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ABSTRACT

Tetris is a stochastic and open-end board game. Several
artificial players were developed to automatically play Tetris.
These players perform well in single games. In this paper,
we developed a platform based on an open source project for
game competitions among multiple players. We develop an
artificial player employed learning by imitation, which is novel
in Tetris. The imitation tasks of playing Tetris were mapped
to a standard data classification problem. The experiments
showed that the performance of the player can be significantly
improved when our player acquires similar game skills as those
of the imitated human. Our player can play Tetris in diverse
ways by imitating different players, and has chances to defeat
the best-known artificial player in the world. The framework
supports incremental learning because the artificial player can
find stronger players and imitate their skills.

A. INTRODUCTION

Tetris was first invented by Alexey Pajitnov et al. in 1984,
and remains one of the most popular video games today. It can
be found in many game consoles and several desktop systems
in PC, such as KDE and GNOME.

Tetris is a stochastic and open-end board game. A piece
of block is dropped from the top of the board. The piece is
randomly chosen from seven predefined ones, and it falls down
step by step. The player can move and rotate the current piece
to place it in a proper position. A new piece appears at the
top of the board after the current one touches the ground. A
fully-occupied row will be cleared and the blocks above it will
automatically fall down one step. The goal of the game is to
build as many such rows as possible.

Two players can compete against each other in Tetris. When
one player places the current piece to clearn rows, the other
player will receive an attack ofn − 1 rows, each of which
containsn−1 empty cells. The attacks are pushed into the game
board from the bottom, raising all the accumulated blocks up
n− 1 steps in the board. The player who has no more space
to accommodate the next piece loses the game.

The single Tetris game was used as a test-bed in the re-
search in artificial intelligence. Researchers developed artificial
players using different approaches [1]. Fehey created a hand-

coded player [2], Böhm et al. employed genetic algorithms
[3], and Szita et al. used cross-entropy methods in Tetris [4].
These players can play the single game, clearing hundreds of
thousands of rows, which would take several weeks or even
months for a human player.

The competition in Tetris is certainly an interesting topic.
In theory, the two-player Tetris is much more complex than
the single one [5]. Assuming both human and the artificial
player handle the piece with the same speed, human players
can defeat the best artificial player with ease in the competition
mode. To our knowledge, the existing artificial players cannot
create many attacks in the competitions. The researchers
evaluate their players mainly in single games.

Imitation is essential in social learning [6]. Assuming the
similarities between the observations and themselves, humans
acquire various skills via imitation. Imitation learning can be
applied in robotics and automatic systems in several ways[7].
For instance, Billard et al. built a system according to the
structure of the human brain [8]. Atkeson et al. developed a
method to explain the actions of a demonstrator, and to use
the explanations in an agent [9].

This paper was motivated by building an artificial player
for the competitions in Tetris. As a human is superior in the
competitions, we employed learning by imitation to clone the
game skills of human players. The highlights of this paper can
be summarized as follows:
• We developed an open source platform for the competi-

tions.
• To our knowledge, learning by imitation is novel in Tetris.
• Our artificial player can acquire diverse game behaviors

by imitating different players.
• Our player has chances to defeat the best-known artificial

player in the competitions.
• The framework supports incremental learning.
This paper is structured in the following manner: first, the

relation between this work and the literature is addressed
in next Section. Then, an open source platform for Tetris
competitions is introduced in Section -B. Next, a method is
developed to map the imitation to a standard data classification
problem in Section -C. After that, the performance of the
developed methods is shown in Section -D. Finally, we draw
the conclusion and discuss the future works in Section -E.

Related Works

Learning by imitation has been widely applied in robotics,



especially in humanoid robots [8]. The core idea of imitation is
to improve the similarity between the imitated system and the
imitator, even if certain physical or virtual dissimilarities exist.
In this paper, a framework is developed to imitate both human
and artificial players. The structure of our approach is certainly
different from human brains or the models of the other artificial
players. Generally, we follow the idea of learning by imitation.
To our knowledge, it is the first time that imitation learning
has been applied in Tetris.

The single Tetris games have been used as test-beds in
several branches in artificial intelligence [1]. For example, the
standard 10×20 Tetris game is still a challenging task for the
methods in reinforcement learning [10] [11]. The number of
rows that a player can clear is widely accepted as a criteria
for the evaluation. So far, several successful artificial players
e.g. in [3], [4], and [2], are based on building an evaluation
function with linear combinations of the weighted features.
These features were listed in [1]. We also employ 19 hand-
coded features in our approach, some of which cannot be
found in the list. Instead of a linear evaluation function, we
use multiple support vector machines in our framework.

