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Abstract. This paper introduces restart and nogood recording tech-
niques in the domain of qualitative spatial and temporal reasoning.
Nogoods and restarts can be applied orthogonally to usual methods
for solving qualitative constraint satisfaction problems. In particu-
lar, we propose a more general definition of nogoods that allows for
exploiting information about nogoods and tractable subclasses dur-
ing backtracking search. First evaluations of the proposed techniques
show promising results.

1 INTRODUCTION
Qualitative Spatial and Temporal Reasoning (QSTR) is a knowledge
representation discipline that deals with information about relations
between objects defined on infinite domains, such as time and space.
A typical reasoning task considered in QSTR is to solve constraint
satisfaction problems with constraints from a fixed finite set of rela-
tions. To this end, reasoning is conducted by employing constraint
inference techniques to tighten given constraints.

Constraint solving in QSTR has benefited from the development
of large tractable subclasses, i.e., sets of relations for which (polyno-
mial) inference techniques are refutation-complete. For general sets
of relations a backtracking search is used, where the branching fac-
tor can be drastically reduced by using these tractable subclasses [4].
Recently, encodings of constraint satisfaction problems considered in
QSTR into SAT-formulae have attracted considerable interest. How-
ever, these encodings lack a usable integration of information about
tractable subclasses. Results presented in [5] indicate that while the
prevalent QSTR methods often result in good runtime, the runtime
distribution exhibits heavy tails, in contrast to SAT solvers employ-
ing restarts, which suffer less from this phenomenon. In this paper
we study the effect of restarts with nogood recording in QSTR, based
on a concept of nogoods that takes into account tractable subclasses
and thus achieves a considerable improvement over state-of-the-art
solvers. Our work is based on previous work on restarts and nogood
recording in the CSP field and closely follows [3], where nogoods
are recorded in a global constraint, which is used during search to
enforce generalized arc-consistency on the enriched problem.

2 QUALITATIVE REASONING
In the CSP domain constraint satisfaction problems are defined on fi-
nite domains. Solutions or refutations are generated by explicitly as-
signing values to variables. In contrast, QSTR considers constraints
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on infinite domains, that is, proving (or disproving) the existence of a
solution is done without assigning values to variables. Instead, con-
straints are represented as symbol set and local consistency meth-
ods are applied to manipulate and tighten these symbol sets. Hence,
depending on the domain and the used relations, local consistency
methods allow to prove or disprove the existence of solutions.

To explain the most important concepts, consider a fixed non-
empty setD and a finite set of jointly exhaustive, pairwise disjoint bi-
nary relations B defined onD (called base relations). The set B must
include the equality relation on D and be closed under converses. In
qualitative constraint networks unions of such base relations may be
used to express constraints between variables. Such unions of base
relations will be written as sets of base relations. For reasoning pur-
poses, one uses an approximation of the composition of relations
(called weak composition): B◦w B′ := {B′′ | B′′∩(B◦B′) 6= ∅ },
where ◦ denotes the composition of relations in the set-theoretical
sense. For arbitrary relation in 2B, the weak composition is given by
R ◦w R′ :=

S
B∈R,B′∈R′ B ◦w B′. Together with the converse op-

eration R` := {B−1 | B ∈ R }, this defines a qualitative calculus.
A qualitative constraint network, then, can be defined as a tuple

G = (V, l), where V is a set of variables and l : V × V → 2B is
a function that assigns to each constraint scope (x, y) a relation in
2B. A solution of such a network is a function that assigns to each
v ∈ V an object in D such that all constraints l(x, y) are satisfied
(when interpreted over D). A constraint network (V, l) is said to be
path-consistent (or: algebraically closed) if (a) no label is empty and
(b) l(x, y) ⊆ l(x, z) ◦w l(z, y) for each triple of variables x, y, z in
V . Note that path consistency in this sense does not imply that each
two-variable assignment consistent with the constraint network can
be extended to a consistent three-variable assignment. Iteratively re-
fining a constraint network into a path-consistent one (or one with
some empty labels) is called the path consistency method. A subset
B′ of 2B is called a tractable subclass if the path consistency method
applied to constraint networks with relation labels only from B′ de-
cides satisfiability (i.e., the path-consistency method is refutation-
complete). A constraint network (V, l) is a refinement of a network
(V, l′) if l(x, y) ⊆ l′(x, y) for each pair of variables from V . By ap-
plying backtracking search methods, one can systematically try out
refinements of a given constraint graph in which only relations from a
tractable subclass occur and check them for satisfiability. The reason-
ing time can be reduced by using large tractable subclasses, since on
average fewer refinements have to be considered and thus the branch-
ing factor of the search tree is considerably reduced [4]. To adapt no-
good techniques from the CSP domain, it is worth mentioning that
the path consistency method used in QSTR roughly corresponds to
the generalized arc-consistency method used in CSP (e.g., [5]).



3 NOGOODS AND THEIR USE IN QSTR

To consider nogoods in conjunction with tractable subclasses, the
usual definition of nogood as used in CSP needs to be extended to
cover not only assignments (v = d) and non-assignments (v 6= d)
[2, 3], but sets of base relations (l(x, y) ⊆ B).

