Deterministic planning: problem instances

A problem instance is a 4-tuple $\langle P, I, O, G\rangle$ where

1. P is a finite set of state variables,
2. I is a state (a valuation of P) called the initial state,
3. O is a finite set of operators over P, and
4. G is a propositional formula over P (the goal).

Properties of plans

Let $\langle P, I, O, G\rangle$ be a problem instance.

1. There is a plan of length 0 iff $I \models G$.
2. Shortest plan may not be longer than $2^{n}-1$: If a plan is longer, then it visits some state s more than once and has the form $\sigma_{1} s \sigma_{2}{ }^{s} \sigma_{3}$: the plan $\sigma_{1} \sigma_{3}$ is shorter.
3. Shortest plan may have length $2^{n}-1$: Reach the goal state $111 \ldots 1$ from the initial state $000 \ldots 0$ by an operator that increments the corresponding binary number $2^{n}-1$ times.

Deterministic planning: plans

A solution of a problem instance $\langle P, I, O, G\rangle$ is a sequence $\pi=$ o_{1}, \ldots, o_{n} of operators (a plan) such that $\left\{o_{1}, \ldots, o_{n}\right\} \subseteq O$ and s_{0}, \ldots, s_{n} is a sequence of states (the execution of π) so that

1. $s_{0}=I$,
2. $s_{i}=\operatorname{app}_{o_{i}}\left(s_{i-1}\right)$ for every $i \in\{1, \ldots, n\}$, and
3. $s_{n} \models G$.

This can be equivalently expressed as

$$
\operatorname{app}_{o_{n}}\left(\operatorname{app}_{o_{n-1}}\left(\cdots \operatorname{app}_{o_{1}}(I) \cdots\right)\right) \models G
$$

Deterministic planning: expressivity

The decision problem SAT: test whether a given propositional formula ϕ is satisfiable.

```
P= the set of propositional variables occurring in \phi
I = any state, e.g. all state variables have value 0
O=({\top}\timesP)\cup({\langle\top,\negp\rangle|p\inP})
G = \phi
```

The problem instance has a solution if and only if ϕ is satisfiable.

Deterministic planning: expressivity

- Because we have a polynomial-time translation from SAT to deterministic planning, and SAT is an NP-complete problem, we have a polynomial time translation from every decision problem in NP to deterministic planning.
- Does deterministic planning have the power of NP, or is it still more powerful?

TMs, example

TM accepting strings $\epsilon, 1,12,121,1212, \ldots$ is $\left\langle\Sigma, Q, \delta, q_{1}, g\right\rangle$ where

$$
\begin{aligned}
\Sigma & =\{1,2\}, & \\
Q & =\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}, & \\
g\left(q_{1}\right) & =\exists, & g\left(q_{2}\right)=\exists, \\
g\left(q_{3}\right) & =\text { accept, } & g\left(q_{4}\right)=\text { reject } \\
\delta\left(q_{1}, 1\right) & =\left\langle 1, q_{2}, R\right\rangle & \delta\left(q_{1}, 2\right)=\left\langle 2, q_{4}, R\right\rangle \\
\delta\left(q_{2}, 2\right) & =\left\langle 2, q_{1}, R\right\rangle & \delta\left(q_{2}, 1\right)=\left\langle 1, q_{4}, R\right\rangle \\
\delta\left(q_{1}, \square\right) & =\left\langle 1, q_{3}, R\right\rangle & \delta\left(q_{2}, \square\right)=\left\langle 2, q_{3}, R\right\rangle \\
\delta(q, s) & =\left\langle 1, q_{4}, R\right\rangle \text { for all other } q, s &
\end{aligned}
$$

Turing machines

A Turing machine $\left\langle\Sigma, Q, \delta, q_{0}, g\right\rangle$ consists of

1. an alphabet Σ (a set of symbols),
2. a set Q of internal states,
3. a transition function δ that maps $\langle q, s\rangle$ to a tuple $\left\langle s^{\prime}, q^{\prime}, m\right\rangle$ where $q, q^{\prime} \in Q, s \in \Sigma \cup\{\mid, \square\}, s^{\prime} \in \Sigma$ and $m \in\{L, N, R\}$.
4. an initial state $q_{0} \in Q$, and
5. a labeling $g: Q \rightarrow\{$ accept, reject, $\exists\}$ of states.

