Regression

- The formula regr ${ }_{o}(\phi)$ represents the set of states from which a state in ϕ is reached by operator o.
- Used in backward search in a transition system: from the goal states toward the initial states.
- Regression is powerful because it allows handling huge sets of states (progression: only one state at a time.)
- Handling formulae is more complicated than handling states: many questions about regression are NP-hard.
\qquad May 3, Al Planning
1/23

Regression for simple operators

1. The goal is $l_{1} \wedge \cdots \wedge l_{n}$.
2. Choose an operator that makes some of l_{1}, \ldots, l_{n} true and makes none of them false.
3. Form a new goal by removing the fulfilled goal literals and adding the preconditions of the operator.

Regression for simple operators

1. Goals are conjunctions of literals.
2. Operator preconditions are conjunctions of literals.
3. Operators have no conditional effects.

Hence every operator is of the form

$$
\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

where l_{i} and l_{j}^{\prime} are literals. Call this kinds of operators simple.

Regression for simple operators
Given a goal $l_{1}^{\prime \prime} \wedge \cdots \wedge l_{m^{\prime}}^{\prime \prime}$, choose an operator

$$
\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

so that

1. $\left\{l^{\prime}, \ldots, l_{m}^{\prime}\right\} \cap\left\{\overline{l_{1}^{\prime \prime}}, \ldots, \overline{l_{m^{\prime}}^{\prime \prime}}\right\}=\emptyset$
2. $\left\{l^{\prime}, \ldots, l_{m}^{\prime}\right\} \cap\left\{l_{1}^{\prime \prime}, \ldots, l_{m^{\prime}}^{\prime \prime}\right\} \neq \emptyset$

Regression for simple operators

The regression $\operatorname{regr}_{o}(\phi)$ of $\phi=l_{1}^{\prime \prime} \wedge \cdots \wedge l_{m^{\prime}}^{\prime \prime}$ with respect to

$$
o=\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

such that $\left\{l^{\prime}, \ldots, l_{m}^{\prime}\right\} \cap\left\{\overline{l_{1}^{\prime \prime}}, \ldots, \overline{l_{m}^{\prime \prime}}\right\}=\emptyset$ is the following conjunction of literals.

$$
\bigwedge\left(\left(\left\{l_{1}^{\prime \prime}, \ldots, l_{m^{\prime}}^{\prime \prime}\right\} \backslash\left\{l_{1}^{\prime}, \ldots, l_{m}^{\prime}\right\}\right) \cup\left\{l_{1}, \cdots, l_{n}\right\}\right)
$$

Regression in the conjunctive case

LEMMA A: Let ϕ be a conjunction of literals, o a simple operator, and s and s^{\prime} be states so that $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models \operatorname{regr}_{o}(\phi)$ if and only if $s^{\prime}=\phi$.

PROOF: Assume $s \models \operatorname{regr}_{o}(\phi)$. We show that $s^{\prime} \models \phi$.
Let l be any literal in ϕ.
If l is an effect of o, then $s^{\prime} \models l$ by definition of $\operatorname{app}_{o}(s)$.
If l is not an effect of o, then l is a conjunct of regr ${ }_{o}(\phi)$, and hence $s \models l$. By definition of regression, \bar{l} is not an effect of o. Hence by definition of $\operatorname{app}_{o}(s)$ also $s^{\prime} \models l$.

Regression for simple operators

```
ABT = \langleAonB }\wedge\mathrm{ Aclear, }\neg\mathrm{ AonB }\wedge AonT \^Bclear
BCA = <BonC }\wedge\mathrm{ Bclear }\wedge\mathrm{ Aclear, }\neg\mathrm{ Aclear }\wedge\negBonC ^BonA ^ Cclear
CTB = \langleConT }\wedge\mathrm{ Cclear }\wedge\mathrm{ Bclear, }\neg\mathrm{ Bclear }\wedge\neg\mathrm{ ConT }\wedge\mathrm{ ConB 
    G = ConB }\wedge\mathrm{ BonA
G1 = regr cтв (G)=BonA^ConT^ Cclear ^ Bclear
G}=\mp@subsup{\mp@code{regr}}{BCA}{}(\mp@subsup{G}{1}{})=ConT^Bclear^BonC ^Aclear
```


Assume that $s^{\prime} \models \phi$. We show that $s \models \operatorname{regr}_{o}(\phi)$.
Because $s^{\prime}=\operatorname{app}_{o}(s)$, the application of o in s is well-defined, and hence all preconditions of o are true in s

Let l be one of the remaining literals in $\operatorname{regr}_{o}(\phi)$, that is, one of the conjuncts of ϕ that are not effects of o.
Because o does not change the value of l and $s^{\prime} \models \phi$, also $s \models l$.

