
Invariant formulae

• Connection to reachability and the existence of plans

• An algorithm for computing invariants

• Application to planning by propositional satisfiability and
regression.

No lectures on Monday May 30 and Wednesday June 2
(Pfingsten), Monday June 7 and Wednesday June 9.

Jussi Rintanen May 17, AI Planning 1/20

Invariants: definition

A formula φ is an invariant of problem instance 〈P, I,O,G〉 if

1. I |= φ, and

2. for every o ∈ O and state s such that s |= φ, also appo(s) |= φ.

=⇒ φ is true in every state that is reachable from I by some
sequence of operators.

Jussi Rintanen May 17, AI Planning 2/20

Invariants: the strongest invariant

A formula φ is the strongest invariant if for any invariant ψ, φ |= ψ.

The strongest invariant exactly characterizes the set S of all
states reachable from I with operators o ∈ O:
For all states s, s |= φ if and only if s ∈ S.

(Actually, there are several strongest invariants, but they are all
logically equivalent.)

Jussi Rintanen May 17, AI Planning 3/20

Invariants: an example (blocks world)

〈ontable(x) ∧ clear(x) ∧ clear(y), on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉

〈clear(x) ∧ on(x, y), ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉

〈clear(x) ∧ on(x, y) ∧ clear(z), on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)

ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)

¬on(x, y) ∨ ¬on(x, z) when y 6= z

¬on(y, x) ∨ ¬on(z, x) when y 6= z

¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, x) ∧ on(xn, x1))

for every n ≥ 1 and {x1, . . . , xn} ⊆ X

Jussi Rintanen May 17, AI Planning 4/20



Invariants: connection to plan existence

Let φ be the strongest invariant for 〈P, I,O,G〉. Then 〈P, I,O,G〉

has a plan if and only if G∧φ is satisfiable (the set of goal states
and the set of reachable states intersect.)

THEOREM Computing the strongest invariant φ is PSPACE-
hard.

PROOF

Fact 1: Testing existence of plans with 1-literal goal A is
PSPACE-hard. (TM simulation with one accepting state.)

Jussi Rintanen May 17, AI Planning 5/20

proof continues...

Let o = 〈A, p1 ∧ · · · ∧ pn〉 with P = {p1, . . . , pn}.

For 〈P, I,O,A〉 a plan exists
iff for 〈P, I,O ∪ {o}, A〉 a plan exists
iff for 〈P, I,O ∪ {o}, A ∧ p1 ∧ · · · ∧ pn〉 a plan exists.

Testing satisfiability of φ∧A∧p1∧· · ·∧pn (exactly one goal state!)
can be done in polynomial time: replace state variables in φ by
> and simplify.

=⇒ Plan existence is polynomial-time reducible to computing the
strongest invariant. =⇒ The latter is PSPACE-hard. Q.E.D.

Jussi Rintanen May 17, AI Planning 6/20

Invariant computation: informally

Similar to distance estimation: compute sets Ci characterizing
(giving an upper bound!) states reachable by i steps:

C0 = {A,¬B,C} ∼ {101}

C1 = {A ∨B,¬A ∨ ¬B,C} ∼ {101, 011}

C2 = {¬A ∨ ¬B,C} ∼ {001, 011, 101}

C3 = {¬A ∨ ¬B,C ∨A} ∼ {001, 011, 100, 101}

C4 = {¬A ∨ ¬B} ∼ {000, 001, 010, 011, 100, 101}

C5 = {¬A ∨ ¬B} ∼ {000, 001, 010, 011, 100, 101}

Ci = C5 for all i ≥ 5

Jussi Rintanen May 17, AI Planning 7/20

Invariant computation: informally

1. Start with all 1-literal clauses that are true in the initial state.

2. Repeatedly test every operator vs. every clause, whether the
clause can be shown to be true after applying the operator:

• One of the literals in the clause is necessarily true: retain.
• Otherwise, if the clause is too long: forget it.
• Otherwise, generate new clauses by adding literals that are

now true.

3. When no change, stop =⇒ All clauses are invariants.

Jussi Rintanen May 17, AI Planning 8/20



Invariant computation: function simplepreserved
PROCEDURE simplepreserved(l1 ∨ · · · ∨ ln,∆,〈l′

1
∧ · · · ∧ l′

n′, l
′′

1
∧ · · · ∧ l′′

n′′〉);
IF {l′′′

1
, · · · , l′′′m} ⊆ {l′

1
, . . . , l′

n′} for some l′′′
1
∨ · · · ∨ l′′′m ∈ ∆ THEN RETURN true;

FOR EACH l ∈ {l1, . . . , ln} DO
IF l 6∈ {l′′

1
, . . . , l′′

n′′} THEN GOTO OK;
FOR EACH l′ ∈ {l1, . . . , ln}\{l} DO

IF l′ ∈ {l′′
1
, . . . , l′′

n′′} THEN GOTO OK;
IF l′ ∈ {l′

1
, . . . , l′

n′} OR l′′′
1
∨ · · · ∨ l′′′m ∨ l′ ∈ ∆ for some {l′′′

1
, . . . , l′′′m} ⊆ {l′

1
, . . . , l′

n′},
AND l′ 6∈ {l′′

1
, . . . , l′′

n′′}
THEN GOTO OK;

END DO
RETURN false;
OK:

END DO
RETURN true;

Jussi Rintanen May 17, AI Planning 9/20

Invariant computation: function simplepreserved

Let ∆ = {C ∨B}.

simplepreserved(A ∨B, ∆, 〈¬C,C ∧D〉) returns true

simplepreserved(A ∨B, ∆, 〈¬C,¬A ∧B〉) returns true

simplepreserved(A ∨B, ∆, 〈B,¬A〉) returns true

simplepreserved(A ∨B, ∆, 〈¬C,¬A〉) returns true

Jussi Rintanen May 17, AI Planning 10/20

Invariant computation: function simplepreserved

LEMMA

Let ∆ be a set of clauses, φ = l1 ∨ · · · ∨ ln a clause, and o an
operator of the form 〈l′

1
∧ · · · ∧ l′

n′, l
′′

1
∧ · · · ∧ l′′

n′′〉 where l′j and l′′k
are literals.

