Planning in propositional logic

Represent transition relations (adjacency matrices) as propositional formulae, and use these formulas in planning algorithms.

1. Find plans with theorem-provers for propositional logic.
2. Use breadth-first search for computing the set of all reachable states (these sets are represented as propositional formulae), and extract plans from the information you have gathered.

Actions as propositional formulae: example

Formula $\left(p_{1} \leftrightarrow p_{2}^{\prime}\right) \wedge\left(p_{2} \leftrightarrow p_{3}^{\prime}\right) \wedge\left(p_{3} \leftrightarrow p_{1}^{\prime}\right)$ represents matrix

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	0	0	0	1	0	0	0
010	0	1	0	0	0	0	0	0
011	0	0	0	0	0	1	0	0
100	0	0	1	0	0	0	0	0
101	0	0	0	0	0	0	1	0
110	0	0	0	1	0	0	0	0
111	0	0	0	0	0	0	0	1

Actions as propositional formulae

$P=\left\{p_{1}, \ldots, p_{n}\right\}=$ state variables in the current state
$P^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}=$ state variables in the successor state
A formula ϕ over $P \cup P^{\prime}$ can be viewed as representing an action, because it can be viewed as a relation over sets of states.

For n state variables a formula (over $2 n$ variables) represents an adjacency matrix of size $2^{n} \times 2^{n}$.

For $n=20$, matrix size is $2^{20} \times 2^{20}=1048576 \times 1048576 \sim 10^{12}$ elements

Translating operators into formulae

- Any operator can be translated into a propositional formula.
- Translation is polynomial time, formula has polynomial size.
- Use in planning algorithms. Two main approaches are

1. Translate problem instance into a formula ϕ, find a satisfying assignment v, read the plan from the assignment v.
= Planning as Satisfiability
2. Use formulae as a data structure for representing sets of states, algorithm manipulates these data structures. e.g. BDD-based planning algorithms, (regression)

Translating operators into formulae

1. For operator $o=\langle z, e\rangle, \tau_{o}$ is the conjunction of z and for every state variable $p \in P$

$$
\left(\left(E P C_{p}(e) \vee\left(p \wedge \neg E P C_{\neg p}(e)\right)\right) \leftrightarrow p^{\prime}\right) \wedge \neg\left(E P C_{p}(e) \wedge E P C_{\neg p}(e)\right) .
$$

Planning as satisfiability

1. Encode operator sequences of length $0,1,2, \ldots$ as formulae $\phi_{0}, \phi_{1}, \phi_{2}, \ldots$ (see next slide...)
2. Test satisfiability of $\phi_{0}, \phi_{1}, \phi_{2}, \ldots$
3. Satisfiable formula corresponds to a plan.

There are very good algorithms for testing satisfiability, and planning this way is often very efficient.
This is also applied in microprocessor verification / intelligent debugging: Intel, IBM, Infineon, Motorola, NEC, ... (Hot topic in model-checking in CAV \Rightarrow Bounded Model-Checking.)

Translating operators into formulae: example

Consider operator $\langle A \vee B,((B \vee C) \triangleright A) \wedge(\neg C \triangleright \neg A) \wedge(A \triangleright B)\rangle$.
The corresponding propositional formula is

```
\((A \vee B) \wedge\left(((B \vee C) \vee(A \wedge \neg \neg C)) \leftrightarrow A^{\prime}\right) \wedge \neg((B \vee C) \wedge \neg C)\)
    \(\wedge\left((A \vee(B \wedge \neg \perp)) \leftrightarrow B^{\prime}\right) \wedge \neg(A \wedge \perp)\)
    \(\wedge\left((\perp \vee(C \wedge \neg \perp)) \leftrightarrow C^{\prime}\right) \wedge \neg(\perp \wedge \perp)\)
    \(\equiv\)
\((A \vee B) \wedge\left(((B \vee C) \vee(A \wedge C)) \leftrightarrow A^{\prime}\right) \wedge \neg((B \vee C) \wedge \neg C)\)
    \(\wedge\left((A \vee B) \leftrightarrow B^{\prime}\right)\)
    \(\wedge\left(C \leftrightarrow C^{\prime}\right)\)
```


Planning as satisfiability: encoding 1

Let $\langle P, I, O, G\rangle$ be a problem instance.
Let $\mathcal{R}_{1}\left(P^{0}, P^{1}\right)$ denote $\bigvee_{o \in O} \tau_{o}$ where
$P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $P^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}$ are respectively replaced by $P^{0}=\left\{p_{1}^{0}, \ldots, p_{n}^{0}\right\}$ and $P^{1}=\left\{p_{1}^{1}, \ldots, p_{n}^{1}\right\}$.

Finding plans of length t is encoded as

$$
\iota^{0} \wedge \mathcal{R}_{1}\left(P^{0}, P^{1}\right) \wedge \mathcal{R}_{1}\left(P^{1}, P^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(P^{t-1}, P^{t}\right) \wedge G^{t}
$$

Here $\iota^{0}=\bigwedge\left\{p^{0} \mid p \in P, I(p)=1\right\} \cup\left\{\neg p^{0} \mid p \in P, I(p)=0\right\}$ and G^{t} is G with propositions p replaced by p^{t}.

