Parallel plans

- Plans are not sequences o_{1}, \ldots, o_{n} of operators, but sequences S_{1}, \ldots, S_{n} of sets of operators.
- All operators at a given step are applied simultaneously.
- Requirement: result of simultaneous application must be the same as application in any order (interleaving semantics)

Parallel plans

Let S be a set of operators and s a state.
Define $\operatorname{app}_{S}(s)$ as the result of simultaneously applying all operators $o \in S$ in state s :

1. the preconditions of all operators in S must be true in s, and
2. the state $\operatorname{app}_{S}(s)$ is obtained from s by making the literals in $\bigcup_{\langle p, e\rangle \in S}\left([e]_{s}\right)$ true

Parallel plans: example

Simultaneous actions possible (actions do not interfere):

A	
B	$\left.\left.\begin{array}{\|l\|}\hline \text { C } \\ \hline\end{array} \right\rvert\, \begin{array}{l}\text { D } \\ \hline\end{array}\right)$

Not possible (B not movable when A is on top of it):

Parallel plans

For a set of operators O and an initial state I, a parallel plan is a sequence $T=S_{1}, \ldots, S_{l}$ of sets of operators such that there is a sequence of states s_{0}, \ldots, s_{l} (the execution of T) such that

1. $s_{0}=I$,
2. $\bigcup_{\langle p, e\rangle \in S_{i}}\left([e]_{s_{i-1}}\right)$ is consistent for every $i \in\{1, \ldots, l\}$,
3. $s_{i}=\operatorname{app}_{S_{i}}\left(s_{i-1}\right)$ for $i \in\{1, \ldots, l\}$,
4. for all $i \in\{1, \ldots, l\}$ and $\langle p, e\rangle=o \in S_{i}$ and $S \subseteq S_{i} \backslash\{o\}$,
(a) $a p p_{S}\left(s_{i-1}\right) \models p$ and
(b) $[e]_{s_{i-1}}=[e]_{a p p_{S}\left(s_{i-1}\right)}$.

Parallel plans

LEMMA A Let $T=S_{1}, \ldots, S_{k}, \ldots, S_{l}$ be a parallel plan. Let $T^{\prime}=S_{1}, \ldots, S_{k}^{0}, S_{k}^{1}, \ldots, S_{l}$ be the parallel plan obtained from T by splitting the step S_{k} into two steps S_{k}^{0} and S_{k}^{1} such that $S_{k}=S_{k}^{0} \cup S_{k}^{1}$ and $S_{k}^{0} \cap S_{k}^{1}=\emptyset$.

If $s_{0}, \ldots, s_{k}, \ldots, s_{l}$ is the execution of T then $s_{0}, \ldots, s_{k}^{\prime}, s_{k}, \ldots, s_{l}$ for some s_{k}^{\prime} is the execution of T^{\prime}.

Planning as satisfiability: parallel encoding

To obtain valid parallel plans, include in $\mathcal{R}_{2}\left(P, P^{\prime}\right)$ the formula

$$
\neg\left(o_{i} \wedge o_{j}\right)
$$

for every $o_{i}, o_{j} \in O$ such that $i \neq j$ and there is a state variable $p \in P$ such that

1. p occurs in an effect in o_{i}, and
2. p occurs in a formula in o_{j} (in the precondition or in the antecedent of a conditional effect in o_{j})

Parallel plans

THEOREM Let $T=S_{1}, \ldots, S_{k}, \ldots, S_{l}$ be a parallel plan. Then any $\sigma=o_{1}^{1} ; \ldots ; o_{n_{1}}^{1} ; o_{2}^{2} ; \ldots ; o_{n_{2}}^{2} ; \ldots ; o_{1}^{l} ; \ldots ; o_{n_{l}}^{l}$ such that for every $i \in\{1, \ldots, l\}$ the sequence $o_{1}^{i} ; \ldots ; o_{n_{i}}^{i}$ is a total ordering of S_{i}, is a plan, and its execution leads to the same terminal state as that of T.
PROOF: First, all empty steps can be removed from the parallel plan. By Lemma A non-singleton steps can be split repeatedly to two smaller non-empty steps until every step is singleton and the singleton steps are in the desired order.

Planning as satisfiability: parallel encoding

Reading the plan from a satisfying assignment v : for all $t \in$ $\{1, \ldots, l\}$,

$$
S_{t}=\left\{o \in O \mid v\left(o^{t}\right)=1\right\} .
$$

THEOREM S_{1}, \ldots, S_{l} satisfies the definition of parallel plans.
PROOF IDEA: For every $S \subseteq S_{i}$, applying S does not change the values of the precondition or antecedents of conditionals of any operator in $S_{i} \backslash S$, because the state variables in the effects in S are disjoint from those in the formulae.

