
Deterministic planning: problem instances

A problem instance is a 4-tuple 〈P, I, O, G〉 where

1. P is a finite set of state variables,

2. I is a state (a valuation of P) called the initial state,

3. O is a finite set of operators over P , and

4. G is a propositional formula over P (the goal).

Jussi Rintanen April 26, AI Planning 1/39

Deterministic planning: plans

A solution of a problem instance 〈P, I, O, G〉 is a sequence π =

o1, . . . , on of operators (a plan) such that {o1, . . . , on} ⊆ O and
s0, . . . , sn is a sequence of states (the execution of π) so that

1. s0 = I,
2. si = appoi

(si−1) for every i ∈ {1, . . . , n}, and
3. sn |= G.

This can be equivalently expressed as

appon
(appon−1

(· · · appo1
(I) · · ·)) |= G

Jussi Rintanen April 26, AI Planning 2/39

Properties of plans

Let 〈P, I, O, G〉 be a problem instance.

1. There is a plan of length 0 iff I |= G.

2. Shortest plan may not be longer than 2n−1: If a plan is longer,
then it visits some state s more than once and has the form
σ1

s σ2
s σ3: the plan σ1σ3 is shorter.

3. Shortest plan may have length 2n − 1: Reach the goal state
111 . . . 1 from the initial state 000 . . . 0 by an operator that
increments the corresponding binary number 2n − 1 times.

Jussi Rintanen April 26, AI Planning 3/39

Deterministic planning: expressivity

The decision problem SAT: test whether a given propositional
formula φ is satisfiable.

P = the set of propositional variables occurring in φ

I = any state, e.g. all state variables have value 0
O = ({>} × P) ∪ ({〈>,¬p〉|p ∈ P})

G = φ

The problem instance has a solution if and only if φ is satisfiable.

Jussi Rintanen April 26, AI Planning 4/39

Deterministic planning: expressivity

• Because we have a polynomial-time translation from SAT to
deterministic planning, and SAT is an NP-complete problem,
we have a polynomial time translation from every decision
problem in NP to deterministic planning.

• Does deterministic planning have the power of NP, or is it still
more powerful?

Jussi Rintanen April 26, AI Planning 5/39

Turing machines

A Turing machine 〈Σ, Q, δ, q0, g〉 consists of

1. an alphabet Σ (a set of symbols),
2. a set Q of internal states,
3. a transition function δ that maps 〈q, s〉 to a tuple 〈s′, q′, m〉

where q, q′ ∈ Q, s ∈ Σ ∪ {|, 2}, s′ ∈ Σ and m ∈ {L, N, R}.
4. an initial state q0 ∈ Q, and
5. a labeling g : Q → {accept, reject, ∃} of states.

Jussi Rintanen April 26, AI Planning 6/39

TMs, example
TM accepting strings ε, 1, 12, 121, 1212, . . . is 〈Σ, Q, δ, q1, g〉 where

Σ = {1, 2},

Q = {q1, q2, q3, q4},

g(q1) = ∃, g(q2) = ∃,

g(q3) = accept, g(q4) = reject
δ(q1, 1) = 〈1, q2, R〉 δ(q1, 2) = 〈2, q4, R〉

δ(q2, 2) = 〈2, q1, R〉 δ(q2, 1) = 〈1, q4, R〉

δ(q1, 2) = 〈1, q3, R〉 δ(q2, 2) = 〈2, q3, R〉

δ(q, s) = 〈1, q4, R〉 for all other q, s

Jussi Rintanen April 26, AI Planning 7/39

TMs, example: cont’d

What does the TM do with the string 12122?

q1 |1̂21222

q2 |12̂1222

q1 |121̂222

q2 |1212̂22

q1 |12122̂2

q4 |121222̂

The label g(q4) = reject. The TM does not accept the string.

Jussi Rintanen April 26, AI Planning 8/39

Simulation of PSPACE Turing machines

We show how polynomial-space Turing machines can be
simulated by planning.