Planning as satisfiability: encoding 1, example
$I \models A \wedge B, \quad G=(A \wedge \neg B) \vee(\neg A \wedge B)$,
$o_{1}=\langle\top,(A \triangleright \neg A) \wedge(\neg A \triangleright A)\rangle, o_{2}=\langle\top,(B \triangleright \neg B) \wedge(\neg B \triangleright B)\rangle$, plan length 3

$$
\begin{aligned}
& \left(A^{0} \wedge B^{0}\right) \\
& \wedge\left(\left(\left(A^{0} \leftrightarrow A^{1}\right) \wedge\left(B^{0} \leftrightarrow \neg B^{1}\right)\right) \vee\left(\left(A^{0} \leftrightarrow \neg A^{1}\right) \wedge\left(B^{0} \leftrightarrow B^{1}\right)\right)\right) \\
& \wedge\left(\left(\left(A^{1} \leftrightarrow A^{2}\right) \wedge\left(B^{1} \leftrightarrow \neg B^{2}\right)\right) \vee\left(\left(A^{1} \leftrightarrow \neg A^{2}\right) \wedge\left(B^{1} \leftrightarrow B^{2}\right)\right)\right) \\
& \wedge\left(\left(\left(A^{2} \leftrightarrow A^{3}\right) \wedge\left(B^{2} \leftrightarrow \neg B^{3}\right)\right) \vee\left(\left(A^{2} \leftrightarrow \neg A^{3}\right) \wedge\left(B^{2} \leftrightarrow B^{3}\right)\right)\right) \\
& \wedge\left(\left(A^{3} \wedge \neg B^{3}\right) \vee\left(\neg A^{3} \wedge B^{3}\right)\right)
\end{aligned}
$$ translation takes exponential time.

However, in practice plans are often short.

Q: Satisfiability in propositional logic is NP-complete, but testing existence of plans is PSPACE-complete. How is it possible to do this translation from planning to satisfiability?
 A: The translation is polynomial time in the size of the problem instance and in the plan length. For exponentially long plans the

Planning as satisfiability: encoding 1, example

One valuation that satisfies the formula:

| | time i | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 2 | 3 |
| A^{i} | 1 | 0 | 0 | 0 |
| B^{i} | 1 | 1 | 0 | 1 |

1. There are several valuations/plans
2. Also plans of length 1 exists (just ignore time points 2 and 3 !)
3. Plans of length 2 do not exist!

Planning as satisfiability: encoding 2, explanatory frame axioms in $\mathcal{R}_{2}\left(P, P^{\prime}\right)$

Let $p \in P$ be one of the state variables.

$$
\begin{array}{r}
\left(\neg p \wedge p^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge E P C_{p}\left(e_{1}\right)\right) \vee \cdots \vee\left(o_{n} \wedge E P C_{p}\left(e_{n}\right)\right)\right) \\
\left(p \wedge \neg p^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge E P C_{\neg p}\left(e_{1}\right)\right) \vee \cdots \vee\left(o_{n} \wedge E P C_{\neg p}\left(e_{n}\right)\right)\right)
\end{array}
$$

Planning as satisfiability: $\mathcal{R}_{2}\left(P, P^{\prime}\right)$, effect axioms
$o_{i}=\langle z, e\rangle$ may affect the state variables as follows.

$$
\begin{aligned}
\left(o_{i} \wedge E P C_{p_{1}}(e)\right) & \rightarrow p_{1}^{\prime} \\
\left(o_{i} \wedge E P C_{\neg p_{1}}(e)\right) & \rightarrow \neg p_{1}^{\prime} \\
\vdots & \\
\left(o_{i} \wedge E P C_{p_{n}}(e)\right) & \rightarrow p_{n}^{\prime} \\
\left(o_{i} \wedge E P C_{\neg p_{n}}(e)\right) & \rightarrow \neg p_{n}^{\prime}
\end{aligned}
$$

Also, the precondition of the operator has to be true:

$$
o_{i} \rightarrow z
$$

Planning as satisfiability: $\mathcal{R}_{2}\left(P, P^{\prime}\right)$, example

$$
o_{1}=\langle\neg L A M P 1, L A M P 1\rangle, o_{2}=\langle\neg L A M P 2, L A M P 2\rangle
$$

$$
\begin{aligned}
& \left(\neg L A M P 1 \wedge L A M P 1^{\prime}\right) \rightarrow o_{1} \\
& \left(L A M P 1 \wedge \neg L A M P 1^{\prime}\right) \rightarrow \perp \\
& \left(\neg L A M P 2 \wedge L A M P 2^{\prime}\right) \rightarrow o_{2} \\
& \left(L A M P 2 \wedge \neg L A M P 2^{\prime}\right) \rightarrow \perp \\
& o_{1} \rightarrow L A M P 1^{\prime} \\
& o_{1} \rightarrow \neg L A M P 1 \\
& o_{2} \rightarrow L A M P 2^{\prime} \\
& o_{2} \rightarrow \neg L A M P 2
\end{aligned}
$$

Planning as satisfiability: encoding 2
To obtain valid plans only one operator may be applied at a time: for every $o_{i}, o_{j} \in O$ such that $i \neq j$, we have

$$
\neg\left(o_{i} \wedge o_{j}\right)
$$

in $\mathcal{R}_{2}\left(P, P^{\prime}\right)$.

Planning as satisfiability: encoding 2
Plans of length t are encoded exactly like with $\mathcal{R}_{1}\left(P, P^{\prime}\right)$:

$$
\iota^{0} \wedge \mathcal{R}_{2}\left(P^{0}, P^{1}\right) \wedge \mathcal{R}_{2}\left(P^{1}, P^{2}\right) \wedge \cdots \wedge \mathcal{R}_{2}\left(P^{t-1}, P^{t}\right) \wedge G^{t}
$$

Reading the plan from a satisfying assignment v :
o_{i} is the operator at time point t if and only if $v\left(o_{i}^{t}\right)=1$.

