Course outline: Principles of AI Planning

lecturer:	Dr. Jussi Rintanen
email:	rintanen@informatik.uni-freiburg.de
web page:	http://www.informatik.uni-freiburg.de/^ki/lehre/ss04/aip/
time:	Mondays 2 pm to 4pm, Wednesday 2 pm to 3pm + exercis
lecture hall:	SR 00-010/14, Building 101
textbook:	No. Lecture notes available from web page.
language:	English and German
exam:	Wednesday July 21st ??? (to be decided later)
grade:	$0.85 \times$ exam $+0.15 \times$ exercises

lecturer: Dr. Jussi Rintanen
web page: http://www.informatik.uni-freiburg.de/~ki/lehre/ss04/aip/ day 2 pm to $3 \mathrm{pm}+$ exerci
ecture hall: SR 00-010/14, Building 101
language: English and German
exam:

Jussi Rintanen

What is the course about?

Different variants of planning:

- deterministic vs. nondeterministic actions
- full observability vs. partial observability
- objectives:
- plans with success probability 1.0
- plans with maximum expected success probability
- plans with maximum expected rewards

What is the course about?

- question: What actions to take to reach the goals?
- general-purpose problem representation and general-purpose algorithms
- application areas:
- problem-solving (single-agent games like Rubik's cube etc.)
- high-level planning for intelligent robots
- autonomous systems: NASA Deep Space One

What is the course about?

Algorithms for deterministic planning:

- progression, regression
- heuristic search
- translation to propositional logic
- other approaches (e.g. partial-order planning)
- pruning techniques: e.g. symmetry

What is the course about?

Algorithms for nondeterministic planning:

- conditional planning
- iterative algorithms for probabilistic planning (MDPs)
- extension of the techniques to very big state spaces with binary decision diagrams and related data structures.
- partial observability
\qquad

Contents of the first lectures

1. transition systems
2. reachability in transition systems in terms of matrices (basis for BDD-based techniques that are discussed later)
3. representation of states in terms of state variables
4. operators
5. the standard input language for planners PDDL

Transition systems

- Model the dynamics of the world/system/application.
- Are formalized as $\left\langle S,\left\{a_{1}, \ldots, a_{n}\right\}\right\rangle$ where
- S is a finite set of states,
- every action $a_{i} \subseteq S \times S$ is a binary relation on S.
- First we restrict to a_{i} that are (partial) functions from S to S : for every $s \in S,\left(s, s^{\prime}\right) \in a_{i}$ for at most one $s^{\prime} \in S$.

Actions as matrices

1. If there are n states, each action corresponds to a $n \times n$ matrix: Element at row i and column j is 1 if the action maps state i to state j.
For deterministic actions there is at most one non-zero element in each row.
2. Matrix multiplication corresponds to sequential composition: taking action M_{1} followed by action M_{2} is the product $M_{1} M_{2}$. (This is also the relational product of the associated relations.)
3. The unit matrix $I_{n \times n}$ is the NO-OP action.
\qquad

$B \longleftarrow C$

	A	B	C	D	E	F
A	0	0	0	0	0	0
B	0	0	0	0	0	0
C	0	1	0	0	0	0
D	0	0	0	0	1	0
E	0	0	0	0	0	0
F	1	0	0	0	0	0

Sum matrix $M_{R}+M_{G}+M_{B}$

We use addition $0+0=0$ and $b+b^{\prime}=1$ if $b=1$ or $b^{\prime}=1$.

Reachability

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$
\begin{aligned}
& R_{0}=I_{n \times n} \\
& R_{1}=I_{n \times n}+M \\
& R_{2}=I_{n \times n}+M+M^{2} \\
& R_{3}=I_{n \times n}+M+M^{2}+M^{3}
\end{aligned}
$$

R_{i} represents reachability by i actions or less. If s^{\prime} is reachable from s, then it is reachable with $\leq n$ actions: $R_{n}=R_{n+1}$.

