
Action Selection and Action Control for
Playing Table Soccer Using Markov

Decision Processes

Master Thesis

Dapeng Zhang

Albert-Ludwigs-Universiẗat Freiburg
Institut für Informatik

Grundlagen der K̈unstlichen Intelligenz
Supervisor: Prof. Dr. Bernhard Nebel

April 2005

Acknowledgments

Thank all people who helped me complete this master thesis. Especially thank Bernhard
Nebel for being the supervisor of this thesis. Thank Thilo Weigel for helping me go through
this thesis. Thank Alexander Kleiner for the very helpful suggestions on the Markov De-
cision Processes, Reinforcement Learning, and related readings. And thank Zeno Adams
and Daniela Wack for correcting my English writing. I appreciates the helps you did for
this master thesis.

Declaration

I hereby declare that I wrote this thesis on my own, only making use of the sources
mentioned.

April 2005, Dapeng Zhang

Abstract

StarKick is a commercially available table soccer robot which challenges even advanced
human players. However, the available set of actions for StarKick is limited and the way
of selecting the actions is not flexible enough for incorporating more elaborate actions.

In the context of this thesis, new actions for stopping and dribbling the ball are devel-
oped. Stopping is achieved by locking the ball between the playing surface and a playing
figure. Dribbling makes the ball rolling at a controllable speed within the reachable area
of the playing figures of one rod. By these new actions, the ball can be deliberately passed
and stopped.

To decide, which action should be taken in a given situation, an action selection scheme
using Markov Decision Processes (MDPs) and reinforcement learning is developed. In or-
der to reduce the state space, the basic actions are combined to more complex actions and
the MDP is structured into four modules. Each module contains a set of states, and the
actions that are applicable in these states. A simple reinforcement learning algorithm is
implemented in the MDP framework. The transition probabilities are updated by counting.
These updates are spread by policy iteration algorithm during a game.

A series of experiments are carried out in real table soccer games. These experiments
show that the newly developed actions are robust, the MDP model works fine, and the
reinforcement learning improves the performance of StarKick in a simplified game. The
attempt of making the reinforcement learning work in the whole game seems too tedious
to be finished in real games.

Contents

1 Introduction 1

2 KiRo and StarKick 3
2.1 Vision System and World Model . 4
2.2 Previous Solutions of Action Control and Action Selection 6

3 Action Control of StarKick 11
3.1 StopActions . 12
3.2 KickActions . 14
3.3 PassActions . 15

4 Theoretical Background 19
4.1 Markov Decision Processes . 19
4.2 A Simple Reinforcement Learning Algorithm 22
4.3 Dyna Architecture . 23

5 Action Selection of StarKick 27
5.1 The MDP Model . 28

5.1.1 States . 29
5.1.2 Actions . 32
5.1.3 Four modules of the MDP model and the transitions 34
5.1.4 Rewards . 38

5.2 Opponent Models . 39
5.3 Implementation of the Reinforcement Learning 40

5.3.1 Learning from theBlockedModel 40
5.3.2 Learning from Dynamic Model 40

6 Software Implementation 43
6.1 Environments . 43
6.2 Implementation of Action Control . 43

6.2.1 Difficulties and Solutions . 44

vii

viii CONTENTS

6.2.2 Action Games . 45
6.3 Implementation of Action Selection . 46

6.3.1 Control Program for the MDP model 47
6.3.2 Extra Opponent Models for Implementation 47
6.3.3 Transient States . 48
6.3.4 Implementations of Opponent Models 49
6.3.5 Graphic User Interface . 52

7 Experiments 53
7.1 Evaluation of the Basic Actions . 53
7.2 Evaluation of the MDP and RL . 57

8 Conclusion 63
8.1 Summary . 63
8.2 Future Work . 64

A Phrases 67

B Contents of the Appendent CD 69

Chapter 1

Introduction

Table soccer is a popular game in bars or other amusement places. It could be a game
played in a way for relaxation as a hobby, or as a sport to compete in championships.
There are two sides in a table soccer game, one playing against the other. KiRo is a table
soccer robot, which controls one side, competing with human beings at the other side.

KiRo was firstly developed in the Freiburg University. It successfully challenges human
beings in table soccer games. A patent [6] was applied for KiRo because of its commercial
value. A German company bought the license and developed the second generation table
soccer robot named StarKick based on KiRo. StarKick has been commercially available
since January 2005 [10]. And KiRo becomes a successful example of combining scientific
research with commercial benefits.

Compared to KiRo, StarKick is characterized by significant improvements of the hard-
ware. The mechanical system is better and more robust. Extra sensors are mounted to
observe the angles of the rods. The vision system achieves an average deviation of around
3mm on the ball recognition. These optimizations facilitate more complex actions, which
should make StarKick behave more intelligently in the games.

Action control and action selection in the noisy, dynamic, and not completely pre-
dictable environments are regarded as one of the central problems of intelligence in robotics.
The basic actions of a robot are given in its action control. Action selection is the selection
of these basic actions in different situations. In case of StarKick, it acts in the environments
by basic actions such asKick, Block, andClear, which belong to the action control. A par-
ticular action is selected according to the information of the ball and rods, which belong
to the action selection. For example, when the ball is controlled by the opponent,Block
is selected in the action selection [11]. In other words, action control and action selection
determine the behaviors of StarKick in the games.

1

2 CHAPTER 1. INTRODUCTION

Markov Decision Processes and Reinforcement Learning are popular research areas in
robotics. Markov Decision Processes (MDPs) are one of the approaches that can be used to
solve the problem of the action selection. MDPs make the sequential decisions with high-
level mathematical models [2], and these decisions become the selections of the actions
when the MDPs are used in the action selection. Reinforcement Learning (RL) is to learn
the feedbacks from the performed actions, and use these feedbacks for the next decision.
RL can be implemented in the MDP framework.

In this thesis, basic actions such asLockandPassare developed.Lockmakes the ball
stuck between the playing surface and the playing figure.Passmakes the ball rolling at
a controllable speed within the reachable area of one rod. Furthermore, an action selec-
tion method is developed using Markov Decision Processes (MDPs). In order to adapt the
actions to the MDPs, basic actions are combined to more complex actions which can be
eventually used in the MDPs. For example,LockandPassare combined toDribble actions.
Since some actions are not applicable in some states, the MDP implemented in this thesis
consists of four modules. Each contains a set of states, and the actions that are applicable
in these states. In addition, a simple Reinforcement Learning algorithm is implemented in
the MDP framework. The transition probabilities are updated by counting. These updates
are spread by policy iteration algorithm during a game.

This thesis is structured as follows. Chapter 2 gives a general introduction to KiRo
and StarKick, focusing on the architecture of KiRo, the difference between the hardware
of KiRo and StarKick, as well as action control and action selection mechanisms. Chapter
3 depicts the new actions implemented on StarKick. In addition to previously developed
Kick, Clear, andBlockactions [11],LockandDribble actions are developed. These basic
actions create a new basis for the action selection in this thesis. Chapter 4 introduces the
theoretical background, including Markov Decision Processes, Reinforcement Learning,
and Dyna Architecture – a full reacting system with planner [8]. Chapter 5 shows how the
action selection of StarKick is modeled using MDPs. As the behaviors of the opponents
cannot be observed directly in StarKick, two type of human behavior are proposed. The
reinforcement learning in Chapter 5 learns the transition probabilities to play against these
human behaviors. Chapter 6 is organized according to the steps to implement the algo-
rithms discussed in the previous chapters, from simple to complex ones, containing the
implementation of actions, MDPs, and RL algorithms. Chapter 7 shows the experiments,
and finally, chapter 8 draws the conclusion.

Chapter 2

KiRo and StarKick

KiRo and StarKick are two generations of a table soccer robot. KiRo is the first generation
developed at the Freiburg University by mounting mechanical system and the overhead
camera on a normal game table. It can control one side of the table soccer game, playing
against human beings at the other side. As the second generation based on KiRo, StarKick
is a robust product that can be served as an automaton like other game machines in bars.
Instead of the university, a German company developed StarKick. Figure 2.1 shows the
appearances of KiRo and StarKick. The mechanical systems as well as the camera of Star-
Kick are hidden in the body of the automaton under the playing surface.

Although the hardware systems are quite different, StarKick and Kiro use the same
software. The architecture of the software is shown in Figure 2.2. There are two big parts
in the architecture, the upper Graphic User Interface (GUI), and the lower software compo-
nents. There are four components in the lower part. “Action control” and “action selection”
define the behaviors of StarKick in the games. “World model” is the environments from
the robot points of view. The world model of StarKick contains the position and speed of
the ball, as well as the positions and angles of the rods. The “vision” processes the frames
from the camera to get the environment information. At the beginning, world model is
updated according to the observed data by the sensors and camera. Then, action selection
chooses an action according to the world model. Finally, action control sends commands
to motor to perform the selected action. This architecture is given by Thilo Weigel [11].

The rest of this chapter introduces the vision system, world model, and the previous
approaches on action control and action selection.

3

4 CHAPTER 2. KIRO AND STARKICK

(a) (b)

Figure 2.1: The pictures of (a) KiRo. (b) StarKick.

2.1 Vision System and World Model

The vision system of StarKick is different from KiRo. Figure 2.3 (a) shows one image from
the camera of KiRo, and (b) shows one image from the camera of StarKick. Both images
have a resolution of384∗288 pixels. The camera observes the game, and sends the images
as frames to the computer. By processing each half frame separately, both of KiRo and
StarKick achieve the frame rate50Hz. [10] These discrete frames refresh the world model
every20ms. KiRo gets the information of the ball and rods by image processing. [12].
There is a problem, which is called “hidden ball” problem, existed in the vision system of
the first generation table soccer robot KiRo. If the ball is under a playing figure, it cannot
be observed anymore from the overhead camera. In the second generation, the camera
of StarKick is set to avoid this problem because it observes the semi-transparent playing
surface from below in the body of the machine. As shown in Figure2.3(b), the camera
view of StarKick does not include any information of rods. They are given by the motor
encoders and sensors, which are more accurate than the data of KiRo. Although StarKick
does not have the “hidden ball” problem, it has no information of the rods of the human
opponent, which is nevertheless important for the action selection. Figure 2.4 shows the
visualizations of the world models of KiRo and StarKick. In the figure, we can see that
StarKick has no information of the opponent rods.

2.1. VISION SYSTEM AND WORLD MODEL 5

Figure 2.2: Software Architecture of KiRo.

(a) (b)

Figure 2.3: Camera view of (a) KiRo and (b) StarKick.

The world model has a two dimensional coordinate system of the playing surface shown
in Figure 2.5. The zero point of this coordinate system is the center of the table. X axis
is from the goal of StarKick to the goal of human opponent. Y axis is parallel to the axis
of the rod. Negative and positive directions which are widely used in this thesis means
the directions along positive or negative x axis. For example, in Figure 2.5, the direction
from left to right along X axis is the negative direction, whereas the direction from right to
left is the positive direction. The position of the ball in the camera view is mapped to this
coordinate system which has the same dimensions as a real game table, 1200mm along x,
680mm along y.

6 CHAPTER 2. KIRO AND STARKICK

(a) (b)

Figure 2.4: The Visualizations of World Model of (a) KiRo and (b) StarKick

Figure 2.5: Coordinate System.

2.2 Previous Solutions of Action Control and Action Se-
lection

Before this thesis, two other action control and action selection systems have been imple-
mented on KiRo.

The first approach has the action control system described in Figure 2.6. In the descrip-
tion, the “forward” direction is positive direction, and the “behind” means the negative
direction. There are a lot of experiences which are valuable for this thesis. The most im-
portant three ideas are used by the action control of this thesis. These ideas are suitable to
different situations. When the ball can be reached by two playing figures of the same rod,
a small change in y coordinate of the ball would make the robot switch the playing figures.

2.2. PREVIOUS SOLUTIONS OF ACTION CONTROL AND ACTION SELECTION7

However, the position of the ball is actually changing within 3mm all the time, even if
when the ball is still because of the noise of the camera. This noise makes KiRo oscillate
between two applicable figures. The first idea is that the action control system prefers the
selected rod in the blocking to avoid this oscillation. When the ball is far away to a rod,
It is not necessary to move the rod very fast to a position. The second idea is to consider
how urgent the situation is to avoid hectic movement. The third idea is a effective block-
ing strategy on how to defend. This strategy is used in the commercial StarKick even today.

• DefaultAction move and turn rod to default home position.

• KickBall rotate the rod by 90 degree to kick the ball forward.

• BlockBall move the rod so that a figure intercepts the ball.

• ClearBall move to the same position as BlockBall but turn the rod
in order to let the ball pass from behind.

• BlockAtPos move the rod so that a figure prevents the ball passing
at a specific position

• ClearAtPos move the rod to a specific position and turn the rod in
order to let the ball pass from behind.

