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Abstract. In the field of qualitative spatial and temporal reason-
ing combinations of constraint calculi have attracted considerable re-
search interest in recent years. Beside combinations of spatial and
temporal calculi, it is an important research topic to develop generic
methods for combining calculi dealing with different spatial aspects.
The prototypical example is the combination of the region connec-
tion calculus RCC8 and the point algebra first discussed by Gerevini
and Renz, which allows to represent, and reason about, topologi-
cal and size information about spatially extended objects. To solve
constraints in this calculus, Gerevini and Renz also proposed an al-
gorithm, the bipath consistency algorithm, which allows for decid-
ing consistency of a given constraint network for specific sets of
relations combining topology and size. In this article we will com-
pare the “bipath consistency”-based combination method to the stan-
dard method, which is to combine calculi by generating a new cal-
culus and applying the standard path consistency method. Gerevini
and Renz’s calculus combining topological and size information will
serve as the running example of such combinations and also as a test
case for an empirical analysis.

1 INTRODUCTION
Qualitative constraint calculi are representation formalisms which al-
low for efficient reasoning about continuous aspects of the world.
Many of these calculi discussed in the domain of qualitative spatial
reasoning can be represented as combinations of other, simpler and
more compact formalisms. For example, the cardinal direction cal-
culus [6, 10] can be seen as a specific product of the point algebra
[19] with itself and the rectangle algebra [2, 3] as a twofold product
of the interval algebra [1]. From a formal point of view such orthog-
onal combinations are easily definable and also partially quite well
understood. Contrary to orthogonal product constructions, combina-
tions of calculi are more interesting if the relations considered in the
calculi to be integrated show semantic interdependencies. A typical
example of this sort is the combination of RCC8 [16] with the point
algebra, which allows for representing, and reasoning about, topolog-
ical relations between regions as well as their relative sizes [8, 15].
While orthogonal combinations appear to be of interest if one can
decompose the relations between entities of a given domain into dif-
ferent, logically independent aspects that can be handled in simpler
formalisms, semantically interfering combinations aim at increasing
the expressiveness of the formal language used to describe relations
between objects in the domain at hand.

From a more practical point of view, semantically interfering com-
binations play an important role, whenever qualitative spatial infor-
mation originating from different sources needs to be integrated and
processed by exploiting exactly these semantic interdependencies.
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For example, knowing the relative sizes between objects will already
restrict the topological relations that are possible between these ob-
jects, and vice versa.

With regard to non-orthogonal combinations, there exist two dif-
ferent possible combination strategies. Gerevini and Renz [8] pro-
posed a method for integrating such formalisms in a loose way by
considering constraint networks in which edges can be labeled by
pairs of relations, each of which stemming from one of the combined
calculi (i.e. each edge is labeled by both a topological relation and
a relative size relation). For reasoning with such constraint networks
(following referred to as biconstraint networks), Gerevini and Renz
also presented an adaption of the usual path consistency algorithm
(see, e.g. [13]), called bipath consistency algorithm, and showed that
this algorithm decides satisfiability for a rather large class of bicon-
straint networks with topological and comparative size relations.

The second strategy is to build a new constraint language, which in
general leads to a more tight integration. While in the bipath consis-
tency method semantic interdependencies are repeatedly propagated
in the reasoning processes in one of the component calculi, these in-
terdependencies are exploited to define a new set of base relations
and a new composition table, which is often more refined than the
composition table that one obtains by taking the Cartesian product
of the composition table entries of the component calculi. If such
a compositional refinement is not performed reasoning in the new
combined calculus (via the usual path consistency method) will just
provide an upper approximation, of course.

In this paper we will investigate and compare both methods in
more detail. For this Gerevini and Renz’s combination of RCC8 and
the point algebra will serve as our running example. We will first
show that tight integrations are more expressive than loose integra-
tions via biconstraint formalisms. Then we will report on a series of
empirical tests in which we compared both methods on random in-
stances. These results suggest that the bipath consistency approach
performs well, if tractable subclasses of the component calculi are
known and applied in the reasoning process. If reasoning is per-
formed in comparatively small combined calculi or if no tractable
subclasses are known for the component calculi, the method of build-
ing a new calculus may be more advantageous.

