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What is the course about?

• question: What actions to take to reach the goals?

• general-purpose problem representation and general-purpose
algorithms

• application areas:

– problem-solving (single-agent games like Rubik’s cube etc.)
– high-level planning for intelligent robots
– autonomous systems: NASA Deep Space One
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What is the course about?

Different variants of planning:

• deterministic vs. nondeterministic actions

• full observability vs. partial observability

• objectives:

– plans with success probability 1.0
– plans with maximum expected success probability
– plans with maximum expected rewards
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What is the course about?

Algorithms for deterministic planning:

• progression, regression

• heuristic search

• translation to propositional logic

• other approaches (e.g. partial-order planning)

• pruning techniques: e.g. symmetry
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What is the course about?

Algorithms for nondeterministic planning:

• conditional planning

• iterative algorithms for probabilistic planning (MDPs)

• extension of the techniques to very big state spaces with
binary decision diagrams and related data structures.

• partial observability
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Contents of the first lectures

1. transition systems

2. reachability in transition systems in terms of matrices (basis
for BDD-based techniques that are discussed later)

3. representation of states in terms of state variables

4. operators

5. the standard input language for planners PDDL
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Transition systems

• Model the dynamics of the world/system/application.

• Are formalized as 〈S, {a1, . . . , an}〉 where

– S is a finite set of states,
– every action ai ⊆ S × S is a binary relation on S.

• First we restrict to ai that are (partial) functions from S to S:
for every s ∈ S, (s, s′) ∈ ai for at most one s′ ∈ S.
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Actions as matrices
1. If there are n states, each action corresponds to a n×n matrix:

Element at row i and column j is 1 if the action maps state i

to state j.

For deterministic actions there is at most one non-zero
element in each row.

2. Matrix multiplication corresponds to sequential composition:
taking action M1 followed by action M2 is the product M1M2.
(This is also the relational product of the associated relations.)

3. The unit matrix In×n is the NO-OP action.
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A B C D E F

A 0 1 0 0 0 0

B 0 0 0 0 0 1

C 0 0 1 0 0 0

D 0 0 1 0 0 0

E 0 1 0 0 0 0

F 0 0 0 0 1 0
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A 0 0 0 0 0 0

B 0 0 0 0 0 0

C 0 0 0 0 0 1

D 1 0 0 0 0 0

E 0 0 0 1 0 0

F 1 0 0 0 0 0
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A B C D E F

A 0 0 0 0 0 0

B 0 0 0 0 0 0

C 0 1 0 0 0 0

D 0 0 0 0 1 0

E 0 0 0 0 0 0

F 1 0 0 0 0 0
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Sum matrix MR + MG + MB

A

B

EF

D

C
A B C D E F

A 0 1 0 0 0 0

B 0 0 0 0 0 1

C 0 1 1 0 0 1

D 1 0 1 0 1 0

E 0 1 0 1 0 0

F 1 0 0 0 1 0

We use addition 0 + 0 = 0 and b + b′ = 1 if b = 1 or b′ = 1.
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Sequential composition as matrix multiplication

0

B

B

B

B

B

B

B

@

0 1 0 0 0 0

0 0 0 0 0 1

0 1 1 0 0 1

1 0 1 0 1 0

0 1 0 1 0 0

1 0 0 0 1 0

1

C

C

C

C

C

C

C

A

×

0

B

B

B

B

B

B

B

@

0 1 0 0 0 0

0 0 0 0 0 1

0 1 1 0 0 1

1 0 1 0 1 0

0 1 0 1 0 0

1 0 0 0 1 0

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

0 0 0 0 0 1

1 0 0 0 1 0

1 1 1 0 1 1

0 1 1 1 0 0

0 0 1 0 1 1

0 1 0 1 0 0

1

C

C

C

C

C

C

C

A

E is reachable from B by two actions, because
F is reachable from B by one action and
E is reachable from F by one action.
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Reachability

Let M be the n × n matrix that is the (Boolean) sum of the
matrices of the individual actions. Define

R0 = In×n

R1 = In×n + M

R2 = In×n + M + M2

R3 = In×n + M + M2 + M3

...

