

Parallel plans

Let S be a set of operators and s a state.

Define $app_S(s)$ as the result of simultaneously applying all operators $o \in S$ in state s:

- 1. the preconditions of all operators in S must be true in s, and
- 2. the state $app_S(s)$ is obtained from s by making the literals in $\bigcup_{\langle p,e\rangle\in S}([e]_s)$ true.

Jussi Rintanen

May 12, AI Planning 3/16

Parallel plans

For a set of operators O and an initial state I, a parallel plan is a sequence $T = S_1, \ldots, S_l$ of sets of operators such that there is a sequence of states s_0, \ldots, s_l (the execution of T) such that

```
1. s_0 = I,

2. \bigcup_{\langle p, e \rangle \in S_i} ([e]_{s_{i-1}}) is consistent for every i \in \{1, ..., l\},

3. s_i = app_{S_i}(s_{i-1}) for i \in \{1, ..., l\},

4. for all i \in \{1, ..., l\} and \langle p, e \rangle = o \in S_i and S \subseteq S_i \setminus \{o\},

(a) app_S(s_{i-1}) \models p and

(b) [e]_{s_{i-1}} = [e]_{app_S(s_{i-1})}.
```

Jussi Rintanen

May 12, Al Planning 4/16

Parallel plans

LEMMA A Let $T = S_1, \ldots, S_k, \ldots, S_l$ be a parallel plan. Let $T' = S_1, \ldots, S_k^0, S_k^1, \ldots, S_l$ be the parallel plan obtained from T by splitting the step S_k into two steps S_k^0 and S_k^1 such that $S_k = S_k^0 \cup S_k^1$ and $S_k^0 \cap S_k^1 = \emptyset$.

If $s_0, \ldots, s_k, \ldots, s_l$ is the execution of T then $s_0, \ldots, s'_k, s_k, \ldots, s_l$ for some s'_k is the execution of T'.

Jussi Rintanen

May 12, AI Planning 5/16

Parallel plans

THEOREM Let $T = S_1, \ldots, S_k, \ldots, S_l$ be a parallel plan. Then any $\sigma = o_1^1; \ldots; o_{n_1}^1; o_2^2; \ldots; o_{n_2}^2; \ldots; o_1^l; \ldots; o_{n_l}^l$ such that for every $i \in \{1, \ldots, l\}$ the sequence $o_1^i; \ldots; o_{n_i}^i$ is a total ordering of S_i , is a plan, and its execution leads to the same terminal state as that of T.

PROOF: First, all empty steps can be removed from the parallel plan. By Lemma A non-singleton steps can be split repeatedly to two smaller non-empty steps until every step is singleton and the singleton steps are in the desired order.

Jussi Rintanen

May 12, Al Planning 6/16

Planning as satisfiability: parallel encoding

To obtain valid parallel plans, include in $\mathcal{R}_2(P, P')$ the formula

 $\neg (o_i \land o_j)$

for every $o_i, o_j \in O$ such that $i \neq j$ and there is a state variable $p \in P$ such that

1. p occurs in an effect in o_i , and

2. *p* occurs in a formula in o_j (in the precondition or in the antecedent of a conditional effect in o_j)

```
Jussi Rintanen
```

May 12, AI Planning 7/16

Planning as satisfiability: parallel encoding

Reading the plan from a satisfying assignment v: for all $t \in \{1, \ldots, l\},$

$$S_t = \{ o \in O | v(o^t) = 1 \}.$$

THEOREM S_1, \ldots, S_l satisfies the definition of parallel plans.

PROOF IDEA: For every $S \subseteq S_i$, applying S does not change the values of the precondition or antecedents of conditionals of any operator in $S_i \setminus S$, because the state variables in the effects in S are disjoint from those in the formulae.

Jussi Rintanen

Conjunctive normal form

Many satisfiability algorithms require formulas in the conjunctive normal form: transformation by repeated applications of the following equivalences.

 $\begin{array}{rcl} \neg(\phi \lor \psi) &\equiv& \neg\phi \land \neg\psi \\ \neg(\phi \land \psi) &\equiv& \neg\phi \lor \neg\psi \\ \neg\neg\phi &\equiv& \phi \\ \phi \lor (\psi_1 \land \psi_2) &\equiv& (\phi \lor \psi_1) \land (\phi \lor \psi_2) \end{array}$

The formula is conjunction of *clauses* (disjunctions of literals).

EXAMPLE: $(A \lor \neg B \lor C) \land (\neg C \lor \neg B) \land A$

Jussi Rintanen

May 12, AI Planning 9/16

The unit resolution rule

From $l_1 \vee l_2 \vee \cdots \vee l_n$ (here $n \geq 1$) and $\overline{l_1}$ infer $l_2 \vee \cdots \vee l_n$.

