Distance estimation for heuristic search

e PROBLEM: How to compute good distance/cost estimates
h(s) for controlling heuristic search algorithms like Ax, best-

first search or local search algorithms?

o If we knew the distances exactly, it would be very easy to

choose one of the operators that takes us one step closer to a
goal state. (Computing exact distances is PSPACE-hard!)

e Compute a lower bound ¢,(G) on the number of operators
needed to reach a goal state from s.
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Distance estimation: example, blocks world

We have three blocks initially with A on B and B on C:

Dy =

Dy =

D
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Dy =

{A-CLEAR, A-ON-B, B-ON-C, C-ON-TABLE, -A-ON-C,
~B-ON-A, ~C-ON-A, ~C-ON-B, ~A-ON-TABLE,
~B-ON-TABLE, -B-CLEAR, ~C-CLEAR}

{A-CLEAR, B-ON-C, C-ON-TABLE, ~A-ON-C, ~B-ON-A,
~C-ON-A, -C-ON-B, -B-ON-TABLE, ~C-CLEAR}
{C-ON-TABLE, -A-ON-C, -C-ON-A, ~C-ON-B}

0
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Dy D1 Dy Ds Dy
A-ON-B T TF TF
A-ON-C F F F
B-ON-A F F TF
B-ON-C T T T
C-ON-A F F F
C-ON-B F F F
A-ON-TABLE | FF TF TF
B-ON-TABLE | ' F TF
C-ON-TABLE |T" T T
A-CLEAR T T TF
B-CLEAR F TF TF
C-CLEAR F F F
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Inaccuracy of the representation

Consider the initial state 0000 (with state variables D, E, F, G).
Dy ={-D,—-E,~F,~G} represents the states {0000}.

The operators are O = {(—D, E), (=E,D)}.
Now D, = {—F, -G}, and it represents {0000,0100,1000,1100}.

However, the state 1100 is not reachable from 0000!
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Dy D1 Dy D3 Dy
A-ON-B T TF TF TF TF
A-ON-C F F F TF TF
B-ON-A F F TF TF TF
B-ON-C T T T TF TF
C-ON-A F F F TF TF
C-ON-B F F F TF TF
A-ON-TABLE | FF TF TF TF TF
B-ON-TABLE | ¥ F TF TF TF
C-ON-TABLE |T" T T TF TF
A-CLEAR T T TF TF TF
B-CLEAR F TF TF TF TF
C-CLEAR F F F TF TF
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The function makestrue(l, O)

¢ € makestrue(l, O) if there is an operator in O that is applicable
and makes literal [ true whenever ¢ is true.

EXAMPLE: Leto = (AAB,RA (Q > C)A (R > C)). Now
makestrue(C, {o}) ={AANBAQ, AANBAR}.
REMARK: For operators without conditional effects this is just
the set of preconditions of those operators that make the literal

true.
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The sets Dy, Dy, ...

Let L = P U {-p|p € P} be the set of literals on P.

Define the sets D; for i > 0 as follows.

D; D;_1\{l € L|¢ € makestrue(l,0),canbetrue(¢, D; )}

If n = |P|, then D,, = D, 1, because at most n times there can
be a literal contained in D; but notin D, ;.
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The procedure canbetrue(¢, D)

canbetrue(¢, D) returns true whenever D U {¢} is satisfiable.
Equivalently: there is a state described by the literals in D in
which ¢ is true.

The procedure runs in polynomial time but satisfiability testing is

NP-hard (known algorithms take exponential time).