Figure 2.6: Action Control of KiRo [11]

The action selection model in the first approach works in a reactive way shown in Fig-
ure 2.7. It is a simple decision tree, in which KiRo selects an action in the real-time manner
by some simple predicates. For instance, as soon as the ball is kick-able, KiRo will select
Kick action. [11].

The second approach employs the similar action control but a different action selection
method. In this approach, decision-theoretic planning is used for the action selection. The
planning is started at a game states, at which the ball is controlled by KiRo. Rooted at
this states, a planning tree is constructed to make the action selection. The first step to
construct the planning tree is to take possible actions in the states as branches, as shown
in Figure 2.8(a). The selection of the actions is to choose a branch in the planning tree.
The second step is to formalize the possible reactions of the human opponents, as shown
in Figure 2.8(b). In the second step, the reactions of the human opponents are assumed to
be independent to the taken action in the first step. This holds in the real table soccer game

8 CHAPTER 2. KIRO AND STARKICK

Figure 2.7: Action Selection of KiRo [11]

because KiRo performs an action within half a second, during which human opponents can
not yet react to the taken action. Every possible reactions to the taken action is associated
with a respective probability. A learning algorithm is employed to obtain and update these
probabilities. In the third step, a software simulator is used to simulate the consequences of
the actions of KiRo and the reactions of the human opponents, as shown in Figure 2.8(c). It
is configured and run several times on the different combinations of actions and reactions
to reveal the rewards of each situation. The action, which yield the maximum reward
value, is going to be selected finally. Although our simulator has considered the frictions,
bounces, and collisions between the ball, walls, and playing surface, a game in the software
simulator is very different from a real table soccer game. However it can match the real
game to some extent. In the third step, the software simulator is configured according to
the observations of the real game. It can match the situations of the real table soccer game
a short while after it is configured. In the decision-theoretic planning approach, the simulor
is run until another planning state is reached. The whole planning tree can be constructed
by repeating the above three steps. One layer of the planning tree is made up with this three
steps. The planning reaches the end if the ball goes into one of the goals in the planning
tree. [9]

In a PC with a2.6GHz CPU and512M memory, the depth of the planning tree can
reach two layers within one process cycle of KiRo. A heuristic function is therefore em-

2.2. PREVIOUS SOLUTIONS OF ACTION CONTROL AND ACTION SELECTION9

(a) (b) (c)

Figure 2.8: One Iteration of the Planning [9]

ployed to estimate how good the situation is, so that the branches of the planning tree can
be estimated even if the goals are not reached. [9] In other words, this approach employs
an open loop planning. Although it may reach the end if there is a faster enough computer,
the simulation steps used in this approach may not match the situations of a real game
after several steps of the planning. The second approach outperforms the first one in the
software simulator, but not in the real table soccer games.

10 CHAPTER 2. KIRO AND STARKICK

Chapter 3

Action Control of StarKick

Action control is crucial for the behavior of StarKick because it is the basis of action selec-
tion. Although there is not much theoretic stuff in the background of the action control, the
improvements of it actually motivates this thesis. The new actions developed in the action
control act the role of making the final game interesting.

Actions are classified into four different sets according to their preconditions. These
sets areStopActions, Clear, KickActions, andPassActions, as shown in Figure 3.1. The
preconditions of the actions are important because they define the situations in which the
actions are applicable. Action selection only works when there is at least two actions appli-
cable. In case of StarKick, action selection chooses an action from one of these four action
sets in the situated environments. Clear action shown in Figure 3.1 is not been changed
in StarKick, other actions are newly developed actions, which are organized as action sets
and discussed one by one in the later sections.

Figure 3.1: Action Sets of StarKick

The actions in this chapter are all atomic actions. In other words, although each action
is the combinations of a sequence of turnings and movings, it is regarded as an un-dividable
atom. The alternative would be having a very simple action control part with turning or
moving as one action. Then it comes to the problems that the number of actions becomes

11

12 CHAPTER 3. ACTION CONTROL OF STARKICK

infinite because the turning and moving are in the continuous coordinate system. Actually,
in this thesis, these atomic actions are combined to more complex units which can be
eventually used in the action selection.

3.1 StopActions

There are three actions in theStopActions. They areSoftBlock, LockFast, andLockSlow,
The function of them is to get the ball under control.SoftBlockis a passive action to de-
fend. It is widely used when the ball is under the control of a opponent. WhereasLockFast
andLockSlowcan actively lock the moving ball.

The actionSoftBlockinherits the features ofBlockBall. As an additional feature, the
peak motor current of the rod, which determines the motor strength to hold the turning
angle, is set to a very low value, so that when the ball is bounced back by a playing figure,
it will be slowed down significantly.

The ball can be actively locked in negative and positive lock bands, which are shown
in Figure 3.2. Negative lock band of the defender is shown as red region in the figure;
positive lock band is shown as blue region. They are positive and negative in x direction
with respect to the rod axis of the defender.

(a) (b)

Figure 3.2: (a) Negative Lock Band (b) Positive Lock Band

LockFastis developed to lock the ball moving along the x direction. Figure 3.3(a)
shows this situation. It predicts the point of time at which the ball is rolling into a lock
band, and presses the ball to the playing surface to stop it. The speed vector of the ball

3.1. STOPACTIONS 13

is used in the calculation.LockSlowis developed to lock the ball that is in the control
range and moving roughly along the rod axis. It assumes that the speed of the ball along
x direction is very slow. Figure 3.3(b) shows this situation, which is typically happened
after a passing. In order to reduce the turning time of the rods, at the very beginning, both
LockFast and LockSlow turn the rod to a place at which it is ready to do the “pressing”.

(a) (b)

Figure 3.3: The situations of (a)LockFastand (b)LockSlow

A very important feature ofLockSlowaction is that it can turn to any angle without
disturbing the rolling of the ball. This is difficult because there is a bit of oscillation around
the target angle when the rod is turned to it, as shown in Figure 3.4. Although the direction
of the turning is always set in the way that the figure will not touch the ball, only the oscil-
lation is enough to damage any intended action. In order to solve this problem, the figure
is firstly moved for a short distance; then it is turned to the target angle; finally the figure
is moved back.

Both LockFastandLockSlowneed to know where the exact place to do “lock” is. Un-
fortunately, the coordinate system is not accurate enough to support the lock actions. The
angle of the rod at this lock place, as well as the ball position with respect to the rod axis,
are measured by hand for all different figures in negative and positive directions. Instead
of hand measuring them, these parameters should be adapted in a learning process by ob-
serving the results of locking. This part of work is not included in this thesis due to the
limitation of time.

As introduced in Chapter 2, the continuous world is observed every20ms. From an-
other aspect, there is a chance to send commands to the motors every20ms. There exists
the situation that it is too early to send the turning command and lock the ball in one cycle,
but too late when the next chance comes after 20ms. In order to solve this problem, the
turning speed and acceleration of the rod is set to lower value so that the turning takes
more time, and the lock command can be sent at the first chance. The activity diagram of
LockFastis shown in Figure 3.5.

14 CHAPTER 3. ACTION CONTROL OF STARKICK

Figure 3.4: the oscillation of the rods after a turning

3.2 KickActions

There are six actions in this action set. They areKickFastForward, KickFastLeft, KickFas-
tRight, KickSlowForward, KickSlowLeft, andKickSlowRight. From another aspect,Kick-
Actionshave two parameters, the directions (forward, left, and right) as shown in Figure
3.6 and the speed (fast and slow). The speed of the kick is implemented by setting the
turning speed and the motor current of the respective rod.

KickActionsare implemented in a robust way so that a kick intention can be expressed
in whatever situations. Of course a “kick” is only applicable when the ball is kick-able;
however theKickActionsin this thesis integrated the strategies when the ball is not kick-
able, so that the action selection described in this thesis needn’t consider too much of the
environments, but only express a kick intention. When the ball is far away, the effects of
the kick actions are same withBlockBall. When the ball is under the control but not kick-
able, kick actions turn the figure to the angle ready for a kick and wait. The turning here
is encoded to avoid disturbing the rolling ball as inLockSlow. KickActionsconsiders the
situation that a performed kick action did not touch the ball. In this situation, any action in
KickActionscan be called continuously without any initial stage, and the turning of a kick

3.3. PASSACTIONS 15

Figure 3.5: The activity diagram of theLockFast

would have an arbitrary angle from 90 degree to 360 degree.

The left and right kick are implemented by moving the kicking figure to have a±10mm
different along y axis with the ball. Obviously, a kicking with same y position with the ball
should be a forward kick. However, because of the noisy environments and the indefinite
effects of actions, when the ball is moving or even it is still, it is hard to have an exact left,
right, or forward kicking. Choices for different kicks are made in action control, so that
action selection can decides which one is better in a real game.

3.3 PassActions

There are four ways to pass a still ball, which arePassLongBack, PassShortBack, PassPar-
allel andTouch, as shown in Figure 3.7. Multiplying the four ways with two pass directions
(left and right), eight actions are developed in this action set.

All these actions assume the precondition that the ball is still and under control.Touch
actions are applicable when the ball is still but not locked, which is simply called “still”
in this thesis, whereas others are applicable when the ball is locked. Because lock is an
active action to stop the ball while still is a passive result, in a real game, “lock” would

16 CHAPTER 3. ACTION CONTROL OF STARKICK

Figure 3.6: The three directions of theKick

be more likely to happen than the still.Touchactions are developed to make the “lock”
actions applicable in the still situations.

PassLongBackis applicable when the ball is locked. Here “back” is with respect to the
rod axis. In particular, if the ball is in the negative lock band, it is passed towards the posi-
tive lock band, and if the ball is in the positive lock band, it is passed towards the negative
lock band. The motor current of turning used in the passing has three predefined values,
which depend on the distance between the locked ball and the axis of the rod. Since the
ball should be passed back, higher turning motor current is used to prevent the ball from
slipping when the ball is further away, and lower motor current is used to avoid kicking
when the ball is closer. These situations is shown in Figure 3.8 (a).

In PassLongBack, the figure which locked the ball is moved to the left or to the right for
110mm to achieve the passing with low velocity and acceleration. The distance of 110mm
is the distance comes from the experiments that a rolling ball behind the passing figure
would not touch the figure again before the action selection makes the next decision.Pass-
LongBackitself doesn’t check whether or not the moving trial is free because the moving
is in low velocity and acceleration. Even if one figure reaches the end of its moving range,
the consequence will not be so serious, and the effects of this action may still keep positive.

3.3. PASSACTIONS 17

(a) (b)

Figure 3.7: (a)PassShortBack, PassLongBack, PassParallel, and (b)Touch

(a) (b)

Figure 3.8: (a) The motor current of thePassLongBackand (b) the situations of thePass-
Parallel

PassShortBackand PassParallelhave the same precondition asPassLongBack. In
PassShortBack, very low motor current and very slow moving speed are used so that the
figure which locks the ball slips down from the top of the ball, and the ball is passed back
slowly with the angle nearly vertical to the rod axis.PassParallelpasses the ball with
medium speed, but raise the figure before the figure’s edge is slipped down from the ball.
The ball is supposed to continue to go along the moving direction after the figure is raised.
In practice, one performance ofPassParallelwill make the ball a little bit away from the
axis of the controlling rod. If the ball is too far away, the same passing as before will cause
a lost of control. Therefore,PassParallelchecks the distance between the axis of the rod
and the ball. If it is too much, raising the figure is delayed for a bit, so that the ball is passed
back a little to avoid loosing control. These situations are shown in Figure 3.8(b). Because
the ball is going parallel in the lock range, there are chances to lock it again after passing.
PassParallelis the smallest passing action which determines the accuracy of the action.

18 CHAPTER 3. ACTION CONTROL OF STARKICK

Touchaction has different preconditions assuming that the ball is still and under control.
No other passing actions are applicable because they assume the precondition of the ball
being locked. In theTouchaction, firstly the rod is moved and turned to make the still ball
between two figures, as the turning inLockSlow, the turning here also avoids disturbing
the ball. One figure is moved slowly towards the ball until one of its sides touches the ball.
The angle of the rod is calculated in the way that the touching point will always be at the
centre of the ball. In principle the ball should go in the moving direction, parallel to the
axis of the rod. However the ball always moves away a little because of the noise. The
moving of the figure is slowly so that the ball is not likely to be very fast, therefore the ball
can be locked or kicked afterTouch.

Chapter 4

Theoretical Background

This chapter gives a brief explanation on the theories of Markov Decision Processes (MDPs),
Reinforcement Learning (RL), and Dyna Architecture. These theories are a basis for the
better understanding of the action selection approach developed in this thesis. MDPs are
explained in Section 4.1. The definition of MDPs and the policy iteration algorithm are
given briefly. A simple RL method is depicted in section 4.2. Since RL is a very wide
topic in artificial intelligence, the RL introduction in this chapter is limited to the RL in
the context of MDPs with finite search space. Dyna architecture is given in Section 4.3, in
which MDPs and RL are organized to improve the reactive execution. The action selection
approach developed in this thesis can be regarded as an implementation of the Dyna archi-
tecture.