2 QUALITATIVE CONSTRAINED-BASED
REASONING

Reasoning tasks in qualitative calculi are usually cast as constraint
satisfaction problems over infinite, continuous domains. In order to
check, for example, the consistency of a spatial description, one rep-
resents the given information as a constraint network based on an
appropriate spatial calculus. Such constraint networks can be repre-
sented as a directed labelled graphs containing the variables as nodes
and information about relations between two variables as labeled



edges.
Since it is not possible to check all possible assignments to vari-

ables of the network in the given domain until one finds a solution
of the network (because of the infinite domains), other techniques
based on the algebraic and semantic properties of the considered cal-
culus must be applied for testing satisfiability. The path consistency
algorithm [12, 5] operates on the associated constraint graph by suc-
cessively refining the labels Rx,y (on the edge from node x to node
y) via the operation Rx,y ← Rx,y ∩ (Rx,z ◦ Rz,y), where z is any
third variable occurring in the network.

Since, in general, the path consistency method is not sufficient to
decide consistency of constraint networks, chronological backtrack-
ing can be used, hence trying out different instantiations of the con-
straints containing disjunctions of base relations [9, 18]. Moreover,
by using known tractable subclasses of a calculus (i.e., sets of rela-
tions closed under intersection and composition, for which the path
consistency method decides consistency), one can speed up the rea-
soning time: instead of splitting a constraint during backtracking into
base relations, one can split it into relations belonging to a tractable
subclass, which reduces the branching factor of the search tree con-
siderably [14].

3 EXAMPLE: RCC8 WITH RELATIVE SIZE
CONSTRAINTS

Among other combinations, such as topology and metric size con-
straints, Gerevini and Renz [8] studied the combination of RCC8
with qualitative size relations (i.e. the point algebra, following re-
ferred to as QS). The domain of this combination is the set of all
measurable spatial regions.2 A combined problem instance for RCC8
and QS is given by two sets of constraints on the same variables,
such that one set of constraints uses relations only from RCC8 and
the other one only relations fromQS (biconstraint networks). Hence,
each problem instance consists of two qualitative constraint networks
on the same set of variables and each network only has constraints
from one calculus. A solution of a biconstriant network is an assign-
ment that simultaneously satisfies the constraints in both constraint
networks. The two constraint networks are not independent, since the
constraints from RCC8 and QS do not necessarily share a common
solution. For example, Figure 1 depicts two such constraint networks
that are individually but not jointly satisfiable.

As can be seen in the (not minimal) example depicted in Figure 1,
not even atomic constraint networks need to share a common solu-
tion. In the example, a needs to be a non-tangential proper part of b,
but a must also be larger than b, which is semantically impossible.
This means that base relations from RCC8 impose constraints on the
possible relations inQS, and vice versa; e.g., if a equals b, they cer-
tainly have the same size. These constraints can be represented by so-
called interdependency tables. An interdependency table assigns to
each base relation of one calculus the strongest entailed relation from
the other calculus. The notation IΓ→Γ′ will be used to refer to such
interdependency maps. Figure 2 presents the interdependency tables
for RCC8 and QS. So, for instance, IRCC8→QS({TPP}) = {<}.
Since a relation is a disjunction of base relation, a non-base relation

2 Measurable sets are needed in order to adequately define qualitative size
relations between regions in a topological space. Gerevini and Renz [8] re-
strict consideration to measurable sets of Rn, e.g., spheres. For measurable
entities, the three ordering relations <, >, = can be used to compare enti-
ties with respect to size. These relations form a partition schema on each set
of measurable regions. The resulting calculus QS has the same algebraic
structure as the point algebra.
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Figure 1. Two qualitative constraint networks over a domain of
measurable spatial regions, the first with relations from RCC8 and the

second with relations fromQS. Although both are satisfiable, they do not
have a common solution.

R entails the union of all relations entailed by the base relations from
R:

IΓ→Γ′(R) =
[

B∈R

IΓ→Γ′(B).

This means that we can extend interdependency maps from base re-
lations to arbitrary relations considered in the calculi.

Furthermore, the interdependency approach can be applied to any
semantically interfering combination of calculi expressible via a bi-
constraint formalism.

B ∈ QS S ∈ RCC8
= |= DC, EC, PO, EQ
> |= DC, EC, PO, TPPI, NTPPI
< |= DC, EC, PO, TPP, NTPP

B ∈ RCC8 T ∈ QS B ∈ RCC8 T ∈ QS
TPP |= < DC |= ∗

NTPP |= < EC |= ∗
TPPI |= > PO |= ∗

NTPPI |= > EQ |= =

Figure 2. Interdependency tables for RCC8 andQS (cf. [8]). The symbol
∗ denotes the universal relation inQS. Like composition table entries, lists

of base relations are read disjunctively.