• contents of tape cells are encoded as state variables
• R/W head location is encoded as state variables
• internal state of the TM is encoded as state variables
• transitions are encoded as operators

A given Turing machine M accepts an input string σ if and only
if a problem instance T (M, σ) = 〈P, I, O, G〉 has a plan.

Jussi Rintanen April 26, AI Planning 9/39

PSPACE simulation I

Simulate a TM = 〈Σ, Q, δ, q0, g〉 that needs at most p(n) tape cells
on an input string of length n.

State variables in the problem instance in planning are

1. {q1, . . . , q|Q|} = Q for denoting the current state of the TM,

2. si for every symbol s ∈ Σ ∪ {|, 2} and tape cell i ∈

{0, . . . , p(n)},

3. hi for every i ∈ {0, . . . , p(n)} (position of the R/W head).

Jussi Rintanen April 26, AI Planning 10/39

PSPACE simulation II

1. I(q0) = 1 and I(q) = 0 for all q ∈ Q\{q0}.

2. I(si) = 1 if i < n and input symbol i is s.

3. I(si) = 0 if i < n and s ∈ S and symbol i is not s.

4. I(2i) = 1 iff i ∈ {n, . . . , p(n) − 1}

5. I(|i) = 1 iff i = 0

6. I(hi) = 1 iff i = 1

Jussi Rintanen April 26, AI Planning 11/39

PSPACE simulation III

Goal of the problem instance is to reach an accepting state.

G =
∨

{q ∈ Q|g(q) = accept}.

Jussi Rintanen April 26, AI Planning 12/39

PSPACE simulation IV

For all s ∈ Σ ∪ {|, 2} and q ∈ Q and i ∈ {0, . . . , p(n)} with
δ(q, s) = 〈s′, q′, m〉 and m 6= R or i < p(n)), define

os,q,i = 〈hi ∧ si ∧ q, ν ∧ χ ∧ µ〉

where

ν is

> if s ∈ {|, s′}, and ¬si ∧ s′i otherwise,

Jussi Rintanen April 26, AI Planning 13/39

PSPACE simulation IV, cont’d

χ is

¬q ∧ q′ if q 6= q′, and > otherwise, and

µ is

> if m = N

¬hi ∧ hi−1 if i > 0 and m = L, and > if i = 0 and m = L

¬hi∧hi+1 if i < p(n) and m = R, and > if i = p(n) and m = R

Jussi Rintanen April 26, AI Planning 14/39

Example: a Turing machine

Turing machine 〈{A, B}, {q1, q2, qacc}, δ, q1, g〉 where δ is

A B | 2

q1 〈A, q1, R〉 〈B, q2, N〉 〈|, q2, R〉 〈B, q1, N〉

q2 〈A, q1, L〉 〈A, qacc, N〉 〈|, q1, R〉 〈A, q2, L〉

qacc − − − −

and g(qacc) = accept, g(q1) = ∃ and g(q2) = ∃.

Input string: ABAAB

Jussi Rintanen April 26, AI Planning 15/39

Example: translation to planning

Construct 〈P, I, O, G〉 where

1. P = {q1, q2, qacc, h0, . . . , hp(5), A0, . . . , Ap(5), B0, . . . Bp(5) . . .}

2. I |= |0 ∧A1 ∧B2 ∧A3 ∧A4 ∧B5 ∧26 ∧27 ∧ · · · ∧2p(5) ∧¬A0 ∧

¬B0 ∧ ¬20 ∧ · · ·

3. operators O are on the next slide

4. G = qacc

Jussi Rintanen April 26, AI Planning 16/39

Example: translation to planning

Only part of the about |{0, 1, . . . , p(5)} × |{q1, q2}| × |{A, B, |, 2}|

operators are given below, for R/W head position 1 and input
symbols A and B:

