Invariant formulae

- Connection to reachability and the existence of plans
- An algorithm for computing invariants
- Application to planning by propositional satisfiability and regression.

No lectures on Monday May 30 and Wednesday June 2 (Pfingsten), Monday June 7 and Wednesday June 9.

Invariants: the strongest invariant

A formula ϕ is the strongest invariant if for any invariant $\psi, \phi \models \psi$.
The strongest invariant exactly characterizes the set S of all states reachable from I with operators $o \in O$:
For all states $s, s \models \phi$ if and only if $s \in S$.
(Actually, there are several strongest invariants, but they are all logically equivalent.)

Invariants: definition

A formula ϕ is an invariant of problem instance $\langle P, I, O, G\rangle$ if

1. $I \models \phi$, and
2. for every $o \in O$ and state s such that $s \models \phi$, also $\operatorname{app}_{o}(s) \models \phi$.
$\Longrightarrow \phi$ is true in every state that is reachable from I by some sequence of operators.

Invariants: an example (blocks world)

$\langle\operatorname{ontable}(x) \wedge$ clear $(x) \wedge \operatorname{clear}(y)$, on $(x, y) \wedge \neg \operatorname{clear}(y) \wedge \neg$ ontable $(x)\rangle$
$\langle\operatorname{clear}(x) \wedge$ on (x, y), ontable $(x) \wedge \operatorname{clear}(y) \wedge \neg$ on $(x, y)\rangle$
$\langle\operatorname{clear}(x) \wedge$ on $(x, y) \wedge \operatorname{clear}(z)$, on $(x, z) \wedge$ clear $(y) \wedge \neg \operatorname{clear}(z) \wedge \neg$ on $(x, ?$

```
    clear(x)\leftrightarrow\forally\inX\{x}.\negon(y,x)
```

 ontable \((x) \leftrightarrow \forall y \in X \backslash\{x\}\). \(\neg\) on \((x, y)\)
 \(\neg\) on \((x, y) \vee \neg\) on \((x, z)\) when \(y \neq z\)
 \(\neg\) On \((y, x) \vee \neg\) on \((z, x)\) when \(y \neq z\)
 \(\neg\left(\right.\) on \(\left(x_{1}, x_{2}\right) \wedge\) on \(\left(x_{2}, x_{3}\right) \wedge \cdots \wedge\) on \(\left(x_{n-1}, x\right) \wedge\) on \(\left.\left(x_{n}, x_{1}\right)\right)\)
 for every \(n \geq 1\) and \(\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X\)

Invariants: connection to plan existence

Let ϕ be the strongest invariant for $\langle P, I, O, G\rangle$. Then $\langle P, I, O, G\rangle$ has a plan if and only if $G \wedge \phi$ is satisfiable (the set of goal states and the set of reachable states intersect.)

THEOREM Computing the strongest invariant ϕ is PSPACEhard

PROOF
Fact 1: Testing existence of plans with 1-literal goal A is PSPACE-hard. (TM simulation with one accepting state.)
\qquad

Invariant computation: informally

Similar to distance estimation: compute sets C_{i} characterizing (giving an upper bound!) states reachable by i steps:

$$
\begin{aligned}
& C_{0}=\{A, \neg B, C\} \sim\{101\} \\
& C_{1}=\{A \vee B, \neg A \vee \neg B, C\} \sim\{101,011\} \\
& C_{2}=\{\neg A \vee \neg B, C\} \sim\{001,011,101\} \\
& C_{3}=\{\neg A \vee \neg B, C \vee A\} \sim\{001,011,100,101\} \\
& C_{4}=\{\neg A \vee \neg B\} \sim\{000,001,010,011,100,101\} \\
& C_{5}=\{\neg A \vee \neg B\} \sim\{000,001,010,011,100,101\} \\
& C_{i}=C_{5} \text { for all } i \geq 5
\end{aligned}
$$

proof continues...

Let $o=\left\langle A, p_{1} \wedge \cdots \wedge p_{n}\right\rangle$ with $P=\left\{p_{1}, \ldots, p_{n}\right\}$.
For $\langle P, I, O, A\rangle$ a plan exists
iff for $\langle P, I, O \cup\{o\}, A\rangle$ a plan exists
iff for $\left\langle P, I, O \cup\{o\}, A \wedge p_{1} \wedge \cdots \wedge p_{n}\right\rangle$ a plan exists
Testing satisfiability of $\phi \wedge A \wedge p_{1} \wedge \cdots \wedge p_{n}$ (exactly one goal state!) can be done in polynomial time: replace state variables in ϕ by \top and simplify.
\Longrightarrow Plan existence is polynomial-time reducible to computing the strongest invariant. \Longrightarrow The latter is PSPACE-hard.

