
Planning in propositional logic

Represent transition relations (adjacency matrices) as
propositional formulae, and use these formulas in planning
algorithms.

1. Find plans with theorem-provers for propositional logic.

2. Use breadth-first search for computing the set of all reachable
states (these sets are represented as propositional formulae),
and extract plans from the information you have gathered.

Jussi Rintanen May 10, AI Planning 1/16

Actions as propositional formulae

P = {p1, . . . , pn} = state variables in the current state

P ′ = {p′
1
, . . . , p′n} = state variables in the successor state

A formula φ over P ∪P ′ can be viewed as representing an action,
because it can be viewed as a relation over sets of states.

For n state variables a formula (over 2n variables) represents an
adjacency matrix of size 2n × 2n.

For n = 20, matrix size is 220 × 220 = 1048576 × 1048576 ∼ 1012

elements

Jussi Rintanen May 10, AI Planning 2/16

Actions as propositional formulae: example

Formula (p1 ↔ p′
2
) ∧ (p2 ↔ p′

3
) ∧ (p3 ↔ p′

1
) represents matrix

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 0 0 0 1 0 0 0

010 0 1 0 0 0 0 0 0

011 0 0 0 0 0 1 0 0

100 0 0 1 0 0 0 0 0

101 0 0 0 0 0 0 1 0

110 0 0 0 1 0 0 0 0

111 0 0 0 0 0 0 0 1

Jussi Rintanen May 10, AI Planning 3/16

Translating operators into formulae
• Any operator can be translated into a propositional formula.

• Translation is polynomial time, formula has polynomial size.

• Use in planning algorithms. Two main approaches are

1. Translate problem instance into a formula φ, find a satisfying
assignment v, read the plan from the assignment v.
= Planning as Satisfiability

2. Use formulae as a data structure for representing sets of
states, algorithm manipulates these data structures.
e.g. BDD-based planning algorithms, (regression)

Jussi Rintanen May 10, AI Planning 4/16

Translating operators into formulae

1. For operator o = 〈z, e〉, τo is the conjunction of z and for every
state variable p ∈ P

((EPCp(e)∨ (p∧¬EPC¬p(e))) ↔ p′)∧¬(EPCp(e)∧EPC¬p(e)).

Jussi Rintanen May 10, AI Planning 5/16

Translating operators into formulae: example

Consider operator 〈A∨B, ((B∨C) B A)∧(¬C B ¬A)∧(A B B)〉.

The corresponding propositional formula is

(A ∨ B) ∧(((B ∨ C) ∨ (A ∧ ¬¬C)) ↔ A′) ∧ ¬((B ∨ C) ∧ ¬C)

∧((A ∨ (B ∧ ¬⊥)) ↔ B′) ∧ ¬(A ∧ ⊥)

∧((⊥ ∨ (C ∧ ¬⊥)) ↔ C ′) ∧ ¬(⊥ ∧⊥)

≡

(A ∨ B) ∧(((B ∨ C) ∨ (A ∧ C)) ↔ A′) ∧ ¬((B ∨ C) ∧ ¬C)

∧((A ∨ B) ↔ B′)

∧(C ↔ C ′)

Jussi Rintanen May 10, AI Planning 6/16

Planning as satisfiability

1. Encode operator sequences of length 0, 1, 2, ... as formulae
φ0, φ1, φ2, . . . (see next slide...)

2. Test satisfiability of φ0, φ1, φ2, . . .

3. Satisfiable formula corresponds to a plan.

There are very good algorithms for testing satisfiability, and
planning this way is often very efficient.

This is also applied in microprocessor verification / intelligent
debugging: Intel, IBM, Infineon, Motorola, NEC, ... (Hot topic
in model-checking in CAV ⇒ Bounded Model-Checking.)

Jussi Rintanen May 10, AI Planning 7/16

Planning as satisfiability: encoding 1
Let 〈P, I, O, G〉 be a problem instance.

Let R1(P
0, P 1) denote

∨
o∈O τo where

P = {p1, . . . , pn} and P ′ = {p′
1
, . . . , p′n} are respectively replaced

by P 0 = {p0

1
, . . . , p0

n} and P 1 = {p1

1
, . . . , p1

n}.

Finding plans of length t is encoded as

ι0 ∧R1(P
0, P 1) ∧R1(P

1, P 2) ∧ · · · ∧ R1(P
t−1, P t) ∧ Gt.

