

Regression: properties

LEMMA D: Let ϕ be a formula, o and operator with effect e, s any state and $s' = \operatorname{app}_o(s)$. Then $s \models \operatorname{regr}_e(\phi)$ if and only if $s' \models \phi$.

PROOF: The proof is by structural induction over subformulae ϕ' of ϕ . We show that the formula ϕ_r obtained from ϕ by replacing propositions $p \in P$ by $(p \land \neg EPC_{\neg p}(e)) \lor EPC_p(e)$ has the same truth-value in s as ϕ has in s'.

Induction hypothesis: $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2, $\phi' = \top$ or $\phi' = \bot$: Trivial because $\phi'_r = \phi$.

```
Jussi Rintanen
```

May 5, Al Planning 2/8

Base case 3, $\phi' = p$ for some $p \in P$: Now $\phi'_r = (p \land \neg EPC_{\neg p}(e)) \lor EPC_p(e)$. By Lemma C $s \models \phi'_r$ if and only if $s' \models \phi'$.

Inductive case 1, $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \neg .

Inductive case 2, $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \lor .

Inductive case 3, $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \land .

Jussi Rintanen

May 5, AI Planning 3/8

Regression: complexity issues

- 1. $\operatorname{regr}_{\langle a, \neg p \rangle}(p) = a \land \bot \equiv \bot$: the new set of states is empty. Testing that a formula $\operatorname{regr}_o(\phi)$ does not represent the empty set (= search is in a blind alley) is NP-hard.
- 2. regr $_{(b,c)}(a) = a \wedge b$: the new set of states is properly smaller.

Testing that a regression step does not make the set of states smaller (= more difficult to reach) is NP-hard.

These tests would be useful in pruning the search tree.

Jussi Rintanen

May 5, Al Planning 4/8

Regression: complexity issues II

For a formula ϕ , $\operatorname{regr}_1(\operatorname{regr}_{o_2}(\cdots \operatorname{regr}_{o_{n-1}}(\operatorname{regr}_{o_n}(\phi))))$ may have size $\mathcal{O}(|\phi||o_1||o_2|\cdots |o_{n-1}||o_n|)$, i.e. the product of the sizes of ϕ and the operators.

Hence, the size can be in the worst case exponential in n $(\mathcal{O}(2^n)).$

Jussi Rintanen

May 5, AI Planning 5/8

Regression: complexity issues II

Split regr_o(ϕ) to ϕ_1, \ldots, ϕ_n such that regr_o(ϕ) $\equiv \phi_1 \lor \cdots \lor \phi_n$.

1. Transform $\operatorname{regr}_o(\phi)$ to $\phi_1 \lor \cdots \lor \phi_n$ by suitable equivalences. Regression planners so far have transformed $\operatorname{regr}_o(\phi)$ to disjunctive normal form $\phi_1 \lor \cdots \lor \phi_n$ where every ϕ_i is a conjunction of literals.

2. Choose state variable p, and define

$$\phi_1 = p \wedge \operatorname{regr}_o(\phi) \quad \phi_2 = \neg p \wedge \operatorname{regr}_o(\phi)$$

Jussi Rintanen

May 5, Al Planning 6/8

Plan search: search states for regression

For regression, the search state is represented as a sequence of operators and associated formulae.

$$\phi_n, o_n, \ldots, \phi_1, o_1, G$$

The neighbors of the state are those obtained by regression with respect to one of the operators or by dropping out some of the last actions and associated formulae:

1.
$$\operatorname{regr}_{o}(\phi_{n}), o, \phi_{n}, o_{n}, \dots, \phi_{1}, o_{1}, G \text{ for } o \in O$$

2. $\phi_{i}, o_{i}, \dots, \phi_{1}, o_{1}, G \text{ for } i < n$ (for local search only)

May 5, AI Planning 7/8

Plan search: distance estimates for regression

With progression we had for $I, o_1, s_1, o_2, s_2, \ldots, o_n, s_n$ the estimate

 $\delta_{s_n}(G)$

With regression, we have for $\phi_n, o_n, \dots, \phi_1, o_1, G$ the estimate

 $\delta_I(\phi_n)$

Advantage: sets D_i for distance estimates are computed only once, because starting state stays the same.

Jussi Rintanen

May 5, Al Planning 8/8