The procedure fails in one direction: e.g. canbetrue(A A —A, ()
returns true (BUT does not invalidate distance estimation, which
is not meant to be accurate anyway!!)
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The procedure canbetrue(¢, D): definition

canbetrue(L, D) = false
canbetrue(T,D) = true
canbetrue(p, D) = trueiff -p ¢ D (for state variables p € P)
canbetrue(—p, D) = trueiffp ¢ D (for state variables p € P)
canbetrue(——¢, D) = canbetrue(¢, D)
canbetrue(¢ vV ¢, D) = canbetrue(¢, D) or canbetrue(s, D)
canbetrue(¢ A, D) = canbetrue(¢, D) and canbetrue(s), D)
canbetrue(—(¢ vV ¢), D) = canbetrue(—¢, D) and canbetrue(—), D)
canbetrue(—(¢ A ), D) canbetrue(—¢, D) or canbetrue(—), D)
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The procedure canbetrue(¢, D): correctness

LEMMA A

Let ¢ be a formula and D a consistent set of literals (it contains
at most one of p and —p for every p € P.) If DU{¢} is satisfiable,
then canbetrue(¢, D) returns true.

PROOF: by induction on the structure of ¢.

Base case 1, ¢ = L: The set D U { L} is not satisfiable, and
hence the implication trivially holds.

Base case 2, ¢ = T: canbetrue(T, D) always returns true, and
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hence the implication trivially holds.

Base case 3, ¢ = p for some p € P: If DU{p} is satisfiable, then
—-p ¢ D, and hence canbetrue(p, D) returns true.

Base case 4, ¢ = —p for some p € P: If D U {-p} is satisfiable,
then p ¢ D, and hence canbetrue(—p, D) returns true.

Inductive case 1, ¢ = ——¢’ for some ¢": The formulae are
logically equivalent, and by the induction hypothesis we directly
establish the claim.

Inductive case 2, ¢ = ¢’ vV ¢': If DU {¢' vV ¢’} is satisfiable,
then either D U {¢'} or D U {¢'} is satisfiable and by the
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induction hypothesis at least one of canbetrue(¢’,D) and
canbetrue(y’, D) returns true. Hence canbetrue(¢’ vV ¢', D)
returns true.

Inductive case 3, ¢ = ¢/ AY": If DU {¢’ A’} is satisfiable, then
both D U {¢'} and D U {¢’} are satisfiable and by the induction
hypothesis both canbetrue(¢’, D) and canbetrue(«)’, D) return
true. Hence canbetrue(¢’ A ¢’, D) returns true.

Inductive cases 4 and 5, ¢ = —(¢' V¢’) and ¢ = —(¢' A ') Like
cases 2 and 3 by logical equivalence.

Q.E.D.
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Definition of distances for formulae

0 if canbetrue(¢, Do)

%(9) = {d if canbetrue(¢, D,) and not canbetrue(¢, Dy—1) (for d
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Definition of distances for formulae: correctness

LEMMA B

Let s be a state and Dy, Dy, ... the respective distance sets. If
s’ is the state reached from s by applying the operator sequence
01,-..,0n, then s’ = D,,.

PROOF: by induction on the length of the sequence.

Base case n = 0: The length of the operator sequence is zero,
and hence s’ = s. The set Dy consists exactly of those literals
that are true in s, and hence s’ |= D.
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Inductive case n > 1: Let s’ be the state reached from s by
applying oi,...,0,-1. Now s’ = app, (s”). By the induction
hypothesis s” = D,,_1.

Let [ be any literal in D,,. We show that s’ = [. Because | € D,
and D, C D,,_;,alsol € D,,_1, and hence by IH s” = 1.

Let ¢ be any member of makestrue(/, {0, }). Because | € D, it
must be that canbetrue(¢, D,,_1) returns false (Definition of D,,).
Hence D,_; U {¢} is by Lemma A not satisfiable, and s” i~ ¢.
Hence applying o, in s” does not make [ false, and finally s’ |= I.

Q.E.D.
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Definition of distances for formulae: correctness

COROLLARY

Let s be a state and ¢ a formula. Then for any sequence
o1,...,0, Of Operators such that executing them in s results in
state s’ such that s’ = ¢, n > §:(9).

PROOF

By the previous result canbetrue(¢, D,,) returns true. Hence by
definition d5(¢) < n.