TMs, example: cont'd

What does the TM do with the string $12122 ?$

q_{1}	$\mid \widehat{1} 2122 \square$
q_{2}	$\mid 1 \widehat{2} 122 \square$
q_{1}	$\mid 12 \widehat{1} 22 \square$
q_{2}	$\mid 121 \widehat{2} 2 \square$
q_{1}	$\mid 1212 \widehat{2} \square$
q_{4}	$12122 \square$

The label $g\left(q_{4}\right)=$ reject. The TM does not accept the string.

Simulation of PSPACE Turing machines

We show how polynomial-space Turing machines can be simulated by planning.

- contents of tape cells are encoded as state variables
- R/W head location is encoded as state variables
- internal state of the TM is encoded as state variables
- transitions are encoded as operators

A given Turing machine M accepts an input string σ if and only if a problem instance $T(M, \sigma)=\langle P, I, O, G\rangle$ has a plan.

Jussi Rintanen

PSPACE simulation II

1. $I\left(q_{0}\right)=1$ and $I(q)=0$ for all $q \in Q \backslash\left\{q_{0}\right\}$.
2. $I\left(s_{i}\right)=1$ if $i<n$ and input symbol i is s.
3. $I\left(s_{i}\right)=0$ if $i<n$ and $s \in S$ and symbol i is not s.
4. $I\left(\square_{i}\right)=1$ iff $i \in\{n, \ldots, p(n)-1\}$
5. $I\left(\left.\right|_{i}\right)=1$ iff $i=0$
6. $I\left(h_{i}\right)=1$ iff $i=1$

PSPACE simulation I

Simulate a TM $=\left\langle\Sigma, Q, \delta, q_{0}, g\right\rangle$ that needs at most $p(n)$ tape cells on an input string of length n.
State variables in the problem instance in planning are

1. $\left\{q_{1}, \ldots, q_{|Q|}\right\}=Q$ for denoting the current state of the TM,
2. s_{i} for every symbol $s \in \Sigma \cup\{\mid, \square\}$ and tape cell $i \in$ $\{0, \ldots, p(n)\}$,
3. h_{i} for every $i \in\{0, \ldots, p(n)\}$ (position of the R/W head).
\qquad 10/39

PSPACE simulation III

Goal of the problem instance is to reach an accepting state.

$$
G=\bigvee\{q \in Q \mid g(q)=\operatorname{accept}\}
$$

PSPACE simulation IV

For all $s \in \Sigma \cup\{\mid, \square\}$ and $q \in Q$ and $i \in\{0, \ldots, p(n)\}$ with $\delta(q, s)=\left\langle s^{\prime}, q^{\prime}, m\right\rangle$ and $m \neq R$ or $i<p(n)$), define

$$
o_{s, q, i}=\left\langle h_{i} \wedge s_{i} \wedge q, \nu \wedge \chi \wedge \mu\right\rangle
$$

where
ν is
T if $s \in\left\{\mid, s^{\prime}\right\}$, and $\neg s_{i} \wedge s_{i}^{\prime}$ otherwise,

Example: a Turing machine

Turing machine $\left\langle\{A, B\},\left\{q_{1}, q_{2}, q_{a c c}\right\}, \delta, q_{1}, g\right\rangle$ where δ is

	A	B	\mid	\square
q_{1}	$\left\langle A, q_{1}, R\right\rangle$	$\left\langle B, q_{2}, N\right\rangle$	$\left\langle\mid, q_{2}, R\right\rangle$	$\left\langle B, q_{1}, N\right\rangle$
q_{2}	$\left\langle A, q_{1}, L\right\rangle$	$\left\langle A, q_{a c c}, N\right\rangle$	$\left\langle\mid, q_{1}, R\right\rangle$	$\left\langle A, q_{2}, L\right\rangle$
$q_{a c c}$	-	-	-	-

and $g\left(q_{a} c c\right)=$ accept, $g\left(q_{1}\right)=\exists$ and $g\left(q_{2}\right)=\exists$.
Input string: ABAAB
\square

