Deterministic planning: problem instances

- A problem instance is a 4-tuple $\langle P, I, O, G \rangle$ where
- 1. *P* is a finite set of state variables,
- 2. *I* is a state (a valuation of *P*) called the *initial state*,
- 3. O is a finite set of operators over P, and
- 4. *G* is a propositional formula over *P* (the *goal*).

April 26, Al Planning 1/39

Deterministic planning: plans

A *solution* of a problem instance $\langle P, I, O, G \rangle$ is a sequence $\pi = o_1, \ldots, o_n$ of operators (a *plan*) such that $\{o_1, \ldots, o_n\} \subseteq O$ and s_0, \ldots, s_n is a sequence of states (the *execution* of π) so that

1. $s_0 = I$, 2. $s_i = \operatorname{app}_{o_i}(s_{i-1})$ for every $i \in \{1, \dots, n\}$, and 3. $s_n \models G$.

This can be equivalently expressed as

$$\mathsf{app}_{o_n}(\mathsf{app}_{o_{n-1}}(\cdots \mathsf{app}_{o_1}(I) \cdots)) \models G$$

Jussi Rintanen

April 26, Al Planning 2/39

Properties of plans

- Let $\langle P, I, O, G \rangle$ be a problem instance.
- 1. There is a plan of length 0 iff $I \models G$.
- 2. Shortest plan may not be longer than $2^n 1$: If a plan is longer, then it visits some state *s* more than once and has the form $\sigma_1 {}^s \sigma_2 {}^s \sigma_3$: the plan $\sigma_1 \sigma_3$ is shorter.
- 3. Shortest plan may have length $2^n 1$: Reach the goal state 111...1 from the initial state 000...0 by an operator that increments the corresponding binary number $2^n 1$ times.

Jussi Rintanen

Jussi Rintaner

April 26, Al Planning 3/39

Deterministic planning: expressivity

The decision problem SAT: test whether a given propositional formula ϕ is satisfiable.

 $\begin{array}{lll} P &=& \mbox{the set of propositional variables occurring in } \phi \\ I &=& \mbox{any state, e.g. all state variables have value 0} \\ O &=& (\{\top\} \times P) \cup (\{\langle \top, \neg p \rangle | p \in P\}) \\ G &=& \phi \end{array}$

The problem instance has a solution if and only if ϕ is satisfiable.

Jussi Rintanen

Deterministic planning: expressivity Turing machines A Turing machine $\langle \Sigma, Q, \delta, q_0, g \rangle$ consists of • Because we have a polynomial-time translation from SAT to deterministic planning, and SAT is an NP-complete problem, 1. an alphabet Σ (a set of symbols), we have a polynomial time translation from every decision 2. a set Q of internal states, problem in NP to deterministic planning. 3. a transition function δ that maps $\langle q, s \rangle$ to a tuple $\langle s', q', m \rangle$ where $q, q' \in Q, s \in \Sigma \cup \{|, \Box\}, s' \in \Sigma$ and $m \in \{L, N, R\}$. • Does deterministic planning have the power of NP, or is it still 4. an initial state $q_0 \in Q$, and more powerful? 5. a labeling $q: Q \rightarrow \{\text{accept, reject, } \exists\}$ of states. Jussi Rintanen Jussi Rintanen April 26, Al Planning 5/39 April 26, Al Planning 6/39

TMs, example

TM accepting strings $\epsilon, 1, 12, 121, 1212, \dots$ is $\langle \Sigma, Q, \delta, q_1, g \rangle$ where

Jussi Rintanen

April 26, Al Planning 7/39

Simulation of PSPACE Turing machines

We show how polynomial-space Turing machines can be simulated by planning.

- contents of tape cells are encoded as state variables
- R/W head location is encoded as state variables
- internal state of the TM is encoded as state variables.
- transitions are encoded as operators

A given Turing machine M accepts an input string σ if and only if a problem instance $T(M, \sigma) = \langle P, I, O, G \rangle$ has a plan.

Jussi Rintanen

April 26, Al Planning 9/39

PSPACE simulation I

Simulate a TM = $\langle \Sigma, Q, \delta, q_0, g \rangle$ that needs at most p(n) tape cells on an input string of length n.

State variables in the problem instance in planning are

- 1. $\{q_1, \ldots, q_{|Q|}\} = Q$ for denoting the current state of the TM,
- 2. s_i for every symbol $s \in \Sigma \cup \{|, \Box\}$ and tape cell $i \in$ $\{0,\ldots,p(n)\},\$

3. h_i for every $i \in \{0, \dots, p(n)\}$ (position of the R/W head).

```
Jussi Rintanen
```

Jussi Rintanen

April 26, Al Planning 10/39

PSPACE simulation II

- 1. $I(q_0) = 1$ and I(q) = 0 for all $q \in Q \setminus \{q_0\}$.
- 2. $I(s_i) = 1$ if i < n and input symbol i is s.
- **3.** $I(s_i) = 0$ if i < n and $s \in S$ and symbol i is not s.