4.1 Markov Decision Processes

The work of Moriz Tacke [9] has been introduced in Chapter 2.2, in which decision-
theoretic planning is used to make sequential decisions for the action selection of playing
table soccer. As a branch of decision-theoretic planning, MDPs are suitable to make se-
quential decisions with a compact mathematical model under the conditions of uncertainty.
In this thesis, the uncertainty of the MDPs is limited to the effects of the actions. Par-
tially Observable Markov Decision Processes (POMDPs) can handle the uncertainty in the
states [1], which are not relevant to this thesis.

There are always multiple and conflicting objectives in a MDP model [1]. For example,
scoring against the human opponents and being scored by the opponents are two conflict-
ing objectives in a table soccer game. These objectives are always modeled as the goal
states in the MDPs.

19

20 CHAPTER 4. THEORETICAL BACKGROUND

MDP is defined as a tuple〈S, A, T, R〉, as shown in Figure 4.1. It can be viewed as
an stochastic automata where the actions have uncertain effects and induce stochastic tran-
sitions between states. [1] MDPs accommodate the probabilities of transitions, so that a
transition, which is started at a state-action pair and ended at another state, is expressed as
a respective probability.

• A state spaceS; a setG ⊆ S of goal states.

• ActionsA(s) ⊆ A applicable in each states ∈ S.

• Transitions probabilitiesPa(s
′|s) for T (s, a, s′), where s′, s ∈

S; a ∈ A.

• Reward functionR(s), wheres ∈ S.

Figure 4.1: The definition of the MDPs [2]

If we express all situations as the statesS defined in Figure 4.1, thepolicy of MDPs
can be defined as a functionπ : S → A [1]. In other words, the policy of MDPs assigns
each possible state an applicable action. It is a solution of MDPs. The system will perform
the actionπ(s) whenever it finds itself in states. The policy mechanism of MDPs satisfies
theMarkovian assumptionin the sense that the selection of the actions are independent of
the system history.

The system gets the rewards when it enters a state, which is given by the rewards func-
tion R(s). If we take the sum of the reward obtained by executingπ as the value of a policy
π(s), theoptimal policyπ∗(s) is defined as the best policy which achieves the maximum
rewards. Solving MDPs is to find the optimal policy

Since the actions are the bridges between the states in MDPs, we need to consider
not only the immediate rewards given by the reward functionR(s) but also the potential
rewards which are going to be obtained by executing the actions. Theutility U(s) of a
MDP state is defined as a value that gives a measurement on how good the states is, which
is the left side of the Bellman Equation. The Bellman Equation is shown in Equation 4.1.
The parameterγ in this equation is a factor to discount the future rewards. It is always set
to a positive value smaller than one.

4.1. MARKOV DECISION PROCESSES 21

U(s) = R(s) + γ max
a

∑

s′
(T (s, a, s′)U(s′)) (4.1)

Value iteration is an algorithm to solve MDPs, or searchπ∗. Utilities for all states can
be obtained by iterately applying the Bellman Equation on each state in the state space.
The actions which achieve maximum utilities are found out and finally consisted in the op-
timal policyπ∗. Value iteration algorithm for calculating the utilities of the states is shown
in Figure 4.2.

• REPEAT

• δ ← 0

– For each states ∈ S, calculate its new utility U’(s) using
Equation 4.1

– if δ <| U ′(s)− U(s) |, δ ← | U ′(s)− U(s) |
• UNTIL δ is small enough.

• returnU .

Figure 4.2: Value iteration algorithm for calculating the utilities

Comparing with Value Iteration, Policy Iteration can find the optimal policy before the
utilities are converged. It is proved to be more effective in practice. The policy iteration
algorithm starts with a random policy, and repeats the following two steps until there are
no improvements made in the policy. [1] The policy algorithm proceeds in the way shown
in Figure 4.3.

• Policy Evaluation: Instead of using the action which achieves maximum utility in
the Bellman Equation, use the current policy to iterate on the states, until the utilities
are converged.

• Policy Improvements:calculate a better policy by apply utilities calculated in the last
step.

MPDs provide a framework for RL. The background information on RL is going to be
given in the next section.

22 CHAPTER 4. THEORETICAL BACKGROUND

• Let π′ be any policy onS

• While π 6= π′ do

– π = π′

– Iterately update the utilities using Equation 4.1 but only con-
sider the fixed policyπ.

– For eachs ∈ S if there exists an actiona′ which is applicable
ons and yields to a bigger utility value thanπ(s), π′(s)← a′

• returnπ.

Figure 4.3: Policy iteration algorithm [1]

4.2 A Simple Reinforcement Learning Algorithm

Reinforcement Learning (RL) refers to a class of learning tasks and algorithms in which
the learning system learns an associative mapping,π : X → A by maximizing a scalar
evaluation (reinforcement) of its performance from the environment (user) [4]. In this the-
sis, the RL is implemented in a MDP model with finite search space. This section only
gives the background information on the RL under this restricted settings. The general
information on RL can be found in many readings such as [3] and [4].

When the search space is not very large, the transition modelT (s, a, s′) in MDPs can
be denoted by a table namedtransition table, in which each cell records the respective
probability of the occurrence of the resulted states′ given the start states and the action
a. Since the actions of MDPs are not predicable but observable, one way to obtain and
maintain the probabilities in the transition table is simply by counting the occurrences of
the resulted state.

Under the restricted settings, apassive RLis defined as the learning of the utilities given
a fixed policy. It is to perform the policy evaluation step in the policy iteration algorithm
when there are updates in the transition table. Comparing with the passive learning, an
active RLnot only evaluates the actions which are already performed, but also explores
actions which have not been tried before. In particular, it trades off exploitation against
exploration.

RL task with a MDP model can be regarded as the learning of the optimal policy (π∗).

4.3. DYNA ARCHITECTURE 23

Taking the curiosity into consideration, the Bellman Equation 4.1 is updated and shown in
Equation 4.2.f(u, n) is a exploration function in the equation, whereu is the utility of
state-action pair,n is the number of the occurrences of this state-action pair. Equation 4.3
shows a simple definition of exploration function. When the recorded occurrence number
of a state-action pair is smaller than a predefined valueNe, R+ is taken as its utility. In the
exploration function,Ne is the threshold for a well-learned action.R+ is the rewards for
trying an unknown action.

U+(s)← R(s) + γ max
a

f(
∑

s′
(T (s, a, s′)U+(s′)), N(s, a)) (4.2)

f(u, n) = { R+, if n < Ne

u, otherwise
(4.3)

If Equations 4.2 and 4.3 are taken in the policy iteration algorithm, the RL for a MDP
model with finite search space is to perform the updated policy iteration algorithm when-
ever there is an update in the transition table. This algorithm is calledAdaptive Dynamic
Programming, as shown in Figure 4.4
.

• REPEAT

– Update transition table by counting the occurrences of the
state action pairs.

– Run the policy iteration algorithm using Equation 4.2

• UNTIL there is no update in the transition table and the optimal
policy is converged.

Figure 4.4: Adaptive Dynamic Programming with a finite search space MDP model

This thesis implements an adaptive dynamic programming algorithm for the action
selection of StarKick.

4.3 Dyna Architecture

A class of architectures for intelligent systems based on approximating dynamic program-
ming methods are given by Richard S. Sutton in [7]. Dyna is one of the integrated archi-
tectures for learning, planning, and reacting. It may contain the following parts. [8]

24 CHAPTER 4. THEORETICAL BACKGROUND

• Trial-and-error learning of an optimal reactive policy, a mapping from situations to
actions.

• Learning of domain knowledge in the form of an action model, a black box that
takes the input as a situation and action and outputs a prediction of the immediate
next situation.

• Planning: finding the optimal reactive policy given domain knowledge (the action
model)

• Reactive execution: No planning intervenes between perceiving a situation and re-
sponding to it.

Three major components of Dyna architecture is depicted in [8]. They are given as
follows.

• The structure of the action model and its learning algorithms;

• An algorithm for selecting hypothetical states and actions.

• A reinforcement learning method, including a learning-from-example algorithm and
a way of generating variety in behaviors.

A generic Dyna algorithm is given in Figure 4.5.

REPEAT FOREVER
Observe the world’s state and reactively choose an action based on it;
Observe resultant reward and new state;
Apply reinforcement learning to this experience;
Update action model based on this experience;
Repeat k times:

1. Choose a hypothetical world state and action;

2. Predict resultant reward and new state using action model;

3. Apply reinforcement learning to this hypothetical experience.

Figure 4.5: Generic Dyna algorithm [8]

From the descriptions above, we can find that the Dyna architecture is surprisingly suit-
able for this thesis. Trial-and-error learning and action model can be easily implemented
according to the observations during a table soccer game. MDPs provide a structure for

4.3. DYNA ARCHITECTURE 25

the planning and reinforcement learning. The exploitation of RL implements learn-from-
example and the exploration will generate varieties in behavior. In order to support the
reactive execution, the policy of MDPs can be used for the execution even if it is not con-
verged. The solving of MDPs could be run in the way that it never interfere with perceiving
a situation and responding to it.

As we have introduced in Chapter 2.2, there are two different previous approaches for
the action selection of KiRo. The decision tree approach works reactively, which uses the
architecture of a reactive system. The decision-theoretic planning approach constructs a
planning tree for the reactive executions, which uses the architecture of a conventional plan-
ning. The architectures of the reactive systems and the conventional planning are shown in
Figure 4.6 (a) and (b). Comparing with the previous approaches, Figure 4.6 (c) shows the
architecture of Dyna (incremental dynamic programming), which is going to be realized in
this thesis.

(a)

(b)

(c)

Figure 4.6: Simplistic comparison of the architectures: (a) reactive systems, (b) conven-
tional planning, and (c) Dyna architecture [8]

26 CHAPTER 4. THEORETICAL BACKGROUND

Chapter 5

Action Selection of StarKick

A naive way of solving the action selection problems of StarKick using MDPs is to create
the states by using the grids on the playing surface and considering the moving speed as
well as the direction of the ball. If we roughly create8 moving directions,2 moving speeds
of the ball, and taking the grids of50mm× 28mm, there is going to be9216 states created
in the MDP model. In Chapter 3 we have developed18 different actions, so that a MDP
model with the transitions of state-action-state triples would have1528823808 transitions.
Of course, these transitions can be significantly reduced if we don’t consider the impos-
sible situations. For example, we can ignore a transition if there are 1000mm between its
start state and end state. However this kind of reductions seems far from enough. Then the
problem arises on how to use the domain knowledge to reduce the transitions of the MDP
model.

The MDP model in this thesis employs a small state space. The actions in the model
are complex, so that the transition number of the MDP model is significantly reduced,
and the final program, which implements the MDP and RL algorithms, can be run under
the current computation conditions to support the reactive execution in a real table soccer
game. Figure5.1(a) shows the situation of using one of thePassActionsin the MDP model.
Imaging that the ball is moving with a low speed within the control range of a rod after the
passing, we can find that in order to make a decision in this situation, there should be a state
consisting the position, moving speed, and direction of the ball. It’s similar to the planning
in the decision-theoretic planning approach. In this thesis, more complexDribbleActions
are developed, so that we avoid considering a state with the moving direction of the ball.
Figure5.1(b) shows the same situation but using complexDribbleActionsin the planning.
In the figure, theDribbleActionsare much longer; it continues until MDP can make a fur-
ther decision to “kick” or “dribble”again at the “end state” This way significantly reduces
the number of the MDP transitions, and makes the planning happen exactly when there is
a chance to select an action from the applicable action set.

27

28 CHAPTER 5. ACTION SELECTION OF STARKICK

(a)

(b)

Figure 5.1: (a)ThePassActionsin the planning and (b) the complexDribbleActionsin the
planning

This approach is different from the previous approach that uses the decision-theoretic
planning. The approach here has a finite search space. The sequence of actions depends
on the observations, which is a, so called, closed-loop planning. The decision-theoretic
planning approach employs forward simulation and heuristic function, where the planning
is performed in the absence of observations, and a so called open-loop planning [2].

The first part of this chapter models the action selection of StarKick using MDPs, in
which four modules are created. The second part of this chapter introduces two opponent
models, which assume two different sets of opponent behaviors. And the third part explains
how the transitions of MDPs are learned by RL.

5.1 The MDP Model

This section models the action selection of StarKick using MDPs with limited search space.
MDPs are presented as states, actions, rewards, and transitions, shown in Figure 4.1. There
are 146 states, 20 actions, and therefore 426320 transitions if the transitions are the triples
of state-action-state which are created by the potential of these sets. Four modules of MDPs
are created which significantly reduce the potential transitions in this section.

