Distance estimation for heuristic search

- PROBLEM: How to compute good distance/cost estimates $h(s)$ for controlling heuristic search algorithms like A^{*}, bestfirst search or local search algorithms?
- If we knew the distances exactly, it would be very easy to choose one of the operators that takes us one step closer to a goal state. (Computing exact distances is PSPACE-hard!)
- Compute a lower bound $\delta_{s}(G)$ on the number of operators needed to reach a goal state from s.

	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}
A-ON-B	T				
A-ON-C	F				
B-ON-A	F				
B-ON-C	T				
C-ON-A	F				
C-ON-B	F				
A-ON-TABLE	F				
B-ON-TABLE	F				
C-ON-TABLE	T				
A-CLEAR	T				
B-CLEAR	F				
C-CLEAR	F				

	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}
A-ON-B	T	$T F$	$T F$		
A-ON-C	F	F	F		
B-ON-A	F	F	$T F$		
B-ON-C	T	T	T		
C-ON-A	F	F	F		
C-ON-B	F	F	F		
A-ON-TABLE	F	$T F$	$T F$		
B-ON-TABLE	F	F	$T F$		
C-ON-TABLE	T	T	T		
A-CLEAR	T	T	$T F$		
B-CLEAR	F	$T F$	$T F$		
C-CLEAR	F	F	F		

Inaccuracy of the representation

Consider the initial state 0000 (with state variables D, E, F, G). $D_{0}=\{\neg D, \neg E, \neg F, \neg G\}$ represents the states $\{0000\}$.

The operators are $O=\{\langle\neg D, E\rangle,\langle\neg E, D\rangle\}$
Now $D_{1}=\{\neg F, \neg G\}$, and it represents $\{0000,0100,1000,1100\}$

However, the state 1100 is not reachable from 0000!

The function makestrue (l, O)
$\phi \in$ makestrue (l, O) if there is an operator in O that is applicable and makes literal l true whenever ϕ is true.

EXAMPLE: Let $o=\langle A \wedge B, R \wedge(Q \triangleright C) \wedge(R \triangleright C)\rangle$. Now
makestrue $(C,\{o\})=\{A \wedge B \wedge Q, A \wedge B \wedge R\}$.
REMARK: For operators without conditional effects this is just the set of preconditions of those operators that make the literal true

The sets D_{0}, D_{1}, \ldots
Let $L=P \cup\{\neg p \mid p \in P\}$ be the set of literals on P.
Define the sets D_{i} for $i \geq 0$ as follows.
$D_{0}=\{l \in L|s|=l\}$
$D_{i}=D_{i-1} \backslash\left\{l \in L \mid \phi \in \operatorname{makestrue}(\bar{l}, O)\right.$, canbetrue $\left.\left(\phi, D_{i-1}\right)\right\}$

If $n=|P|$, then $D_{n}=D_{n+1}$, because at most n times there can be a literal contained in D_{i} but not in D_{i+1}.

Jussi Rintanen April 28, Al Planning

The procedure canbetrue (ϕ, D)

canbetrue (ϕ, D) returns true whenever $D \cup\{\phi\}$ is satisfiable.
Equivalently: there is a state described by the literals in D in which ϕ is true.

The procedure runs in polynomial time but satisfiability testing is NP-hard (known algorithms take exponential time).
The procedure fails in one direction: e.g. canbetrue $(A \wedge \neg A, \emptyset)$ returns true (BUT does not invalidate distance estimation, which is not meant to be accurate anyway!!)

The procedure canbetrue (ϕ, D) : definition

canbetrue $(\perp, D)=$ false
canbetrue $(T, D)=$ true
canbetrue $(p, D)=$ true iff $\neg p \notin D$ (for state variables $p \in P$)
canbetrue $(\neg p, D)=$ true iff $p \notin D$ (for state variables $p \in P$)
canbetrue $(\neg \neg \phi, D)=$ canbetrue (ϕ, D)
canbetrue $(\phi \vee \psi, D)=$ canbetrue (ϕ, D) or canbetrue (ψ, D)
canbetrue $(\phi \wedge \psi, D)=$ canbetrue (ϕ, D) and canbetrue (ψ, D)
canbetrue $(\neg(\phi \vee \psi), D)=$ canbetrue $(\neg \phi, D)$ and canbetrue $(\neg \psi, D)$
canbetrue $(\neg(\phi \wedge \psi), D)=$ canbetrue $(\neg \phi, D)$ or canbetrue $(\neg \psi, D)$

The procedure canbetrue (ϕ, D) : correctness

LEMMA A

Let ϕ be a formula and D a consistent set of literals (it contains at most one of p and $\neg p$ for every $p \in P$.) If $D \cup\{\phi\}$ is satisfiable, then canbetrue (ϕ, D) returns true.