4.
$$I(\Box_i) = 1$$
 iff $i \in \{n, \dots, p(n) - 1\}$

5.
$$I(|_i) = 1$$
 iff $i = 0$

6.
$$I(h_i) = 1$$
 iff $i = 1$

Jussi Rintanen

April 26, Al Planning 11/39

PSPACE simulation III Goal of the problem instance is to reach an accepting state. $G = \bigvee \{ q \in Q | g(q) = \mathsf{accept} \}.$ April 26, Al Planning 12/39

Example: a Turing machine						
Turing machine $\langle \{A, B\}, \{q_1, q_2, q_{acc}\}, \delta, q_1, g \rangle$ where δ is						
		A	В			
	q_1	$\langle A, q_1, R \rangle$	$\langle B, q_2, N \rangle$	$\langle , q_2, R \rangle$	$\langle B, q_1, N \rangle$	
	q_2	$\langle A, q_1, L \rangle$	$\langle A, q_{acc}, N \rangle$	$\langle , q_1, R \rangle$	$\langle A, q_2, L \rangle$	
	q_{acc}		-	_	_	

and
$$g(q_acc) = \text{accept}, g(q_1) = \exists \text{ and } g(q_2) = \exists$$
.

Input string: ABAAB

Jussi Rintanen

April 26, Al Planning 15/39

Example: translation to planning

Only part of the about $|\{0, 1, ..., p(5)\} \times |\{q_1, q_2\}| \times |\{A, B, |, \Box\}|$ operators are given below, for R/W head position 1 and input symbols A and B:

$$O = \{ \langle h_1 \wedge A_1 \wedge q_1, \neg h_1 \wedge h_2 \rangle, \dots, \\ \langle h_1 \wedge B_1 \wedge q_1, \neg q_1 \wedge q_2 \rangle, \dots, \\ \langle h_1 \wedge A_1 \wedge q_2, \neg q_2 \wedge q_1 \wedge \neg h_1 \wedge h_0 \rangle, \dots, \\ \langle h_1 \wedge B_1 \wedge q_2, \neg B_1 \wedge A_1 \wedge \neg q_2 \wedge q_{acc} \rangle, \dots \}$$

Jussi Rintanen

Jussi Rintanen

```
April 26, Al Planning 17/39
```

April 26, AI Planning

19/39

Deterministic planning can be solved in PSPACE

Recursive algorithm for testing *m*-step reachability between two states with $\log m$ memory consumption.

Deterministic planning can be solved in PSPACE

```
Existence of plans of length \leq 2^{n}:

PROCEDURE reach(s,s',n)

IF n = 0 THEN

IF s = s' OR s' = app_{o}(s) for some o \in O THEN RETURN true

ELSE RETURN false;

ELSE

FOR all states s'' DO

IF reach(s,s'',n - 1) AND reach(s'',s',n - 1) THEN RETURN true

END

RETURN false;
```

Deterministic planning can be solved in PSPACE CORRECTNESS:

For problem instance N with n state variables, N has a plan if and only if reach(I,s',n) returns true for some s' such that $s' \models G$.

MEMORY CONSUMPTION:

If number of states is 2^n , then recursion depth is n. At each recursive call only one state s'' is represented, taking space $\mathcal{O}(n)$, which means that total memory consumption at any time point is $\mathcal{O}(n^2)$, which is polynomial in the size of the problem instance.

Jussi Rintanen

Progression

- Progression is computing the successor state $\operatorname{app}_o(s)$ of s with respect to o.
- Used in *forward search* in a transition system: from the initial state toward the goal states.
- Efficient to implement.
- Only for deterministic planning: *nondeterministic operators* may produce a *set of states* from one state.

```
Jussi Rintanen
```

April 26, Al Planning 21/39

Search algorithms 1: Search with progression

depth-first search, breadth-first search, iterative deepening, informed search, ...

Search algorithms: systematic vs. local

Systematic algorithms:

- Keep track of all the states already visited.
- Memory consumption may be high.
- Always find a plan if one exists.
- depth-first, breadth-first, A*, IDA*, WA*, best-first, ...

Search algorithms: systematic vs. local						
Local search algorithms:						
 Keep track of only one search state at a time. 						
 Find a plan with a high probability (given enough time). 						
Cannot determine that no plans exist.						
 hill-climbing, simulated annealing, tabu search, 						
Jussi Rintanen	April 26, Al Planning	24/39				

Jussi Rintanen

April 26, Al Planning 23/39

Search algorithms: WA*

A general property of (planning) algorithms: finding optimal solutions is **much** more difficult than finding any solution.

- By sacrificing optimality of A*, plans can be found faster.
- WA* uses f(s) = g(s) + Wh(s) for $W \ge 1$.
- With W = 1 we have WA * = A *.
- With W > 1 search will be suboptimal and faster.
- Plan length may be *W* times the optimum.

Jussi Rintanen

April 26, Al Planning 32/39

Plan search: search states for progression

For progression, the search state is represented as a sequence of operators and associated states.

 $s_I, o_1, s_1, o_2, s_2, \ldots, o_n, s_n$

The neighbors of the state are those obtained by progression with respect to one of the operators or by dropping out some of the last operators and associated states:

1.
$$s_I, o_1, s_1, o_2, s_2, ..., o_n, s_n, o, \mathsf{app}_o(s_n)$$
 for some $o \in O$
2. $s_I, o_1, s_1, o_2, s_2, ..., o_i, s_i$ for $i < n$ (for local search only)

April 26, Al Planning 35/39