5.1. THE MDP MODEL 29

5.1.1 States

The actions described are used as a clue to create the states. The purpose of MDPs is to find
the optimal policy, which can be regarded as choosing the best action from the applicable
action set. All possible actions implemented on StarKick were already given in Chapter 3.
Some of them are unique, such asStopActionsandClear, which are only applicable in a
particular situation, in which there are no other choices. Some actions share the same pre-
conditions, such asKickActionsandPassActions. These preconditions are used as a clue
to create the MDP states, so that the optimal policy of a state becomes the best choice in a
particular action set.

The states of MDPs are defined as the union ofKickStartStates, DribbleStartStates, Op-
ponentStartStates, andGoalStates, as shown in Figure 5.2. Four sets are used here which
makes the presentation of four modules much easier. ThePassActionscan be performed in
theDribbleStartStates. It is calledDribbleStartStatesbecausePassActionsare combined
to more complexDribbleActionslater.

Figure 5.2: State sets of the MDPs.

KickStartStatescomes from the precondition ofKickActions, which assumes that the
ball is still or moving very slow in the kick-able band. The ball’s position within a par-
ticular kick-able band is classified into five different classes for defender, midfield and
attacker. They are Left1, Left0, Middle, Right0, and Right1. For goalkeeper there are only
three classes: Left0, Middle, and Right0. These 18 regions are shown in Figure 5.3.

Every region has the similar width around136mm because that is how the basic ac-
tionsPassParallelmoves the ball. No other actions change the position of the ball smaller
thanPassParallel, so that the accuracy of the states matches the accuracy of the actions.
The state set here is the so calledKickStartStates. Considering that there are 18 different
regions and the ball could be still or moving slowly, 36 states are defined in this state set.

DribbleStartStatescomes from the precondition ofPassActions, which assumes that

30 CHAPTER 5. ACTION SELECTION OF STARKICK

Figure 5.3: Kick-able regions

the ball is still and under control. When the ball is still, there are two different situations
for the rod, which depends on whether the figure locks the ball or not. In addition, the
ball is not forward kick-able in the “negative lock band”, not backward kick-able in the
“positive lock band”, and when it is still in the middle “kick-able band” only touch actions
are available to pass it parallel. Besides the five classes mentioned inKickStartStates, the
DribbleStartStatesneed to consider both the rod and the bands. Figure 5.4 shows all these
considerations of the states. In the figure, “Positive Lock Band” is shown in blue. “Nega-
tive Lock Band” is in red, and “Kick-able Band” is in yellow. Right and Left regions are
bounded by the black lines. Please notice that not all of regions are shown. There are all
together 90 states defined inDribbleStartStates.

The OpponentStartStatesassumes the preconditions that the ball is controlled by the
opponent. Actually there are no other choices than performingSoftBlockon all StarKick’s
rods when the opponent controls the ball. It seems that MDP mechanism is not necessary
because there are no choices to choose from. However, loosing the control is a very possi-
ble end for allKickActionsandPassActions. Ending up with a situation that the opponent’s
attacker is controlling the ball should be much worse than ending up with the situation that
the opponent’s goalkeeper is controlling the ball. Extra MDP states should therefore be
created to evaluate what the situations are, although there is no decision to be made.

5.1. THE MDP MODEL 31

Figure 5.4:DribbleStartStates

It is very easy for a skillful human being to pass the ball from the defender to the
goalkeeper or vice versa, and actually the actions are the same regardless of whether the
opponent’s defender is in control of the ball or the opponent’s goalkeeper is in control of
the ball. For this reason, it is not necessary to tell whether the ball is controlled by the
opponent’s defender or goalkeeper. For the same reason, when the opponent’s defender
is in control of the ball, identifying where exactly the ball is, within the opponent’s de-
fender controlling band, does not make sense. Then there are three different states here:
OpponentDefender, OpponentMidfield, andOpponentAttacker. These states are calledOp-
ponentStartStates.

An alternative to evaluate these situations is to create three end states for the different
rods of the opponent, or using the heuristic function presented in decision-theoretic plan-
ning [9]. Considering that the game is still going on, and the end states in MDPs should be
a negative target or positive target where all planning is ending up,OpponentStartStatesis
regarded as a set of common MDPs’ states, whose utilities are decided by the transitions
started with them.

Two apparent end states are that the ball is in the opponent’s goal (OpponentGoal) and
the ball is in the own goal (OwnGoal). These states are regarded as the final targets of

32 CHAPTER 5. ACTION SELECTION OF STARKICK

(a) (b)

Figure 5.5: Take the basic actions in theDribble module

MDPs, and calledGoalStates.

There are some “transient states” in which the ball moves in very high speed and maybe
bounces several times among the figures and the walls, both opponent and StarKick are try-
ing to slow it down and control it. The only available action of StarKick in this situation
is SoftBlock. The “transient states” are defined as those states, in which the reactions are
given fixed, and it is not necessary to evaluate how good these situations are. The “transient
states” actually never enter the MDPs, while working constantly in the action selection
model.

5.1.2 Actions

Taking the states described in Section 5.1.1, thePassActionsin Chapter 3.3 can not directly
be used by the action selection of StarKick. Figure 5.5 (a) shows an example of directly
taking these actions. At the beginning, the ball is still atLeft1DefenderNegativeLock. As-
suming it is passed by actionPassLongBackRight, it goes along the arrow and arrives at the
stateLowSpeedRight0Defenderfinally. Please notice that along the moving track it actu-
ally reaches two more states before the final one. These states areLowSpeedLeft0Defender
andLowSpeedMiddleDefenderone after another. Obviously the probabilities for the ball
reaching “Right0” would be much lower if one action in KickActions was performed at
these previous states. That is, the transition from one state to another not only depends on
this state, but also depends on the policies of other states, which conflicts withMarkovian
assumptionintroduced in Section 4.1.

There are several possible solutions. One solution would be combining the kick actions
along the trial with the start state of the passing to create a more precise state. Clearly, this
way makes the state space significantly big. Another solution would be creating an extra
DoNothingaction applicable on the states along the trial. However, the states of MDPs in
Chapter 5.1.1 did not include the moving direction of the ball, which made aDoNothing

5.1. THE MDP MODEL 33

transition ambiguous. For example the two pass actions shown in Figure 5.5 (b) both have
a stateLowSpeedMiddleDefenderalong the passing trial, whereDoNothingaction should
be employed. The resulted states for the two passing actions should be unified to transi-
tions started with state action pairLowSpeedMiddleDefenderandDoNothing, which is not
powerful enough to describe these two passing actions.

Tow alternative solutions on this problem are implemented and compared in this thesis,
both of them create bigger actions by combining one or more basic actions. The first one
is calledCombined-Dribble, the second one is calledSingle-Dribble

The Combined-Dribbleapproach has combined dribble actions expressed as(Start,
Target) where Start is fromDribbleStartStatesand Target is fromKickStartStates. The
available actions at the stateLef1DefenderNegativeLockare shown in Figure 5.6 in black
arrows. Please notice that these actions are UNIT actions. That is, although they may be
implemented by performing several basic actions one after another, there shouldn’t be a
“break” in the action sequence. All these actions are calledDribbleActions.

Figure 5.6: The applicableCombined-Dribbleactions in one state

TheSingle-Dribbleapproach has dribble actions expressed as(Action, Target), where
Action is one of thePassActionsdescribed in Chapter 3.3, and Target is fromKickStart-
Statesas the first solution. The preformance of theSingle-Dribbleaction in this solution is
as follows. At the beginning the ball is passed by one ofPassActionsdescribed by Action
in (Action, Target). When the ball is rolling after the passing, there are two situations. The
first situation is that the ball is in Target. Dribble action already finishes its task at this
situation, and the action selection goes on from a state in theKickStartStates. The second
situation is that the ball is not in Target. TheSingle-Dribbleaction goes on by performing
LockSlow to actively stop the ball, which results in a till ball, a locked ball, or a lost ball.
The action selection decides to defend in the case of loosing control or dribble again in
the case of having a still or locked ball. Figure 5.7 shows the activity diagram of dribble

34 CHAPTER 5. ACTION SELECTION OF STARKICK

actions in the second solution.

Figure 5.7: Activity diagram of the dribble action(Action, Target)

A possible extension of the second solution is to have more targets, which can be ex-
pressed as(Action, TargetList). Figure 5.8 shows one possible action in stateLeft0DefenderNegativeLock,
which is expressed as(PassLongBack, [MiddleMoving, Right1Moving]). Obviously, the
number of actions in this extension is significantly bigger than the second solution.

After defining the combined dribble actions, the second element of MDPs, action set
A 4.1, can be defined asDribbleActionstogether with three action-sets which areKickAc-
tions, Clear, andStopActionsdefined in the chapter 3, as shown in Figure 5.9.

5.1.3 Four modules of the MDP model and the transitions

The actions implemented on StarKick are structured to four sets, in which onlyKickActions
andDribbleActionshave more than one choices. SinceStopActionsandClear are unique
to some situations, the action selection of StarKick is to make the following two decisions:

5.1. THE MDP MODEL 35

Figure 5.8: An example of the(Action, TargetList)

Figure 5.9: Action sets of the MDP model

choosing an action fromKickActionswhen the ball is kick-able, and choosing an action
from DribbleActionswhen the ball is still and under the control.

The “playing” process of a rod is defined as the following. Firstly the rod gets the
control of the ball. Then the ball is kicked back immediately, which is so calledKickIm-
mediately, or it is stopped. After that, the ball will be dribbled for a while, in case it was
not kicked back before. Finally the ball is kicked, and the rod looses its control, which is
calledDribbleKick. There are two chancesKickImmediately, or DribbleKick to kick the
ball.

KickImmediatelyis different in MDPs fromDribbleKick because human beings react
differently to aKickImmediatelyaction and aDribbleKick action in the real game. Al-
though the two kick process in the MDP share the same start states, actions, and end states,
their results could be totally different. In other words, the probabilities for a successful
kick action taking place after dribble would be another story when the ball is kicked back
immediately without any dribble. In order to make the transitions more realistic, aKickIm-

36 CHAPTER 5. ACTION SELECTION OF STARKICK

mediatelyStartStatesis added into the MDP to model the kick immediately process. They
are the states when the ball is rolling slowly in the 18 regions of Figure 5.3.

Modules of MDPs are induced due to the structured states and actions in the playing
process, where the subsets of states and actions work together when they are applicable.
Those transitions, which are never applicable, can be cut off. If we take(Start, Target)
as the dribble actions, the number of transitions is significantly reduced by these mod-
ules. Since the state and action sets of different stages are distinct from one another in
the process, four modules of MDPs are designed to model them separately. They areOp-
ponentmodule,KickImmediatelymodule,Dribble module, andDribbleKick module. The
end states of one module could be the start states of another. TheOpponentmodule is not
for choosing an optimal action, but for estimating how bad it is if the opponent gets the ball.

Two alternative dribble modules are implemented, they areCombined-Dribblemodule
and Single-Dribblemodule, taking(Start, Target)or (Action, Target)as dribble actions
separately. Figure 5.10 (a) shows four MDP modules, in which(Start, Target)is taken
as dribble actions, and the transitions are reduced to 31005. Figure 5.10 (b) shows the
KickImmediately, DribbleKick andDribble modules, in which(Action, Target)is taken as
dribble actions, and there are 229905 transitions.

(a) (b)

Figure 5.10: MDP modules in the “playing” process (a)(Start Target)as theDribbleActions
and (b)(Action, Target)as theDribbleActions

In order to study these modules, an extra state set,KickEndStateshas to be introduced
here. TheOpponentmodule start when one of the opponent rods controls the ball, and
end when the rod looses the ball. The start states are theOpponentStartStateswhich was
already defined in Chapter 5.1.1. The end states of theOpponentmodule are calledKick-

5.1. THE MDP MODEL 37

EndStates, which is often indicated by the situation that the ball has a controllable low
speed or is still. TheKickEndStatesshould include all these controllable or still situations,
which are exactly the union of theKickImmediatelyStartStates, DribbleStartStates, Oppo-
nentStartStates, andGoalStates. The elements inKickEndStatesare shown in figure 5.11.
It is also the end state set for theKickImmediatelymodule and theDribbleKick module.
The KickStartStatesis the start state set of theDribbleKick module, which was given in
Chapter 5.1.1.

Figure 5.11:KickEndStates

There are four applicable action sets for four different modules of the MDP. The action
set for theDribble module is theDribbleActionsdefined in chapter 5.1.2. TheOpponent
module does not care for the actions. All rods performSoftBlockwhen the opponent con-
trols the ball. OnlyKickFastForwardis the available kick action in theKickImmediately
module, because the speed of kicking is emphasized. Another available action other than
kick in the KickImmediatelymodule isDoNothing, the ball will keep on rolling in low
speed until it is stopped by theStopActionswhich work in a reactive way and is not in any
modules. TheDribbleKick has choices of all actions in theKickActions.