PROOF: by induction on the structure of ϕ.
Base case $1, \phi=\perp$: The set $D \cup\{\perp\}$ is not satisfiable, and hence the implication trivially holds.
Base case 2, $\phi=T$: canbetrue (T, D) always returns true, and
hence the implication trivially holds.
Base case 3, $\phi=p$ for some $p \in P$: If $D \cup\{p\}$ is satisfiable, then $\neg p \notin D$, and hence canbetrue (p, D) returns true.

Base case 4, $\phi=\neg p$ for some $p \in P$: If $D \cup\{\neg p\}$ is satisfiable, then $p \notin D$, and hence canbetrue $(\neg p, D)$ returns true.
Inductive case 1, $\phi=\neg \neg \phi^{\prime}$ for some ϕ^{\prime} : The formulae are logically equivalent, and by the induction hypothesis we directly establish the claim.
Inductive case 2, $\phi=\phi^{\prime} \vee \psi^{\prime}$: If $D \cup\left\{\phi^{\prime} \vee \psi^{\prime}\right\}$ is satisfiable, then either $D \cup\left\{\phi^{\prime}\right\}$ or $D \cup\left\{\psi^{\prime}\right\}$ is satisfiable and by the
\qquad

Definition of distances for formulae
$\delta_{s}(\phi)= \begin{cases}0 & \text { if canbetrue }\left(\phi, D_{0}\right) \\ d & \text { if canbetrue }\left(\phi, D_{d}\right) \text { and not canbetrue }\left(\phi, D_{d-1}\right) \text { (for } d .\end{cases}$
induction hypothesis at least one of canbetrue $\left(\phi^{\prime}, D\right)$ and canbetrue $\left(\psi^{\prime}, D\right)$ returns true. Hence canbetrue $\left(\phi^{\prime} \vee \psi^{\prime}, D\right)$ returns true.

Inductive case 3, $\phi=\phi^{\prime} \wedge \psi^{\prime}$: If $D \cup\left\{\phi^{\prime} \wedge \psi^{\prime}\right\}$ is satisfiable, then both $D \cup\left\{\phi^{\prime}\right\}$ and $D \cup\left\{\psi^{\prime}\right\}$ are satisfiable and by the induction hypothesis both canbetrue $\left(\phi^{\prime}, D\right)$ and canbetrue $\left(\psi^{\prime}, D\right)$ return true. Hence canbetrue $\left(\phi^{\prime} \wedge \psi^{\prime}, D\right)$ returns true.
Inductive cases 4 and 5, $\phi=\neg\left(\phi^{\prime} \vee \psi^{\prime}\right)$ and $\phi=\neg\left(\phi^{\prime} \wedge \psi^{\prime}\right)$: Like cases 2 and 3 by logical equivalence.
Q.E.D.

Definition of distances for formulae: correctness

LEMMA B

Let s be a state and D_{0}, D_{1}, \ldots the respective distance sets. If s^{\prime} is the state reached from s by applying the operator sequence o_{1}, \ldots, o_{n}, then $s^{\prime} \models D_{n}$.

PROOF: by induction on the length of the sequence.
Base case $n=0$: The length of the operator sequence is zero, and hence $s^{\prime}=s$. The set D_{0} consists exactly of those literals that are true in s, and hence $s^{\prime} \models D_{0}$.

Inductive case $n \geq 1$: Let $s^{\prime \prime}$ be the state reached from s by applying o_{1}, \ldots, o_{n-1}. Now $s^{\prime}=\operatorname{app}_{o_{n}}\left(s^{\prime \prime}\right)$. By the induction hypothesis $s^{\prime \prime} \models D_{n-1}$.

Let l be any literal in D_{n}. We show that $s^{\prime} \models l$. Because $l \in D_{n}$ and $D_{n} \subseteq D_{n-1}$, also $l \in D_{n-1}$, and hence by $\mathrm{IH} s^{\prime \prime} \vDash l$.
Let ϕ be any member of makestrue $\left(\bar{l},\left\{o_{n}\right\}\right)$. Because $l \in D_{n}$ it must be that canbetrue $\left(\phi, D_{n-1}\right)$ returns false (Definition of D_{n}). Hence $D_{n-1} \cup\{\phi\}$ is by Lemma A not satisfiable, and $s^{\prime \prime} \not \vDash \phi$. Hence applying o_{n} in $s^{\prime \prime}$ does not make l false, and finally $s^{\prime} \models l$. Q.E.D.

