
Nogoods in Qualitative
Constraint-based Reasoning

Matthias Westphal and Julien Hué

Department of Computer Science, University of Freiburg,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany
{westpham,hue}@informatik.uni-freiburg.de

Abstract. The prevalent method of increasing reasoning efficiency in
the domain of qualitative constraint-based spatial and temporal reason-
ing is to use domain splitting based on so-called tractable subclasses. In
this paper we analyze the application of nogood learning with restarts in
combination with domain splitting. Previous results on nogood recording
in the constraint satisfaction field feature learnt nogoods as a global con-
straint that allows for enforcing generalized arc consistency. We present
an extension of such a technique capable of handling domain splitting,
evaluate its benefits for qualitative constraint-based reasoning, and com-
pare it with alternative approaches.

1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a knowledge represen-
tation discipline that deals with information about relations between objects
defined on infinite domains, such as time and space. For example, two entities
in space might “overlap” or one is a “part of” the other. A common reasoning
task considered in QSTR is to solve constraint satisfaction problems over infinite
domains with constraints from a fixed finite set of relations. With only a finite
number of qualitative relations posing as constraints between entities, the idea
is to employ inference techniques to tighten these constraints.

Constraint-based QSTR problems can be considered as entirely symbolic
tasks where the qualitative relations are treated as symbols. Naturally, this leads
to a constraint satisfaction problem on a finite domain where qualitative relations
are possible values and constraint propagation enforces matching relation tuples.
This type of QSTR has mostly benefited from the development of large tractable
subclasses used by domain splitting branching rules [1, 2].

Recently encodings of these problems into Boolean SAT-formulas have at-
tracted considerable interest. The obtained benchmarking results [3, 4] indicate
that the constraint-based QSTR methods very often result in good runtime due
to the use of fast, optimized constraint propagation algorithms and domain split-
ting. However, the results also show that the exploration of the search space is
worse on very hard problems compared to SAT solvers on optimized encodings.
This suggest that a blend of SAT/CSP and QSTR techniques should produce

better results. More specifically, associated with runtime distributions is the
technique of restarting search with learning so-called nogoods – parts of the
search space that do not contain a solution.

We pursue the questions of the impact of nogood learning and restarts on
QSTR problems and how nogood learning can beneficially be used with special-
ized constraint propagation and domain splitting. There is a number of different
approaches that can be taken – here, we focus on solutions that put nogoods
on top of arbitrary propagation techniques. In particular, we mainly discuss a
lightweight solution that does not perform a conflict analysis at each conflict
which has the benefit of being easier to integrate and causes almost no time
overhead on easy problem instances. We only briefly discuss our experience with
conflict analysis at each conflict.

The outline of this paper is as follows. In the next section we give stan-
dard definitions for concepts from constraint satisfaction. In Section 3 we give
some background on QSTR and in Section 4 we introduce techniques to com-
bine nogoods with domain splitting. Section 5 outlines our implementation and
evaluates the proposed techniques. Finally, Section 6 gives our conclusions.

2 Notation

We define several standard concepts of CSPs.

Definition 1. A finite constraint satisfaction problem (finite CSP) is an
ordered tuple 〈V,D, C〉, where (i) V is a finite set of variables, (ii) D is a finite set
of values (the domain), (iii) C is a finite set of constraints, where each constraint(
(v1, . . . , vn), R

)
consists of a relation R on Dn and a scope v1, . . . , vn ∈ V.

Definition 2. A solution ϕ of a finite CSP 〈V,D, C〉 is a function ϕ : V → D
such that for each constraint

(
(v1, . . . , vn), R

)
∈C it holds

(
ϕ(v1), . . . , ϕ(vn)

)
∈R.

We consider depth-first search (DFS) with an inference algorithm φ. To this
end, let dom(v) ⊆ D denote the set of remaining domain values of a variable
v ∈ V at a search node. For backtracking search, we restrict ourselves to a 2-
way branching scheme that employs a domain splitting branching rule [5] which
restricts possible values of a domain rather than assigning a specific value.