4 BIPATH CONSISTENCY
To decide consistency of biconstraint networks (for the combination
of RCC8 and QS) Gerevini and Renz [8] propose the bipath con-
sistency algorithm.3 Bipath consistency enforces algebraic closure
to both constraint networks in parallel and transfers information be-
tween the two constraint network using the interdependency tables.
Hence, all operations on relations are performed separately in the two
calculi except for transferring information using the interdependency
tables. The function Enforce-Bipath-Consistency given in
Algorithm 1, turns two given constraint networks into bipath consis-
tent networks, such that both constraint networks are algebraically
closed and each constraint (x, y, R) in one constraint network is con-
sistent with the constraint (x, y, R′) in the other constraint network.

3 In the light of [11] one should keep in mind that the path consistency
method does not necessarily enforce path-consistent networks, but just al-
gebraically closed ones. If one prefers the name “algebraic closure algo-
rithm” one should use the term “bialgebraic closure algorithm” as well. In
this work, however, we will use the term “bipath consistency algorithm” as
established in the literature.



The algorithm is based on the path consistency algorithm by Villain
and Kautz [19, 4]. Its time complexity and space complexity is still
O(n3) and O(n2), respectively.

Input: Two normalized qualitative constraint networks C, C′

with constraints (vi, vj , Sij) in C, (vi, vj , Tij) in C′,
1 ≤ i, j ≤ n and variables v1, . . . , vn. ◦, ◦′ refer to the
symbolic composition operations from the two calculi Γ,
Γ′ and ∗, ∗′ to their universal relations.

Output: The algorithm returns true if bipath consistency has
been enforced and false if one of the constraint
networks includes the empty relation.

Enforce-Bipath-Consistency(C, C′)
Q← { (i, j) | i < j }
while Q 6= ∅ do

select and remove a tuple (i, j) from Q
for k ∈ {1, . . . , n} : k 6= i, k 6= j do

if Birevise(i, j, k) = true then
if Sik = ∅ or Tik = ∅ then return false
else Q← Q ∪ { (i, k) }

if Birevise(k, i, j) = true then
if Skj = ∅ or Tkj = ∅ then return false
else Q← Q ∪ { (k, j) }

return true

Birevise(i, k, j)
if IΓ→Γ′(Sik) ∩ Tik = ∗′ and IΓ′→Γ(Tik) ∩ Sik = ∗ then

return false
if IΓ→Γ′(Skj) ∩ Tkj = ∗′ and IΓ′→Γ(Tkj) ∩ Skj = ∗ then

return false
oldTij ← Tij

oldSij ← Sij

Tij ←
`
Tij ∩ IΓ→Γ′(Sij)

´
∩“`

Tik ∩ IΓ→Γ′(Sik)
´
◦′
`
Tkj ∩ IΓ→Γ′(Skj)

´”
Sij ←

`
Sij ∩ IΓ′→Γ(Tij)

´
∩“`

Sik ∩ IΓ′→Γ(Tik)
´
◦
`
Skj ∩ IΓ′→Γ(Tkj)

´”
if Sij 6= oldSij then

Tij ←
`
Tij ∩ IΓ→Γ′(Sij)

´
if Sij = oldSij and Tij = oldTij then

return false
Tji ← T−1

ij

Sji ← S−1
ij

return true

Algorithm 1: The bipath consistency algorithm by Gerevini and
Renz in a general form. See [8] for the original algorithm, with
IΓ→Γ′ , IΓ′→Γ directly referring to interdependencies between QS
and RCC8.

For bipath consistency and the combination of RCC8 with QS,
Renz and Gerevini proved the following theorem with regard to the
maximal tractable subclasses of RCC8 ( bH8, C8, andQ8; see [17]):

Theorem 1 (cf. [8]) The bipath consistency algorithm decides con-
sistency for biconstraint networks over RCC8 and QS if all topo-
logical relations in the network are contained in the same tractable
subclass (e.g bH8, C8, andQ8).

Due to the time and space complexity of the bipath consistency
algorithm, it follows that biconstraint networks over RCC8 and QS

can be decided with a time complexity of O(n3) and a space com-
plexity of O(n2), if they contain only topological relations from one
of the three maximal tractable subsets.