Support Vector Machine (SVM) was first proposed by
Cortes and Vapnik in 1995[12], and became an important
method for data classification. SVM is well-developed. I was
implemented in several open source packages which were
available in Internet. In this paper, SVM is used as a tool.
Our implementation is based on LIBSVM [13]. We modeled
the imitation tasks in Tetris as a standard data classification
problem which can be finally solved by SVMs.

Incremental learning is mainly about a series of machine
learning issues in which the training data is available gradually
[14]. It is a special learning method with which a certain
evaluation can be improved by the learning process during
a fairly long period. In order to do that, we defined a learning
paradigm: switching attention learning [15]. In the paradigm,
there are multiple learners with their inputs and outputs
forming a loop. The performance of one learner generates
potential improvement space for the others. Following this
idea, Tetris is used as a test-bed. Our artificial player can
choose a game played by a stronger player as its target to
imitate.

B. AN OPEN SOURCE FRAMEWORK FOR TETRIS

KDE 1 is an advanced desktop platform which provides
user-friendly graphic interface. It is an open source project.
KBlocks is the Tetris game in KDE. We developed KBlocks to
a platform for researches in artificial intelligence. The system
components of KBlocks is shown in Figure 1.

KBlocks can be run in two modes: KDE users can use it
as a normal desktop game; researchers can choose to start a
game engine, a GUI, or a player. The GUIs and the players
are connected to the game engine via UDP sockets. The
components can be run in one or several computers.

KBlocks can be configured with parameters defined in a
text file. The game engine (and the GUI) supports game

1official cite: http://kde.org
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Fig. 1. The System Components of KBlocks

competitions among up to 8 players, in which one player could
be a human. A hand-coded artificial player is integrated [16].
It can clear on average 2000−3000 lines in single games. The
competitions can be done in a synchronized mode, in which
each player gets the new piece after the slowest player finishes
the current placement.

A new artificial player can be integrated into the platform
with ease. We provide a source code package in Internet2,
in which the class KBlocksDummyAI is a clean and simple
interface for the further development. Graduate students can
simply change the source code for their internship or thesis.
Researchers can play around with some ideas or organize
competitions.

C. LEARNING BY IMITATION

In Section -B, we addressed the functionality of the Tetris
platform. In this section, the learning by imitation is discussed
in details. First, we give a brief introduction to the system
components. Then, the patterns, which are used in the filters
and support vector machines (SVMs), are explained. Last, we
address how the SVMs are used for data classification in our
imitation learning.

The training data of the imitation learning are obtained
from the imitated system. In this paper, they are the Tetris
games played by the imitated player. We created several
models to obtain the skills of the imitated player. The training
process receives positive feedback if the models make the
same decision as the imitated system. Otherwise, it receives
the negative feedback. The imitation learning is successful if
the trained models keep the similarity even if the data never
appear in the training set.

The learning system consists of several components, as
shown in Figure 2. We created three catalogs for these
components: the data representation; the algorithms; and the
learners. They are illustrated as the gray rectangles, the regular
rectangles, and the round-cornered rectangles in the figure.

Figure 2 also shows the relations among the components.
We align these components vertically according to the cata-
logs. A lower algorithm uses the outputs of the upper one as
its inputs. The learners computes the models which are used
in the algorithms.

The middle column with the dotted arrow lines shows the
sequence of the computation in the games. With the current

2http://www.informatik.uni-freiburg.de/∼kiro/KBlocksDummyPlayer.tgz
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board state and the piece (s, p), the data preprocessor can
generate up to 34 candidate placements by enumerating all
the rotation and the position of thep. The candidates are
filtered because of the heavy computational power required
by training the SVMs. The rests of the candidates are passed
to the pattern calculator and the hand-coded features. Each
candidate is transferred into a vector of the values of the
patterns and the features. The vectors are used as the input
of the SVM for the prediction. The output of the SVM can be
described as how similar a candidate is to the choice of the
imitated player. Consequently, the most similar one is labeled
as the final choice.

The Learning of the Patterns

Training the SVMs is time consuming. There are 7 different
pieces in Tetris: L, J, O, I, T, Z, and S. To place one of L, J,
or T, there will be 34 candidates by combining all the possible
rotations and positions; O has 9 combinations; I, Z, or S have
17. The candidate chosen by the imitated player is regarded
as the positive case. The others are the negative cases. If the
size of the training set is 10000, there are about 220000 tuples
(cases) in the set. If each tuple is a vector of 39 values, training
a SVM from these data would take more than a week using a
2.3GHz PC.

In order to reduce the data set, the types of pieces are used
in the data preprocessor to separate the data into 7 subsets.
Each subset is used to train its own filter, patterns, and SVM.
In other words, seven SVMs work together in the artificial
player.