Definition 3. A decision on a variable v ∈ V during DFS on a finite CSP
〈V,D, C〉 is a unary constraint on v, written v ← D = {a1, . . . , an} (dom(v),
that restricts the remaining values of v at succeeding search nodes.

In the 2-way branching scheme, we first perform a positive decision v ← D
at a search node, and once we backtrack to this node, a negative decision v 6← D
which is a shorthand for v ← dom(v) \D. Each branch of the search tree can be
seen as a sequence of decisions 〈v1 ← D1, . . . , vn ← Dn〉, where at each search
node i we apply φ after enforcing vi ← Di. The remaining values of each variable
v ∈ V are restricted by φ and we backtrack whenever dom(v) = ∅.

In order to combine nogoods with domain splitting, we require generalized
nogoods which cover not only assignments of single values to variables, but also
arbitrary sets of values.

Definition 4 ([6]). A generalized nogood of a finite CSP 〈V,D, C〉 is a se-
quence of decisions 〈v1 ← D1, . . . , vn ← Dn〉 such that there is no solution for
〈V,D, C ∪ { (vi, Di) | 1 ≤ i ≤ n }〉.

3 Qualitative Constraint-Based Reasoning

Usually constraint satisfaction problems are assumed to be defined on a finite
domain. Solutions (or a proof that none exists) are usually generated by explicitly
assigning values to variables. In contrast, within constraint-based QSTR one
considers constraints on infinite domains like time (e.g. the domain Q) or space
(e.g. the domain Q2). Hence, there is no basic default method like enumerating
possible solutions to handle such problems. A key idea in QSTR is to consider
as input constraint languages build on finitely many constraint relations. In this
work, we consider input languages built on a partition scheme defined as follows.

Definition 5 ([7]). A partition scheme on an infinite domain D∞ is a finite
set B of binary relations on D∞ that forms a partition of D∞ × D∞, contains
the identity relation { (x, x) | x ∈ D∞ }, and is closed under converses (B−1 :=
{ (y, x) | (x, y) ∈ B } ∈ B for B ∈ B).

Relation Example

I before J I
J

I meets J I
J

I overlaps J I
J

I during J I
J

I starts J I
J

I finishes J I
J

I equals J I
J

Relation Example

x disconnected y x
y

x externally connected y
x y

x partially overlaps y x
y

x non-tangential proper part y
y
x

x tangential proper part y x y

x equals y x, y

Fig. 1. Base relations (without converses); left : Allen’s Interval Calculus, right : RCC-8.

Elements of B are called base relations of the partition scheme and exhaus-
tively describe possible, distinct relations between entities. As an example con-
sider the base relations of Allen’s Interval Calculus [8] (AIC) for temporal rea-
soning and the Region Connection Calculus [9] with 8 base relations (RCC-8) for
spatial reasoning in geographic information systems, depicted in Fig. 1.

To deal with indefinite knowledge we allow disjunctions of base relations
to form relations between entities, e.g. if x1 happened before or after x2 we
can write (x1 beforex2 ∨ x1 afterx2). We write B∗ to denote the set of all pos-
sible disjunctions of base relations. This allows us to form logic statements
about the relationship between multiple entities x1, . . . , xn ∈ D∞ by a formula:∧

1≤i<j≤n(
∨

1≤l≤k xiB
l
ij xj), B

l
ij ∈ B. Such formulas are referred to as qualitative

constraint networks.

The fundamental reasoning task for qualitative constraint networks is the
consistency problem, i.e., deciding whether the input is consistent wrt. given
inference rules. We here use the relation-algebraic approach that utilizes com-
position (denoted by ◦) on relations to establish local consistency on D∞. The
composition approach (often referred to as path consistency) is equivalent to a
complete set of valid inference rules of the form