Taking(Start, Target)as dribble actions, the end states of theDribble module are tricky
because the actions of dribble are associated with the Target. If the Target is regarded as a
part of action, the end states of theDribble module becomeSuccess, NegativeLoose, and
PositiveLoose. In order to evaluate the utilities of every state-action pair, theSuccessis
mapped to Target in the action, theNegativeLooseis mapped to the next rod in negative
side, and thePositiveLooseis mapped to the next rod in positive side. For example, in the
stateDefenderRight1NegativeLock, if the action “pass toLowSpeedLeft0” is taken, ending
up with Successmeans that transition ends up with stateLowSpeedDefenderLeft0, which
is a start state of theDribbleKick module; ending up with thePositiveLoosemeans that the
end state isOpponentAttacker; ending up with theNegativeLoosemeans that the end state
is Goalkeeper. The transitions in the example are shown in figure 5.12.

Taking(Action, Target)as the dribble actions, the end states of theDribble module are
the Success, NegativeLoose, PositiveLoose, and those states inDribbleStartStateswhich

38 CHAPTER 5. ACTION SELECTION OF STARKICK

Figure 5.12: The transitions of the(Start, Target)dribble

are related to the current rod. Figure 5.13 shows the end states of theSingle-Dribblemod-
ule at stateLeft1DefenderNegativeLock.

5.1.4 Rewards

In table soccer game the rewards come from the score, therefore the statesOwnGoal, and
OpponentGoalhave the ultimate rewards−1 and1. In order to prevent the ball from stay-
ing in one state, other states should have small negative immediate rewards. It should be
small enough so that StarKick will not kick the ball intoOwnGoalto commit suicide. Here
−0.001 is used for all other states’ immediate rewards, that is, when StarKick has to per-
form more than1000 actions to achieveOpponentGoal, StarKick will prefer to commit
suicide.

These rewards could be adjusted according the strategy. Increasing the rewards at op-
ponent’s goal would make StarKick to be more aggressive, while being scored more easily.
Decreasing the rewards for the states other thanGoalStateswill give those actions, which
are safer but less effective, more chances.

5.2. OPPONENT MODELS 39

Figure 5.13: TheDribbleEndStatesof theSingle-Dribblemodule.

5.2 Opponent Models

Two opponent models are created here, each assuming some particular opponent behav-
iors. They areBlockedmodel andDynamicmodel.

The opponent takes the role of the teacher in theBlockedmodel. Only one opponent
plays with StarKick without significant changes of the playing skills. The model is called
“blocked” because the opponent would always be trying to block the ball when StarKick
is controlling it. StarKick learns the general evaluation for different kicking actions in this
model, which is a basis for the decision inDynamicmodel.

The opponent would be intelligent and different human beings in theDynamicmodel.
“Intelligent” means that the opponent would be familiar with the policy if it is repeated
again and again by StarKick; and therefore significantly prevent it from being success-
ful. For example, ifKickFastForwardis an optimal policy at the stateMiddleAttacker, and
StarKick repeats it for four times, the fifth time would be hardly to success because the op-
ponent would expect it when the ball is at the place. “Different” means that the opponent
is changing all the time, each of them may play only one game, and then a stranger with
very different skills comes. The policy which was good for the first player may become
very bad for the second.

40 CHAPTER 5. ACTION SELECTION OF STARKICK

5.3 Implementation of the Reinforcement Learning

The RL algorithm works in the following way. All transitions are recorded in the game by
counting; they are saved before the StarKick is turned off, and load again when StarKick
is started up next time. Whenever there is an update in transition table, the policy iteration
algorithm should be run until all utilities are converged. The following sections discuss the
RL algorithms against theBlockandDynamicmodels separately.

5.3.1 Learning from theBlockedModel

Learning from theBlockedmodel in StarKick is to give MDPs the strategy on how to deal
with transition probabilities before they can be accurately evaluated by the examples from
the real games. At the beginning of the learning, all recorded transition numbers are set to
zero. The learning program updates these records during the games. Before policy itera-
tion, the recorded transition numbers should be normalized. A mechanism which makes
StarKick curiously explore the unknown action probabilities is implemented in the normal-
ization program, which was already described in Equation 4.3. For theDribble module,
when the recorded number of a particular state action pair is less than ten, the normaliza-
tion program makes the dribble transitions always (100%) end up with theSuccess. For
theKickImmediatelyandDribbleKickmodules, kick transitions are set to very good results
such asOpponentGoal; similarly, ForOpponentmodule the ball is assumed to pass to the
next opponent rod, and the opponent’s attacker can always shoot the ball into theOwnGoal
(100%). The threshold of the record number of kick transition is set to five. The threshold
of record number of opponent’s transition is set to ten.

5.3.2 Learning from Dynamic Model

Problems would arise when the opponent is changed constantly in theDynamicmodel,
because the current opponent would always be a stranger to StarKick. If the learning sce-
nario in theBlock model is used in theDynamicmodel, the more transitions are learned,
the blunter KiRo would be to a stranger. For instance, aKickFastForwardis supported
by 1000 records before, although it is a stupid action for the new comer, it will still be
repeated again and again by StarKick as optimal policy until its utilities become lower than
the second best action, which would be much slower than loosing the game.

The solution here is to give the new features of the strangers more weight. In addition to
theBlockedmodel, the RL algorithm here gives different “weights” to the transitions which
happened recently, so that StarKick has a way to avoid repeating the mistaken, while try-
ing other good choices with some curiosity. The transitions which happened recently are

5.3. IMPLEMENTATION OF THE REINFORCEMENT LEARNING 41

recorded in a list, sorted by time. In practice, the RL module of StarKick takes the follow-
ing configuration. In theOpponentmodule, the recent ten transitions of each start states
take30% of the total probabilities, so that StarKick will not risk losing the control if the
opponent is very skillful. In theKickImmediatelyandDribbleKick modules, the most re-
cent transition takes15% of total probabilities, the second takes10%, and the third takes
5%. By this way, any start states of kick tries the best (optimal) action at the very first
time, a failure will result in second best action (in the case15% makes sense), and so on.
The KickImmediatelyandDribbleKick modules of the MDP model have the curiosity of
trying a maximum of four kick actions on a stranger, ordered by their utilities learned in the
Blockedmodel. Any successful result will cause the same action to be selected again. This
way does not abuse the “curiosity”, but tries the second and maybe the third better action
indicated by theBlockedmodel. Figure 5.14 shows how the “kick” transition records are
normalized in theDynamicmodel.

Figure 5.14: Normalizing theKick transitions in theDynamicmodel

42 CHAPTER 5. ACTION SELECTION OF STARKICK

Chapter 6

Software Implementation

The action control and action selection model described before are implemented in the
KiRo program, which was developed for KiRo and adapted to StarKick. This chapter de-
scribes the problems and solutions when it comes to the implementations.

6.1 Environments

KiRo program was developed on a SuSE Linux platform. The programming language is
C++. QT is used as a graphic user interface library. This thesis is based on the KiRo
program which already has the software drivers for the hard-wares, the architecture for the
action control and action selection, vision system, and world model including ball model
and player model.

The software environments of this thesis are described as the component view shown in
Figure 6.1 in UML manner. The KiRo program are divided into three layers. The physical
layer contains hardware components such as sensors, camera, and engines. The behavior
layer contains the action selection and action control model, which are the main part of this
work. The layer between them is called the driver layer, which can be seen as a friendly
interface for the behavior layer to manipulate the hardware. The arrow lines in the figure
are used to depict the dependencies. Figure 6.1 (b) shows the dependencies among these
layers.

6.2 Implementation of Action Control

A simple action becomes difficult when it is implemented in a dynamic noisy robotic sys-
tem. This section describes the difficulties and solutions in developing basic actions, and

43

44 CHAPTER 6. SOFTWARE IMPLEMENTATION

(a)

(b)

Figure 6.1: (a) Component of KiRo Behavior System. (b) Layers.

action games.

6.2.1 Difficulties and Solutions

To hand code the very basic actions of StarKick, there are some difficulties which need to
be mentioned here.

The first difficulty is that no action can be finished in one cycle. As mentioned in
Chapter 2, the processing cycle should be20ms. However even a very simple action, for
example raising the rod from0◦ to 90◦, takes more than this limitation. In order to over-
come the difficulty, the action control sends feedbacks to the action selection, informing
that one action is done or not. The action selection decides whether or not to break the per-
forming of one action. For example, theLockFastaction tries to lock the ball in whatever
situation unless the ball is locked or action selection tells the rod another action.

The second difficulty is that all actions depend on time. The speed and position of the
ball are very important to all actions. For example, in order to lock the ball, theLockFast
must consider the moving speed of the ball, and the turning speed of the rod. Then it makes

6.2. IMPLEMENTATION OF ACTION CONTROL 45

the figure press the ball when the ball is in the lock band. In order to overcome this diffi-
culty, the action control of StarKick predicts the ball’s position by the moving vector of the
ball, and performs the action by predefined time parameters. For example, in “Lock Ball”
action, the speed of the ball in the x direction is used to calculate the exact point of time
that the ball reaches the “Lock Band”, and before a predefined time amount, the rod begins
to turn to achieve this action.

The third difficulty is that the hand-coded actions are hard to debug. Since the action
of the rod is highly dynamic, it is hard to reproduce any actions. In practice, this difficulty
is overcome by using video recorder to record the playing, and locating the bugs in the
program by replaying the records and checking the print out.

6.2.2 Action Games

In order to test basic hand-coded actions, the following small games are created, in which
a particular set of actions are repeated again and again, so that the predefined parameters
can be adjusted and the performance of the actions can be improved during these games.

The first game is for theLockFast. One of the opponent’s rods passes the ball to Star-
Kick with medium speed. The rod, which the ball is rolling to, performs aLockFastaction.
After the ball is locked, StarKick stops reacting to the ball until it is put under an opponent
rod again. Then the pass andLockFastare repeated.

The second game is for thePassLongBack. The beginning of this game is the same as
the first game. After the ball is locked, the rod performs thePassLongBackRightif the ball
is at the left side of the rod, and performsPassLongBackLeftif the ball is at the right. After
passing, the ball is locked again by theLockSlow. The passing and locking are repeated
until StarKick looses the control. TheLockFastis performed again in this situation and the
game goes to the beginning.

The third game is for thePassShortBack. The beginning of this game is the same as the
first game. After the ball is locked, the rod performs thePassShortBackRightif the ball is at
the left side of the rod, and performs thePassShortBackLeftif the ball is at the right. After
the passing, the ball is locked again by theLockSlow. The passing and locking are repeated
until StarKick looses the control. TheLockFastis performed again in this situation and the
game goes to the beginning.

The fourth game is for thePassParallel. The beginning is the same as the first game.
After the ball is locked, the rod performs thePassParallelRightif the y coordinate of the
ball is smaller than a predefined value, and performs thePassParallelLeftif the y coordi-

46 CHAPTER 6. SOFTWARE IMPLEMENTATION

nate of the ball is smaller than another predefined value. These two predefined value are
near the two side walls, so that the ball is passed parallel in one direction until it reaches
the end. After passing, the ball is locked again by theLockSlow. Then the passing and
locking are repeated as before.

The fifth game is for theTouch. This time the ball is stopped by theSoftBlock. After the
ball is still, the playing figure touches the ball to move it to the right if the ball is in the left
side of the playing figure, and to the left if the ball is in the right side of the playing figure.
LockSlowis used to stop the ball, but the game comes to an end after the ball is locked, and
can be started again if a human being removes the locked ball and passes it again from one
of the opponent’s rods.

The sixth game is for theKickImmediately. The ball is stopped by theSoftBlock. As
soon as the ball is kick-able, it is kicked by the actionKickFastForward. Then it stops re-
acting until the ball is under control of the opponent. TheSoftBlockandKickFastForward
can be repeated.

The seventh game is for theKickSlowLeftand KickSlowRight. The ball should be
passed from the negative direction. StarKick performs theLockFastto lock the ball. When
the ball is locked and still, theKickSlowRightis used to kick it if the ball is in the left side
of the rod, and theKickSlowLeftis used to kick it if the ball is in the right side of the rod.
After the kicking, the rod stop reacting to the ball until it is under control of the opponent.
TheLockFast, KickSlowLeftandKickSlowRightcan be repeated.

The eighth game is for theKickFastRightandKickFastLeft. In contrast to the kick ac-
tions in the seventh game, theKickFastRightandKickFastLeftare used as kick actions in
this game, while other settings are the same as in the seventh game.