When placing the current piece, human players can first
reduce the candidates to a limited number by observing the
surface of the accumulated blocks. Then, they choose one from
the filtered candidates as their final decision. This idea was
used to develop the filters for reducing the amount of data in
the learning.

A filter consists of a set of patterns. Figure 3 shows the
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Fig. 4. The Illustrations of the Features

concept of the patterns. The current piece is denoted by ’c’,
it is an ’L’ in the figure. We use ’x’ to denote the already
occupied cells. Around the placement, a small field, which is
marked in gray, is chosen as the activated area for the patterns.
The patterns are smaller than the small field. For example, the
deeper gray area in the figure shows a pattern. It contains 5×2
cells. The cells with a ’c’ or ’x’ inside are occupied.

A pattern can be activated by a placement. As mentioned
above, the small field is activated by the placement. All the
5× 2 patterns can be enumerated. We move a pattern around
the small field. It is activated by the placement, if the occupied
cells in the pattern match the occupied cells in the background
(the small field).

Filters can thus be learned by counting. If a pattern is never
activated by the placements of the imitated player, it can be
used to reduce the candidates. Each filter is a set of such
patterns. It can be learned by running the activation tests over
all the training data.

Support Vector Machines

The patterns are useful not only in the filters but also for
modeling the skills of the imitated players. For instance, a
pattern was activated 1000 times over the training set, among
which 900 were activated by the positive cases. This pattern
cannot be used in a filter because there are mixed negative and
positive cases. However, activating it apparently indicates that
the placement tends to be positive because of the positive to
negative rate in the training data. Therefore, the patternsare
also used in this section to compute the inputs of the SVMs.

However, the patterns can only get the “local” information.
They are checked within the small field around the placement.
From another aspect, it is important to consider some “global”
parameters in Tetris. For example, a candidate placement can
clear 4 rows. This would be important for the game. The
patterns, however, cannot express this occurrence.

We designed hand-coded features to acquire “global” infor-
mation. If the patterns can define the tactics of the games,
the features can be used to describe the strategies. In order
to define these features, we use Figure 4 to illustrate some
phrases:hole, flat, column, andwell. A well or a hole is buried
if it is no deeper than three cells from the surface.

The features are listed in Table I. Items 2 and 3 are for
the column. Items 4− 6 are about the flat. 9− 11 are for the
hole. 14− 18 are about the well. Our features are compared



TABLE I
List of Hand-Coded Features

1* How many attacks are possible after the current place-
ment.

2 The number of the columns.

3 The increased height of the column.

4 The increased number of the flat.

5 The decreased number of the flat.

6 The maximum length of the flat

7 The increased height of accumulated blocks.

8 The height difference between the current placement and
the highest position of the accumulated blocks.

9 How many holes will be created after the current place-
ment

10 How many holes will be removed after the current
placement.

11* How may occupied cells are added over a hole.

12 The number of removed lines of the current placement.

13* How well will the next piece be accommodated.

14 If a well is closed by the current placement, how deep is
the well.

15 If a well is open by the current placement, how deep is
the well.

16* How may occupied cells are added over a buried well.

17 The number of the open wells.

18 How deep is the well, if it is created by the current
placement.

19 Whether a well is removed by current placement.

with the features listed in [1]; the items with * were not
mentioned. There are differences in the descriptions of the
features because we use them as the inputs of the SVMs. The
other researchers developed the evaluation function with the
linear combinations of the weighted features.

A large number of patterns can be created by enumeration.
For example, an enumeration of 5×2 will create 1024 patterns.
It is difficult to consider all these patterns as the inputs of the
SVMs because of the required computational power. To our
knowledge, there is no trivial way to compute a subset of the
patterns which yield to the optimal performance of the SVMs.
Therefore, we employ the information gain in decision tree
for computing a subset of 20 patterns for each SVM.

SVMs are a popular method in data classification, in which
the whole data set are globally classified with a set of the
labels. Nevertheless, the data in Tetris are grouped by the
current piece. Among the candidate placements of the current
piece, the algorithm needs to choose the one which is closest
to the choice of the imitated player. LIBSVM [13] provides
an API to compute this probability, which is used in our
implementation.

The values of the inputs should be within the same range in
the SVMs. The patterns always have a value of 0 or 1, which
denotes whether or not it is activated by the current placement.
The value of features, however, can be much bigger. For
example, the maximum length of the flat can be up to 9 in
a standard Tetris game. In order to avoid this situation, the
values of the features were mapped to 0, 0.5, or 1 in our
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implementation.

D. EXPERIMENTS

The experiments were done in a grid system. There are 8
computers in the grid. Each computer has 8 2.3GHz AMD
CPUs, and 32G memory. 64 processes can be run in parallel
in the grid.