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c \triangleright\left(c^{\prime} \triangleright e\right) & \equiv\left(c \wedge c^{\prime}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \tag{3}\\
e \wedge(c \triangleright e) & \equiv e \tag{4}\\
e & \equiv \top \triangleright e \tag{5}\\
e & \equiv \top \wedge e \tag{6}\\
e \wedge e^{\prime} & \equiv e^{\prime} \wedge e \tag{7}\\
\left(e_{1} \wedge e_{2}\right) \wedge e_{3} & \equiv e_{1} \wedge\left(e_{2} \wedge e_{3}\right) \tag{8}
\end{align*}
$$

Normal form for effects: example

$$
\begin{aligned}
(A \triangleright & (B \wedge \\
& (C \triangleright(\neg D \wedge E)))) \wedge \\
(\neg B \triangleright & E)
\end{aligned}
$$

transformed to normal form is

$$
\begin{aligned}
& (A \triangleright B) \wedge \\
& ((A \wedge C) \triangleright \neg D) \wedge \\
& ((\neg B \vee(A \wedge C)) \triangleright E)
\end{aligned}
$$

Normal form for operators and effects

DEFINITION: An operator $\langle c, e\rangle$ is in normal form if for all occurrences of $c^{\prime} \triangleright e^{\prime}$ in e the effect e^{\prime} is either p or $\neg p$ for some $p \in P$, and e contains at most one occurrence of any atomic effect l.

THEOREM: For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form by using the equivalences from the previous slide.

Jussi Rintanen \qquad

Regression (for all operators)

1. When we have disjunction and conditional effects, things become more tricky. How to define regression e.g. for $A \vee(B \wedge C)$ with $\langle Q, D \triangleright B\rangle$?
2. We present a general definition of how to do this.
3. Now we extensively use the idea of representing sets of states as formulae.
The story about goals and subgoals and fulfilling subgoals, as in the conjunctive case, does not work any more.

Auxiliary definition: $E P C_{l}(e)$

DEFINITION The condition $E P C_{l}(e)$ of literal l becoming true when effect e is applied is defined as follows.

```
        EPCl(l) = \top
        EPC}\mp@subsup{C}{l}{(l)}=\perp\mathrm{ when l}\not=\mp@subsup{l}{}{\prime}(\mathrm{ for literals l')
        EPC
    EPC}\mp@subsup{C}{l}{}(\mp@subsup{e}{1}{}\wedge\cdots\wedge\mp@subsup{e}{n}{})=EP\mp@subsup{C}{l}{}(\mp@subsup{e}{1}{})\vee\cdots\veeEP\mp@subsup{C}{l}{}(\mp@subsup{e}{n}{}
        EPC
```


Auxiliary definition: $E P C_{l}(e)$, lemma

LEMMA B: Let s be a state, l a literal and e an effect. Then $l \in[e]_{s}$ if and only if $s \models E P C_{l}(e)$.
PROOF: by induction on the structure of the effect e.
Base case 1, $e=T$: By definition of $[T]_{s}$ we have $l \notin[T]_{s}=\emptyset$, and by definition of $E P C_{l}(T)$ we have $s \not \vDash E P C_{l}(T)=\perp$, so the equivalence holds.

Base case 2, $e=l: l \in[l]_{s}=\{l\}$ by definition, and $s \models$ $E P C_{l}(l)=\top$ by definition.

Auxiliary definition: $E P C_{l}(e)$, examples

```
        EPC
    EPC}\mp@subsup{C}{A}{}(A\wedge(B\trianglerightA))=\top\vee(\top\wedgeB)\equiv
EPC}\mp@subsup{C}{A}{}((C\trianglerightA)\wedge(B\trianglerightA))=(T\wedgeC)\vee(T\wedgeB)\equivC\vee
```

Base case 3, $e=l^{\prime}$ for some literal $l^{\prime} \neq l: l \notin\left[l^{\prime}\right]_{s}=\left\{{ }^{\prime} l\right\}$ by definition, and $s \not \vDash E P C_{l}\left(l^{\prime}\right)=\perp$ by definition.

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ if and only if $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
if and only if $s \models E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
if and only if $s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)$
if and only if $s \models E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right)$.
Inductive case 2, $e=c \triangleright e^{\prime}$:
$l \in\left[c \triangleright e^{\prime}\right]_{s}$ if and only if $l \in\left[e^{\prime}\right]_{s}$ and $s \models c$
if and only if $s=E P C_{l}\left(e^{\prime}\right)$ and $s \models c$
if and only if $s=E P C_{l}\left(c \triangleright e^{\prime}\right)$.
Q.E.D.