Definition. Let (V, l) be a qualitative constraint network. A set of
constraints ((xi, yi), Ni) (1 ≤ i ≤ n) with variables from V and
Ni ∈ 2B is a nogood for (V, l) if (V, l) has no path-consistent refine-
ment to base relations, l′, such that l′(xi, yi) ⊆ Ni for all 1 ≤ i ≤ n.

Recording such nogoods does not differ from recording nogoods
in CSP: a nogood can simply be recorded from the past decisions
whenever a series of backtracks has ended or is interrupted by a
restart (for details see [3]). Nogoods can immediately be used to
recognize dead-ends. A search node representing some intermediate
partial refinement l′ of the network is a dead-end if there is a nogood
((xi, yi), Ni)1≤i≤n such that l′(xi, yi) ⊆ Ni for all 1 ≤ i ≤ n.

At first glance it seems that recording and enforcing consistency
based on nogoods is quite time intensive. However, as shown in [3],
this is not the case if the recorded nogoods are checked using a
“watched literals” scheme as introduced in the SAT domain. We can
employ this technique even though we consider subsets instead of
assignments. Nogood information from singleton set nogoods can be
directly propagated. For any other nogood ((xi, yi), Ni)1≤i≤n (with
n > 1) we associate this nogood with a choice of two base relations
nxi,yi and nxj ,yj , where i 6= j ∈ {1, . . . , n} such that nxi,yi /∈ Ni

and nxj ,yj /∈ Nj . As long as at least one of the watched base rela-
tions is included in the corresponding label during search, the nogood
is not present in the network. Thus, during search, we only have to
check nogoods where one of the watched base relations has been re-
moved by constraint propagation. In such cases we analyze for which
constraints Ni of the nogood, l(xi, yi) ⊆ Ni holds. If it holds for
all, we have found a dead-end. If all but one hold, we can again
propagate information from the nogood (similar to the generalized
arc-consistency scheme used in CSP). Note that two watched base
relations guarantee correctness, since any nogood for which both are
still included in the label is neither present in the network, nor would
be used for propagation. We further note that watched base relations
are constantly rearranged during search to further reduce the number
of checked nogoods, as described in [3].

In practice, the average number of nogoods that have to be checked
per search node is drastically reduced such that it has only minor
effects on execution time. An analysis of theoretical complexities as
given in [3] is beyond the scope of this short paper.

The proposed enhancements have been implemented based on the
constraint-solving tool for qualitative constraint networks, GQR [1].
We never delete learnt nogoods (as in [3]) and do not minimize any
of the nogoods to be recorded. We use restarts based on the number
of decision failures, starting with 10 and increasing by a geometric
scheme with the factor 1.5. GQR’s heuristic is based on dom/wdeg
and should provide sufficient exploration when restarts occur.

4 EVALUATION

We evaluated reasoning with nogoods on the basis of random net-
works from the phase transition region in the so-called A(n, d, l)-
model [4], where n is the number of variables, d the average degree,
and l the average number of base relations per relation. As quali-
tative calculus we used Allen’s Interval Algebra and its ORD-Horn
tractable subclass (IA-H) [4]. We evaluated backtracking search us-

ing (a) the base relations as refinements (B), (b) IA-H, and (c) IA-H
in combination with nogoods and restarts. All experiments were con-
ducted on a 2.6 GHz Intel Xeon CPU with a time limit of 2 hours.

Table 1. Average execution times and visited search nodes for 1 000
instances of Allen’s Interval Algebra from A(100, 10.5, 6.5).

B IA-H IA-H +NG +restarts
SAT 162 377.97 nodes 14 798.40 nodes 7 961.55 nodes

335.36 s 41.58 s 27.58 s
UNSAT 73 158.06 nodes 7 148.71 nodes 5 614.49 nodes

147.41 s 18.80 s 18.46 s

Total 99 896.75 nodes 9 458.91 nodes 6 323.30 nodes
203.74 s 25.68 s 21.21 s
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Figure 1. Average execution times for 100 instances of Allen’s Interval
Algebra from A(200, 11.5, 6.5).

Our results for 100 nodes (Table 1) indicate that restarts with no-
goods indeed help considerably to find correct labellings, but do not
seem to reduce execution time when refuting instances. For larger in-
stances with 200 nodes, all of the considered approaches fail to solve
all instances. In particular, all but two solved instances were unsatis-
fiable instances. Here, our results (Figure 1) show that restarts with
nogoods can help to refute instances.

5 CONCLUSIONS AND FUTURE WORK
We have presented an approach to exploit state-of-the-art nogood
techniques within qualitative constraint-based reasoning by extend-
ing the usual definition of nogoods to arbitrary relations. This exten-
sion is still capable of using efficient lookup structures [3]. The pre-
sented nogoods can be combined with tractable subclasses, and thus
we achieve a considerable improvement over state-of-the-art solvers.

For applications of QSTR, nogoods can be used to blacklist un-
wanted scenarios. Further, our work opens several interesting topics
for future work in QSTR, such as explanation generation, minimal
nogoods, and stronger local consistency methods.
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