Ri represents reachability by i actions or less. If s′ is reachable
from s, then it is reachable with ≤ n actions: Rn = Rn+1.
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Reachability: example, MR

A

B

EF

D
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A B C D E F

A 0 1 0 0 0 0

B 0 0 0 0 0 1

C 0 0 1 0 0 0

D 0 0 1 0 0 0

E 0 1 0 0 0 0

F 0 0 0 0 1 0

Jussi Rintanen April 21, AI Planning 16/46



Reachability: example, MR + M 2
R

A

B

EF

D
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A B C D E F

A 0 1 0 0 0 1

B 0 0 0 0 1 1

C 0 0 1 0 0 0

D 0 0 1 0 0 0

E 0 1 0 0 0 1

F 0 1 0 0 1 0
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Reachability: example, MR + M 2
R + M 3

R

A

B

EF

D

C

A B C D E F

A 0 1 0 0 1 1

B 0 1 0 0 1 1

C 0 0 1 0 0 0

D 0 0 1 0 0 0

E 0 1 0 0 1 1

F 0 1 0 0 1 1
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Reachability: example, MR + M 2
R + M 3

R + I6×6

A
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A B C D E F

A 1 1 0 0 1 1

B 0 1 0 0 1 1

C 0 0 1 0 0 0

D 0 0 1 1 0 0

E 0 1 0 0 1 1

F 0 1 0 0 1 1
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Reachability: row vectors are sets of states
Row vectors S represent sets.

SM is the set of states reachable from S by M .
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A simple planning algorithm

1. Compute the matrices R0, R1, R2, . . . , Rn.

2. Find the smallest i such that a goal state sg is reachable from
the initial state according to Ri.

3. Find an action (the last action of the plan) by which sg is
reached with one step from a state sg′ that is reachable from
the initial state according to Ri−1.

4. Repeatedly proceed backward toward the goal from sg′.
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Example

A B C D

A B C D

A 0 1 0 0

B 0 0 0 0

C 0 0 0 1

D 0 0 0 0

+

A B C D

A 0 1 0 0

B 0 0 1 0

C 1 0 0 0

D 0 0 0 0

=

A B C D

A 0 1 0 0

B 0 0 1 0

C 1 0 0 1

D 0 0 0 0
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R0 =

A B C D

A 1 0 0 0

B 0 1 0 0

C 0 0 1 0

D 0 0 0 1

R1 =

A B C D

A 1 1 0 0

B 0 1 1 0

C 1 0 1 1

D 0 0 0 1

R2 =

A B C D

A 1 1 1 0

B 1 1 1 1

C 1 0 1 1

D 0 0 0 1

R3 =

A B C D

A 1 1 1 1

B 1 1 1 1

C 1 1 1 1

D 0 0 0 1
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State variables

• The state of the world is described in terms of a finite set of
finite-valued state variables.

• Example: HOUR : {0, . . . , 23} = 13, MINUTE : {0, . . . , 59}= 55,
LOCATION : { 51, 52, 82, 101, 102 } = 101, WEATHER : {
sunny, cloudy, rainy } = cloudy, HOLIDAY : { T, F } = F

• Any n-valued state variable can be replaced by dlog2 ne

Boolean (2-valued) state variables.

• Actions change the values of the state variables.
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Example: blocks world with state variables

State variables:

LOCATION-OF-A : {B, C, TABLE}

LOCATION-OF-B : {A, C, TABLE}

LOCATION-OF-C : {A, B, TABLE}

Not all valuations correspond to an intended blocks world state:
e.g. A-ON-B and B-ON-A should not be simultaneously true.
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Example: blocks world with Boolean state
variables

Boolean state variables:

A-ON-B A-ON-C A-ON-TABLE
B-ON-A B-ON-C B-ON-TABLE
C-ON-A C-ON-B C-ON-TABLE

E.g. A-ON-B and B-ON-A should not be simultaneously true,
and only one state variable of the form x-ON-y for any x, and for
any y except TABLE, should be true at a time.
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Logical representations of state spaces

• n state variables with m values induce a state space
consisting of mn states (2n states for n Boolean state
variables).