Sequential composition as matrix multiplication
$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right) \times\left(\begin{array}{llll|l|l}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0\end{array}\right)$
E is reachable from B by two actions, because
F is reachable from B by one action and
E is reachable from F by one action.

Reachability: example, $M_{R}+M_{R}^{2}$

Jussi Rintanen

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}+I_{6 \times 6}$

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}$

Reachability: row vectors are sets of states

Row vectors S represent sets.
$S M$ is the set of states reachable from S by M.

$$
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)^{T} \begin{array}{l|llllll}
& A & B & C & D & E & F \\
\hline & A & 1 & 1 & 0 & 0 & 1 \\
1 \\
B & 0 & 1 & 0 & 0 & 1 & 1 \\
& C & 0 & 0 & 1 & 0 & 0 \\
0 & 0 \\
& D & 0 & 0 & 1 & 1 & 0 \\
0 \\
E & 0 & 1 & 0 & 0 & 1 & 1 \\
F & 0 & 1 & 0 & 0 & 1 & 1
\end{array}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{array}\right)^{T}
$$

A simple planning algorithm

1. Compute the matrices $R_{0}, R_{1}, R_{2}, \ldots, R_{n}$.
2. Find the smallest i such that a goal state s_{q} is reachable from the initial state according to R_{i}.
3. Find an action (the last action of the plan) by which s_{g} is reached with one step from a state $s_{g^{\prime}}$ that is reachable from the initial state according to R_{i-1}.
4. Repeatedly proceed backward toward the goal from $s_{g^{\prime}}$.
\qquad

Example

	A	B	C	D
A	0	1	0	0
B	0	0	1	0
C	1	0	0	1
D	0	0	0	0
April 21. Al Planning		22746		

State variables

- The state of the world is described in terms of a finite set of finite-valued state variables.
- Example: HOUR : $\{0, \ldots, 23\}=13$, MINUTE : $\{0, \ldots, 59\}=55$, LOCATION : $\{51,52,82,101,102\}=101$, WEATHER : $\{$ sunny, cloudy, rainy $\}=$ cloudy, HOLIDAY : $\{\mathrm{T}, \mathrm{F}\}=\mathrm{F}$
- Any n-valued state variable can be replaced by $\left\lceil\log _{2} n\right\rceil$ Boolean (2-valued) state variables.
- Actions change the values of the state variables.

Example: blocks world with state variables

State variables:
LOCATION-OF-A : $\{B, C, T A B L E\}$
LOCATION-OF-B : $\{A, C, T A B L E\}$
LOCATION-OF-C : $\{A, B, T A B L E\}$

Not all valuations correspond to an intended blocks world state: e.g. A-ON-B and B-ON-A should not be simultaneously true.

Logical representations of state spaces

- n state variables with m values induce a state space consisting of m^{n} states $\left(2^{n}\right.$ states for n Boolean state variables).
- A language for talking about sets of states (valuations of state variables) is the propositional logic.
- Logical operators correspond to set-theoretical operators.
- Logical relations on formulae correspond to relations between sets.

Example: blocks world with Boolean state variables

Boolean state variables:

A-ON-B	A-ON-C	A-ON-TABLE
B-ON-A	B-ON-C	B-ON-TABLE
C-ON-A	C-ON-B	C-ON-TABLE

E.g. A-ON-B and B-ON-A should not be simultaneously true, and only one state variable of the form x-ON-y for any x, and for any y except TABLE, should be true at a time.

Propositional logic

Let P be a set of atomic propositions (\sim state variables.)

1. For all $p \in P, p$ is a propositional formula
2. If ϕ is a propositional formula, then so is $\neg \phi$.
3. If ϕ and ϕ^{\prime} are propositional formulae, then so is $\phi \vee \phi^{\prime}$
4. If ϕ and ϕ^{\prime} are propositional formulae, then so is $\phi \wedge \phi^{\prime}$.
5. The symbols \perp and \top are propositional formulae.