∀x, y, z ∈ D∞ : (x R′ y ∧ y R′′ z)→ ¬(x R z), (1)

for R,R′, R′′ ∈ B∗ and R = (R′ ◦R′′). In other words these rules remove those
base relations from every triple that are not locally consistent. For example, we
can conclude that (x ≺ y) ∧ (y ≺ z) ∧ (x � z) is contradictory, since (x ≺
y ∧ y ≺ z) → ¬(x � z ∨ x = z) is a valid rule. Thus, dealing with qualitative
constraint networks can be cast as a finite constraint satisfaction problem. Here,
V = {xij | i < j } ,D = B∗, C = { inference rules (1) }, where xij refers to the
relation between xi and xj . The latter can be used as an intensional constraint
to avoid grounding the rules to tables for all triples. Enforcing these rules is
equivalent to generalized arc consistency (GAC) (see, e.g. [3] for a discussion
and related work). In general, the set of constraints C can be seen as a global
constraint where the inference used is not necessarily built on rules in the form
of (1), e.g. [10]. However, we stick to these rules in this work as it is a general
approach to several qualitative formalisms. The nogood technique introduced
herein is also applicable to specialized inference algorithms.

It is clear that valid rules in the form of (1) can be used to refute statements
as every rule itself is a logically correct inference. The converse, however, is not
necessarily true, as it depends on a “local-to-global” consistency property1 of
the used qualitative calculus (and D∞). Whether there is such a set of rules that
is refutation complete, depends on the used relations and D∞. Problems of this
type are in general undecidable, but both AIC and RCC-8 have good properties
in this regard as we will briefly discuss next.

For both AIC and RCC-8, rules (1) are not refutation complete on the sets B∗
(reasoning here is in fact NP-complete). However, the rules are refutation com-
plete for B. Moreover, these rules are refutation complete for the sets ORD-horn
for AIC, and Ĥ8 for RCC-8. Both ORD-horn and Ĥ8 are strictly larger than the
set of base relations and are maximal tractable subclasses (see [1, 2] for detailed
discussion and proofs). The set ORD-horn covers 868 of all the 8192 relations

in AIC, Ĥ8 covers 148 of all the 256 relations in RCC-8. Such tractable sub-
sets motivate the following approach for solving instances that has been used in
qualitative reasoners: (a) use domain splitting to refine relations such that they
are included in a fixed tractable set, (b) maintain local consistency by using the
inference rules on qualitative relations. Wrt. (a), it has been shown [11] that
decisions should need only to take place once per variable on a search branch.

1 Not to be confused with “global consistency” which is a stronger property.

4 Nogoods in Constraint-based QSTR

There exist different approaches to learning nogoods. We mainly consider the
lightweight approach of Lecoutre et al. [12] where nogoods are only extracted
from search once a solver restarts. Another approach is the work by Katsirelos
and Bacchus [6] where nogoods are learnt from each conflict. We here analyze
how the lightweight approach, originally only considering decisions as assign-
ments of single values, can be extended to generalized nogoods and where this
generalization worsens complexity bounds. For this we only briefly repeat dis-
cussion and arguments found in the work by Lecoutre et al. as our focus is on
domain splitting. More details (without domain splitting) can be found in their
paper. In the following, we assume a finite CSP 〈V,D, C〉 and use the following
notation for complexity bounds: n as the number of variables in V, d as the size
of the domain D, N as the set of learnt nogoods.

4.1 Extracting Nogoods from Search

The easiest way to learn nogoods during search is to use the current sequence
of decisions whenever backtracking occurs. Hence, we limit ourselves to nogoods
that are (sub-)sequences of decisions starting from the root node of the search
tree. This makes extracting and using nogoods easier, but also means that no-
goods derived in this way are useless for the current DFS, because the 2-way
branching scheme already incorporates information from such failures. For this
reason, we use nogoods in combination with restarts of the DFS.

It is sufficient to only consider the last branch of the search to derive no-
goods, since due to the 2-way branching scheme all previous decision failures are
accounted for. To extract the set of nogoods, we consider all prefixes of the cor-
responding sequence of decisions that end in a negative decision. For each such
sequence 〈v1 ← D1, . . . , vi 6← Di〉, 〈v1 ← D1, . . . , vi ← Di〉 was shown to be a
nogood. All negative decisions can be stripped from each nogood since negative
decisions were implied by the search. Additionally, we can try to minimize these
nogoods by looking for a subset of its decisions where inference already finds a
contradiction as in [12]. The number of nogoods derived from a search branch is
unaffected by the generalization to domain splitting, unlike space complexity.

