OBDD-based planning algorithms

- Represent adjacency matrices as propositional formulae (usually: binary decision diagrams).
- Compute sets of states reachable by i operators by matrix multiplication on propositional formulae.
- In some cases scales up to much bigger matrices than what can be represented as conventional arrays or representations of sparse matrices.
\qquad

OBDD-based planning algorithms: idea

Same formulae that we used earlier

$$
\iota^{0} \wedge \underbrace{\mathcal{R}_{1}\left(P^{0}, P^{1}\right) \wedge \mathcal{R}_{1}\left(P^{1}, P^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(P^{n-1}, P^{n}\right)} \wedge G^{n}
$$

The conjunction of the formulae $\mathcal{R}_{1}\left(P^{i}, P^{i+1}\right)$ corresponds to reachability by n steps and in terms of matrices the n-fold matric product:

$$
\iota^{0} \times(\underbrace{\mathcal{R}_{1}\left(P^{0}, P^{1}\right) \times \mathcal{R}_{1}\left(P^{1}, P^{2}\right)} \times \cdots \times \mathcal{R}_{1}\left(P^{n-1}, P^{n}\right)) \times G^{n}
$$

OBDD-based planning algorithms: matrices as

 formulae/OBDD| matrices | formulas | sets of states |
| :--- | :--- | :--- |
| vector $V_{1 \times n}$ | formula over P | set of states |
| matrix $M_{n \times n}$ | formula over $P \cup P^{\prime}$ | transition relation |
| $M_{n \times n} \times N_{n \times n}$ | $\exists P^{\prime} .\left(\phi\left(P, P^{\prime}\right) \wedge \psi\left(P^{\prime}, P^{\prime \prime}\right)\right)$ | sequential composition |
| $S_{1 \times n} \times M_{n \times n}$ | $\exists P .\left(\phi(P) \wedge \psi\left(P, P^{\prime}\right)\right)$ | successor states of S |
| $M_{n \times n} \times\left(S_{1 \times n}\right)^{T}$ | $\exists P^{\prime} .\left(\phi(P) \wedge \psi\left(P, P^{\prime}\right)\right)$ | predecessor states of S |
| $S_{1 \times n}+S_{1 \times n}^{\prime}$ | $\phi \vee \psi$ | set union |
| | $\phi \wedge \psi$ | set intersection |
| | | |
| Jussi Rintanen | May 19, A1 Planning | |
| | | |
| | | |

Renaming and \exists-abstraction

- Renaming substitution: replace propositions p_{1}, \ldots, p_{n} in ϕ respectively by $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$

$$
\phi\left[p_{1}^{\prime} / p_{1}, p_{2}^{\prime} / p_{2}, \ldots, p_{n}^{\prime} / p_{n}\right]
$$

- Existential abstraction $\exists p . \phi$ is defined as

$$
\phi[\top / p] \vee \phi[\perp / p] .
$$

\exists-abstraction, example

$$
\begin{aligned}
& \exists B \cdot((A \rightarrow B) \wedge(B \rightarrow C)) \\
& =((A \rightarrow \top) \wedge(\top \rightarrow C)) \vee((A \rightarrow \perp) \wedge(\perp \rightarrow C)) \\
& \equiv C \vee \neg A \equiv A \rightarrow C \\
& \exists A B \cdot(A \vee B)=\exists B \cdot(\top \vee B) \vee(\perp \vee B) \\
& =((\top \vee \top) \vee(\perp \vee \top)) \vee((\top \vee \perp) \vee(\perp \vee \perp))
\end{aligned}
$$

\exists-abstraction is sometimes called forgetting
\exists mon. \exists tue. $(($ mon \vee tue $) \wedge($ mon \rightarrow work $) \wedge($ tue \rightarrow work $))$
$\equiv \exists$ tue. $(($ work $\wedge($ tue \rightarrow work $)) \vee($ tue $\wedge($ tue \rightarrow work $))) \equiv$ work
Jussi Rintanen May 19, Al Planning 5/9

Matrix multiplication: example 1

$\phi=A \leftrightarrow \neg A^{\prime}$ (reverse truth-value of A)
$\psi=A^{\prime} \leftrightarrow A^{\prime \prime}$ (do nothing)
The sequential composition of these actions is

$$
\begin{aligned}
\exists A^{\prime} . \phi \wedge \psi & =\left((A \leftrightarrow \neg \top) \wedge\left(\top \leftrightarrow A^{\prime \prime}\right)\right) \vee\left((A \leftrightarrow \neg \perp) \wedge\left(\perp \leftrightarrow A^{\prime \prime}\right)\right) \\
& \equiv\left((A \leftrightarrow \perp) \wedge\left(\top \leftrightarrow A^{\prime \prime}\right)\right) \vee\left((A \leftrightarrow \top) \wedge\left(\perp \leftrightarrow A^{\prime \prime}\right)\right) \\
& \equiv A \leftrightarrow \neg A^{\prime \prime}
\end{aligned}
$$

Matrix multiplication for formulae: definition

Let ϕ be a formula over $P \cup P^{\prime}$ and ψ be a formula over $P^{\prime} \cup P^{\prime \prime}$. Now product of matrices corresponding to ϕ and ψ^{\prime} is

$$
\exists P^{\prime} . \phi \wedge \psi
$$

($\phi \wedge \psi$ alone is the relational product of ϕ and ψ.)
(Q: Is there a valuation of P^{\prime} "between" valuations of P and $P^{\prime \prime}$?)

Matrix multiplication: properties

1. Abstracting one variable takes polynomial time on the size of the formula.
2. Abstracting one variable may double the size of the formula
\Longrightarrow Abstracting n variables may increase the size by factor 2^{n} \Longrightarrow Not in general feasible if formulae cannot be simplified.
\square
\square