Invariant computation: informally

1. Start with all 1-literal clauses that are true in the initial state.
2. Repeatedly test every operator vs. every clause, whether the clause can be shown to be true after applying the operator:

- One of the literals in the clause is necessarily true: retain.
- Otherwise, if the clause is too long: forget it.
- Otherwise, generate new clauses by adding literals that are now true.

3. When no change, stop \Longrightarrow All clauses are invariants.

Invariant computation: function simplepreserved
PROCEDURE simplepreserved $\left(l_{1} \vee \cdots \vee l_{n}, \Delta,\left\langle l_{1}^{\prime} \wedge \cdots \wedge l_{n_{n}^{\prime}}^{\prime}, l_{1}^{\prime \prime} \wedge \cdots \wedge l_{n^{\prime \prime}}^{\prime \prime}\right)\right\rangle$;
IF $\left\{\overline{l_{1}^{\prime \prime \prime}}, \cdots, \overline{l_{m}^{\prime \prime \prime}}\right\} \subseteq\left\{l_{1}^{\prime}, \ldots, l_{n^{\prime}}^{\prime}\right\}$ for some $l_{1}^{\prime \prime \prime} \vee \cdots \vee l_{m}^{\prime \prime \prime} \in \Delta$ THEN RETURN true; FOR EACH $l \in\left\{l_{1}, \ldots, l_{n}\right\}$ DO

IF $\bar{l} \notin\left\{l_{1}^{\prime \prime}, \ldots, l_{n^{\prime \prime}}^{\prime \prime}\right\}$ THEN GOTO OK;
FOR EACH $l^{\prime} \in\left\{l_{1}, \ldots, l_{n}\right\} \backslash\{l\} D O$
IF $l^{\prime} \in\left\{l_{1}^{\prime \prime}, \ldots, l_{n^{\prime \prime}}^{\prime \prime}\right\}$ THEN GOTO OK;

AND $l^{\prime} \notin\left\{l_{1}^{\prime \prime}, \ldots, l_{n^{\prime \prime}}^{\prime \prime}\right\}$
THEN GOTO OK;
END DO
RETURN false;
OK:
END DO
RETURN true;

```
Jussi Rintanen
```


Invariant computation: function simplepreserved

LEMMA

Let Δ be a set of clauses, $\phi=l_{1} \vee \cdots \vee l_{n}$ a clause, and o an operator of the form $\left\langle l_{1}^{\prime} \wedge \cdots \wedge l_{n^{\prime}}^{\prime}, l_{1}^{\prime \prime} \wedge \cdots \wedge l_{n^{\prime \prime}}^{\prime \prime}\right\rangle$ where l_{j}^{\prime} and $l_{k}^{\prime \prime}$ are literals.

If simplepreserved (ϕ, Δ, o) returns true, then $\operatorname{app}_{o}(s) \models \phi$ for any state s such that $s \models \Delta \cup\{\phi\}$ and o is applicable in s. (It may under these conditions also return false).

invariant computation: function simplepreserved

Let $\Delta=\{C \vee B\}$.
simplepreserved $(A \vee B, \Delta,\langle\neg C, C \wedge D\rangle)$ returns true
simplepreserved $(A \vee B, \Delta,\langle\neg C, \neg A \wedge B\rangle)$ returns true
simplepreserved $(A \vee B, \Delta,\langle B, \neg A\rangle)$ returns true
simplepreserved $(A \vee B, \Delta,\langle\neg C, \neg A\rangle)$ returns true

Invariant computation: the main procedure

PROCEDURE invariants (P, I, O, n);
$C:=\{p \in P \mid I \models p\} \cup\{\neg p \mid p \in P, I \not \vDash p\} ;$
REPEAT
$C^{\prime}:=C ;$
FOR EACH $l_{1} \vee \cdots \vee l_{m} \in C$ AND $o \in O$ DO
IF not preserved $\left(l_{1} \vee \cdots \vee l_{m}, C^{\prime}, o\right)$ THEN
BEGIN

$$
\begin{aligned}
& C:=C \backslash\left\{\left\{_{1} \vee \cdots\right.\right. \\
& \text { IF } m<n \text { THEN }
\end{aligned}
$$