Q.E.D.
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Definition of distances for formulae: correctness
THEOREM

Let s be a state, ¢ a formula, and Dy, D4, ... the respective
distance sets. If s’ is the state reached from s by applying

the operators oy,...,0, and s’ = ¢ for any formula ¢, then
canbetrue(¢, D,,) returns true.
PROOF

By Lemma B s’ = D,,. By assumption s’ = ¢. Hence D,, U {¢}
is satisfiable. By Lemma A canbetrue(¢, D,,) returns true.

Q.E.D.
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Distance estimation: example, distance 1to 3
6=000DULY — ——

2=0100000
5=0000100
1=1000000
4=0001000
3=0010000 7=0000001
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Distance estimation: example, distance 1to 3

Let the state variables be A, B, C, D, E, F, G.

Dy = {A,-B,-C,—-D,-E,—F,—-G}
D, = {-C,-D,-E, -G}

Dy, = {-C,-G}

Ds = 0

Dy, =0

Estimated distance of state 3 is given by

H(mAAN-BACAN-DA-EAN-FA-G)=3
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Distance estimation: example 2, distance 1to 3

Dy, = {-A4,-B,C}
Dy =0
Dy, =0

Estimated distance of state 3 is given by
(mAANBAC)=1
In fact, all states have estimated distance < 1 from state 1.

CONCLUSION: Accuracy of distance estimates very much
depends on the choice of state variables.
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Distance estimation: example Il, distance 1 to 3

6=110— =
2=010
5=101

1=001
4=100

/

3=011 7=111
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PDDL: domain files

A domain file consists of

e (define (domain DOMAINNAME)

e a :requirements definition (use :adl :typing by default)
¢ definitions of types (each parameter has a type)

e definitions of predicates

e definitions of operators
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Example: blocks world in PDDL

(define (domai n BLOCKS)

(:requirenments :adl

(:types block - object
bl uebl ock smal | bl ock - bl ock)

(:predicates (on ?x -
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snal | bl ock ?y -

:typing)

(ontable ?x - bl ock)

(clear ?x -

)

bl ock)
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o effect:
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<schemati c- st at e-var >

(not <schenati c- st ate-var>)

(and <effect> ...

<effect>)

(when <fornul a> <effect>)

(forall

(?x1 - typel ..
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?xn - typen) <effect>)

27/31

PDDL: operator definition

e (caction OPERATORNAME

o list of parameters: (?x - typel ?y - type2 ?z - type3)

e precondition: a formula
<schemati c- st at e-var >

(and <formula> ... <formula>)

(or <formula> ... <formula>)

(not <fornul a>)

(forall (?x1 - typel ... ?xn - typen) <fornula>)

(exists (?x1 - typel ... ?xn - typen) <fornul a>)
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(:action frontable

cparanmeters (?x - smallblock ?y - bl ock)

:precondition (and (not (= ?x ?y))
(clear ?x)
(ont abl e ?x)
(clear ?y))

ceffect

(and (not (ontable ?x))
(not (clear ?y))

(on ?x ?y)))
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PDDL: problem files (define (problem bl ocks-10-0)
(: domai n BLOCKS)

A problem file consists of (:objects a b ¢ - snmall bl ock)
d e - block
o (define (problem PROBLEMNAME) f - bl uebl ock)

(:init (clear a) (clear b) (clear c) (clear d) (cle
(ontable a) (ontable b) (ontable c)
(ontable d) (ontable e) (ontable f))

e declaration of which domain is needed for this problem
e definitions of objects belonging to each type
« definition of the initial state (list of state variables initially true) (:goal (and (on a d) (on b e) (on c f)))

)

o definition of goal states (a formula like operator precondition)
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Example run on the FF planner

edu/ PS04> ./ff -0 hanmiltonian.pddl -f haml. pddl

ff: parsing domain file, domain *HAM LTONI AN- CYCLE ¢«
ff: parsing problemfile, problem’HAM 1' defined
ff: found legal plan as follows

step 0: GOAB

1: GO BD
2. GCODF
3: @O FC
4. GO CE
5: GO E A

0.01 seconds total tine
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