6.3 Implementation of Action Selection

Action selection model using Markov Decision Processes with Reinforcement Learning is
the final goal of this thesis. In practice, this final goal is however difficult to be attacked
directly, because every tiny bugs would mess up the whole behaviors. It is even harder than
the difficulties we met in the implementation of the basic actions because action selection
model is more complex than a simple action. this thesis employed two more opponent
models to implement the action selection model step by step. Every step achieves a sub-
goal which limits the problems, and finally solved the action selection problem.

6.3. IMPLEMENTATION OF ACTION SELECTION 47

6.3.1 Control Program for the MDP model

In the action selection model, a control program is constructed, which can tell the start
and the end of a particular module of MDPs according to the current state, and makes the
decisions by the MDPs. Figure 6.2 shows the sequence diagram of an example on how the
control program works. In the example, firstly the ball is under the control of theOppo-
nentDefender; it is passed to theOpponentMidfield; the OpponentMidfieldlooses it by a
control failure; StarKick decides to theKickImmediatelyon its midfield, then the attacker
of StarKick gets the control, it dribbles a little bit and kicks; finally game ends in theOp-
ponentGoal.

Figure 6.2: The “control” program

6.3.2 Extra Opponent Models for Implementation

Motivated by simplifying the problems, two more extra opponent models are added to the
system in the implementation, resulting in four opponent models all together. From simple
to complex, they areClear model,Centeredmodel,Blockedmodel, andDynamicmodel.

TheClear model assumes that there is no opponent at all. It is implemented by making
all opponent’s playing figures upside down. Whenever a rod gets the ball, it tries to pass the
ball to the middle, and shoot the ball with the actionKickFastForward. The kick pattern for

48 CHAPTER 6. SOFTWARE IMPLEMENTATION

theClearmodel is shown in Figure 6.3.2 (a). The kick regions are in yellow. When the ball
is still or moving with low speed in these regions, the rod performs theKickFastForward.
When one rod is kicking, other rods in front of the ball perform theClear action.

(a) (b)

Figure 6.3: The kick patterns of the (a)Clear model and (b)Centeredmodel

TheCenteredmodel assumes all the opponent’s playing figures are still and centered.
The opponent has no hostile intention, whenever he gets the ball, the ball will be passed
back to StarKick with friendly medium speed. In addition, StarKick knows exactly where
the opponent rods are, it tries to kick the ball with slow speed at the position between the
two opponent figures. Figure 6.3.2 (b) shows the kick pattern of theCenteredmodel. The
red arrows in the figure show the directions of the kicking. The yellow or blue regions are
the kick regions. When the defender or midfield is kicking, the rod to which the ball is
rolling takes the actionLockFast.

6.3.3 Transient States

As discussed in Chapter 5.1.1, the states of four modules of MDPs do not include all pos-
sible situations, extra transient states are still needed.

In theCenteredmodel, because the opponent will be centered and still, the ball should
be passed with medium speed from the defender to the midfield and from the midfield to
the attacker. The six states in which the ball has medium speed are shown in Figure 6.3.3
(a). In these states, the rod, to which the ball is rolling, takes the actionLockFast.

When the ball is slow and under control, the corresponding rod takes the actionLock-
Slow. Figure 6.3.3 (b) shows these low speed and under control states.

6.3. IMPLEMENTATION OF ACTION SELECTION 49

(a) (b)

Figure 6.4: (a) Medium speed states and (b) low speed states

When the ball is moving fast, all rods of StarKick take the actionSoftBlock. In order to
change the configuration easily, these data can be loaded and saved with the MDP transi-
tion records.

6.3.4 Implementations of Opponent Models

Since there is no planning and decision process, theClear model is actually an extension
of the action games. It gives chances to polish the basic hand coded actions, and test the
associating among these actions. For example, when the defender is kicking the ball, the
midfield and “attacker” should perform theClear action for a while to let the ball pass. In
addition, in order to classify the current situation to the states of the MDPs, the program,
which is valuable for the whole action selection, is developed and tested inClear model.

The very first MDP policy iteration and reinforcement learning algorithms are con-
structed and tested in theCenteredmodel. The reinforcement learning learns the probabil-
ities of the dribble transitions. The policy iteration evaluates different actions and states by
these transition probabilities. For the transitions which can not be learned in this model, the
transition records are given manually. Policy iteration is also run on these manually con-
figured records, and is tested by comparing the resulted optimal policy with the intended
kick pattern. The configurations are seen from the results of the policy iteration algorithm,
which are written into a text file with the transition records.

Although the policy iteration gets a time span to run in every cycle, because StarKick
is a real time system, it may not get enough computational resources to reach a converged
point. Fortunately it is a chance to hang any other thing and only do policy iteration when
the ball is at theDribbleStartStates. Figure 6.5 shows the activity diagram of how the re-
inforcement learning algorithm works.

50 CHAPTER 6. SOFTWARE IMPLEMENTATION

Figure 6.5: The activity diagram of the learning

At the beginning of the learning, all recorded transition numbers are set to zero. The
learning program updates these records during the games. At the beginning of the policy
iteration algorithm, the recorded transitions should be normalized. The activity diagram of
learning Dribble module is shown in Figure 6.6.

TheKickImmediatelyandDribbleKick module are configured in the following way. In
order to avoid anyKickImmediately, in the Centeredmodel, all the kick transitions are
given bad results such as theOwnGoal. Thus theKickImmediatelymodule always chooses
theDoNothingaction as the policy. TheDribbleKick is configured according to the kick
pattern in Figure 6.3.3 (b). The intended transitions are given very good results such as the

6.3. IMPLEMENTATION OF ACTION SELECTION 51

Figure 6.6: The activity diagram of learning theDribble module

OpponentGoal, whereas the others are given very bad results such as theOwnGoal.

In theCombined-Dribblemodule, there could be some intermediate still states, which
belong to theDribbleStartStates, and lie between two basic hand-coded actions during one
Dribble process. Since dribble actions are regarded as the UNIT actions, these still states
can not be used for any further planning. However, the learning process can be accelerated
by taking these still states as the starts of other dribble transitions. Actually, during the
performance of a dribble action, three or even four transitions can be updated.

In theSingle-Dribblemodule, the(Action, Target)are taken as the dribble actions. The
action is performed in the same way before the specified target is reached. For example,
performing (PassShort, DefenderLeft1Moving)and (PassShort, DefenderRight1Moving)
will have exactly the same effects, if the ball does not reachDefenderLeft1Moving, and
neitherDefenderRight1Moving, after thePassShortaction. The learning process of the
Single-Dribblemodule can be accelerated by considering all the targets after a “pass ac-
tion” is performed.

The main part of policy iteration and reinforcement learning algorithms is constructed
and tested in theBlockedmodel. In addition to learning theDribble transitions, there are
the Opponenttransitions,KickImmediatelytransitions,DribbleKick transitions, and their
corresponding policy iteration processes.

TheDynamicmodel assumes that all transitions are sufficiently learned in theBlocked

52 CHAPTER 6. SOFTWARE IMPLEMENTATION

model. The mechanism, which gives new observations more weight, is implemented in the
Dynamicmodel. A log file is created to record the observations and changes of the recent
policies.

6.3.5 Graphic User Interface

A GUI is constructed to switch among action games, opponent models, and dribble actions.
When the “Action Game” is checked, user can choose a rod to play one of the eight prede-
fined games, as shown in Figure 6.7 (a). When the “Opponent Model” is checked, user can
choose one of the four opponent models to play against, as shown in Figure 6.7 (b). Policy
iteration algorithm is run until it is converged when the button “Iterate Offline” is pressed.
The learned records in theCenteredmodel, theBlockedmodel, and theDynamicmodel
can be written into a data file by pressing the “Save Transition Data” button. TheDribble
action can be configured to be(Start, Target)by checking the “As Combination”, or to
be (Action, Target)by checking the “As One Action”, which can be found in the dribble
group-box at the right-bottom corner.

(a) (b)

Figure 6.7: GUI for (a) Action games and (b) opponent bodels

Chapter 7

Experiments

We made a series of experiments for the evaluation of the performance of the basic ac-
tions and the MDP based action selection. Section 7.1 evaluates the basic actions, in which
atomic actions such asPassLongBack, PassShortBack, PassParallel, andLockFast, as well
as the combined action,LockSlowandTouch, are evaluated. Section 7.2 compares the per-
formance of the different action selection models in the real games, and explains the results
of the learning.

7.1 Evaluation of the Basic Actions

TheLockFastaction is evaluated in theLockFastgame as explained in Section 6.2.2. The
ball is passed from the opponent midfield to the defender of StarKick with different speed.
The trials of passing are classified into different classes according to the speed of the ball.
The success of aLockFastaction is indicated by the observation that the ball is locked by
the respective playing figure. Other outcomes are regarded as a failure. The successive
speed classes are merged together if they have similar success rate, which results in four
speed classes finally. TheLockFastaction is performed more than ten times in every sit-
uation. Figure 7.1 shows the success rate based on the results of performingLockFast63
times.

The success rate of aLockFastaction heavily depends on the speed of the ball. Figure
7.1 shows that when the speed of the ball is smaller than500mm per second, everyLock-
Fast in the experiments can effectively lock the ball. Whereas, when the ball is very fast,
which is bigger than 1300 in the experiment, theLockFastaction rarely works. The results
in this experiment are intuitive.1300mm per second means that the ball travels from the
opponent midfield to the defender of StarKick within 0.4 seconds. In this 0.4 seconds, Star-
Kick needs to observe the speed of the ball at the beginning, which already takes several

53

54 CHAPTER 7. EXPERIMENTS

process cycles to get a steady value. The time left is not enough to perform theLockFast
action.

 0

 0.2

 0.4

 0.6

 0.8

 1

> 13001000-1300500-1000< 500

su
cc

es
s

ra
te

ball speed

Figure 7.1: The success rate of theLockFastin different ball speed.

The results of the following experiments are shown in a coordinate system correspond-
ing to the playing surface, where there are1200mm along x direction and680mm along
y direction. The coordinate system extends the x to1300mm to leave some space for the
goals. The start of the x is the start of the goal of StarKick, and the end of the x is the
end of the opponent goal. This coordinate system is intuitive because every region in the
figures can be mapped to a region in the real plying surface.

The MDP model has the states which are defined by the different regions in the playing
surface. When the ball stays in the region for less than four cycles, the action selection
of StarKick can make the decision but cannot perform the decision. When the ball stays
in a region from 5 to 9 cycles, the action selection of StarKick can make the decision and
send the command to perform. However, the ball is going to move out of the region before
the action control finishes the selected action. When the ball stays in a region for more
than 10 cycles, the selected action can be successfully finished. This context is used in the
evaluations of thePassLongBack, PassShort, andPassParallel.

A game is created to evaluate thePassLongBack, PassShort, andPassParallelactions.
At the beginning of the game, StarKick performsLockFastto get the ball. Then, one of
these three actions is performed. The playing figure is turned parallel to the playing surface
after the passing, so that the ball moves without any further disturbing. The playing sur-
face is divided into different regions, which are the visualization of theDribbleStartStates
explained in Figure 5.4. The features of the passing is studied by finding out the frequency

7.1. EVALUATION OF THE BASIC ACTIONS 55

that the ball reaches a region, and the time that the ball stays in it. The time and frequency
information can be gotten by counting the region where the ball stays in every process
cycle. Figure 7.2, 7.3, and 7.4 show the experiment results onPassParallel, PassShort,
andPassParallel. In the experiments, each pass action is performed 20 times. The region
where the ball is passed from is shown as the black region in the top part of Figure 7.2.
Figure 7.3 and 7.4 have the same region from which the ball is passed. If the ball appears
in a particular region in a process cycle, this region is recorded in the “reached regions”.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04
 0.045
 0.05
 0.055

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

(a) (b) (c) (d)

Figure 7.2:PassParallel(a) reached regions, stays (b) less than 4 cycles, (c) from 5 to 9
cycles, and (d) more than 10 cycles

Figure 7.2 (a) shows the probabilities of reaching every region. Figure 7.2 (b) shows
the regions in which the ball stays for less than 4 cycles after aPassParallel, in (c) the ball
stays from 5 to 9 cycles, and the ball stays more than 10 cycles in (d). From these results,
we can find thatPassParallelpasses the ball to the next region down to the one from which
the passing is started. The speed of the ball after the passing is low, so that with the proba-
bility of around90%, the ball can be locked again in the next region, which is shown as a
yellow region in Figure 7.2 (a) and (d).

Figure 7.3 shows the evaluation of thePassShortBackaction. From (a) and (d), we can
find thatPassShortBackcan pass the ball “back” to another lock band with a success rate
of around60%. The ball passes to the next region which is below the original one, with
high probabilities. However, it only stays in this region for a short time. This may cause
StarKick to try some actions at this region, and these tryings will not be successful.