Proposition 1. The space complexity of storing all nogoods that can be ex-
tracted from a search branch is O(n2d) for singleton assignments [12] and O(n2d2)
for domain splitting.

Proof. We argue as in [12]: there are O(nd) nogoods derived from the branch,
each of them covering O(n) positive decisions. Each decision (with domain split-
ting) requires O(d) space and hence O(n2d2) space is required to store nogoods.

4.2 Using Nogoods for Inference

Following the approach by Lecoutre et al., we treat nogoods as additional con-
straints and take them into account when establishing GAC. Each nogood 〈v1 ←

D1, . . . , vn ← Dn〉 constitutes the constraint dom(v1) 6⊆ D1∨· · ·∨dom(vn) 6⊆ Dn.
For propagation, we consider a lazy data structure built on watched literals.

Unfortunately, our extension to generalized nogoods causes the original ap-
proach of [12] to be not directly applicable. For singleton assignments it is suf-
ficient to check if a variable equals a previous decision. For decisions based on
domain splitting, we need to check subset relations. We stick to the idea of
watched literals and extend the original idea by Lecoutre et al. as follows. We
associate two watched literals with each nogood, but a decision v ← D is associ-
ated with a watched literal (v, a) where a 6∈ D. As long as a (v, a) is part of the
network, the restriction associated with the decision v ← D has not happened
in the network and the watched literal is valid. Further, we need to make sure
that both watched literals of a nogood are on different variables, since two valid
watched literals guarantee GAC and otherwise restrictions on domain values
apply.

Algorithm 1 Propagation with watched literals for nogood constraints.

1: function propagate(queue)
2: while queue 6= ∅ do
3: v ← pick and remove variable from queue
4: for each a removed by revise or removed on v do
5: if not removed(v, a, queue) then
6: return false
7: for every constraint C involving v do
8: for w ∈ scope(C) \ {v} do
9: if revise(w, C) then

10: if dom(w) = ∅ then
11: return false

12: queue ← queue ∪ {w}
13: return true

Algorithm 1 gives the constraint propagation with GAC for generalized no-
goods. It is a regular propagation function with a revise function that handles
the constraints C and additional lines 4-6 that take care of learnt nogoods. The
function removed will handle the learnt nogoods and we invoke it O(nd) times
in our scheme, as opposed to the original algorithm by Lecoutre et al. which
only invokes it if a domain becomes singleton (which only happens O(n) times).

Algorithm 2 details removed and shows how watched literals are managed
and GAC performed on nogoods. In order to achieve a low time complexity,
we note that the order of decisions in a nogood is originally unimportant, such
that we can arrange them in a way where decisions that cannot be watched
anymore are ordered before the currently watched ones. The consequence is that
during constraint propagation every decision in a nogood is analyzed only until
it cannot be watched anymore. This requires a preprocessing step before each
constraint propagation that moves the currently watched decisions to the front of
the nogood, and requires modifying the for-loop over decisions in removed, such
that only decisions behind the currently watched ones are considered (see [12]).

Algorithm 2 Enforce generalized arc consistency on N .

1: function removed(v, a, queue) . a was just removed from dom(v)
2: for each nogood N that watches (v, a) do
3: Let (v′, a′) be the other watched literal in N
4: Let D′ be the assigned set in v′ ← D′ ∈ N
5: if dom(v′) ∩Dv′ 6= ∅ then . applicable
6: changed ← false

7: for each decision v′′ ← D′′ ∈ N , v′′ 6= v′ do
8: if dom(v′′) 6⊆ D′′ then
9: Let (v′′, a′′), such that a′′ ∈ dom(v′′) \D′′

10: Replace (v, a) with (v′′, a′′)
11: changed ← true

12: break
13: if not changed then . enforce GAC
14: dom(v′)← dom(v′) \D′

15: if dom(v′) = ∅ then return false

16: queue ← queue ∪ {v′}
17: return true

Proposition 2. Enforcing GAC with the watched literal approach for gener-
alized nogoods adds an additional cost of O(nd2|N |) to the time complexity of
existing constraint propagation.