Jussi Rintanen

Definition of distances for formulae: correctness THEOREM

Let s be a state, ϕ a formula, and D_{0}, D_{1}, \ldots the respective distance sets. If s^{\prime} is the state reached from s by applying the operators o_{1}, \ldots, o_{n} and $s^{\prime} \models \phi$ for any formula ϕ, then canbetrue $\left(\phi, D_{n}\right)$ returns true.

PROOF
By Lemma B $s^{\prime} \models D_{n}$. By assumption $s^{\prime} \models \phi$. Hence $D_{n} \cup\{\phi\}$ is satisfiable. By Lemma A canbetrue $\left(\phi, D_{n}\right)$ returns true.
Q.E.D.

Jussi Rintanen April 28, Al Planning 18

Distance estimation: example, distance 1 to 3

Distance estimation: example, distance 1 to 3
Let the state variables be A, B, C, D, E, F, G.

$$
\begin{aligned}
& D_{0}=\{A, \neg B, \neg C, \neg D, \neg E, \neg F, \neg G\} \\
& D_{1}=\{\neg C, \neg D, \neg E, \neg G\} \\
& D_{2}=\{\neg C, \neg G\} \\
& D_{3}=\emptyset \\
& D_{4}=\emptyset
\end{aligned}
$$

Estimated distance of state 3 is given by

$$
\delta_{1}(\neg A \wedge \neg B \wedge C \wedge \neg D \wedge \neg E \wedge \neg F \wedge \neg G)=3
$$

Jussi Rintanen

Distance estimation: example II, distance 1 to 3

Distance estimation: example 2, distance 1 to 3

$$
\begin{aligned}
& D_{0}=\{\neg A, \neg B, C\} \\
& D_{1}=\emptyset \\
& D_{2}=\emptyset
\end{aligned}
$$

Estimated distance of state 3 is given by

$$
\delta_{1}(\neg A \wedge B \wedge C)=1
$$

In fact, all states have estimated distance ≤ 1 from state 1 . CONCLUSION: Accuracy of distance estimates very much depends on the choice of state variables.

PDDL: domain files

A domain file consists of

- (define (domain DOMAINNAME)
- a :requirements definition (use :adl :typing by default)
- definitions of types (each parameter has a type)
- definitions of predicates
- definitions of operators

Example: blocks world in PDDL

```
(define (domain BLOCKS)
    (:requirements :adl :typing)
    (:types block - object
            blueblock smallblock - block)
    (:predicates (on ?x - smallblock ?y - block)
                            (ontable ?x - block)
                            (clear ?x - block)
                            )
```

- effect:
<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)

PDDL: operator definition

- (:action OPERATORNAME
- list of parameters: (?x - type1 ?y - type2 ?z - type3)
- precondition: a formula
sschematic-state-var>
(and <formula> ... <formula>)
or <formula> ... <formula>)
(not <formula>)
(forall (?x1 - type1 ... ?xn - typen) <formula>)
(exists (?x1 - type1 ... ?xn - typen) <formula>)
(:action fromtable
:parameters (?x - smallblock ?y - block)
:precondition (and (not (= ?x ?y))
(clear ?x)
(ontable ?x)
(clear ?y))
:effect
(and (not (ontable ?x))
(not (clear ?y))
(on ?x ?y))

PDDL: problem files

A problem file consists of

- (define (problem PROBLEMNAME)
- declaration of which domain is needed for this problem
- definitions of objects belonging to each type
- definition of the initial state (list of state variables initially true)
- definition of goal states (a formula like operator precondition)
(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects a b c - smallblock)
d e - block
f - blueblock)
(:init (clear a) (clear b) (clear c) (clear d) (cle (ontable a) (ontable b) (ontable c)
(ontable d) (ontable e) (ontable f))
(:goal (and (on a d) (on be) (on c f)))
)

Example run on the FF planner

edu/PSO4> ./ff -o hamiltonian.pddl -f ham1.pddl
ff: parsing domain file, domain 'HAMILTONIAN-CYCLE' ff: parsing problem file, problem 'HAM-1' defined ff: found legal plan as follows
step 0: GO A B
1: GO B D
2: GO D F
3: GO F C
4: GO C E
5: GO E A
0.01 seconds total time