O = { 〈h1 ∧ A1 ∧ q1, ¬h1 ∧ h2〉, . . . ,

〈h1 ∧ B1 ∧ q1, ¬q1 ∧ q2〉, . . . ,

〈h1 ∧ A1 ∧ q2, ¬q2 ∧ q1 ∧ ¬h1 ∧ h0〉, . . . ,

〈h1 ∧ B1 ∧ q2, ¬B1 ∧ A1 ∧ ¬q2 ∧ qacc〉, . . .}

Jussi Rintanen April 26, AI Planning 17/39

Deterministic planning can be solved in PSPACE

Recursive algorithm for testing m-step reachability between two
states with log m memory consumption.

s0 s1 s2 s3 s4 s5 s6 s7 s8

reach(s,s’,1)
reach(s,s’,0)

reach(s0,s8,3)
reach(s,s’,2)

Jussi Rintanen April 26, AI Planning 18/39

Deterministic planning can be solved in PSPACE

Existence of plans of length ≤ 2n:

PROCEDURE reach(s,s′,n)
IF n = 0 THEN

IF s = s’ OR s′ = appo(s) for some o ∈ O THEN RETURN true
ELSE RETURN false;

ELSE
FOR all states s′′ DO

IF reach(s,s′′,n − 1) AND reach(s′′,s′,n − 1) THEN RETURN true
END
RETURN false;

Jussi Rintanen April 26, AI Planning 19/39

Deterministic planning can be solved in PSPACE
CORRECTNESS:

For problem instance N with n state variables, N has a plan if
and only if reach(I,s′,n) returns true for some s′ such that s′ |= G.

MEMORY CONSUMPTION:

If number of states is 2n, then recursion depth is n. At each
recursive call only one state s′′ is represented, taking space
O(n), which means that total memory consumption at any time
point is O(n2), which is polynomial in the size of the problem
instance.

Jussi Rintanen April 26, AI Planning 20/39

Progression

• Progression is computing the successor state appo(s) of s with
respect to o.

• Used in forward search in a transition system: from the initial
state toward the goal states.

• Efficient to implement.

• Only for deterministic planning: nondeterministic operators
may produce a set of states from one state.

Jussi Rintanen April 26, AI Planning 21/39

Search algorithms 1: Search with progression

depth-first search, breadth-first search, iterative deepening,
informed search, ...

I

o2

o1 o2 on

o1 on

o1 o2 on
o1

o2 on

Jussi Rintanen April 26, AI Planning 22/39

Search algorithms: systematic vs. local

Systematic algorithms:

• Keep track of all the states already visited.

• Memory consumption may be high.

• Always find a plan if one exists.

• depth-first, breadth-first, A∗, IDA∗, WA∗, best-first, ...

Jussi Rintanen April 26, AI Planning 23/39

Search algorithms: systematic vs. local

Local search algorithms:

• Keep track of only one search state at a time.

• Find a plan with a high probability (given enough time...).

• Cannot determine that no plans exist.

• hill-climbing, simulated annealing, tabu search, ...

Jussi Rintanen April 26, AI Planning 24/39

Search algorithms: A∗

Use the function f(s) = g(s) + h(s) to guide search:

• g(s) = cost so far (number of operators)

• h(s) = estimated remaining cost (estimated distance)

h(s) must be less than or equal the real remaining cost
(distance): otherwise A∗ is not guaranteed to find an optimal
solution. (admissibility of h(s)).

(IDA∗ improves A∗ on memory consumption.)

Jussi Rintanen April 26, AI Planning 25/39

Search algorithms: A∗, cont’d

The algorithm tries to reach a state in G from I as follows.

1. OPEN := {I}, CLOSED := ∅.
2. If some state in G is in OPEN, then stop: solution found.
3. If OPEN = ∅, then stop: no solution.
4. Choose an element s ∈ OPEN with the least f(s).
5. OPEN := OPEN\{s}, CLOSED := CLOSED∪{s}.
6. OPEN := OPEN ∪({appo(s)|o ∈ O}\CLOSED).
7. Go to 2.