Conjunctive normal form

Many satisfiability algorithms require formulas in the conjunctive normal form: transformation by repeated applications of the following equivalences.

$$
\begin{aligned}
\neg(\phi \vee \psi) & \equiv \neg \phi \wedge \neg \psi \\
\neg(\phi \wedge \psi) & \equiv \neg \phi \vee \neg \psi \\
\neg \neg \phi & \equiv \phi \\
\phi \vee\left(\psi_{1} \wedge \psi_{2}\right) & \equiv\left(\phi \vee \psi_{1}\right) \wedge\left(\phi \vee \psi_{2}\right)
\end{aligned}
$$

The formula is conjunction of clauses (disjunctions of literals).
EXAMPLE: $(A \vee \neg B \vee C) \wedge(\neg C \vee \neg B) \wedge A$

Satisfiability test by the Davis-Putnam procedure

1. Let C be a set of clauses.
2. For all clauses $l_{1} \vee l_{2} \vee \cdots \vee l_{n} \in C$ and $\overline{l_{1}} \in C$, remove $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ from C and add $l_{2} \vee \cdots \vee l_{n}$ to C.
3. For all clauses $l_{1} \vee l_{2} \vee \cdots \vee l_{n} \in C$ and $l_{1} \in C$, remove $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ from C. (UNIT SUBSUMPTION)
4. If $\perp \in C$, return FALSE.
5. If C contains only unit clauses, return TRUE.
6. Pick some $p \in P$ such that $\{p, \neg p\} \cap C=\emptyset$
7. Recursive call: if $C \cup\{p\}$ is satisfiable, return TRUE.
8. Recursive call: if $C \cup\{\neg p\}$ is satisfiable, return TRUE.
9. Return FALSE.

The unit resolution rule

From $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ (here $n \geq 1$) and $\overline{l_{1}}$ infer $l_{2} \vee \cdots \vee l_{n}$.

EXAMPLE: From $A \vee B \vee C$ and $\neg A$ infer $B \vee C$.
SPECIAL CASE: from A and $\neg A$ we get the empty clause \perp ("disjunction consisting of zero disjuncts").

Planning as satisfiability: example

clear(C), on(C,B), on(B,A), ontable(A), clear(E), on(E,D), ontable(D) are initially true (there are two stacks, CBA and ED.)
The goal is on $(A, B) \wedge o n(B, C) \wedge o n(C, D) \wedge o n(D, E)$
The Davis-Putnam procedure solves the problem quickly:

- Formulae for lengths 1 to 4 shown unsatisfiable by unit resolution.
- Formula for plan length 5 is satisfiable: 3 nodes in the search tree.

Planning as satisfiability: example

v0.9 13/08/1997 19:32:47
30 propositions 100 operators
Length 1
Length 2
Length 3
Length 4
Length 5
branch on -clear (b) [1] depth 0
branch on clear (a) [3] depth 1
Found a plan.
0 totable (e, d)
1 totable(c,b) fromtable(d,e)
2 totable (b, a) fromtable (c, d)
3 fromtable (b, c)
4 fromtable (a, b)
Branches 2 last 2 failed 0; time 0.0

on (c, e)	FFFFFF	Fffrff	FFFFFF
on ($\mathrm{d}_{\text {a }}$ a)	Fffrff	Fffrff	Ffffrf
on (d, b)	FFFFFF	FFFFFFF	FF
on (d, c)	FFFFFF	FFFFFF	FF
on (d, e)	FFTTTT	FFTTT	FFTTTT
on (e, a)	Fffrff	FFFFFF	FFFFFF
on (e, b)	FFFFFF	FFFFF	FF
on (e, c)	Fffrff	FFFFFF	FFFFF
on (e, d)	TFFFFF	TFFFFF	TFFFFF
ntable(a)	TTT	Ttttif	TF
table (b)	FF	FFF	FTF
ntable(c)	F FFF	FF FFF	FFtFf
ntable (d)	TTFFFF	TTFFFF	TTFFFF
le	FT	FT	

. 123
....
fromtable (b, c) ...T.
fromtable (c, d) ...T.
fromtable(d,e) .T..
totable (b, a) ..T..
totable(c,b) .T...
totable (e, d) T...