Figure 7.4 shows the evaluation of thePassLongBackaction. Being different from the
PassParallelandPassShortBack, PassLongBackpasses the ball with higher speed, so that
we got more regions in (b) and (c), and the reached regions almost cover all possible regions
within the control range of the rod. With a success rate of around40%, a PassLongBack
can pass the ball from a place near the wall to a place at the center, which is shown in

56 CHAPTER 7. EXPERIMENTS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

(a) (b) (c) (d)

Figure 7.3:PassShortBack(a) reached regions, stays (b) less than 4 cycles, (c) from 5 to 9
cycles, and (d) more than 10 cycles

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1
 0.11

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

x

y

 150 200 250 300 350 400
 0

 100

 200

 300

 400

 500

 600

 700

(a) (b) (c) (d)

Figure 7.4:PassLongBack(a) reached regions, stays (b) less than 4 cycles, (c) from 5 to 9
cycles, and (d) more than 10 cycles

Figure 7.4(d)

A game is constructed to evaluate the performance ofTouchandLockSlow. At the start
of the game, the ball is set still and in the control range of StarKick’s defender. When the
ball is till, but not being locked, StarKick performsTouch. When the ball is moving, Star-
Kick performsLockSlow. When StarKick looses the control or locks the ball, the game is
finished. This game is repeated 40 times and the performance of theTouchandLockSlow
is evaluated by counting the successes and failures. The results are listed in Table 7.1.

A failure of a Touch is indicated by the ball moving out of the control range after
a performance of theTouchaction. A failure of aLockSlowaction is indicated by the
disturbance of the ball, which is happened when the figure tries to turn in a certain direction,
or when the “pressing” of the lock did not happen at the right point of the time. The results
shows that if the ball is still and under control, StarKick can touch the ball to lock it with a

7.2. EVALUATION OF THE MDP AND RL 57

Success Failure
Touch 76 3
LockSlow 29 11

Table 7.1: The evalution of theLockSlowandTouchactions

success rate of around72.5%.

7.2 Evaluation of the MDP and RL

The very first experiment on the action selection is the implementation of the Clear model.
The probabilities of the transitions are configured manually so that the game is played in
the intended way. By observing the right policy being generated by the action selection, the
policy iteration algorithm of MDPs is proved to be all right. Table 7.2 gives the expenses
for running policy iteration algorithm separately using(Start, Target)and(Action, Target)
as dribble action. The experiment is run on a PC with a2.6GHz CPU and512M main
memory.

Dribble Action Transitions Policy Evaluation Policy Improvement
(Action, Target) 201600 5.829ms 7.277ms
(Start, Target) 2700 0.356ms 0.726ms

Table 7.2: The time expenses for runing the policy iteration algorithm using the different
dribble actions.

In the table, “Transitions” means the number of state-action-state triples, which is a
measurement of the consumed memory space and the computing expenses of solving the
MDP. “Policy Evaluation” means running one iteration on the four MDP modules for pol-
icy evaluation. “Policy Improvement” means finishing the policy improvement step of the
policy iteration algorithm for the four MDP modules. It is obvious that(Action, Target)
needs more computing resources than(Start, Target)because of the transitions they have.
Although the(Action, Target)approach is much slower than the(Start, Target)approach,
both of them perform without a problem on computing in the real table soccer games.

I have put a lot of effort into training StarKick against human beings. The training is
to directly play with StarKick for more than 40 hours, as the learning algorithm updates
the transitions table during the games. The transition table can be saved when the program
is turned off, and be loaded again when StarKick is started next time. The thresholds for

58 CHAPTER 7. EXPERIMENTS

a well-learned state action pair are set to10 for the KickImmediatelymodule,3 for the
Dribble module,5 for the DribbleKick module, and20 for the Opponentmodule. The
(Action, Target)is used as the actions in theDribble module. After playing with StarKick
constantly for around two weeks, I found that it is too hard to train the MDP model directly
in the games. For the moment,18180 Dribble transitions,3638 KickImmediatelytransi-
tions,491 DribbleKick transitions, and1837 Opponenttransitions are recorded. After this
training, StarKick is still too awkward to play against human beings. Since the deadline
of this thesis is already coming, regretfully I didn’t finish the evaluation of theBlocked
and theDynamicopponent models on time. This work are described in the last chapter,
hopefully they can be done in the near future. For the moment, at least the current learning
records can be shown and discussed in this thesis. Figure 7.5 shows the utility values of
KickImmediatelyStartStatesandOpponentStates. These utilities are obtained by applying
Equation 4.2 in the developed MDP and RL model. They are a measurement of how good
the states are. This figure shows the different regions on the playing surface. The goal of
StarKick is on the left side, the goal of the human opponent is on the right side. The three
rectangles with680mm as height are theOpponentStates, other smaller rectangles are the
states inKickImmediatelyStartStates.

Figure 7.5: The utility ofKickImmediatelyStatesandOpponentStatesafter the learning.

In the Figure, the opponent attacker has the lowest utility value. The attacker of Star-
Kick has the highest utility value. Interestingly, one region of the goalkeeper has a similar

7.2. EVALUATION OF THE MDP AND RL 59

utility value as the opponent attacker. Figure 7.6 (a), (b), and (c) shows the transitions on
these states, so that we have a better understanding on the reasons of getting these utility
values. The colors in Figure 7.6 indicates the probabilities.

(a) (b)

(c) (d)

Figure 7.6: Transitions of (a)OpponentAttacker, (b) KickImmediatelyat MiddleAttacker,
(c) KickImmediatelyatLeftGoalKeeper, and (d)TouchLeftatDefenderLeft1NegativeStill

In the Figure 7.6 (a), we can find that the opponent attacker can score a goal with the
probability of around5%. Very often, StarKick can kick the ball back immediately towards
the middle defender when the opponent attacker tries to attack. The blue rectangle shows
the probability of around25%. The respective performance of StarKick atMiddleAttacker
is worse than the attacker of the human opponent. In Figure 7.6 (b), we can see that the
opponent attacker can get the ball with the probability of around50%, if KickImmeidately
is performed at theMiddleAttacker. Figure 7.6 (c) can be served as an explanation on the
low utility value atLeftGoalKeeper. It shows that with probability of around4%, Starkick
kicks the ball to its own goal after performingKickImmediatelyat stateLeftGoalKeeper.

The Figure 7.6 (d) shows the transitions of a touch action. At stateDefenderLeft1NegativeStill,
if TouchLeftis performed, the ball will stay in the same state with the probability of around
35%. The utility values of different states in theDribble module are available but not

60 CHAPTER 7. EXPERIMENTS

shown in this thesis, because the training for theDribble module is not finished yet. There
are still a lot of state-action pairs in theDribble module which have never been trained
in the learning. The utility values of these state-action pairs are given by the exploration
function of RL, which are not a measurement of how good these situations are.

In the experiment above, the learning of the new transitions becomes more and more
difficult after StarKick is trained for a week. A smaller game is constructed to show this
tendency. In the game, we reduced the state space by only considering the attacker of Star-
Kick. The KickImmeidatelymodule is configured to make the fixed decisionDoNothing.
There are noPassLongBackactions in theDribble Module. The only action in theDrib-
bleKickmodule is theKickFastForward. The state inOpponentmodule is reduced to only
one. The small game shares the same MDP and RL algorithms, so that it can be regarded as
the sub-game of the game in the above experiment. The(Start,Target)and(Action, Target)
are respectively taken as dribble actions in this game. In theDribble module, the threshold
for a well-learned state-action pair is set to3. Figure 7.7 shows how fast the state-action
pairs can be learned. In the Figure, the x axis is the number of performed dribble actions,
the y axis is the percentages of the well-learned state action pairs of theDribble module.
The well-learned threshold of theDribbleKick module is set to5 at the beginning. Taking
(Start,Target)as the dribble actions, this threshold is adjusted to8 when the recorded action
number reached300, and is adjusted to20 when the number reached500.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700

le
ar

ni
ng

 r
at

e

episodes

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000 3500 4000

le
ar

ni
ng

 r
at

e

episodes

(a) (b)

Figure 7.7: The learning of (a)Combined-Dribbleand (b)Single-Dribble

In this experiment, we can find that the learning of the new transitions depends on the
parameters used for the MDP modules. For example, theDribble module is learned faster,
after the well-learned threshold of theDribbleKick module is increased. Figure 7.7 (a)
show this phenomenon. Although Figure 7.7 (b) does not support the same conclusion,
it is obvious that the chances for trying a dribble action would be less if StarKick always
decides toKickImmediatelybefore the ball can be stopped. Actually theKickImmediately

7.2. EVALUATION OF THE MDP AND RL 61

module is configured to selectDoNothingin this experiment.

Another experiment on the same game is made to evaluate the performance of the RL
over episodes. In the game, the 139DribbleKick transitions learned before are used at
the very beginning in theDribbleKick module. The(Action, Target)is used as the dribble
action. The learning of theSingle-Dribblemodule is started from zero episodes. The ball
is passed from the opponentDefenderto theAttackerof StartKick in the same way. A
successful episode is defined as StarKick kicking the ball into theOpponentGoal. A failed
passing is defined as StarKick loosing the ball during a passing. Ten evaluations are made
in the different stages of the learning. StarKick has ten chances to pass the ball in each
evaluation. Figure 7.8 (a) shows the results of these evaluations, and the results are aver-
aged within±10 episodes in (b).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

su
cc

es
sf

ul
 r

at
e

episodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

su
cc

es
sf

ul
 r

at
e

episodes

(a) (b)

Figure 7.8: Learning theSingle-Dribblemodule in the small game (a) raw experiment data
(b) averaged over±10 episodes

Figure 7.8 (a) shows that the success rate keeps low at the very beginning. It raise to
around 0.3 after 60 episodes. The performance of StarKick from 60 to 120 episodes is
much better. According to the evaluation on the atomic actions in Section 7.1, the success
rate in this game should be much better. The reason for the bad performance lies in the def-
inition of the MDP states. When the ball is near the moving limitations of a playing figure,
the passing will fail if the playing figure can not be moved to the intended place. However,
the results of this experiment at least shows that the RL improves the performance in this
game.

The last game compares the approach in this thesis with the previous action selection
using a decision tree. The ball is passed from the opponent attacker to StarKick’s attacker.
The games are played until StarKick scores 10 times. The numbers of kicks and the time

62 CHAPTER 7. EXPERIMENTS

spent to achieve these 10 scores are recorded, which are listed in Table 7.3.

Action Selection Time Kick
Decision Tree 172s 67
Clear Model 286s 11
Combined Dribble 272s 10
Sinlge Dribble 339s 11

Table 7.3: The performances of different action selection models of scoring 10 times

In the table, the decision tree approach uses less time but kicks more often, because
it directly maps a kick-able situation to the kick action. TheClear opponent model has
similar performance as theCombined-Dribblemodule, because they use the same way to
pass the ball to the middle when theCombined-Dribblemodule has higher rewards at the
middle. TheSingle-Dribblemodule takes more time to achieve 10 goals because it may
consist of several pass-stop cycles.

Chapter 8

Conclusion

8.1 Summary

In this thesis, basic actions such as stopping and dribbling were developed. Stopping is
achieved by locking the ball between the playing surface and a playing figure. Dribbling
makes the ball rolling at a controllable speed within the reachable area of the playing fig-
ures of one rod. By these new actions, the ball can be deliberately passed and stopped.
A series of experiments were carried out in real table soccer games. These experiments
showed that the newly developed actions are robust.

A MDP model with a reduced state space was created for the action selection of Star-
Kick. A naive approach of using MDPs in the action selection may have a state space
which consists of the grid regions, the moving speed, and the moving direction of the ball.
The MDP model in the naive approach is not possible to be solved under the current com-
putation conditions unless its state space is significantly reduced because the MDP based
action selection should be executed in high dynamic environments. The approach in this
thesis combined atomic actions to complexDirbbleActions, created different action sets
according to their preconditions, and constructed four MDP modules using domain knowl-
edge. Each module contains a set of states, and the actions that are applicable in these
states. The state space of the MDP model was significantly reduced by this formalization,
so that the MDP based action selection can be executed in a real-time manner.

A simple reinforcement learning algorithm was implemented in the MDP framework,
in which the transition probabilities of the MDP model are updated by counting. These
updates are spread by a policy iteration algorithm of the MDPs during a game. The imple-
mented reinforcement learning algorithm maintains a list for the transitions that happened
recently, gives them more weight, and is supposed to adapt the behavior of StarKick with
intelligent and different human opponents.

63

64 CHAPTER 8. CONCLUSION

The action selection using reinforcement learning and MDPs were evaluated in several
real table soccer games. The evaluation showed that the MDP model works fine, and the
reinforcement learning improves the performance of StarKick in a simplified game.

