
Distance estimation for heuristic search

• PROBLEM: How to compute good distance/cost estimates
h(s) for controlling heuristic search algorithms like A∗, best-
first search or local search algorithms?

• If we knew the distances exactly, it would be very easy to
choose one of the operators that takes us one step closer to a
goal state. (Computing exact distances is PSPACE-hard!)

• Compute a lower bound δs(G) on the number of operators
needed to reach a goal state from s.

Jussi Rintanen April 28, AI Planning 1/31

Distance estimation: example, blocks world

We have three blocks initially with A on B and B on C:

D0 = {A-CLEAR,A-ON-B,B-ON-C,C-ON-TABLE,¬A-ON-C,
¬B-ON-A,¬C-ON-A,¬C-ON-B,¬A-ON-TABLE,
¬B-ON-TABLE,¬B-CLEAR,¬C-CLEAR}

D1 = {A-CLEAR,B-ON-C,C-ON-TABLE,¬A-ON-C,¬B-ON-A,
¬C-ON-A,¬C-ON-B,¬B-ON-TABLE,¬C-CLEAR}

D2 = {C-ON-TABLE,¬A-ON-C,¬C-ON-A,¬C-ON-B}
D3 = ∅

Jussi Rintanen April 28, AI Planning 2/31

D0 D1 D2 D3 D4

A-ON-B T

A-ON-C F

B-ON-A F

B-ON-C T

C-ON-A F

C-ON-B F

A-ON-TABLE F

B-ON-TABLE F

C-ON-TABLE T

A-CLEAR T

B-CLEAR F

C-CLEAR F

Jussi Rintanen April 28, AI Planning 3/31

D0 D1 D2 D3 D4

A-ON-B T TF

A-ON-C F F

B-ON-A F F

B-ON-C T T

C-ON-A F F

C-ON-B F F

A-ON-TABLE F TF

B-ON-TABLE F F

C-ON-TABLE T T

A-CLEAR T T

B-CLEAR F TF

C-CLEAR F F

Jussi Rintanen April 28, AI Planning 4/31

D0 D1 D2 D3 D4

A-ON-B T TF TF

A-ON-C F F F

B-ON-A F F TF

B-ON-C T T T

C-ON-A F F F

C-ON-B F F F

A-ON-TABLE F TF TF

B-ON-TABLE F F TF

C-ON-TABLE T T T

A-CLEAR T T TF

B-CLEAR F TF TF

C-CLEAR F F F

Jussi Rintanen April 28, AI Planning 5/31

D0 D1 D2 D3 D4

A-ON-B T TF TF TF TF

A-ON-C F F F TF TF

B-ON-A F F TF TF TF

B-ON-C T T T TF TF

C-ON-A F F F TF TF

C-ON-B F F F TF TF

A-ON-TABLE F TF TF TF TF

B-ON-TABLE F F TF TF TF

C-ON-TABLE T T T TF TF

A-CLEAR T T TF TF TF

B-CLEAR F TF TF TF TF

C-CLEAR F F F TF TF

Jussi Rintanen April 28, AI Planning 6/31

Inaccuracy of the representation

Consider the initial state 0000 (with state variables D, E, F, G).
D0 = {¬D,¬E,¬F,¬G} represents the states {0000}.

The operators are O = {〈¬D,E〉, 〈¬E,D〉}.

Now D1 = {¬F,¬G}, and it represents {0000,0100,1000,1100}.

However, the state 1100 is not reachable from 0000!

Jussi Rintanen April 28, AI Planning 7/31

The function makestrue(l, O)

φ ∈ makestrue(l, O) if there is an operator in O that is applicable
and makes literal l true whenever φ is true.

EXAMPLE: Let o = 〈A ∧B,R ∧ (Q B C) ∧ (R B C)〉. Now

makestrue(C, {o}) = {A ∧B ∧Q, A ∧B ∧R}.

REMARK: For operators without conditional effects this is just
the set of preconditions of those operators that make the literal
true.

Jussi Rintanen April 28, AI Planning 8/31

The sets D0, D1, . . .

Let L = P ∪ {¬p|p ∈ P} be the set of literals on P .

Define the sets Di for i ≥ 0 as follows.

D0 = {l ∈ L|s |= l}

Di = Di−1\{l ∈ L|φ ∈ makestrue(l, O), canbetrue(φ,Di−1)}

If n = |P |, then Dn = Dn+1, because at most n times there can
be a literal contained in Di but not in Di+1.

Jussi Rintanen April 28, AI Planning 9/31

The procedure canbetrue(φ,D)

canbetrue(φ,D) returns true whenever D ∪ {φ} is satisfiable.

Equivalently: there is a state described by the literals in D in
which φ is true.

The procedure runs in polynomial time but satisfiability testing is
NP-hard (known algorithms take exponential time).

