
Parallel plans

• Plans are not sequences o1, . . . , on of operators, but
sequences S1, . . . , Sn of sets of operators.

• All operators at a given step are applied simultaneously.

• Requirement: result of simultaneous application must be the
same as application in any order (interleaving semantics)

Jussi Rintanen May 12, AI Planning 1/16

Parallel plans: example

Simultaneous actions possible (actions do not interfere):

A B C D D

C

B

A

Not possible (B not movable when A is on top of it):

A B C D

Jussi Rintanen May 12, AI Planning 2/16

Parallel plans

Let S be a set of operators and s a state.

Define appS(s) as the result of simultaneously applying all
operators o ∈ S in state s:

1. the preconditions of all operators in S must be true in s, and

2. the state appS(s) is obtained from s by making the literals in
⋃

〈p,e〉∈S ([e]s) true.

Jussi Rintanen May 12, AI Planning 3/16

Parallel plans

For a set of operators O and an initial state I, a parallel plan is a
sequence T = S1, . . . , Sl of sets of operators such that there is a
sequence of states s0, . . . , sl (the execution of T) such that

1. s0 = I,
2.

⋃

〈p,e〉∈Si

(

[e]si−1

)

is consistent for every i ∈ {1, . . . , l},
3. si = appSi

(si−1) for i ∈ {1, . . . , l},
4. for all i ∈ {1, . . . , l} and 〈p, e〉 = o ∈ Si and S ⊆ Si\{o},
(a) appS(si−1) |= p and
(b) [e]si−1

= [e]appS(si−1).

Jussi Rintanen May 12, AI Planning 4/16

Parallel plans

LEMMA A Let T = S1, . . . , Sk, . . . , Sl be a parallel plan. Let
T ′ = S1, . . . , S

0
k, S

1
k, . . . , Sl be the parallel plan obtained from

T by splitting the step Sk into two steps S0
k and S1

k such that
Sk = S0

k ∪ S1
k and S0

k ∩ S1
k = ∅.

If s0, . . . , sk, . . . , sl is the execution of T then s0, . . . , s′k, sk, . . . , sl

for some s′k is the execution of T ′.

Jussi Rintanen May 12, AI Planning 5/16

Parallel plans

THEOREM Let T = S1, . . . , Sk, . . . , Sl be a parallel plan. Then
any σ = o11; . . . ; o

1
n1

; o22; . . . ; o
2
n2

; . . . ; ol
1; . . . ; o

l
nl

such that for every
i ∈ {1, . . . , l} the sequence oi

1; . . . ; o
i
ni

is a total ordering of Si, is
a plan, and its execution leads to the same terminal state as that
of T .

PROOF: First, all empty steps can be removed from the parallel
plan. By Lemma A non-singleton steps can be split repeatedly
to two smaller non-empty steps until every step is singleton and
the singleton steps are in the desired order.

Jussi Rintanen May 12, AI Planning 6/16

Planning as satisfiability: parallel encoding

To obtain valid parallel plans, include in R2(P, P
′) the formula

¬(oi ∧ oj)

for every oi, oj ∈ O such that i 6= j and there is a state variable
p ∈ P such that

1. p occurs in an effect in oi, and

2. p occurs in a formula in oj (in the precondition or in the
antecedent of a conditional effect in oj)

Jussi Rintanen May 12, AI Planning 7/16

Planning as satisfiability: parallel encoding

Reading the plan from a satisfying assignment v: for all t ∈

{1, . . . , l},
St = {o ∈ O|v(ot) = 1}.

THEOREM S1, . . . , Sl satisfies the definition of parallel plans.

PROOF IDEA: For every S ⊆ Si, applying S does not change
the values of the precondition or antecedents of conditionals of
any operator in Si\S, because the state variables in the effects
in S are disjoint from those in the formulae.

Jussi Rintanen May 12, AI Planning 8/16

Conjunctive normal form
Many satisfiability algorithms require formulas in the conjunctive
normal form: transformation by repeated applications of the
following equivalences.

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

¬¬φ ≡ φ

φ ∨ (ψ1 ∧ ψ2) ≡ (φ ∨ ψ1) ∧ (φ ∨ ψ2)

The formula is conjunction of clauses (disjunctions of literals).

EXAMPLE: (A ∨ ¬B ∨ C) ∧ (¬C ∨ ¬B) ∧A

Jussi Rintanen May 12, AI Planning 9/16

The unit resolution rule

From l1 ∨ l2 ∨ · · · ∨ ln (here n ≥ 1) and l1 infer l2 ∨ · · · ∨ ln.

