
OBDD-based planning algorithms

• Represent adjacency matrices as propositional formulae
(usually: binary decision diagrams).

• Compute sets of states reachable by i operators by matrix
multiplication on propositional formulae.

• In some cases scales up to much bigger matrices than what
can be represented as conventional arrays or representations
of sparse matrices.

Jussi Rintanen May 19, AI Planning 1/9

OBDD-based planning algorithms: matrices as
formulae/OBDD

matrices formulas sets of states
vector V1×n formula over P set of states
matrix Mn×n formula over P ∪ P ′ transition relation
Mn×n ×Nn×n ∃P ′.(φ(P, P ′) ∧ ψ(P ′, P ′′)) sequential composition
S1×n ×Mn×n ∃P.(φ(P ) ∧ ψ(P, P ′)) successor states of S
Mn×n × (S1×n)T

∃P ′.(φ(P ) ∧ ψ(P, P ′)) predecessor states of S
S1×n + S′

1×n
φ ∨ ψ set union
φ ∧ ψ set intersection

Jussi Rintanen May 19, AI Planning 2/9

OBDD-based planning algorithms: idea

Same formulae that we used earlier:

ι0 ∧R1(P
0, P 1) ∧R1(P

1, P 2) ∧ · · · ∧ R1(P
n−1, Pn)

︸ ︷︷ ︸
∧Gn

The conjunction of the formulae R1(P
i, P i+1) corresponds to

reachability by n steps and in terms of matrices the n-fold matric
product:

ι0 × (R1(P
0, P 1) ×R1(P

1, P 2)
︸ ︷︷ ︸

× · · · × R1(P
n−1, Pn))

︸ ︷︷ ︸

×Gn

Jussi Rintanen May 19, AI Planning 3/9

Renaming and ∃-abstraction

• Renaming substitution: replace propositions p1, . . . , pn in φ

respectively by p′1, . . . , p
′

n

φ[p′1/p1, p
′

2/p2, . . . , p
′

n
/pn]

• Existential abstraction ∃p.φ is defined as

φ[>/p] ∨ φ[⊥/p].

Jussi Rintanen May 19, AI Planning 4/9



∃-abstraction, example

∃B.((A→B) ∧ (B→C))

= ((A→>) ∧ (>→C)) ∨ ((A→⊥) ∧ (⊥→C))

≡ C ∨ ¬A ≡ A→C

∃AB.(A ∨B) = ∃B.(> ∨B) ∨ (⊥ ∨B)

= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))

∃-abstraction is sometimes called forgetting:

∃mon.∃tue.((mon ∨ tue) ∧ (mon→work) ∧ (tue→work))

≡ ∃tue.((work ∧ (tue→work)) ∨ (tue ∧ (tue→work))) ≡ work

Jussi Rintanen May 19, AI Planning 5/9

Matrix multiplication for formulae: definition

Let φ be a formula over P ∪ P ′ and ψ be a formula over P ′
∪ P ′′.

Now product of matrices corresponding to φ and ψ′ is

∃P ′.φ ∧ ψ.

(φ ∧ ψ alone is the relational product of φ and ψ.)

(Q: Is there a valuation of P ′ “between” valuations of P and P ′′?)

Jussi Rintanen May 19, AI Planning 6/9

Matrix multiplication: example 1

φ = A↔ ¬A′ (reverse truth-value of A)

ψ = A′
↔ A′′ (do nothing)

The sequential composition of these actions is

∃A′.φ ∧ ψ = ((A↔ ¬>) ∧ (> ↔ A′′)) ∨ ((A↔ ¬⊥) ∧ (⊥ ↔ A′′))

≡ ((A↔ ⊥) ∧ (> ↔ A′′)) ∨ ((A↔ >) ∧ (⊥ ↔ A′′))

≡ A↔ ¬A′′

Jussi Rintanen May 19, AI Planning 7/9

Matrix multiplication: example 2

Multiply (¬A↔ A′) ∧ (¬B ↔ B′) and (A′
↔ B′′) ∧ (B′

↔ A′′):








0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0








×








1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1








=








0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0








This is ∃A′.∃B′.(¬A↔ A′)∧(¬B ↔ B′)∧(A′
↔ B′′)∧(B′

↔ A′′).

Jussi Rintanen May 19, AI Planning 8/9



Matrix multiplication: properties

1. Abstracting one variable takes polynomial time on the size of
the formula.

2. Abstracting one variable may double the size of the formula.

=⇒ Abstracting n variables may increase the size by factor 2n.

=⇒ Not in general feasible if formulae cannot be simplified.

Jussi Rintanen May 19, AI Planning 9/9