Proof. Working on a decision of a nogood incurs a cost of O(d) (set theoretic
operations). Every decision of a nogood can only be considered O(d) times. We
obtain O(nd2) for each nogood, i.e., the overall complexity O(nd2|N |).

5 Implementation and evaluation of the Techniques

We have implemented the proposed lightweight nogood technique for domain
splitting, the original technique by Lecoutre et al. [12], and further the extraction
of nogoods via backchaining from conflicts by Katsirelos and Bacchus [6]. The
proposed technique has been implemented in the qualitative constraint solver
GQR 2 [13, 3] and thus we have optimized constraint propagators for the infer-
ence rules. GQR represents domains as bitsets and assigns a predefined weight to
each base relation estimating its restrictiveness wrt. composition [14, 2]. These
weights allow us to estimate the restrictiveness of remaining domain values by
the sum of the elements’ weights.

Further, we use 2-way branching and maintain GAC (cf. Section 3). The se-
lection of variables is based on dom/wdeg [15], where domain size is replaced
with the weight of the domain. Depending on the used branching strategy, value
selection considers sets contained in a fixed predefined tractable subclass (cf. Sec-
tion 3, domain splitting) or any included singleton value. We here choose a sub-
set of the domain with maximum weight with cardinality used for tie-breaking.

2 http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Resources/GQR

Propagation is handled by a coarse-grained scheme [16], as depicted in Algo-
rithm 1. The queue used is a priority-queue that returns a variable where the
weight of the domain is minimal [14].

For all nogood schemes, we perform unbounded learning, i.e., no extracted
nogood is deleted or ignored. Restarts are based on a geometric restart policy
based on the number of decision failures. The first DFS run is terminated after
10 failures and the limit for the next run is increased by a factor of 1.5.

We evaluate the discussed nogood approaches with the qualitative calculi AIC
and RCC-8. Although we have implemented the generic approach for extracting
nogoods from conflicts presented by Katsirelos and Bacchus [6], we do not detail
here due to a lack of space and the observed running times significantly showing
their generic method is unsuited to this framework.

We compare the following branching strategies with nogoods: (a) singleton
assignments without restarts or nogoods (b) singleton assignments with the orig-
inal nogood approach from [12], (c) domain splitting without restarts or nogoods,
and (d) domain splitting with our presented nogood approach. For (c), (d) we

use as tractable subclasses ORD-horn [1] for AIC and Ĥ8 [2] for RCC-8. We

write B for (a), B+N for (b), ORD-horn (or Ĥ8) for (c) and ORD-horn+N (or

Ĥ8 +N) for (d). To at least briefly illustrate the behaviour of SAT solvers, we
include results for the specialized encoding of the AIC from [4] called IA2SAT
which is based on network decomposition. We here use the simplification version
of MiniSAT 2.2.0 [17] as backend.

Unfortunately, there is no large set of benchmark instances from applications,
such that we have to rely on randomly generated qualitative constraint networks
as in [1–3]. For AIC, we derive random instances by fixing the number of consid-
ered entities, e, the average number of non-trivial qualitative relations an entity
is involved in, c, and the average size of variables’ initial domain, l. This is the
so-called A-model [1], and we write A(e, c, l) to denote the corresponding set of
problems. We set l to be half the number of base relations to obtain a uniform
distribution of relation labels. The set of pairs of entities with non-trivially re-
lations and the used qualitative relations are chosen randomly, such that they
average around c and l, respectively. In particular, c controls the tightness of the
constraint problem and we use it to obtain problems from the phase transition.
For RCC-8, we use the H-model with the set of NP8 [1, 2], which only differs
from the A-model in requiring selected qualitative relations to be not included
in Ĥ8. For each considered set we generated 1 000 problem instances. All exper-
iments were conducted on an Intel Xeon CPU with 2.66 GHz, 4 GB memory,
and a CPU time limit of 2 hours.