EXAMPLE: From A ∨B ∨ C and ¬A infer B ∨ C.

SPECIAL CASE: from A and ¬A we get the empty clause ⊥

(“disjunction consisting of zero disjuncts”).

Jussi Rintanen May 12, AI Planning 10/16

Satisfiability test by the Davis-Putnam procedure
1. Let C be a set of clauses.
2. For all clauses l1 ∨ l2 ∨ · · · ∨ ln ∈ C and l1 ∈ C,

remove l1 ∨ l2 ∨ · · · ∨ ln from C and add l2 ∨ · · · ∨ ln to C.
3. For all clauses l1 ∨ l2 ∨ · · · ∨ ln ∈ C and l1 ∈ C,

remove l1 ∨ l2 ∨ · · · ∨ ln from C. (UNIT SUBSUMPTION)
4. If ⊥ ∈ C, return FALSE.
5. If C contains only unit clauses, return TRUE.
6. Pick some p ∈ P such that {p,¬p} ∩ C = ∅

7. Recursive call: if C ∪ {p} is satisfiable, return TRUE.
8. Recursive call: if C ∪ {¬p} is satisfiable, return TRUE.
9. Return FALSE.

Jussi Rintanen May 12, AI Planning 11/16

Planning as satisfiability: example
clear(C), on(C,B), on(B,A), ontable(A), clear(E), on(E,D),
ontable(D) are initially true (there are two stacks, CBA and ED.)

The goal is on(A,B)∧on(B,C)∧on(C,D)∧on(D,E)

The Davis-Putnam procedure solves the problem quickly:

• Formulae for lengths 1 to 4 shown unsatisfiable by unit
resolution.

• Formula for plan length 5 is satisfiable: 3 nodes in the search
tree.

Jussi Rintanen May 12, AI Planning 12/16

Planning as satisfiability: example
v0.9 13/08/1997 19:32:47
30 propositions 100 operators
Length 1
Length 2
Length 3
Length 4
Length 5
branch on -clear(b)[1] depth 0
branch on clear(a)[3] depth 1
Found a plan.
0 totable(e,d)
1 totable(c,b) fromtable(d,e)
2 totable(b,a) fromtable(c,d)
3 fromtable(b,c)
4 fromtable(a,b)

Branches 2 last 2 failed 0; time 0.0

Jussi Rintanen May 12, AI Planning 13/16

012345 012345 012345
clear(a) FF FFF TT FFFTTT
clear(b) F F FF TTF FFTTTF
clear(c) TT FF TTTTFF TTTTFF
clear(d) FTTFFF FTTFFF FTTFFF
clear(e) TTFFFF TTFFFF TTFFFF
on(a,b) FFF T FFFFFT FFFFFT
on(a,c) FFFFFF FFFFFF FFFFFF
on(a,d) FFFFFF FFFFFF FFFFFF
on(a,e) FFFFFF FFFFFF FFFFFF
on(b,a) TT FF TTT FF TTTFFF
on(b,c) FF TT FFFFTT FFFFTT
on(b,d) FFFFFF FFFFFF FFFFFF
on(b,e) FFFFFF FFFFFF FFFFFF
on(c,a) FFFFFF FFFFFF FFFFFF
on(c,b) T FFF TT FFF TTFFFF
on(c,d) FFFTTT FFFTTT FFFTTT

Jussi Rintanen May 12, AI Planning 14/16

on(c,e) FFFFFF FFFFFF FFFFFF
on(d,a) FFFFFF FFFFFF FFFFFF
on(d,b) FFFFFF FFFFFF FFFFFF
on(d,c) FFFFFF FFFFFF FFFFFF
on(d,e) FFTTTT FFTTTT FFTTTT
on(e,a) FFFFFF FFFFFF FFFFFF
on(e,b) FFFFFF FFFFFF FFFFFF
on(e,c) FFFFFF FFFFFF FFFFFF
on(e,d) TFFFFF TFFFFF TFFFFF

ontable(a) TTT F TTTTTF TTTTTF
ontable(b) FF FF FFF FF FFFTFF
ontable(c) F FFF FF FFF FFTFFF
ontable(d) TTFFFF TTFFFF TTFFFF
ontable(e) FTTTTT FTTTTT FTTTTT

Jussi Rintanen May 12, AI Planning 15/16

01234
fromtable(a,b)T
fromtable(b,c) ...T.
fromtable(c,d) ..T..
fromtable(d,e) .T...

totable(b,a) ..T..
totable(c,b) .T...
totable(e,d) T....

Jussi Rintanen May 12, AI Planning 16/16