We recorded 10 games of a human player. Each game lasted
more than one hour. The game speed was limited, so that the
player had enough time for the game. The player can play
Tetris at an amateur level. In total 6720 rows were cleared
in these games. The human player was regarded as the first
imitated player.

The Fehey’s artificial player [2] was run for about 1 hour. It
cleared 6774 lines without a restart. The game was recorded
as the training set. Fehey’s artificial player was the second
imitated player.

The two imitated players had very different behaviors in the
games. If the human player competes with the artificial player
in the synchronized mode, the artificial player has very little
chance to win, because it attacks only a few times.

The recorded data were divided into 150 subsets, 120 of
them were used as the training set. The rests comprised the
testing set, through which the similarity between the trained
models and the imitated players can be calculated the rate that
the trained model chooses the same placements as the imitated
player. The results are shown in the upper plot of Figure 5.
The data were averaged over 10 slices.

The solid lines show the performance of the player that
imitates the human player. The dotted lines are the player
that was imitating Fehey’s player. Both imitations achieved a
similarity of about 0.7. The curves resemble a typical learning
curve because the similarity is regarded as the evaluation in
the learning. The similarity cannot be higher because of the
differences in the data representation and the models between
the imitating system and the imitated systems.

The trained models compete against Fehey’s player in the
synchronized two-player games. 200 random piece sequences
were generated for the 200 games, so that each model was
evaluated in the same set of the games. The middle plot in
Figure 5 shows the winning rates of the imitating players. The
player imitating human finally achieved 0.25 as its rate of wins



Human Fehey’s AI Im. Human Im. AI

Defense
Attack

Risk

Fig. 6. Behavoiurs of Different Players

in the competitions against Fehey’s player. The other imitator
did not perform well because the competitions were between
the imitating and imitated systems. As the similarity cannot be
very high in our implementation, the imitated system should
in principle be better than the imitating system.

The trained models also play the single games. The piece
sequences used in the games were generated and fixed. The
number of handled pieces was used as the evaluation of the
player. The results are shown in the lower plot in Figure 5.
Fehey’s artificial player is better than the human player in the
single games, which explains the observation that the imitator
of Fehey’s player is in the end better than the other imitator.

The training process was designed to search for the maxi-
mum rate of the similarity. The rate reached 0.68 at the 30th

data slice, and kept this value after that. The performance in
the competitions and single games can still be improved after
the 30th data slice. This observation indicates that a bigger
training set helps to improve the game skills, though it does
not improve the similarity in the imitation.

The human player, Fehey’s player, and their imitators have
different behaviors in the games. In order to show the dif-
ference, we designed the evaluations for the attack, defense,
and risk. Each player played the same sequences of the pieces
in the single games. Attack is the average number of attacks
that the player made to clear 100 lines. Defense is evaluated
by the average number of cleared lines of each game. Risk is
measured by the average height of the placements. The results
are shown in Figure 6.

Fehey’s player has a defense ability several levels of sig-
nificance better than the other players. This information was
shown as the open-end column in the figure. The other evalua-
tions were mapped to a comparable range. The human player
has the best attack ability, which explains how its imitator
has chances to defeat Fehey’s player in the competitions. The
two imitators show quite different behaviors according to the
evaluations, which means our imitation learning can generate
various artificial players according to the imitated systems.

E. Conclusions

In this paper, we developed a platform for Tetris com-
petitions. The platform is based on an open-source project.
The GUIs and players can connect with the game engine via
the socket connections. A dummy player was provided as an
interface for further development.

We implemented a framework by using learning by imita-
tion. The framework consists of several sets of filters, pattern

calculators, and SVMs. The imitation tasks were mapped to
a standard data classification problem. The experiments show
that our imitators have chances to defeat Fehey’s player, which
is the best-known artificial player in single Tetris games.
And the imitation learning can acquire diverse skills in Tetris
games.

There are multiple learners in the framework. The learned
artificial player can be used to select an interesting game for
further training. The inputs and outputs of the learners form
a loop so that each performance of one of the learners create
improvement space for the incremental learning.

Discussions

The imitator did not win many games in the competitions.
In the next step, we will develop an extra learner for better
results in the competitions. The initial experiments showed that
the wins in the competitions can be significantly improved by
using the rate of wins as the evaluation in the learning.

Tetris was studied mainly in single games. If the sequence of
the pieces are known, how can a player win the competitions?
AI planning is an interesting direction for further development.
We are going to implement the bandit based Monte-Carlo
planning in Tetris.
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[3] G. K. S. M. N. Böhm, “An evolutionary approach to tetris,” 2005,
in Proceedings of the sixth metaheuristics international conference
(MIC2005).
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