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Abstract

Qualitative calculi are constraint-based representation for-
malisms that allow for efficient reasoning about continuous
aspects of the world with inherently infinite domains, such as
time and space. GQR (Generic Qualitative Reasoner) is a tool
that provides reasoning services for arbitrary binary qualita-
tive calculi. Given qualitative information expressible in a
qualitative calculus, GQR checks whether this information is
consistent w.r.t. the calculus definition. GQR employs state-
of-the-art techniques in both qualitative and constraint rea-
soning, such as heuristic search and usage of known tractable
subclasses. In contrast to specialized reasoners, it offers rea-
soning services for a variety of calculi known in the literature,
which can be defined in a simple specification language. The
main focus in the design and implementation of GQR is to
provide a generic and extensible solver that preserves effi-
ciency and scalability.

Introduction

Qualitative constraint calculi are representation formalisms
for efficient reasoning about continuous aspects of the
world, such as space and time. Qualitative information,
when represented as constraint networks, can be checked for
consistency by applying well-known constraint techniques.
GQR (Generic Qualitative Reasoner) (Gantner, Westphal,
and Wölfl 2008) implements such techniques for qualita-
tive constraint networks in which only binary relations oc-
cur. GQR takes a calculus description and one or more con-
straint networks as input, and processes the networks using
the symbolic path consistency method and heuristic back-
tracking. In contrast to specialized reasoners, it offers rea-
soning services for arbitrary binary qualitative calculi, which
can be defined in a simple specification language.

When the development of GQR started, only reasoners
for specific calculi, e.g. (van Beek and Manchak 1996;
Nebel 1997), were available. In order to reason in a new cal-
culus, one had to develop a new program, modify an existing
one for a similar calculus, or encode it in a different logical
framework for which solvers existed. Now similar research
efforts exist, e.g., the qualitative algebra toolkit (QAT) (Con-
dotta, Saade, and Ligozat 2006) and SparQ (Wallgrün et al.
2006). In contrast to those tools, the main focus in the design
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of GQR is to implement a fast and extensible generic solver,
which preserves the efficiency of calculus-specific solvers as
much as possible.

GQR has been applied (a) in a high-level agent control
system implementing rule-compliant behavior of agents in
sea navigation (Dylla et al. 2007) and (b) in the evaluation of
different algorithms for application-specific customizations
of qualitative calculi (Renz and Schmid 2007).

Qualitative Reasoning with GQR

A (binary) constraint network is defined by a set of vari-
ables taking values in a given domain and a family of bi-
nary constraint relations between pairs of variables (on this
domain). The constraint satisfaction problem is to deter-
mine for a given constraint network, whether there exists
an assignment to its variables such that all constraints of
the network become satisfied. Since the domains consid-
ered in qualitative reasoning are usually infinite, constraint
solving techniques need to be applied on finite, symbolic
representations of constraint networks, namely, directed fi-
nite constraint graphs, where each edge is labeled by a set of
relation symbols (each symbol represents a concrete binary
relation on the domain). Sets of relation symbols are read
disjunctively, that is, they can be used to express imprecise
knowledge about the actual configuration.

For reasoning in GQR, we assume that the symbol set is
equipped with an algebraic structure: A (binary) qualitative
calculus is defined by a non-empty finite set B of symbols
(referred to as base relations), a unary function ` : B→ B
(assigning to each base relation its converse), a binary func-
tion ◦ : B×B→ 2B (assigning to each pair of base relations
their composition), and a distinguished element id ∈ B (the
identity relation) such that some minimal requirements are
met (e. g., (a`)` = a, id ◦ a = a ◦ id = a; etc.). Formally,
the Boolean algebra 2B defines a non-associative relation
algebra if the functions ` and ◦ are extended to functions
` : 2B → 2B and ◦ : 2B× 2B → 2B by: r` := {b` : b ∈ r}
and r ◦ r′ :=

⋃
b∈r,b′∈r′ b◦b′.

In GQR the constraint satisfaction problem is then solved
on the symbolic level, that is, GQR checks whether the
constraint graph is consistent in the sense that there exists
a path-consistent refinement (cf. below) of the constraint
graph in which each edge is a base relation. For many calculi
this is sufficient to solve the satisfiability problem.
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Figure 1: Comparing GQR to a solver for Allen’s interval
calculus. Instances were taken from the phase transition
with 100 nodes each and an average label size of 6.5.

Implementation Details

GQR utilizes the symbolic path consistency algorithm and
implements techniques that enhance backtracking search.

Path Consistency and Search. The (symbolic) path con-
sistency algorithm manipulates a given constraint graph by
successively refining the labels rx,y (on the edge from node x
to node y) via the operation rx,y← rx,y∩(rx,z ◦rz,y), in which
z is any third variable occurring in the network. In GQR
Mackworth’s variant of the path consistency algorithm is im-
plemented, e.g. (van Beek and Manchak 1996), which runs
in cubic time in the size of the constraint network. Since, in
general, the path consistency method is not sufficient to de-
cide consistency of constraint networks, GQR uses chrono-
logical backtracking with 2-way or d-way branching, such
trying out different instantiations of the constraints contain-
ing disjunctions of base relations (cf. Ladkin and Reinefeld
1997; Nebel 1997; van Beek and Manchak 1996). Moreover,
by using known tractable subclasses of a calculus (i.e., sets
of relations, for which the path consistency method decides
satisfiability) one can speed up the reasoning time: instead
of splitting a constraint during backtracking into base rela-
tions, one can split it into relations belonging to a tractable
subclass, which reduces the branching factor of the search
tree considerably.

Heuristics. Backtracking search may benefit from heuris-
tics about which part of the constraint network is to be pro-
cessed next. Currently, the classic weight and cardinality
heuristics (van Beek and Manchak 1996) are implemented.
Further, a heuristic combining (static) weights with dy-
namic weights as a boost (Boussemart et al. 2004) is avail-
able, which also makes use of eligible constraints (Condotta,
Ligozat, and Saade 2007). The selection of sub-relations is
based on weights.

Performance. Even though GQR works with arbitrary
qualitative calculi, it is competitive with calculus-specific
solvers as e.g., Nebel’s solver for Allen’s interval calcu-
lus (Nebel 1997) (see Figure 1).

Extensibility. GQR is written in C++ with an object-
oriented design, in which users may add their own heuris-
tics quite easily. New qualitative calculi are defined by writ-

ing simple text files, which are then read and processed by
the reasoner. Moreover, GQR allows for checking alge-
braic properties of specified calculi and supports precom-
putations of composition and converse operations either in
part or completely, such that the path consistency algorithm
receives a significant speedup (Ladkin and Reinefeld 1997).

GQR is freely usable and distributable under the terms
of the GNU General Public License. The software
can be downloaded from https://sfbtr8.informatik.

uni-freiburg.de/R4LogoSpace/Resources/GQR .
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