The procedure fails in one direction: e.g. canbetrue(A ∧ ¬A, ∅)

returns true (BUT does not invalidate distance estimation, which
is not meant to be accurate anyway!!)

Jussi Rintanen April 28, AI Planning 10/31

The procedure canbetrue(φ,D): definition

canbetrue(⊥, D) = false
canbetrue(>, D) = true
canbetrue(p,D) = true iff ¬p 6∈ D (for state variables p ∈ P)

canbetrue(¬p,D) = true iff p 6∈ D (for state variables p ∈ P)

canbetrue(¬¬φ,D) = canbetrue(φ,D)

canbetrue(φ ∨ ψ,D) = canbetrue(φ,D) or canbetrue(ψ,D)

canbetrue(φ ∧ ψ,D) = canbetrue(φ,D) and canbetrue(ψ,D)

canbetrue(¬(φ ∨ ψ), D) = canbetrue(¬φ,D) and canbetrue(¬ψ,D)

canbetrue(¬(φ ∧ ψ), D) = canbetrue(¬φ,D) or canbetrue(¬ψ,D)

Jussi Rintanen April 28, AI Planning 11/31

The procedure canbetrue(φ,D): correctness

LEMMA A

Let φ be a formula and D a consistent set of literals (it contains
at most one of p and ¬p for every p ∈ P .) If D∪{φ} is satisfiable,
then canbetrue(φ,D) returns true.

PROOF: by induction on the structure of φ.

Base case 1, φ = ⊥: The set D ∪ {⊥} is not satisfiable, and
hence the implication trivially holds.

Base case 2, φ = >: canbetrue(>, D) always returns true, and

Jussi Rintanen April 28, AI Planning 12/31

hence the implication trivially holds.

Base case 3, φ = p for some p ∈ P : If D∪{p} is satisfiable, then
¬p 6∈ D, and hence canbetrue(p,D) returns true.

Base case 4, φ = ¬p for some p ∈ P : If D ∪ {¬p} is satisfiable,
then p 6∈ D, and hence canbetrue(¬p,D) returns true.

Inductive case 1, φ = ¬¬φ′ for some φ′: The formulae are
logically equivalent, and by the induction hypothesis we directly
establish the claim.

Inductive case 2, φ = φ′ ∨ ψ′: If D ∪ {φ′ ∨ ψ′} is satisfiable,
then either D ∪ {φ′} or D ∪ {ψ′} is satisfiable and by the

Jussi Rintanen April 28, AI Planning 13/31

induction hypothesis at least one of canbetrue(φ′, D) and
canbetrue(ψ′, D) returns true. Hence canbetrue(φ′ ∨ ψ′, D)

returns true.

Inductive case 3, φ = φ′ ∧ ψ′: If D ∪ {φ′ ∧ ψ′} is satisfiable, then
both D ∪ {φ′} and D ∪ {ψ′} are satisfiable and by the induction
hypothesis both canbetrue(φ′, D) and canbetrue(ψ′, D) return
true. Hence canbetrue(φ′ ∧ ψ′, D) returns true.

Inductive cases 4 and 5, φ = ¬(φ′ ∨ ψ′) and φ = ¬(φ′ ∧ ψ′): Like
cases 2 and 3 by logical equivalence.

Q.E.D.

Jussi Rintanen April 28, AI Planning 14/31

Definition of distances for formulae

δs(φ) =

{

0 if canbetrue(φ,D0)

d if canbetrue(φ,Dd) and not canbetrue(φ,Dd−1) (for d

Jussi Rintanen April 28, AI Planning 15/31

Definition of distances for formulae: correctness

LEMMA B

Let s be a state and D0, D1, . . . the respective distance sets. If
s′ is the state reached from s by applying the operator sequence
o1, . . . , on, then s′ |= Dn.

PROOF: by induction on the length of the sequence.

Base case n = 0: The length of the operator sequence is zero,
and hence s′ = s. The set D0 consists exactly of those literals
that are true in s, and hence s′ |= D0.

Jussi Rintanen April 28, AI Planning 16/31

Inductive case n ≥ 1: Let s′′ be the state reached from s by
applying o1, . . . , on−1. Now s′ = app

on
(s′′). By the induction

hypothesis s′′ |= Dn−1.

Let l be any literal in Dn. We show that s′ |= l. Because l ∈ Dn

and Dn ⊆ Dn−1, also l ∈ Dn−1, and hence by IH s′′ |= l.

Let φ be any member of makestrue(l, {on}). Because l ∈ Dn it
must be that canbetrue(φ,Dn−1) returns false (Definition of Dn).
Hence Dn−1 ∪ {φ} is by Lemma A not satisfiable, and s′′ 6|= φ.
Hence applying on in s′′ does not make l false, and finally s′ |= l.

Q.E.D.