PSPACE simulation IV, cont'd

χ is
$\neg q \wedge q^{\prime}$ if $q \neq q^{\prime}$, and \top otherwise, and
μ is
丁 if $m=N$
$\neg h_{i} \wedge h_{i-1}$ if $i>0$ and $m=L$, and \top if $i=0$ and $m=L$
$\neg h_{i} \wedge h_{i+1}$ if $i<p(n)$ and $m=R$, and T if $i=p(n)$ and $m=R$

Example: translation to planning

Construct $\langle P, I, O, G\rangle$ where

1. $P=\left\{q_{1}, q_{2}, q_{a c c}, h_{0}, \ldots, h_{p(5)}, A_{0}, \ldots, A_{p(5)}, B_{0}, \ldots B_{p(5)} \ldots\right\}$
2. $\left.I \models\right|_{0} \wedge A_{1} \wedge B_{2} \wedge A_{3} \wedge A_{4} \wedge B_{5} \wedge \square_{6} \wedge \square_{7} \wedge \cdots \wedge \square_{p(5)} \wedge \neg A_{0} \wedge$ $\neg B_{0} \wedge \neg \square_{0} \wedge \cdots$
3. operators O are on the next slide
4. $G=q_{a c c}$

Example: translation to planning

Only part of the about $\left|\{0,1, \ldots, p(5)\} \times\left|\left\{q_{1}, q_{2}\right\}\right| \times|\{A, B, \mid, \square\}|\right.$ operators are given below, for R/W head position 1 and input symbols A and B :

$$
\begin{aligned}
O=\{ & \left\langle h_{1} \wedge A_{1} \wedge q_{1}, \quad \neg h_{1} \wedge h_{2}\right\rangle, \ldots, \\
& \left\langle h_{1} \wedge B_{1} \wedge q_{1}, \neg q_{1} \wedge q_{2}\right\rangle, \ldots, \\
& \left\langle h_{1} \wedge A_{1} \wedge q_{2}, \neg q_{2} \wedge q_{1} \wedge \neg h_{1} \wedge h_{0}\right\rangle, \ldots, \\
& \left.\left\langle h_{1} \wedge B_{1} \wedge q_{2}, \quad \neg B_{1} \wedge A_{1} \wedge \neg q_{2} \wedge q_{a c c}\right\rangle, \ldots\right\}
\end{aligned}
$$

Deterministic planning can be solved in PSPACE

Existence of plans of length $\leq 2^{n}$:
PROCEDURE reach $\left(s, s^{\prime}, n\right)$
IF $n=0$ THEN
IF s = s' OR $s^{\prime}=\operatorname{app}_{o}(s)$ for some $o \in O$ THEN RETURN true
ELSE RETURN false;
ELSE
$F O R$ all states $s^{\prime \prime} D O$
IF reach $\left(s, s^{\prime \prime}, n-1\right)$ AND reach $\left(s^{\prime \prime}, s^{\prime}, n-1\right)$ THEN RETURN true END
RETURN false;

Deterministic planning can be solved in PSPACE

Recursive algorithm for testing m-step reachability between two states with $\log m$ memory consumption.

Deterministic planning can be solved in PSPACE

 CORRECTNESS:For problem instance N with n state variables, N has a plan if and only if reach $\left(I, s^{\prime}, n\right)$ returns true for some s^{\prime} such that $s^{\prime} \models G$.

MEMORY CONSUMPTION:

If number of states is 2^{n}, then recursion depth is n. At each recursive call only one state $s^{\prime \prime}$ is represented, taking space $\mathcal{O}(n)$, which means that total memory consumption at any time point is $\mathcal{O}\left(n^{2}\right)$, which is polynomial in the size of the problem instance.

