Symbolic breadth-first planning algorithms

symbolic \sim logical/formula-based

1. Breadth-first traversal of the state space (forward or backward) = computation of exact distances of (all) states
2. Sets of states and transition relations are formulae.
3. Implementation typically with binary decision diagrams BDDs.

Image of states w.r.t. an operator/relation

The image of a set S of states w.r.t. a transition relation R :

$$
\operatorname{img}_{R}(S)=\left\{s^{\prime} \mid s \in S,\left\langle s, s^{\prime}\right\rangle \in R\right\}
$$

Computation in the propositional logic:

$$
\operatorname{img}_{\mathcal{R}\left(P, P^{\prime}\right)}(\phi)=\left(\exists P .\left(\phi \wedge \mathcal{R}\left(P, P^{\prime}\right)\right)\right)\left[p_{1} / p_{1}^{\prime}, \ldots, p_{n} / p_{n}^{\prime}\right]
$$

A symbolic bread-first planning algorithm

Compute sets of states reachable in $\leq i$ time steps from I and test whether G intersects these sets:
$\iota:=\bigwedge\{p \mid p \in P, I(p)=1\} \cup\{\neg p \mid p \in P, I(p)=0\} ;$
$D_{0}:=\iota ; i:=0$;
REPEAT
$i:=i+1$;
$D_{i}:=D_{i-1} \vee\left(\left(\exists P .\left(D_{i-1} \wedge \mathcal{R}_{1}\left(P, P^{\prime}\right)\right)\right)\left[p_{1} / p_{1}^{\prime}, p_{2} / p_{2}^{\prime}, \ldots, p_{n} / p_{n}^{\prime}\right]\right) ;$
UNTIL $D_{i-1} \equiv D_{i}$ OR $D_{i} \wedge G \in$ SAT;
IF $D_{i} \wedge G \in$ SAT THEN plan exists

Pre-image of states w.r.t. an operator/relation

The (weak) preimage of a set S of states w.r.t. a transition relation R :

$$
\text { wpreimg }_{R}(S)=\left\{s \mid s^{\prime} \in S,\left\langle s, s^{\prime}\right\rangle \in R\right\}
$$

Computation in the propositional logic:

$$
\text { wpreimg }_{\mathcal{R}\left(P, P^{\prime}\right)}(\phi)=\exists P^{\prime} .\left(\phi\left[p_{1}^{\prime} / p_{1}, \ldots, p_{n}^{\prime} / p_{n}\right] \wedge \mathcal{R}\left(P, P^{\prime}\right)\right)
$$

Preimages as matrix multiplication

Images $=$ products $S_{1 \times n} \times M_{n \times n}$
Preimages $=$ product $M_{n \times n} \times\left(S_{1 \times n}\right)^{T}$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

The states $\{1,3\}$ are reachable from the states $\{2,3\}$.

Preimages vs. regression

Let $\mathcal{R}\left(P, P^{\prime}\right)$ be the translation of o to the propositional logic
Then wpreimg $\mathcal{R}_{\left(P, P^{\prime}\right)}(\phi) \equiv \operatorname{regr}_{o}(\phi)$.

1. Regression $=$ computation of preimages for deterministic operators directly, without existential abstraction.
2. Progression (image computation) for formulae without existential abstraction? Does not seem to exist: value of a state variable at t cannot be expressed in terms of state variables at $t+1$.

Extraction of plans from exact distances

$G_{i}:=D_{i} \wedge G ;$
FOR $j:=i-1$ DOWN TO 0
FOREACH $o \in O$ DO
IF wpreimg $\tau_{o}\left(G_{j+1}\right) \wedge D_{j} \in$ SAT
THEN GOTO operatorok;
END DO
operatorok:
output o;
$G_{j}:=$ wpreimg $_{\tau_{o}}\left(G_{j+1}\right) \wedge D_{j} ;$
END FOR

Preimages vs. regression: an example

$$
\begin{aligned}
o & =\langle C, A \wedge(A \triangleright B)\rangle \\
\operatorname{regr}_{o}(A \wedge B) & =C \wedge(\top \wedge(B \vee A)) \equiv C \wedge(B \vee A) \\
\tau_{o} & =C \wedge A^{\prime} \wedge\left((B \vee A) \leftrightarrow B^{\prime}\right) \wedge\left(C \leftrightarrow C^{\prime}\right)
\end{aligned}
$$