The implication $\phi \rightarrow \phi^{\prime}$ is an abbreviation for $\neg \phi \vee \phi^{\prime}$.
The equivalence $\phi \leftrightarrow \phi^{\prime}$ is an abbreviation for $\left(\phi \rightarrow \phi^{\prime}\right) \wedge\left(\phi^{\prime} \rightarrow \phi\right)$.

A valuation of P is a function $v: P \rightarrow\{0,1\}$. Define

1. $v \models p$ if and only if $v(p)=1$, for $p \in P$.
2. $v \models \neg \phi$ if and only if $v \not \models \phi$
3. $v \models \phi \vee \phi^{\prime}$ if and only if $v \models \phi$ or $v \models \phi^{\prime}$
4. $v \models \phi \wedge \phi^{\prime}$ if and only if $v \models \phi$ and $v \models \phi^{\prime}$
5. $v \models \top$
6. $v \not \vDash \perp$

Jussi Rintanen

A propositional formula ϕ is satisfiable if there is at least one valuation v so that $v \models \phi$. Otherwise it is unsatisfiable.
A propositional formula ϕ is valid or a tautology if $v \models \phi$ for all valuations v. We write this as $=\phi$.

A propositional formula ϕ is a logical consequence of a propositional formula ϕ^{\prime}, written $\phi^{\prime}=\phi$, if $v \models \phi$ for all valuations v such that $v \models \phi^{\prime}$.
A propositional formula that is a proposition p or a negated proposition $\neg p$ for some $p \in P$ is a literal.

A formula that is a disjunction of literals is a clause.

operation on sets	operation on formulae
$A \cup B$	$A \vee B$
$A \cap B$	$A \wedge B$
$A \backslash B$	$A \wedge \neg B$
question about sets of states	question about formulae
$A \subseteq B ?$	$A \models B ?$
$A \subset B ?$	$A \models B$ and $B \not \models A ?$
$A=B ?$	$A \models B$ and $B \models A ?$
\perp	the empty set
the universal set	
Jussi i intanen	

Operators

Actions are represented as operators $\langle c, e\rangle$.
c (the precondition) is a propositional formula over P describing the set of states in which the action can be taken. (States in which an arrow starts.)
e (the effect) describes the successor states of states in which the action can be taken. (Where do the arrows go.)
The description is procedural: how are the values of the state variable changed?

Operators: effects

Atomic effects are of the form $p:=r$ for $p \in P$. For Boolean state variables we always write p for $p:=1$ and $\neg p$ for $p:=0$.

Effects are then recursively defined as follows.

1. p and $\neg p$ for state variables $p \in P$ are effects.
2. $e_{1} \wedge \cdots \wedge e_{n}$ is an effect if e_{1}, \ldots, e_{n} are effects (the special case with $n=0$ is the empty conjunction \boldsymbol{T}.)
3. $c \triangleright e$ is an effect if c is a formula over P and e is an effect.
\qquad

Operators: effects

$c \triangleright e$ means that change e takes place if c is true in the current state.

EXAMPLE: Increment 3 -bit numbers $p_{2} p_{1} p_{0}$.

$$
\begin{aligned}
&\left(\neg p_{0}\right.\left.\triangleright p_{0}\right) \wedge \\
&\left(\left(\neg p_{1} \wedge p_{0}\right)\right. \triangleright \\
&\left.\left(p_{1} \wedge \neg p_{0}\right)\right) \wedge \\
&\left(\left(\neg p_{2} \wedge p_{1} \wedge p_{0}\right)\right.\left.\triangleright\left(p_{2} \wedge \neg p_{1} \wedge \neg p_{0}\right)\right)
\end{aligned}
$$

Operators: changes caused by the operator

Operator $\langle c, e\rangle$ is applicable in a state s iff $s \models c$.
Assign each effect e a set $[e]_{s}$ of literals p and $\neg p$ for $p \in P$

1. $[p]_{s}=\{p\}$ and $[\neg p]_{s}=\{\neg p\}$ for $p \in P$.
2. $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left[e_{1}\right]_{s} \cup \ldots \cup\left[e_{n}\right]_{s}$.
3. $\left[c^{\prime} \triangleright e\right]_{s}=[e]_{s}$ if $s \models c^{\prime}$ and $\left[c^{\prime} \triangleright e\right]_{s}=\emptyset$ otherwise.