• A language for talking about sets of states (valuations of state
variables) is the propositional logic.

• Logical operators correspond to set-theoretical operators.

• Logical relations on formulae correspond to relations between
sets.
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Propositional logic

Let P be a set of atomic propositions (∼ state variables.)

1. For all p ∈ P , p is a propositional formula.
2. If φ is a propositional formula, then so is ¬φ.
3. If φ and φ′ are propositional formulae, then so is φ ∨ φ′.
4. If φ and φ′ are propositional formulae, then so is φ ∧ φ′.
5. The symbols ⊥ and > are propositional formulae.

The implication φ→φ′ is an abbreviation for ¬φ ∨ φ′.

The equivalence φ ↔ φ′ is an abbreviation for (φ→φ′)∧(φ′→φ).
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A valuation of P is a function v : P → {0, 1}. Define

1. v |= p if and only if v(p) = 1, for p ∈ P .

2. v |= ¬φ if and only if v 6|= φ

3. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

4. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

5. v |= >

6. v 6|= ⊥
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A propositional formula φ is satisfiable if there is at least one
valuation v so that v |= φ. Otherwise it is unsatisfiable.

A propositional formula φ is valid or a tautology if v |= φ for all
valuations v. We write this as |= φ.

A propositional formula φ is a logical consequence of a
propositional formula φ′, written φ′ |= φ, if v |= φ for all valuations
v such that v |= φ′.

A propositional formula that is a proposition p or a negated
proposition ¬p for some p ∈ P is a literal.

A formula that is a disjunction of literals is a clause.
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operation on sets operation on formulae
A ∪ B A ∨ B

A ∩ B A ∧ B

A\B A ∧ ¬B

question about sets of states question about formulae
A ⊆ B? A |= B?
A ⊂ B? A |= B and B 6|= A?
A = B? A |= B and B |= A?

⊥ the empty set
> the universal set
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Operators

Actions are represented as operators 〈c, e〉.

c (the precondition) is a propositional formula over P describing
the set of states in which the action can be taken. (States in
which an arrow starts.)

e (the effect) describes the successor states of states in which
the action can be taken. (Where do the arrows go.)

The description is procedural: how are the values of the state
variable changed?
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Operators: effects

Atomic effects are of the form p := r for p ∈ P . For Boolean state
variables we always write p for p := 1 and ¬p for p := 0.

Effects are then recursively defined as follows.

1. p and ¬p for state variables p ∈ P are effects.

2. e1∧· · ·∧en is an effect if e1, . . . , en are effects (the special case
with n = 0 is the empty conjunction >.)

3. c B e is an effect if c is a formula over P and e is an effect.
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Operators: effects

c B e means that change e takes place if c is true in the current
state.

EXAMPLE: Increment 3-bit numbers p2p1p0.

(¬p0 B p0)∧

((¬p1 ∧ p0) B (p1 ∧ ¬p0))∧

((¬p2 ∧ p1 ∧ p0) B (p2 ∧ ¬p1 ∧ ¬p0))
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Example: operators for blocks world

For convenience we use also state variables A-CLEAR,
B-CLEAR, and C-CLEAR.

〈A-CLEAR∧A-ON-TABLE∧B-CLEAR, A-ON-B∧¬A-ON-TABLE∧¬B-CLEAR〉

〈A-CLEAR∧A-ON-TABLE∧C-CLEAR, A-ON-C∧¬A-ON-TABLE∧¬C-CLEAR〉
...