Here ι0 =
∧
{p0|p ∈ P, I(p) = 1} ∪ {¬p0|p ∈ P, I(p) = 0} and Gt

is G with propositions p replaced by pt.

Jussi Rintanen May 10, AI Planning 8/16

Planning as satisfiability: encoding 1, example

I |= A ∧ B, G = (A ∧ ¬B) ∨ (¬A ∧ B),
o1 = 〈>, (A B ¬A)∧(¬A B A)〉, o2 = 〈>, (B B ¬B)∧(¬B B B)〉,
plan length 3

(A0 ∧ B0)

∧(((A0 ↔ A1) ∧ (B0 ↔ ¬B1)) ∨ ((A0 ↔ ¬A1) ∧ (B0 ↔ B1)))

∧(((A1 ↔ A2) ∧ (B1 ↔ ¬B2)) ∨ ((A1 ↔ ¬A2) ∧ (B1 ↔ B2)))

∧(((A2 ↔ A3) ∧ (B2 ↔ ¬B3)) ∨ ((A2 ↔ ¬A3) ∧ (B2 ↔ B3)))

∧((A3 ∧ ¬B3) ∨ (¬A3 ∧ B3))

Jussi Rintanen May 10, AI Planning 9/16

Planning as satisfiability: encoding 1, example

One valuation that satisfies the formula:

time i

0 1 2 3

Ai 1 0 0 0

Bi 1 1 0 1

1. There are several valuations/plans
2. Also plans of length 1 exists (just ignore time points 2 and 3!)
3. Plans of length 2 do not exist!

Jussi Rintanen May 10, AI Planning 10/16

Q: Satisfiability in propositional logic is NP-complete, but testing
existence of plans is PSPACE-complete. How is it possible to do
this translation from planning to satisfiability?

A: The translation is polynomial time in the size of the problem
instance and in the plan length. For exponentially long plans the
translation takes exponential time.

However, in practice plans are often short.

Jussi Rintanen May 10, AI Planning 11/16

Planning as satisfiability: encoding 2,
explanatory frame axioms in R2(P, P ′)

Let p ∈ P be one of the state variables.

(¬p ∧ p′)→((o1 ∧ EPCp(e1)) ∨ · · · ∨ (on ∧ EPCp(en)))

(p ∧ ¬p′)→((o1 ∧ EPC¬p(e1)) ∨ · · · ∨ (on ∧ EPC¬p(en)))

Jussi Rintanen May 10, AI Planning 12/16

Planning as satisfiability: R2(P, P ′), effect axioms

oi = 〈z, e〉 may affect the state variables as follows.

(oi ∧ EPCp1
(e)) → p′

1

(oi ∧ EPC¬p1
(e)) → ¬p′

1

...
(oi ∧ EPCpn(e)) → p′n

(oi ∧ EPC¬pn(e)) → ¬p′n

Also, the precondition of the operator has to be true:

oi→z

Jussi Rintanen May 10, AI Planning 13/16

Planning as satisfiability: encoding 2

To obtain valid plans only one operator may be applied at a time:
for every oi, oj ∈ O such that i 6= j, we have

¬(oi ∧ oj)

in R2(P, P ′).

Jussi Rintanen May 10, AI Planning 14/16

Planning as satisfiability: R2(P, P ′), example

o1 = 〈¬LAMP1, LAMP1〉, o2 = 〈¬LAMP2, LAMP2〉

(¬LAMP1 ∧ LAMP1′)→o1

(LAMP1 ∧ ¬LAMP1′)→⊥

(¬LAMP2 ∧ LAMP2′)→o2

(LAMP2 ∧ ¬LAMP2′)→⊥

o1→LAMP1′

o1→¬LAMP1

o2→LAMP2′

o2→¬LAMP2

Jussi Rintanen May 10, AI Planning 15/16

Planning as satisfiability: encoding 2

Plans of length t are encoded exactly like with R1(P, P ′):

ι0 ∧R2(P
0, P 1) ∧R2(P

1, P 2) ∧ · · · ∧ R2(P
t−1, P t) ∧ Gt

Reading the plan from a satisfying assignment v:

oi is the operator at time point t if and only if v(ot
i) = 1.

Jussi Rintanen May 10, AI Planning 16/16