The bipath consistency approach has the advantage that the sym-
bolic composition is calculated only within one calculi at a time with
added information from the interdependency tables. This does not
increase the complexity of the reasoning compared to the algebraic
closure method. However, formal languages based on biconstraint
networks are limited in terms of expressiveness. With biconstraint
networks one can only express conjunctions of disjunctions of atomic
expressions in one calculus; i.e., it is only possible to specify indefi-
nite knowledge within one calculus at a time. By a biconstraint net-
work in two variables, one could, for example, express:

(a < b ∨ a = b) ∧ (a NTPP b ∨ a DC b).

But, it is in general impossible to specify mixed indefinite knowledge
such as expressed in

(a < b ∧ a DC b) ∨ (a = b ∧ a EC b). (∗)

By using biconstraints one can only express {<, =} for the size
aspect and {DC, EC} for the topological aspect, which is equivalent
to:

(a < b ∨ a = b) ∧ (a DC b ∨ a EC b).

But the latter formula would also be true in one of the following
cases:

a < b ∧ a EC b

a = b ∧ a DC b

To express the original relation (∗), it is inevitable to form tight
constraint networks, by considering the calculus that results from
taking as base relation those pairs of base relations from the com-
ponent calculi that are permitted by the interdependency tables. Re-
lations in this new calculus are then just unions of such base re-
lation pairs. In the given example, one can express (∗) by the set:
{(DC, <), (EC, >)}.

To put this more formally, we define:

B := { (B1, B2) | B1 ∈ RCC8, B2 ∈ QS,

B1 ∈ IQS→RCC8(B2), B2 ∈ IRCC8→QS(B1) }

Furthermore, the Birevise function already induces a compo-
sition function for these new base relations in B. Since base relations
correspond to biconstraints, one can define a composition by:

(B1, B2) ◦ (B′1, B
′
2) :=

`
(B1◦1B′1)× (B2◦2B′2)

´
∩ B,

where ◦1 and ◦2 are the compositions in the original calculi RCC8
and QS, respectively. The intersection with B merely removes pairs
of relations that are empty. Moreover, the above defined composition
is extended to arbitrary relations in the usual way:

{B1, . . . , Bk} ◦ {B′1, . . . , B′l} =

k[
i=1

l[
j=1

Bi ◦B′j

Although the composition of base relations follows from the
Birevise function, its extension to general relations differs from
the results of the Birevise method. For example, consider the fol-
lowing composition for biconstraints:

({TPP, TPPI}, {<, >}) ◦ ({PO}, {<}) (1)



Both biconstraints are already refined (w.r.t. semantic interdepen-
dencies). Applying the Birevise function will not exclude the
biconstraint ({DC}, {>}): the relation DC is only obtained from
the composition of {TPP} and {PO}, not from the composition of
{TPPI} and {PO}. Now, if the biconstraints in (1) are written as re-
lations using combined base relations, one obtains:

{(TPP, <), (TPPI, >)} ◦ {(PO, <)} (2)

The left relation in (2) does not include (TPP, >), since this is not
permitted by the interdependency tables. From the composition ta-
bles of RCC8 and QS it then follows that the base relation pair
(DC, >) is not part of the composition result.

Since it is easy to see that all resulting base relations with the de-
fined composition also appear in the result of the Birevise func-
tion on biconstraints, it immediately follows with Theorem 1:

Theorem 2 ( bH8 × P{<,=,>}) ∩ B is a tractable subclass4 of the
qualitative constraint calculus obtained by combining base relations
to pairs with entries from RCC8 and QS. Consistency is decided by
the path consistency algorithm.

With this tight integration, we obtain a more expressive formal-
ism which opens up more possibilities in terms of representation and
reasoning, but at the same time requires more space to represent and
thus more time to process, as there are more different relations. The
loose integration features (28 − 1) + (23 − 1) = 1785 pairs of
non-empty relations. Of those, 1749 represent non-empty pairs if the
interdependencies are taken into account, and further only 549 dis-
tinct pairs of relations are obtained if the pairs are refined using the
interdependencies. This means only 550 semantically different rela-
tions (including the empty relation) exist between objects within the
loose integration. For the tight integration we obtain 14 base rela-
tions and hence 214 = 16384 relations. This begs the question how
this large number of relations actually compares to the loose integra-
tion in terms of reasoning performance. In the following we report
on some of our empirical results.