〈A-CLEAR ∧ (A-ON-B ∨ A-ON-C), A-ON-TABLE ∧ ¬A-ON-B ∧ ¬A-ON-C〉

〈B-CLEAR ∧ (B-ON-A ∨ B-ON-C), B-ON-TABLE ∧ ¬B-ON-A ∧ ¬B-ON-C〉
...
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Operators: changes caused by the operator

Operator 〈c, e〉 is applicable in a state s iff s |= c.

Assign each effect e a set [e]s of literals p and ¬p for p ∈ P .

1. [p]s = {p} and [¬p]s = {¬p} for p ∈ P .

2. [e1 ∧ · · · ∧ en]s = [e1]s ∪ . . . ∪ [en]s.

3. [c′ B e]s = [e]s if s |= c′ and [c′ B e]s = ∅ otherwise.
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Operators: the successor state of a state

The successor appo(s) of s with respect to operator o = 〈c, e〉 is
obtained from s by making literals [e]s true.

EXAMPLE: Consider the operator 〈a, e〉 where e = ¬a ∧ (¬c B

¬b) and a state s such that s |= a ∧ b ∧ c.

The operator is applicable because s |= a.

Now [e]s = {¬a} and app〈a,e〉(s) |= ¬a ∧ b ∧ c.
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Operators: example

011

111
110

010 001

100

000 101

state variables A, B, C

〈(B∧C)∨ (¬A∧B∧¬C)∨ (¬A∧C),

((B ∧ C) B ¬C)

∧(¬B B (A ∧ B))

∧(¬C B A)〉
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Schematic operators

• Description of state variables and operators in terms of a given
set of objects.

• Analogy: propositional logic vs. predicate logic

• Planners take input as schematic operators, and translate
them to (ground) operators. This is called grounding.
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Schematic operators: example

Schematic operator 〈in(x, y1), in(x, y2) ∧ ¬in(x, y1)〉 with

x, t1 and t2 taking values
x ∈ {car1, car2}
y1 ∈ {Freiburg, Strassburg},
y2 ∈ {Freiburg, Strassburg}, y1 6= y2

corresponds to a set of operators:

{ 〈in(car1, Freiburg), in(car1, Strassburg) ∧ ¬in(car1, Freiburg)〉,

〈in(car1, Strassburg), in(car1, Freiburg) ∧ ¬in(car1, Strassburg)〉,

〈in(car2, Freiburg), in(car2, Strassburg) ∧ ¬in(car2, Freiburg)〉,

〈in(car2, Strassburg), in(car2, Freiburg) ∧ ¬in(car2, Strassburg)〉}
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Schematic operators: quantification

existential quantification: finite disjunctions (not for effects)

universal quantification: finite conjunctions

EXAMPLE:

∃x ∈ {A, B, C}in(x, Freiburg) is a short-hand for

in(A, Freiburg) ∨ in(B, Freiburg) ∨ in(C, Freiburg).
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Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
)
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(:action fromtable
:parameters (?x - block ?y - block)
:precondition (and (not (= ?x ?y))

(clear ?x)
(ontable ?x)
(clear ?y))

:effect
(and (not (ontable ?x))

(not (clear ?y))
(on ?x ?y)))
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(:action totable
:parameters (?x - block ?y - block)
:precondition (and (clear ?x) (on ?x ?y))
:effect
(and (not (on ?x ?y))

(clear ?y)
(ontable ?x)))
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(:action move
:parameters (?x - block

?y - block
?z - block)

:precondition (and (clear ?x) (clear ?z)
(on ?x ?y) (not (= ?x ?z)))

:effect
(and (not (clear ?z))

(clear ?y)
(not (on ?x ?y))
(on ?x ?z)))

)
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(define (problem blocks-10-0)
(:domain blocks)
(:objects d a h g b j e i f c - block)
(:init (clear c) (clear f)

(ontable i) (ontable f)
(on c e) (on e j) (on j b) (on b g)
(on g h) (on h a) (on a d) (on d i))

(:goal (and (on d c) (on c f) (on f j) (on j e)
(on e h) (on h b) (on b a) (on a g)
(on g i)))

)
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