Jussi Rintanen April 28, AI Planning 17/31

Definition of distances for formulae: correctness
THEOREM

Let s be a state, φ a formula, and D0, D1, . . . the respective
distance sets. If s′ is the state reached from s by applying
the operators o1, . . . , on and s′ |= φ for any formula φ, then
canbetrue(φ,Dn) returns true.

PROOF

By Lemma B s′ |= Dn. By assumption s′ |= φ. Hence Dn ∪ {φ}

is satisfiable. By Lemma A canbetrue(φ,Dn) returns true.

Q.E.D.

Jussi Rintanen April 28, AI Planning 18/31

Definition of distances for formulae: correctness

COROLLARY

Let s be a state and φ a formula. Then for any sequence
o1, . . . , on of operators such that executing them in s results in
state s′ such that s′ |= φ, n ≥ δs(φ).

PROOF

By the previous result canbetrue(φ,Dn) returns true. Hence by
definition δs(φ) ≤ n.

Q.E.D.

Jussi Rintanen April 28, AI Planning 19/31

Distance estimation: example, distance 1 to 3

2=0100000

4=0001000

5=0000100

1=1000000

3=0010000 7=0000001

6=0000010

Jussi Rintanen April 28, AI Planning 20/31

Distance estimation: example, distance 1 to 3

Let the state variables be A, B, C, D, E, F, G.

D0 = {A,¬B,¬C,¬D,¬E,¬F,¬G}

D1 = {¬C,¬D,¬E,¬G}

D2 = {¬C,¬G}

D3 = ∅

D4 = ∅

Estimated distance of state 3 is given by

δ1(¬A ∧ ¬B ∧ C ∧ ¬D ∧ ¬E ∧ ¬F ∧ ¬G) = 3

Jussi Rintanen April 28, AI Planning 21/31

Distance estimation: example II, distance 1 to 3

2=010

1=001
4=100

5=101

3=011

6=110

7=111

Jussi Rintanen April 28, AI Planning 22/31

Distance estimation: example 2, distance 1 to 3

D0 = {¬A,¬B,C}

D1 = ∅

D2 = ∅

Estimated distance of state 3 is given by

δ1(¬A ∧B ∧ C) = 1

In fact, all states have estimated distance ≤ 1 from state 1.

CONCLUSION: Accuracy of distance estimates very much
depends on the choice of state variables.

Jussi Rintanen April 28, AI Planning 23/31

PDDL: domain files

A domain file consists of

• (define (domain DOMAINNAME)

• a :requirements definition (use :adl :typing by default)

• definitions of types (each parameter has a type)

• definitions of predicates

• definitions of operators

Jussi Rintanen April 28, AI Planning 24/31

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block - object

blueblock smallblock - block)
(:predicates (on ?x - smallblock ?y - block)

(ontable ?x - block)
(clear ?x - block)
)

Jussi Rintanen April 28, AI Planning 25/31

PDDL: operator definition

• (:action OPERATORNAME
• list of parameters: (?x - type1 ?y - type2 ?z - type3)
• precondition: a formula

<schematic-state-var>
(and <formula> ... <formula>)
(or <formula> ... <formula>)
(not <formula>)
(forall (?x1 - type1 ... ?xn - typen) <formula>)
(exists (?x1 - type1 ... ?xn - typen) <formula>)

Jussi Rintanen April 28, AI Planning 26/31

• effect:
<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)

Jussi Rintanen April 28, AI Planning 27/31

(:action fromtable
:parameters (?x - smallblock ?y - block)
:precondition (and (not (= ?x ?y))

(clear ?x)
(ontable ?x)
(clear ?y))

:effect
(and (not (ontable ?x))

(not (clear ?y))
(on ?x ?y)))

Jussi Rintanen April 28, AI Planning 28/31

PDDL: problem files

A problem file consists of

• (define (problem PROBLEMNAME)

• declaration of which domain is needed for this problem

• definitions of objects belonging to each type

• definition of the initial state (list of state variables initially true)

• definition of goal states (a formula like operator precondition)

Jussi Rintanen April 28, AI Planning 29/31

(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects a b c - smallblock)

d e - block
f - blueblock)

(:init (clear a) (clear b) (clear c) (clear d) (clear e) (clear f)
(ontable a) (ontable b) (ontable c)
(ontable d) (ontable e) (ontable f))

(:goal (and (on a d) (on b e) (on c f)))
)

Jussi Rintanen April 28, AI Planning 30/31

Example run on the FF planner
edu/PS04> ./ff -o hamiltonian.pddl -f ham1.pddl
ff: parsing domain file, domain ’HAMILTONIAN-CYCLE’ defined
ff: parsing problem file, problem ’HAM-1’ defined
ff: found legal plan as follows
step 0: GO A B

1: GO B D
2: GO D F
3: GO F C
4: GO C E
5: GO E A

0.01 seconds total time

Jussi Rintanen April 28, AI Planning 31/31