Auxiliary definition: $E P C_{l}(e)$ vs. normal form

Notice that in terms of $E P C_{p}(e)$ any operator $\langle c, e\rangle$ can be expressed in normal form as

$$
\left\langle c, \bigwedge_{p \in P}\left(E P C_{p}(e) \triangleright p\right) \wedge\left(E P C_{\neg p}(e) \triangleright \neg p\right)\right\rangle .
$$

Regression: definition for literals, examples

$$
\begin{aligned}
& \text { Let } e=(B \triangleright A) \wedge(C \triangleright \neg A) \wedge B \wedge \neg D . \\
& \qquad \begin{array}{l}
\frac{p}{A} \quad\left(p \wedge \neg E P C_{\neg p}(e)\right) \vee E P C_{p}(e) \\
B \quad(B \wedge \neg) \vee B \\
C \quad(C \wedge \neg \perp) \vee \top \equiv \top \\
D \quad(D \wedge \neg \top) \vee \perp \equiv C \\
\hline
\end{array}
\end{aligned}
$$

Regression: definition for literals

The formula $\left(p \wedge \neg E P C_{\neg p}(e)\right) \vee E P C_{p}(e)$ expresses the truth-value of $p \in P$ after applying o in terms of truth-values of formulae before applying o : either

- p was true before and did not become false, or
- p became true.

Regression: definition for literals

LEMMA C: Let p be a state variable and $o=\langle c, e\rangle \in O$ and operator. Let s be a state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models(p \wedge$ $\left.\neg E P C_{\neg p}(e)\right) \vee E P C_{p}(e)$ if and only if $s^{\prime} \models p$.

PROOF: Assume $s \vDash\left(p \wedge \neg E P C_{\neg p}(e)\right) \vee E P C_{p}(e)$. Do a case analysis on the two disjuncts.

Case 1: Assume that $s \models p \wedge \neg E P C_{\neg p}(e)$. By Lemma B $\neg p \notin[e]_{s}$. Hence p remains true in s^{\prime}.

Case 2: Assume that $s \models E \operatorname{EPC}_{p}(e)$. By Lemma B $p \in[e]_{s}$, and hence $s^{\prime} \models p$.

For the other half of the equivalence, assume that $s \not \vDash(p \wedge$ $\left.\neg E P C_{\neg p}(e)\right) \vee E P C_{p}(e)$.
Hence $s \vDash\left(\neg p \vee E P C_{\neg p}(e)\right) \wedge \neg E P C_{p}(e)$.
Assume that $s \vDash p$. Now $s \vDash E P C_{\neg p}(e)$ because $s \models \neg p \vee$ $E P C_{\neg p}(e)$, and hence by Lemma $\mathrm{B} \neg p \in[e]_{s}$ and hence $s^{\prime} \not \vDash p$.
Assume that $s \not \vDash p$. Because $s \vDash \neg E P C_{p}(e)$, by Lemma B $p \notin[e]_{s}$ and hence $s^{\prime} \not \models p$.

Therefore it must be that $s^{\prime} \not \vDash p$.
Q.E.D.

Jussi Rintanen May 3, AI Planning 21/23

Regression: examples

$\operatorname{regr}_{\langle a, b\rangle}(b)=(((b \wedge \neg \perp) \vee \top) \wedge a) \equiv a$
$\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=(((b \wedge \neg \perp) \vee \top) \wedge((c \wedge \neg \perp) \vee \perp) \wedge((d \wedge \neg \perp) \vee$
$\perp) \wedge a) \equiv c \wedge d \wedge a$
$\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(((b \wedge \neg \perp) \vee c) \wedge a) \equiv(b \vee c) \wedge a$
$\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(b \triangleright \neg b)\rangle}(b)=(((b \wedge \neg b) \vee c) \wedge a \wedge \neg(c \wedge b)) \equiv c \wedge a \wedge \neg b$
$\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(d \triangleright \neg b)\rangle}(b)=(((b \wedge \neg d) \vee c) \wedge a \wedge \neg(c \wedge d)) \equiv(b \vee c) \wedge$
$(\neg d \vee c) \wedge a \wedge(\neg c \vee d)$

Regression: definition for formulae

The formula $E P C_{l}(o)$ can now be used in defining regression for operators o.
DEFINITION Let ϕ be a propositional formula. Let $\langle z, e\rangle$ be an operator. The regression of ϕ with respect to $o=\langle z, e\rangle$ is $\operatorname{regr}_{e}(\phi)=\phi_{r} \wedge z \wedge f$ where ϕ_{r} is obtained from ϕ by replacing $p \in P$ by $\left(p \wedge \neg E P C_{\neg p}(e)\right) \vee E P C_{p}(e)$, and $f=\bigwedge_{p \in P} \neg\left(E P C_{p}(e) \wedge\right.$ $\left.E P C_{\neg p}(e)\right)$.
The conjuncts of f say that no state variable may become both true and false.