FOR $E A C H p \in P D O$
$C:=C \cup\left\{l_{1} \vee \cdots \vee l_{m} \vee p, \quad l_{1} \vee \cdots \vee l_{m} \vee \neg p\right\} ;$ END
UNTIL $C=C^{\prime}$;
RETURN C;

Invariant computation: example

$I(A)=1, I(B)=0, I(C)=0$
operators $o_{1}=\langle A, \neg A \wedge B\rangle, o_{2}=\langle B, \neg B \wedge C\rangle, o_{3}=\langle C, \neg C \wedge A\rangle$
Compute invariants with at most 2 literals:

$$
\begin{aligned}
& C_{0}=\{A, \neg B, \neg C\} \\
& C_{1}=\{\neg \mathbf{C}, \mathbf{A} \vee \mathbf{B}, \neg \mathbf{B} \vee \neg \mathbf{A}\} \\
& C_{2}=\{\neg B \vee \neg A, \neg \mathbf{C} \vee \neg \mathbf{A}, \neg \mathbf{C} \vee \neg \mathbf{B}\} \\
& C_{3}=\{\neg B \vee \neg A, \neg C \vee \neg A, \neg C \vee \neg B\} \\
& C_{3}=C_{1}
\end{aligned}
$$

Invariant computation: general algorithm

The procedure preserved runs in polynomial time in the size of the clause, Δ and the operator, except that the logical consequence tests need exponential time in the worst case.

In the lecture notes we present an algorithm that runs in polynomial time and approximates logical consequence testing: these tests may fail in one direction without making invariant computation incorrect. (Computation of all invariants is not guaranteed anyway.)

Invariant computation: general algorithm

```
PROCEDURE preserved \(\left(l_{1} \vee \cdots \vee l_{n}, \Delta,\langle c, e\rangle\right)\);
```

IF $\Delta \vDash \neg c$ THEN RETURN true;
OOR EACH $l \in\left\{l_{1}, \quad, l_{n}\right\} D O$
IF $\Delta \wedge\left\{E P C_{i}(e)\right\} \models \perp$ THEN GOTO OK;
FOR EACH $l^{\prime} \in\left\{l_{1}, \ldots, l_{n}\right\} \backslash\{l\} D O$
IF $\left.\Delta \cup\left\{E P C_{i}(e), c\right\}\right\}=E P C_{l^{\prime}}(e)$ THEN GOTO OK;
IF $\Delta \cup\left\{E P C_{\bar{l}}(e), c\right\} \models l^{\prime}$ AND $\Delta \cup\left\{E P C_{\bar{l}}(e), c\right\} \models \neg E P C_{\overline{l^{\prime}}}(e)$
THEN GOTO OK;
END DO
RETURN false;
END DO
RETURN true

Invariants: application in planning in the propositional logic

For every invariant $l_{1} \vee \cdots \vee l_{n}$ add the clauses

$$
l_{1}^{t} \vee \cdots \vee l_{n}^{t}
$$

for all time points $t \geq 0$.

This may speed up planning a lot.

Invariants: application in backward planning

In backward search, the set of goal states and states obtained by regression often contain undesireable states:

Regression of in(A,Freiburg)
by \langle in(A,Strassburg), \neg in(A,Strassburg) \wedge in(A,Paris $)\rangle$ gives in(A,Freiburg) $\wedge i n(A$, Strassburg $)$

The formula in(A,Freiburg) $\wedge i n(A, S t r a s s b u r g)$ represents also states that are intuitively incorrect.

Invariants: application to distance estimation

A formula ϕ has distance $>i$ if $C_{i} \cup\{\phi\}$ is not satisfiable.

This estimate can be much better than the one given by the sets of literals produced the first algorithm we gave for distance estimation.

Invariants: application to backward planning

Problem: regression produces sets of states S such that

1. some states in S are not reachable from I,
2. none of the states in S are reachable from I.

The first problem would require the strongest invariant.
Partial solution to the second problem:

1. Compute invariant ϕ.
2. Do only regression steps such that $\operatorname{regr}_{o}(\psi) \wedge \phi$ is satisfiable.

Invariants: application to distances, example