Tables 1-4 contain our obtained results where the best results are highlighted.
As far as the runtime of the solver is concerned, we can conclude that both
lightweight approaches have a positive impact. The addition of restarts and
nogoods significantly lowers the average number of decisions and the runtime in
every considered setup. We note here that changing the restarting strategy from
the geometric scheme to the Luby sequence, changing the initial restart constant,
or even applying minimization to the learnt nogoods as in [12] causes little change

in the results. The presented results for domain splitting with restarts based on
the geometric scheme without minimization are the best we have observed.

From the results, we further conclude that B +N does not achieve the effi-
ciency of ORD-horn or Ĥ8 approaches. The gap between singleton assignments
and domain splitting remains significant and domain splitting with restarts and
lightweight nogoods outperforms all other variants. For 100 entity networks, we
can see the nogood approaches to achieve a speedup of about 25-50% for medium
to hard instances with very little overhead on easy instances (Tables 1,3). The
nogood approaches have an even more significant impact on larger networks,
where we can observe reductions of more than 50% (see Tables 2,4). Here the
given constraints in networks are less dense and thus (without learnt nogoods)
perhaps less restrictive.

Table 1. Times and decisions for AIC in each set A(100, c, 6.5).

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

10.0 B 997 34 044.83d 395d 1 140d 7 976d 46 478d
78.67s 0.28s 1.96s 17.96s 100.43s

B +N 999 19 601.61d 403d 754d 2 736d 14 754d
39.09s 0.24s 0.82s 4.68s 24.94s

ORD-horn 1 000 3 646.24d 102d 368d 1 395d 5 771d
6.87s 0.11s 0.60s 2.66s 10.62s

ORD-horn +N 1 000 2 111.70d 129d 336d 1 051d 3 014d
3.57s 0.12s 0.38s 1.56s 4.96s

10.5 B 993 57 959.71d 113d 1 168d 13 451d 91 228d
126.71s 0.15s 1.93s 27.12s 215.01s

B +N 996 37 156.55d 86d 767d 5 249d 41 549d
70.43 s 0.11s 0.98s 9.08s 82.20s

ORD-horn 1 000 6 716.61d 57d 388d 2 230d 10 076d
12.56s 0.06s 0.59s 4.18s 19.57s

ORD-horn +N 1 000 4 169.03d 60d 335d 1 344d 5 688d
7.03s 0.07s 0.42s 2.08s 9.34s

IA2SAT 1 000 15 401.87d 2 016d 9 694d 22 680d 36 388d
56.59s 34.15s 46.96s 65.91s 99.47s

11.0 B 995 35 040.04d 23d 507d 4 477d 38 619d
76.42s 0.03s 0.71s 7.76s 78.06s

B +N 996 19 680.94d 25d 401d 2 781d 20 910d
36.28s 0.03s 0.45s 4.48s 34.75s

ORD-horn 1 000 3 839.38d 13d 209d 1 144d 5 694d
7.23s 0.02s 0.29s 1.94s 10.57s

ORD-horn +N 1 000 2 882.40d 18d 198d 911d 4 354d
5.03s 0.03s 0.25s 1.39s 7.31s

Finally, Fig. 2 gives a per instance instance comparison for the hardest set of
problems in AIC, A(150, 10.5, 6.5). We can see for both nogood techniques the
runtime on satisfiable instances becomes scattered (most likely due to restarts),
while runtimes on unsatisfiable instances deviate less but show a positive trend
(cf. Fig. 2). We also have to acknowledge that the proposed technique does not
strongly reduce the heavy-tailed behavior (cf. Fig. 2).

Table 2. Times and decisions for AIC in the set A(150, 10.5, 6.5).