Jussi Rintanen April 26, AI Planning 26/39

Search algorithms: A∗, example

o2 o2 o2 o2o1 o1 o1 o1

o2o1o2o1

o1 o2

2+0 2+8

1+0 1+1

2+13 2+10

3+73+12 3+4 3+03+14 3+9 3+7 3+4

0+3

Jussi Rintanen April 26, AI Planning 27/39

Search algorithms: A∗, example

o2 o2 o2 o2o1 o1 o1 o1

o2o1o2o1

o1 o2

2+0 2+82+13 2+10

3+73+12 3+4 3+03+14 3+9 3+7 3+4

1+0 1+1

0+3

Jussi Rintanen April 26, AI Planning 28/39

Search algorithms: A∗, example

o2 o2 o2 o2o1 o1 o1 o1

o2o1o2o1

o1 o2

2+82+10

3+73+12 3+4 3+03+14 3+9 3+7 3+4

1+1

0+3

2+13 2+0

1+0

Jussi Rintanen April 26, AI Planning 29/39

Search algorithms: A∗, example

o2 o2 o2 o2o1 o1 o1 o1

o2o1o2o1

o1 o2

3+73+12 3+4 3+03+14 3+9 3+7 3+4

0+3

2+13 2+0

1+0

2+10 2+8

1+1

Jussi Rintanen April 26, AI Planning 30/39

Search algorithms: A∗, example

o2 o2 o2 o2o1 o1 o1 o1

o2o1o2o1

o1 o2

3+73+12 3+14 3+9 3+7 3+4

0+3

2+13

1+0

2+10 2+8

1+1

3+4 3+0

2+0

Jussi Rintanen April 26, AI Planning 31/39

Search algorithms: WA∗

A general property of (planning) algorithms: finding optimal
solutions is much more difficult than finding any solution.

• By sacrificing optimality of A∗, plans can be found faster.

• WA∗ uses f(s) = g(s) + Wh(s) for W ≥ 1.

• With W = 1 we have WA∗ = A∗.

• With W > 1 search will be suboptimal and faster.

• Plan length may be W times the optimum.

Jussi Rintanen April 26, AI Planning 32/39

Search algorithms: best-first search

• Like WA∗, but the cost-so-far is ignored completely.

• Best-first search uses f(s) = h(s) for W ≥ 1.

• No guarantees on plan length.

Jussi Rintanen April 26, AI Planning 33/39

Search space vs. state space

Search space does not in general coincide with state space.

Exception: forward search with a systematic search algorithm,
because the systematic search algorithm can be implemented
so that it keeps track of the sequence of actions that have been
taken.

Jussi Rintanen April 26, AI Planning 34/39

Plan search: search states for progression

For progression, the search state is represented as a sequence
of operators and associated states.

sI, o1, s1, o2, s2, . . . , on, sn

The neighbors of the state are those obtained by progression
with respect to one of the operators or by dropping out some of
the last operators and associated states:

1. sI, o1, s1, o2, s2, . . . , on, sn, o, appo(sn) for some o ∈ O

2. sI, o1, s1, o2, s2, . . . , oi, si for i < n (for local search only)

Jussi Rintanen April 26, AI Planning 35/39

Local search: random walk

1. s := I

2. If s ∈ G, stop: goal state has been reached.

3. Randomly choose a neighbor s′ of s.

4. s := s′

5. Go to 2.

Jussi Rintanen April 26, AI Planning 36/39

Local search: steepest descent hill-climbing

1. s := I

2. If s ∈ G, stop: goal state has been reached.

3. Randomly choose neighbor s′ of s with the least h(s′).

4. s := s′

5. Go to 2.

Problem: The algorithm gets stuck in local minima.

Jussi Rintanen April 26, AI Planning 37/39

Local search: simulated annealing
1. s := I

2. If s ∈ G, stop: goal state has been reached.
3. Randomly choose a neighbor s′ of s.
4. If h(s′) < h(s) go to 7.
5. With probability exp(−h(s′)−h(s)

T
) go to 7.

6. Go to 3.
7. s := s′

8. Decrease T . (There are many strategies for doing this!!)
9. Go to 2.

The temperature T is initially high and then gradually decreased.

Jussi Rintanen April 26, AI Planning 38/39

Local search: simulated annealing, picture

temperature

S

Jussi Rintanen April 26, AI Planning 39/39