EXAMPLE: From $A \lor B \lor C$ and $\neg A$ infer $B \lor C$.

SPECIAL CASE: from A and $\neg A$ we get the empty clause \bot ("disjunction consisting of zero disjuncts").

Jussi Rintanen

May 12, AI Planning 10/16

Satisfiability test by the Davis-Putnam procedure

- 1. Let *C* be a set of clauses.
- 2. For all clauses $l_1 \vee l_2 \vee \cdots \vee l_n \in C$ and $\overline{l_1} \in C$, remove $l_1 \vee l_2 \vee \cdots \vee l_n$ from *C* and add $l_2 \vee \cdots \vee l_n$ to *C*.
- 3. For all clauses $l_1 \lor l_2 \lor \cdots \lor l_n \in C$ and $l_1 \in C$, remove $l_1 \lor l_2 \lor \cdots \lor l_n$ from *C*. (UNIT SUBSUMPTION)
- 4. If $\perp \in C$, return FALSE.
- 5. If C contains only unit clauses, return TRUE.
- 6. Pick some $p \in P$ such that $\{p, \neg p\} \cap C = \emptyset$
- 7. Recursive call: if $C \cup \{p\}$ is satisfiable, return TRUE.
- 8. Recursive call: if $C \cup \{\neg p\}$ is satisfiable, return TRUE.
- 9. Return FALSE.

Jussi Rintanen

May 12, AI Planning 11/16

Planning as satisfiability: example

clear(C), on(C,B), on(B,A), ontable(A), clear(E), on(E,D), ontable(D) are initially true (there are two stacks, CBA and ED.)

The goal is $on(A,B) \land on(B,C) \land on(C,D) \land on(D,E)$

The Davis-Putnam procedure solves the problem quickly:

- Formulae for lengths 1 to 4 shown unsatisfiable by unit resolution.
- Formula for plan length 5 is satisfiable: 3 nodes in the search tree.

Jussi Rintanen

Planning as satisfiability: exa v0.9 13/08/1997 19:32:47 30 propositions 100 operators Length 1 Length 2 Length 3 Length 4 Length 5 branch on -clear(b)[1] depth 0 branch on clear(a)[3] depth 1 Found a plan.	ample		clear(a) clear(b) clear(c) clear(d) clear(e) on(a,b) on(a,c) on(a,d) on(a,e) on(b,a)	012345 FF F F FTTFFF FTTFFF FFFF FFFFFF FFFFFF FFFFFF	012345 FFF TT FF TTF FTTFFF TTFFFF FFFFFF FFFFFF FFFFFF TTT FF FFFFTT	012345 FFFTTT FTTTFF FTTFFF FTFFFF FFFFFF FFFFFF
<pre>0 totable(e,d) 1 totable(c,b) fromtable(d,e) 2 totable(b,a) fromtable(c,d) 3 fromtable(b,c) 4 fromtable(a,b) Branches 2 last 2 failed 0; time 0.0</pre>			on(b,c) on(b,d) on(b,e) on(c,a) on(c,b)	FF TT FFFFFF FFFFFF FFFFFF T FFF FFFTTT	FFFFTT FFFFFF FFFFFF FFFFFF TT FFF FFFTTT	FFFFTF FFFFFF FFFFFF FFFFFF TTFFFF FFFTTT
Jussi Rintanen	May 12, AI Planning	13/16	Jussi Rintanen			

May 12, AI Planning 15/16

on(c,e)	FFFFFF	FFFFFF	FFFFFF
on(d,a)	FFFFFF	FFFFFF	FFFFFF
on(d,b)	FFFFFF	FFFFFF	FFFFFF
on(d,c)	FFFFFF	FFFFFF	FFFFFF
on(d,e)	FFTTTT	FFTTTT	FFTTTT
on(e,a)	FFFFFF	FFFFFF	FFFFFF
on(e,b)	FFFFFF	FFFFFF	FFFFFF
on(e,c)	FFFFFF	FFFFFF	FFFFFF
on(e,d)	TFFFFF	TFFFFF	TFFFFF
ontable(a)	TTT F	TTTTTF	TTTTTF
ontable(b)	FF FF	FFF FF	FFFTFF
ontable(c)	F FFF	FF FFF	FFTFFF
ontable(d)	TTFFFF	TTFFFF	TTFFFF
ontable(e)	FTTTTT	FTTTTT	FTTTTT

Jussi Rintanen

	01234			
fromtable(a,b)	т			
fromtable(b,c)	т.			
fromtable(c,d)	T			
fromtable(d,e)	.т			
<pre>totable(b,a)</pre>	T			
totable(c,b)	.т			
totable(e,d)	т			
lussi Pintanon			May 12 Al Planning	16/16
Jussi Mindrich			way 12, Ar Manning	10/10

May 12, Al Planning 14/16