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

10.5 ORD-horn 889 161 697.01d 3 702d 39 021d 358 550d –
746.97s 16.38s 182.29s 1 632.30s –

ORD-horn +N 929 135 370.43d 2 424d 17 822d 173 075d 1 089 146d
578.11s 9.25s 74.74s 727.24s 4 695.58s

IA2SAT 967 98 011.87d 32 152d 81 126d 146 257d 252 273d
1 105.24s 377.95s 728.56s 1 446.35s 3 155.23s

Table 3. Times and decisions for RCC-8 in each set H(100, c, 4.0).

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

14.5 B 1 000 5 941.69d 1 561d 1 922d 3 846d 9 903d
7.92s 0.27s 0.98s 4.25s 14.34s

B +N 1 000 3 442.47d 1 557d 1 824d 2 616d 5 740d
3.26s 0.25s 0.54s 1.79s 6.73s

Ĥ8 1 000 1 105.05d 115d 303d 951d 2 595d
1.01s 0.07s 0.24s 0.83s 2.34s

Ĥ8 +N 1 000 843.40d 188d 364d 727d 1 694d
0.63s 0.08s 0.17s 0.48s 1.36s

15.0 B 1 000 8 790.21d 816d 1 989d 4 947d 16 149d
12.87s 0.29s 1.47s 5.96s 24.56s

B +N 1 000 7 182.89d 747d 1 854d 3 495d 8 805d
9.19s 0.28s 0.93s 3.14s 10.48s

Ĥ8 1 000 1 705.25d 164d 478d 1 500d 3 926d
1.58s 0.11s 0.39s 1.33s 3.71s

Ĥ8 +N 1 000 1 315.95d 200d 511d 1 200d 2 577d
1.08s 0.10s 0.30s 0.88s 2.12s

15.5 B 1 000 6 537.62d 177d 1 412d 3 301d 10 673d
9.58s 0.15s 0.68s 3.61s 14.90s

B +N 1 000 4 339.76d 174d 1 225d 2 600d 6 541d
5.60s 0.15s 0.57s 2.46s 7.93s

Ĥ8 1 000 1 437.97d 99d 315d 1 031d 2 710d
1.32s 0.06s 0.23s 0.92s 2.52s

Ĥ8 +N 1 000 1 197.78d 128d 352d 954d 2 198d
1.01s 0.07s 0.21s 0.72s 1.84s

Table 4. Times and decisions for RCC-8 in the set H(150, 16.0, 4.0).

c approach solved average
percentiles
(25-, 50-, 75-, 90-)

16.0 Ĥ8 989 105 926.94d 2 395d 11 043d 65 433d 273 493d
226.87s 4.76s 23.12s 137.88s 604.58s

Ĥ8 +N 992 57 999.05d 1 241d 3 802d 20 172d 116 095d
120.45s 1.81s 7.10s 41.68s 232.59s

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000

O
R

D
-h

o
rn

 w
it

h
 n

o
g

o
o
d

s

ORD-horn

satisfiable
unsatisfiable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000

C
P
U

 t
im

e
 (

se
c)

number of solved instances

ORD-horn
ORD-horn with nogoods

IA2SAT

Fig. 2. Plotted data for AIC A(150, 10.5, 6.5).

In summary, nogoods with restarts clearly improve the robustness and ef-
ficiency with little overhead on easy instances. The proposed technique is an
improvement and clearly outperforms IA2SAT on instances with 100 entities,
and for 150 entities with the exception of the hardest 10% of instances.

6 Conclusion

In this paper, we have discussed and analyzed an extension of the nogood record-
ing and inference technique presented by Lecoutre et al. [12] to a branching
scheme with domain splitting. The overhead caused by the extension to domain
splitting is low polynomial and the method is still efficient.

We have further shown how nogood techniques are applicable in the field
of qualitative constraint-based reasoning and help to improve the efficiency of
constraint solving. The profound impact of nogood learning and restarts that
we demonstrate also helps to understand empirical results of recently studied
SAT encodings. Our results show that the approach is well suited to improve
qualitative reasoning procedures, in particular because it can be used with any
inference algorithm on qualitative relations.

