S) =
$$\{s|s' \in S, \langle s, s' \rangle \in R\}$$

Computation in the propositional logic:

wpreimg_{$$\mathcal{R}(P,P')$$} $(\phi) = \exists P'.(\phi[p'_1/p_1,\ldots,p'_n/p_n] \land \mathcal{R}(P,P'))$

Jussi Rintanen

May 24, AI Planning 4/20

Images = products $S_{1 \times n} \times M_{n \times n}$ Preimages = product $M_{n \times n} \times (S_{1 \times n})^T$ $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

The states $\{1,3\}$ are reachable from the states $\{2,3\}$.

May 24, AI Planning

5/20

Extraction of plans from exact distances

 $\begin{array}{l} G_i \coloneqq D_i \wedge G; \\ \mathsf{FOR} \ j \coloneqq i - 1 \ \mathsf{DOWN} \ \mathsf{TO} \ \mathsf{0} \\ \mathsf{FOREACH} \ o \in O \ \mathsf{DO} \\ \mathsf{IF} \ wpreimg_{\tau_o}(G_{j+1}) \wedge D_j \in \mathsf{SAT} \\ \mathsf{THEN} \ \mathsf{GOTO} \ \mathsf{operatorok}; \\ \mathsf{END} \ \mathsf{DO} \\ \mathsf{operatorok}: \\ \mathsf{output} \ o; \\ G_j \coloneqq wpreimg_{\tau_o}(G_{j+1}) \wedge D_j; \\ \mathsf{END} \ \mathsf{FOR} \end{array}$

Jussi Rintanen

```
May 24, AI Planning 6/20
```

Preimages vs. regression

Let $\mathcal{R}(P, P')$ be the translation of *o* to the propositional logic.

Then wpreimg_{$\mathcal{R}(P,P')$}(ϕ) \equiv regr_o(ϕ).

- 1. Regression = computation of preimages for deterministic operators directly, *without existential abstraction*.
- 2. Progression (image computation) for formulae without existential abstraction? Does not seem to exist: value of a state variable at t cannot be expressed in terms of state variables at t + 1.

```
Jussi Rintanen
```

Jussi Rintanen

May 24, AI Planning 7/20

Preimages vs. regression: an example

 $\begin{array}{lll} o &=& \langle C, A \wedge (A \rhd B) \rangle \\ \operatorname{regr}_o(A \wedge B) &=& C \wedge (\top \wedge (B \lor A)) \equiv C \wedge (B \lor A) \\ \tau_o &=& C \wedge A' \wedge ((B \lor A) \leftrightarrow B') \wedge (C \leftrightarrow C') \end{array}$

The preimage of $A \lor B$ with respect to o is represented by

$$\exists A'B'C'.((A' \land B') \land \tau_o) \equiv \exists A'B'C'.(A' \land B' \land C \land (B \lor A) \land C') \equiv \exists B'C'.(B' \land C \land (B \lor A) \land C') \equiv \exists C'.(C \land (B \lor A) \land C') \equiv C \land (B \lor A)$$

Jussi Rintanen

May 24, AI Planning 8/20

Satisfiability algorithms vs. OBDDs

algorithm	size of $\mathcal{R}_1(P, P')$	runtime vs. plan length n
satisfiability planning	not a problem	exponential on n
OBDDs	major problem	much less dependent on n
algorithm	critical resource	
satisfiability planning	runtime	
OBDDs	memory	
algorithm	types of problems	
satisfiability planning	lots of state variables, short plans	
OBDDs	fewer state variables, long plans	
Jussi Rintanen		May 24, Al Planning 11/20

Normal forms for propositional formulae

	\vee	\land	-	$\phi \in TAUT$?	$\phi \in SAT$?	$\phi \equiv \phi'?$
circuits	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
formulae	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
DNF	poly	exp	exp	co-NP-hard	in P	co-NP-hard
CNF	exp	poly	exp	in P	NP-hard	co-NP-hard
OBDD	exp	exp	poly	in P	in P	in P
DNNF	poly	exp	exp	co-NP-hard	in P	co-NP-hard
Jussi Rintanen					May 24, Al Plan	ning 12/20

Our roadmap (almost) half-way through the course

-	form of planning	actions	initial states	observability
-	classical (determ.)	deterministic	one	-
-	conditional	nondeterministic	several	full
	probabilistic	nondeterministic	several	full
-	conditional	nondeterministic	several	partial
	probabilistic	nondeterministic	several	partial
	Jussi Rintanen		May 24, Al I	Planning 13/20

Nondeterminism

- The world cannot be completely modeled: we do not know what is going to happen next (missing information, even in problems that would otherwise be characterized completely deterministic.)
- Things just go wrong (and we might know everything about it!)
- Games: roulette, dice, chess (= opponent unpredictable!), ...

Jussi Rintanen

May 24, Al Planning 14/20

Nondeterministic actions as propositional formulae

- 1. Any Boolean (= 0, 1) matrix represents a nondeterministic action.
- 2. Any propositional formula on $P \cup P'$ represents a nondeterministic action.
- 3. Images and preimages can be computed with existential abstraction just like for formulae that represent deterministic actions.

Jussi Rintanen

May 24, AI Planning 20/20