If simplepreserved(φ,∆,o) returns true, then appo(s) |= φ for any
state s such that s |= ∆ ∪ {φ} and o is applicable in s. (It may
under these conditions also return false).

Jussi Rintanen May 17, AI Planning 11/20

Invariant computation: the main procedure
PROCEDURE invariants(P, I,O, n);
C := {p ∈ P |I |= p} ∪ {¬p|p ∈ P, I 6|= p};
REPEAT
C ′ := C;
FOR EACH l1 ∨ · · · ∨ lm ∈ C AND o ∈ O DO

IF not preserved(l1 ∨ · · · ∨ lm,C ′,o) THEN
BEGIN
C := C\{l1 ∨ · · · ∨ lm};
IF m < n THEN

FOR EACH p ∈ P DO
C := C ∪ {l1 ∨ · · · ∨ lm ∨ p, l1 ∨ · · · ∨ lm ∨ ¬p};

END
UNTIL C = C ′;
RETURN C;

Jussi Rintanen May 17, AI Planning 12/20



Invariant computation: example

I(A) = 1, I(B) = 0, I(C) = 0

operators o1 = 〈A,¬A ∧B〉, o2 = 〈B,¬B ∧C〉, o3 = 〈C,¬C ∧A〉

Compute invariants with at most 2 literals:

C0 = {A,¬B,¬C}

C1 = {¬C,A ∨ B,¬B ∨ ¬A}

C2 = {¬B ∨ ¬A,¬C ∨ ¬A,¬C ∨ ¬B}

C3 = {¬B ∨ ¬A,¬C ∨ ¬A,¬C ∨ ¬B}

C3 = C1

Jussi Rintanen May 17, AI Planning 13/20

Invariant computation: general algorithm

PROCEDURE preserved(l1 ∨ · · · ∨ ln,∆,〈c, e〉);
IF ∆ |= ¬c THEN RETURN true;
FOR EACH l ∈ {l1, . . . , ln} DO

IF ∆ ∧ {EPCl(e)} |= ⊥ THEN GOTO OK;
FOR EACH l′ ∈ {l1, . . . , ln}\{l} DO

IF ∆ ∪ {EPCl(e), c} |= EPCl′(e) THEN GOTO OK;
IF ∆ ∪ {EPCl(e), c} |= l′ AND ∆ ∪ {EPCl(e), c} |= ¬EPC

l′
(e)

THEN GOTO OK;
END DO
RETURN false;
OK:

END DO
RETURN true;

Jussi Rintanen May 17, AI Planning 14/20

Invariant computation: general algorithm

The procedure preserved runs in polynomial time in the size
of the clause, ∆ and the operator, except that the logical
consequence tests need exponential time in the worst case.

In the lecture notes we present an algorithm that runs in
polynomial time and approximates logical consequence testing:
these tests may fail in one direction without making invariant
computation incorrect. (Computation of all invariants is not
guaranteed anyway.)

Jussi Rintanen May 17, AI Planning 15/20

Invariants: application in planning in the
propositional logic

For every invariant l1 ∨ · · · ∨ ln add the clauses

lt
1
∨ · · · ∨ ltn

for all time points t ≥ 0.

This may speed up planning a lot.

Jussi Rintanen May 17, AI Planning 16/20



Invariants: application in backward planning

In backward search, the set of goal states and states obtained
by regression often contain undesireable states:

Regression of in(A,Freiburg)
by 〈in(A,Strassburg), ¬in(A,Strassburg)∧in(A,Paris)〉

gives in(A,Freiburg)∧in(A,Strassburg)

The formula in(A,Freiburg)∧in(A,Strassburg) represents also
states that are intuitively incorrect.

Jussi Rintanen May 17, AI Planning 17/20

Invariants: application to backward planning

Problem: regression produces sets of states S such that

1. some states in S are not reachable from I,
2. none of the states in S are reachable from I.

The first problem would require the strongest invariant.

Partial solution to the second problem:

1. Compute invariant φ.
2. Do only regression steps such that regro(ψ)∧φ is satisfiable.

Jussi Rintanen May 17, AI Planning 18/20

Invariants: application to distance estimation

A formula φ has distance > i if Ci ∪ {φ} is not satisfiable.

This estimate can be much better than the one given by the
sets of literals produced the first algorithm we gave for distance
estimation.

Jussi Rintanen May 17, AI Planning 19/20

Invariants: application to distances, example

2=010

1=001
4=100

5=101

3=011

6=110

7=111

distance clauses true

0 ¬B2 ¬B1 B0

1 ¬B2 ∨ B1 ¬B2 ∨ ¬B0

¬B1 ∨ ¬B0 B0 ∨ B1

2 ¬B1 ∨ ¬B0

3

Jussi Rintanen May 17, AI Planning 20/20