5 EMPIRICAL RESULTS
We compared the performance of reasoning on RCC8 and QS in-
formation using the two distinct approaches of tight and loose in-
tegration. To achieve this, the consistency of randomly generated
constraint networks had to be decided by each approach. For this a
backtracking search over constraint decompositions was performed
with (a) the path consistency algorithm and (b) the bipath consis-
tency method as forward checking. Path consistency is referred to as
algebraic closure in the following.

The bipath consistency method was implemented in the Generic
Qualitative Reasoner (GQR) [7], which is under active development
at the Universities of Freiburg and Hildesheim. Both procedures were
evaluated on randomly generated instances from the transition phase.
To provide a fair comparison, the generated constraint networks used
constraints that have a Cartesian product form, such that the two
procedures had equivalent inputs. We used the network degree as
the control parameter (cf. [15]). Hence, with n being the number of
nodes and d the average degree of the graph, n·d

2
edges were set to

non-empty uniformly distributed relations of Cartesian product form
for each instance. We found that a degree of only 2.25 already results

4 We use the term “subclass” but do not want to imply that it is algebraically
closed.

in instances for which the probability of being consistent is around
50% for graphs with 100 nodes. A degree of 2 was used to setup all
of the instances used in the following regardless of their actual net-
work size. The benchmarks were run on a Intel Xeon processor with
3GHz and 3 gigabyte of memory.

If no tractable subclasses are used, then reasoning with the back-
tracking algorithm in conjunction with algebraic closure turns out to
be faster than the backtracking algorithm using bipath consistency. A
corresponding plot showing the average runtime of both approaches
on 250 instances for each node size can be seen in Figure 3.
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Figure 3. CPU runtime for reasoning with backtracking using algebraic
closure and backtracking using bipath consistency. Relations were split to

base relations.

Interestingly, the worse performance of bipath-consistency-based
reasoning is entirely due to the size of the explored search space and
not due to the runtime of the bipath consistency algorithm itself. This
can be seen from the plot in Figure 4 showing only the runtime of
algebraic closure and bipath consistency. From this, it can be con-
cluded that the worse performance of bipath consistency is due to
the weaker refinements during forward-checking performed by bi-
path consistency.
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Figure 4. CPU runtime of algebraic closure and bipath consistency.

However, if the tractable subclass ( bH8 × P{<,=,>}) ∩ B is ex-



ploited, reasoning with bipath consistency outperforms all others –
even if the tractable subclass is used for reasoning with the alge-
braic closure method as well. In this case, bipath-consistency-based
reasoning benefits from two factors. Firstly, because of the com-
pact representation it is more likely that pairs of relations are in the
( bH8 × P{<,=,>}) ∩ B class, whereas the algebraic closure method
might refine relations further, such that they are not included in the
tractable subclass anymore. Secondly, if definite information about
qualitative size between two entities is given, then the topological
relation already refines to a relation from bH8 (cf. [8]). The corre-
sponding plot can be seen in Figure 5. Also, reasoning with algebraic
closure performs badly when used in conjunction with the tractable
subclass. It is nearly two times slower than algebraic closure with
splittings to base relations. A further analysis of the number of vis-
ited nodes (not given within in this article) reveals that this is due to
the lack of guidance for the search. It should be noted that this is most
likely due to the fact that the implementation only used an approx-
imative decomposition of relations into relations from the tractable
subclass and that no heuristic search was used in all of these bench-
mark runs.
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6 CONCLUSION

We have shown how reasoning based on the bipath consistency al-
gorithm can be compared with reasoning using search and alge-
braic closure. From our empirical evaluation, it can be concluded
that bipath consistency performs well, if appropriate tractable sub-
classes are used or if the calculus size is so large that a tight, but
non-compact representation slows down other procedures. When rea-
soning is performed within comparatively small combined calculi
or when tractable subclasses are unknown, reasoning with algebraic
closure can be faster. On the other hand, application of the bipath
consistency method will limit the expressiveness and performs a
worse forward checking in general.

The bad performance of algebraic closure using the tractable sub-
class also leads to the conclusion that heuristic search methods
should be used to improve reasoning performance in this case. At
least for the combination of RCC8 with QS it seems possible that
this could perform better than bipath consistency with tractable sub-
classes.
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