The preimage of $A \vee B$ with respect to o is represented by

$$
\begin{aligned}
\exists A^{\prime} B^{\prime} C^{\prime} .\left(\left(A^{\prime} \wedge B^{\prime}\right) \wedge \tau_{o}\right) & \equiv \exists A^{\prime} B^{\prime} C^{\prime} .\left(A^{\prime} \wedge B^{\prime} \wedge C \wedge(B \vee A) \wedge C^{\prime}\right) \\
& \equiv \exists B^{\prime} C^{\prime} .\left(B^{\prime} \wedge C \wedge(B \vee A) \wedge C^{\prime}\right) \\
& \equiv \exists C^{\prime} .\left(C \wedge(B \vee A) \wedge C^{\prime}\right) \\
& \equiv C \wedge(B \vee A)
\end{aligned}
$$

(Ordered) Binary decision diagrams (OBDDs)

3-place connective if-then-else (p is a proposition):

$$
\operatorname{ite}\left(p, \phi_{1}, \phi_{2}\right)=\left(p \wedge \phi_{1}\right) \vee\left(\neg p \wedge \phi_{2}\right)
$$

Shannon expansion:

$$
\phi \equiv(p \wedge \phi[\top / p]) \vee(\neg p \wedge \phi[\perp / p])=\operatorname{ite}(p, \phi[\top / p], \phi[\perp / p])
$$

Satisfiability algorithms vs. OBDDs

Satisfiability algorithms vs. OBDDs		
algorithm size of $\mathcal{R}_{1}\left(P, P^{\prime}\right)$	runtime vs. plan length n	
satisfiability planning OBDDs	not a problem major problem	exponential on n much less dependent on n
algorithm	critical resource	

Binary decision diagrams: example

Construct OBDD with variable ordering A, B, C by repeated Shannon expansion: $(A \vee B) \wedge(B \vee C)$ \equiv ite $(A,(T \vee B) \wedge(B \vee C),(\perp \vee B) \wedge(B \vee C))$ \equiv ite $(A, B \vee C, B)$
$\equiv \operatorname{ite}(A, \operatorname{ite}(B, \top \vee C, \perp \vee C), \operatorname{ite}(B, \top, \perp))$
$\equiv \operatorname{ite}(A, \operatorname{ite}(B, \top, C), i t e(B, \top, \perp))$
$\equiv \operatorname{ite}(A, \operatorname{ite}(B, \top, \operatorname{ite}(C, \top, \perp)), i t e(B, \top, \perp))$

Normal forms for propositional formulae

	\vee	\wedge	\neg	$\phi \in$ TAUT?	$\phi \in$ SAT?	$\phi \equiv \phi^{\prime} ?$
circuits	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
formulae	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
DNF	poly	exp	exp	co-NP-hard	in P	co-NP-hard
CNF	exp	poly	exp	in P	NP-hard	co-NP-hard
OBDD	exp	exp	poly	in P	in P	in P
DNNF	poly	exp	exp	co-NP-hard	in P	co-NP-hard

Our roadmap (almost) half-way through the course

form of planning	actions	initial states	observability
classical (determ.)	deterministic	one	-
conditional	nondeterministic	several	full
probabilistic	nondeterministic	several	full
conditional	nondeterministic	several	partial
probabilistic	nondeterministic	several	partial

Nondeterministic actions

- Actions are not (partial) functions from states to states.
- Actions are binary relations on states. OR (equivalently)
- Actions are (partial) functions from states to sets of states. OR
- Actions are (partial) functions from states to probability distributions on the set of all states.

Nondeterminism

- The world cannot be completely modeled: we do not know what is going to happen next (missing information, even in problems that would otherwise be characterized completely deterministic.)
- Things just go wrong (and we might know everything about it!)
- Games: roulette, dice, chess (= opponent unpredictable!), ...
\qquad

Nondeterministic actions as propositional

formulae

1. Any Boolean (= 0,1) matrix represents a nondeterministic action.
2. Any propositional formula on $P \cup P^{\prime}$ represents a nondeterministic action.
3. Images and preimages can be computed with existential abstraction just like for formulae that represent deterministic actions.