Progression

- Progression is computing the successor state $\operatorname{app}_{o}(s)$ of s with respect to o.
- Used in forward search in a transition system: from the initial state toward the goal states
- Efficient to implement.
- Only for deterministic planning: nondeterministic operators may produce a set of states from one state.
\qquad

Search algorithms: systematic vs. local

Systematic algorithms:

- Keep track of all the states already visited.
- Memory consumption may be high.
- Always find a plan if one exists.
- depth-first, breadth-first, A $*$, IDA $*$, WA $*$, best-first, ...

Search algorithms 1: Search with progression

depth-first search, breadth-first search, iterative deepening, informed search, ..

Search algorithms: systematic vs. local
Local search algorithms:

- Keep track of only one search state at a time
- Find a plan with a high probability (given enough time...).
- Cannot determine that no plans exist
- hill-climbing, simulated annealing, tabu search, ...

Search algorithms: A*

Use the function $f(s)=g(s)+h(s)$ to guide search:

- $g(s)=$ cost so far (number of operators)
- $h(s)=$ estimated remaining cost (estimated distance) $h(s)$ must be less than or equal the real remaining cost (distance): otherwise $\mathrm{A} *$ is not guaranteed to find an optimal solution. (admissibility of $h(s)$).
(IDA* improves $A *$ on memory consumption.)

Search algorithms: A*, cont'd

The algorithm tries to reach a state in G from I as follows.

1. OPEN $:=\{I\}$, CLOSED $:=\emptyset$.
2. If some state in G is in OPEN, then stop: solution found.
3. If $O P E N=\emptyset$, then stop: no solution.
4. Choose an element $s \in$ OPEN with the least $f(s)$.
5. OPEN $:=$ OPEN $\backslash\{s\}$, CLOSED $:=$ CLOSED $\cup\{s\}$.
6. OPEN $:=\operatorname{OPEN} \cup\left(\left\{\operatorname{app}_{o}(s) \mid o \in O\right\} \backslash\right.$ CLOSED $)$.
7. Go to 2.

Search algorithms: A*, example

Search algorithms: A*, example

Jussi Rintanen

Search algorithms: A $*$, example

\qquad

Search algorithms: WA*

A general property of (planning) algorithms: finding optimal solutions is much more difficult than finding any solution.

- By sacrificing optimality of $A *$, plans can be found faster.
- WA* uses $f(s)=g(s)+W h(s)$ for $W \geq 1$.
- With $W=1$ we have $\mathrm{WA} *=\mathrm{A} *$.
- With $W>1$ search will be suboptimal and faster.
- Plan length may be W times the optimum.

Search algorithms: best-first search

- Like WA*, but the cost-so-far is ignored completely.
- Best-first search uses $f(s)=h(s)$ for $W \geq 1$.
- No guarantees on plan length.

Plan search: search states for progression

For progression, the search state is represented as a sequence of operators and associated states.

$$
s_{I}, o_{1}, s_{1}, o_{2}, s_{2}, \ldots, o_{n}, s_{n}
$$

The neighbors of the state are those obtained by progression with respect to one of the operators or by dropping out some of the last operators and associated states:

1. $s_{I}, o_{1}, s_{1}, o_{2}, s_{2}, \ldots, o_{n}, s_{n}, o, \operatorname{app}_{o}\left(s_{n}\right)$ for some $o \in O$
2. $s_{I}, o_{1}, s_{1}, o_{2}, s_{2}, \ldots, o_{i}, s_{i}$ for $i<n \quad$ (for local search only)

Search space vs. state space

Search space does not in general coincide with state space.
Exception: forward search with a systematic search algorithm, because the systematic search algorithm can be implemented so that it keeps track of the sequence of actions that have been taken.

Local search: random walk

1. $s:=I$
2. If $s \in G$, stop: goal state has been reached.
3. Randomly choose a neighbor s^{\prime} of s.
4. $s:=s^{\prime}$
5. Go to 2

Local search: steepest descent hill-climbing

1. $s:=I$
2. If $s \in G$, stop: goal state has been reached.
3. Randomly choose neighbor s^{\prime} of s with the least $h\left(s^{\prime}\right)$.
4. $s:=s^{\prime}$
5. Go to 2.

Problem: The algorithm gets stuck in local minima.

Local search: simulated annealing, picture