When the start states of a MDP module are the end states of another module in the same
MDP, learning two modules simultaneously is slower than learning them one by one. An
experiment was made to show that the “well-learned threshold” used in theDribbleKick
module affects the learning speed of unknown state-action pairs in theCombined-Dribble
module.

8.2 Future Work

Although the reinforcement learning algorithm improved the performance of StarKick in a
simplified game, the full game was not possible to be evaluated in this thesis because the
learning process took too much time (more than 40 hours playing in real games).

Several ideas can be used to make a better learning process in the future work. The first
one is to study the probabilities of the atomic actions, and copy the results to corresponding
places in the transition table. For example, if theLockSlowaction is performed after the
pass actions in most cases, as it happens in the approach of this thesis, the evaluation of the
atomic pass actions can be used to approximate the probabilities of the respectiveDribble
transitions. The learning process can be significantly reduced in this way.

The second one is to isolate the module if the actions have to be evaluated in the game,
so that each module is learned faster. For example, theKickImmediatelymodule is turned
off so that theDribble module will have more chances to dribble a ball.

The third one is that a pure exploration stage of the reinforcement learning in the real
games with human opponents should be avoided in practice. A pure exploration stage in
real table soccer games takes a lot of time, and human opponents will react differently
when StarKick keeps on trying some stupid actions for a long time. The situation would
be much better if StarKick can play in a competitive way before it learns from the transi-
tions in the full games, while the life-long learning improves its performance for different
human players. If the first and second ideas can be served as the effective ways to initialize
a transition table, theDynamicmodel implemented in this thesis should adapt the perfor-
mance of StarKick to different human players. The problem left is how the reinforcement
learning explores a state-action pair whose transition probabilities are unknown. A simple
way to do this is the exploration is preferred to with a probability, while the exploitation is
performed in the other cases.

8.2. FUTURE WORK 65

The MDP approach in this thesis uses aDribble module for differentPassActions. This
causes extra work in the learning because theTouchaction has different preconditions from
other pass actions. Although the four modules used in this thesis significantly reduce the
impossible state-action pairs, there is still a space to improve them further. In the future
work, theTouchaction should be identified from other pass actions by modules, so that the
learning and playing can be more effective.

The MDP states in this thesis are created in a simple way by dividing the playing sur-
face into five different regions along the y direction. There are problems when a figure
reaches the end of its moving range. In the future work, the MDP states should be refined
by integrating more domain knowledge. For example, there should be a state at the end of
the moving range, where a figure can only pass the ball in one direction.

Although the developed basic actons are robust and already very different from the
previous approaches, several improvements are possible in StarKick in the future.

The first one is to switch to the second playing figure when the ball is locked by the first
one, and is within the reachable area of the second playing figure. A MDP module using
this action should have a state which consists of the information of the playing figures.

TheKickActionsin this thesis appear too slow to score in a game against an advanced
human player. In the second part of the suggested work, a set of kick actions which can
challenge the advanced human players should be developed.

The third point is that two specific action sets for the goalkeeper and the midfield should
be developed because the goalkeeper is very close to the own goal and the midfield has a
very limited moving range.

The final point is that any turning should turn in a “positive” direction in order to avoid
that the ball is kicked towards the own goal by accident.

66 CHAPTER 8. CONCLUSION

Appendix A

Phrases

Playing surface: The miniature of a real soccer field, as the ground of a table soccer game.
Rod: The sticks installed over the playing surface, by which players can control the

figures and playing. Rods are named as goalkeeper, defender, midfield, and attacker by
there position. There are four rods controlled by human beings, as well as the other four
by StarKick.

Playing figure: The single human miniature installed along the rod. There are one
figure on goalkeeper, two on defender, five on midfield, and three on attacker. Only the
bottom of the playing figures can touch the ball.

Lock Ball: Stop the ball by pressing. If the ball is locked, it is stuck between the playing
surface and the playing figure in the lock band.

Lock Band: The rectangle areas on the playing surface, in which the ball can not be
kick in one direction. OnlyLockaction is possible in this band in one direction.

Negative Lock Band: The lock band is at the negative direction with respect to a certain
rod. Negative direction is towards the player’s own gate.

Positive Lock Band: The lock band is at the positive direction with respect to a certain
rod. Positive direction is towards the opponent’s gate.

Kick-able BandThe rectangle areas in which the ball can be kicked out without any
problem in both directions.

Opponent Model: A set of assumptions on the behavior of the opponent. There are four
opponent models in this thesis.

Action Games: The small program designed particularly for practicing and refining
some actions. They are useful on debugging the hand coded basic actions.

Kick Pattern: A map (soccer field) in which all kick actions are shown at the places
where they are going to happen.

Kick Region: A rectangle area in which the playing figure take a specific kick action.
Opponent: StarKick is a game requires two playing sides, human players versus Star-

Kick. In this thesis, human players is always called Opponent.
Own Side: The side controlled by StarKick.

67

68 APPENDIX A. PHRASES

Right, Middle, and Left of the Rod: With respect to the coordinate system of StarKick,
right is the direction of negative y axis; middle is the areas near the zero; left is the direction
of positive y axis.

Dribble: Pass the ball between figures in the same rod. The dribble action in the thesis
is always started at a still state, end ended with a kick action.

Appendix B

Contents of the Appendent CD

Some videos, which record how StarKick is playing, are included in the appendent cd. Be-
sides, all the C++ source code related to this thesis, latex source code to make the thesis,
and experiment data are also included in the appendent CD.

The follows are the list of the directories and files in the CD.

cd:/videovideo records onLockFast, LockSlow, KickFast, KickSlow, KickImmediately,
PassLongBack, PassShortBack, PassParallel, Touch, and some games.

cd:/thesis.pdf: The electronic version of the thesis.

cd:/SourceCode/Program/
mdpState.cpp and mdpState.h:implement the reinforcement learning and the MDP

model.
actionSelectionMdp.cpp and actionSelectionMdp.h: are action selection program of

StarKick
actionControlMdp.cpp and actionControlMdp.h: implement the basic actions. mdp-

ControlWindow.cpp and mdpControlWindow.h: are the GUI.
The program need to be run in StarKick, which is not possible to be included here. The

related source codes are sum to 15156 lines.

cd:/SourceCode/Thesis
All source files for making the thesis document are included in this directory.
plot: includes all raw data to make the present graphs.
figures: includes all images appeared in the thesis.
doc: are some reference readings.

cd:/ExperimentData

69

70 APPENDIX B. CONTENTS OF THE APPENDENT CD

MdpDataBlocked.txt: the learning records for the whole game.
MdpDataClear.txt: the configuration for the Clear model.
MdpDataCentered.txt: the configuration for the centered model
record/: data which record the different learning stage.

List of Figures

2.1 The pictures of (a) KiRo. (b) StarKick. 4
2.2 Software Architecture of KiRo. 5
2.3 Camera view of (a) KiRo and (b) StarKick. 5
2.4 The Visualizations of World Model of (a) KiRo and (b) StarKick 6
2.5 Coordinate System. 6
2.6 Action Control of KiRo [11] . 7
2.7 Action Selection of KiRo [11] . 8
2.8 One Iteration of the Planning [9] . 9

3.1 Action Sets of StarKick . 11
3.2 (a) Negative Lock Band (b) Positive Lock Band 12
3.3 The situations of (a)LockFastand (b)LockSlow 13
3.4 the oscillation of the rods after a turning 14
3.5 The activity diagram of theLockFast . 15
3.6 The three directions of theKick . 16
3.7 (a)PassShortBack, PassLongBack, PassParallel, and (b)Touch 17
3.8 (a) The motor current of thePassLongBackand (b) the situations of the

PassParallel . 17

4.1 The definition of the MDPs [2] . 20
4.2 Value iteration algorithm for calculating the utilities 21
4.3 Policy iteration algorithm [1] . 22
4.4 Adaptive Dynamic Programming with a finite search space MDP model . . 23
4.5 Generic Dyna algorithm [8] . 24
4.6 Simplistic comparison of the architectures: (a) reactive systems, (b) con-

ventional planning, and (c) Dyna architecture [8] 25

5.1 (a)ThePassActionsin the planning and (b) the complexDribbleActionsin
the planning . 28

5.2 State sets of the MDPs. 29
5.3 Kick-able regions . 30

71

72 LIST OF FIGURES

5.4 DribbleStartStates. 31
5.5 Take the basic actions in theDribble module 32
5.6 The applicableCombined-Dribbleactions in one state 33
5.7 Activity diagram of the dribble action(Action, Target). 34
5.8 An example of the(Action, TargetList). 35
5.9 Action sets of the MDP model . 35
5.10 MDP modules in the “playing” process (a)(Start Target)as theDribbleAc-

tionsand (b)(Action, Target)as theDribbleActions 36
5.11 KickEndStates. 37
5.12 The transitions of the(Start, Target)dribble 38
5.13 TheDribbleEndStatesof theSingle-Dribblemodule. 39
5.14 Normalizing theKick transitions in theDynamicmodel 41

6.1 (a) Component of KiRo Behavior System. (b) Layers. 44
6.2 The “control” program . 47
6.3 The kick patterns of the (a)Clear model and (b)Centeredmodel 48
6.4 (a) Medium speed states and (b) low speed states 49
6.5 The activity diagram of the learning . 50
6.6 The activity diagram of learning theDribble module 51
6.7 GUI for (a) Action games and (b) opponent bodels 52

7.1 The success rate of theLockFastin different ball speed. 54
7.2 PassParallel(a) reached regions, stays (b) less than 4 cycles, (c) from 5 to

9 cycles, and (d) more than 10 cycles . 55
7.3 PassShortBack(a) reached regions, stays (b) less than 4 cycles, (c) from 5

to 9 cycles, and (d) more than 10 cycles 56
7.4 PassLongBack(a) reached regions, stays (b) less than 4 cycles, (c) from 5

to 9 cycles, and (d) more than 10 cycles 56
7.5 The utility ofKickImmediatelyStatesandOpponentStatesafter the learning. 58
7.6 Transitions of (a)OpponentAttacker, (b) KickImmediatelyat MiddleAt-

tacker, (c) KickImmediatelyat LeftGoalKeeper, and (d)TouchLeftat De-
fenderLeft1NegativeStill . 59

7.7 The learning of (a)Combined-Dribbleand (b)Single-Dribble. 60
7.8 Learning theSingle-Dribblemodule in the small game (a) raw experiment

data (b) averaged over±10 episodes . 61

List of Tables

7.1 The evalution of theLockSlowandTouchactions 57
7.2 The time expenses for runing the policy iteration algorithm using the dif-

ferent dribble actions. 57
7.3 The performances of different action selection models of scoring 10 times . 62

73

74 LIST OF TABLES

Bibliography

[1] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic pro-
gramming with factored representations.Artificial Intelligence, 121(1-2):49–107,
2000.

[2] Hector Geffner. Modelling Intelligent Behaviour: The Markov Decision Process Ap-
proach. InIBERAMIA, pages 1–12, 1998.

[3] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement
learning: A survey.Journal of Artificial Intelligence Research, 4:237–285, 1996.

[4] S. Keerthi and B. Ravindran. A tutorial survey of reinforcement learning, 1995.

[5] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. Robocup:
A Challenge Problem for AI. InAI Magazine, 1997.

[6] B. Nebel, T. Weigel, and J. Koschikowski. Tischfussball, Hockey oder dergleichen
und Verfahren zur automatischen Ansteuerung der an Stangen angeordneten Spielfig-
uren eines Tischspielgeräts f̈ur Fussball-, Hockey- oder dergleichen. InPatent DE
102 12 475, Deutsches Patent-und Markenamt, Januar 2005.

[7] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. InProceedings of the Seventh International
Conference on Machine Learning, pages 216–224, 1990.

[8] Richard S. Sutton. Dyna, an Integrated Architecture for Learning, Planning and Re-
acting. InWorking Notes of the AAAI Spring Symposium on Integrated Intelligent
Architectures, Waltham MA 00245, 1991.

[9] M. Tacke, T. Weigel, and B. Nebel. Decision-Theoretic Planning for Playing Table
Soccer. InProceedings of the 27th German Conference on Artificial Intelligence,
pages 213–225, Ulm, Germany, 2004.

[10] T. Weigel. Kiro – A Table Soccer Robot Ready for the Market. InKnstliche Intelli-
genz Heft 01/05, 2005.

75

76 BIBLIOGRAPHY

[11] T. Weigel and B. Nebel. Kiro – An Autonomous Table Soccer Player. InProceedings
of RoboCup Symposium ’02, pages 119 – 127, Fukuoka, Japan, 2002.

[12] T. Weigel, D. Zhang, K. Rechert, and B. Nebel. Adaptive Vision for Playing Table
Soccer. InProceedings of the 27th German Conference on Artificial Intelligence,
pages 424–438, Ulm, Germany, 2004.