Operators: the successor state of a state

The successor app (s) of s with respect to operator $o=\langle c, e\rangle$ is obtained from s by making literals $[e]_{s}$ true.

EXAMPLE: Consider the operator $\langle a, e\rangle$ where $e=\neg a \wedge(\neg c \triangleright$ $\neg b)$ and a state s such that $s \models a \wedge b \wedge c$.

The operator is applicable because $s \models a$.
Now $[e]_{s}=\{\neg a\}$ and $\operatorname{app}_{\langle a, e\rangle}(s) \models \neg a \wedge b \wedge c$.

Operators: example

000
101

state variables A, B, C
$\langle(B \wedge C) \vee(\neg A \wedge B \wedge \neg C) \vee(\neg A \wedge C)$,
$((B \wedge C) \triangleright \neg C)$
$\wedge(\neg B \triangleright(A \wedge B))$
$\wedge(\neg C \triangleright A)\rangle$

Schematic operators

- Description of state variables and operators in terms of a given set of objects.
- Analogy: propositional logic vs. predicate logic
- Planners take input as schematic operators, and translate them to (ground) operators. This is called grounding.

Schematic operators: example

Schematic operator $\left\langle\operatorname{in}\left(x, y_{1}\right), \operatorname{in}\left(x, y_{2}\right) \wedge \neg \operatorname{in}\left(x, y_{1}\right)\right\rangle$ with

$$
x \in\{\operatorname{car} 1, \text { car2 }\}
$$

x, t_{1} and t_{2} taking values $y_{1} \in\{$ Freiburg, Strassburg $\}$,
$y_{2} \in\{$ Freiburg, Strassburg $\}, y_{1} \neq y_{2}$
corresponds to a set of operators:
$\{\langle$ in(car1, Freiburg), in(car1, Strassburg) $\wedge \neg$ in(car1, Freiburg) \rangle, \langle in(car1, Strassburg), in(car1, Freiburg) $\wedge \neg$ in(car1, Strassburg) \rangle, \langle in(car2, Freiburg), in(car2, Strassburg) $\wedge \neg$ in(car2, Freiburg) \rangle,〈in(car2, Strassburg), in(car2, Freiburg) $\wedge \neg$ in(car2, Strassburg) $\rangle\}$

Schematic operators: quantification

existential quantification: finite disjunctions (not for effects)
universal quantification: finite conjunctions

EXAMPLE:

$\exists x \in\{A, B, C\} \operatorname{in}(x$, Freiburg $)$ is a short-hand for
$\mathrm{in}(A$, Freiburg $) \vee \mathrm{in}(B$, Freiburg $) \vee \operatorname{in}(C$, Freiburg $)$.

Example: blocks world in PDDL

```
(define (domain BLOCKS)
    (:requirements :adl :typing)
    (:types block)
    (:predicates (on ?x - block ?y - block)
                                    (ontable ?x - block)
                                    (clear ?x - block)
            )
```

(:action fromtable
:parameters (?x - block ?y - block)
:precondition (and (not (= ?x ?y))
(clear ?x)
(ontable ?x)
(clear ?y))
: effect
(and (not (ontable ?x))
(not (clear ?y))
(on ?x ?y)))

(define (problem blocks-10-0)
(:domain blocks)
(:objects d a h g b j e i f c - block)
(:init (clear c) (clear f)
(ontable i) (ontable f)
(on ce) (on $e j$) (on jb) (on b g)
(on $g h$) (on h a) (on a d) (on di))
(:goal (and (on d c) (on cf) (onf j) (on je)
(on e h) (on h b) (on b a) (on a))
(on gi)))
)
\square