With regard to learning nogoods from conflicts, we note that while the generic
method of Katsirelos and Bacchus [6] has not performed well in our case, we
have not tried alternative, specialized methods tailored towards the considered
constraints. It was shown by Katsirelos and Bacchus that it is often desirable to
construct such specialized methods for extracting nogoods. Moreover, it would
be interesting to consider the impact of structural restrictions as considered by
Boolean SAT encodings [4] in the context of extracting nogoods.

Another interesting point for qualitative reasoning is the question whether a
general approach building on inference rules as used here is desirable or if a focus
on specialized inference methods for particular formalisms is more beneficial.

Acknowledgements

This work is an improved version of earlier work that appeared as a poster [18].
We are grateful for helpful comments from our previous coauthors Stefan Wölfl

and Jason Li on work done for the poster. Further, we thank reviewers for sugges-
tions and comments. This work was supported by DFG (Transregional Collab-
orative Research Center SFB/TR 8 Spatial Cognition, project R4-[LogoSpace]).

References

1. Nebel, B.: Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-horn class. Constraints 1(3) (1997) 175–190

2. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. Journal of
Artificial Intelligence Research (JAIR) 15 (2001) 289–318

3. Westphal, M., Wölfl, S.: Qualitative CSP, finite CSP, and SAT: Comparing meth-
ods for qualitative constraint-based reasoning. In Boutilier, C., ed.: IJCAI 2009.
(2009) 628–633

4. Li, J.J., Huang, J., Renz, J.: A divide-and-conquer approach for solving interval
algebra networks. In Boutilier, C., ed.: IJCAI 2009. (2009) 572–577

5. van Beek, P.: Backtracking search algorithms. In Rossi, F., van Beek, P., Walsh,
T., eds.: Handbook of Constraint Programming. Elsevier (2006)

6. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In Veloso, M.M., Kamb-
hampati, S., eds.: AAAI 2005, AAAI Press / The MIT Press (2005) 390–396

7. Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework. In
Zhang, C., Guesgen, H.W., Yeap, W.K., eds.: PRICAI 2004. Volume 3157 of
LNCS., Springer (2004) 53–64

8. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11) (1983) 832–843

9. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In Nebel, B., Rich, C., Swartout, W.R., eds.: KR 1992. (1992) 165–176

10. Bodirsky, M., Kára, J.: A fast algorithm and datalog inexpressibility for temporal
reasoning. ACM Trans. Comput. Log. 11(3) (2010)

11. Condotta, J.F., Ligozat, G., Saade, M.: Eligible and frozen constraints for solving
temporal qualitative constraint networks. In Bessière, C., ed.: CP 2007. Volume
4741 of LNCS., Springer (2007) 806–814

12. Lecoutre, C., Säıs, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods
from restarts. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4)
(2007) 147–167

13. Westphal, M., Wölfl, S., Gantner, Z.: GQR: A fast solver for binary qualitative
constraint networks. In: Proceedings of the AAAI’09 Spring Symposium on Bench-
marking of Qualitative Spatial and Temporal Reasoning Systems. (2009)

14. van Beek, P., Manchak, D.W.: The design and experimental analysis of algorithms
for temporal reasoning. Journal of Artificial Intelligence Research 4 (1996) 1–18

15. Boussemart, F., Hemery, F., Lecoutre, C., Säıs, L.: Boosting systematic search
by weighting constraints. In de Mántaras, R.L., Saitta, L., eds.: ECAI 2004, IOS
Press (2004) 146–150

16. Bessière, C.: Constraint propagation. In Rossi, F., van Beek, P., Walsh, T., eds.:
Handbook of Constraint Programming. Elsevier (2006)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella, A.,
eds.: Theory and Applications of Satisfiability Testing, 6th International Confer-
ence, SAT 2003, Selected Papers. Volume 2919 of LNCS., Springer (2003) 502–518

18. Westphal, M., Wölfl, S., Li, J.J.: Restarts and nogood recording in qualitative
constraint-based reasoning. In Coelho, H., Studer, R., Wooldridge, M., eds.: ECAI
2010, IOS Press (2010) 1093–1094

