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Abstract. TheCSFreiburg teamhasbecomeF2000championthethird time in
thehistoryof RoboCup.Thesuccessof our teamcanprobablybeattributedto its
robustsensorinterpretationandits teamplay. In thispaper, we will focusonnew
developmentsin our vision system,in our pathplanner, andin the cooperation
component.

1 Intr oduction

Althoughthe generalsetup,the hardwareandsoftwarearchitectureof CSFreiburg at
theRoboCup2000competition[16] turnedout to bequitesatisfactory, thereappeared
to be room for improvements.First of all, the hardwarewasnot asreliableasit used
to be whenthe robotswereboughtin 1997.Secondly, therewerequite a numberof
softwarecomponentsin thesystemthatcouldbeimproved.

For this reason,we investedin new hardware,which led to a significantimprove-
mentin robustness.In fact,thefinal gameagainsttheOsakaTrackieswaspartiallywon
becauseour hardwarewasvery reliable.

On the softwareside,a numberof improvementsweremadeon the systemlevel,
suchasintegratinganew camerasystem.Furthermore,we workedon componentsthat
we consideredas critical, suchas the vision system,the path planningmodule,and
the modulefor cooperative play. The improvementsof thesecomponents,which are
describedbelow, did indeedgive us the competitive edge.However, it also became
clearthatthereactivenessby theOsakaTrackiesis hardto matchwith our team.

2 Hardware

Whenwe first participatedat RoboCupin 1998we usedPioneer-1 robotsasmanufac-
turedby ActivMedia. To recognizetheball ball we employedtheCognachromevision
systemmanufacturedby Newton Labs which wasavailable installedin the Pioneer-
1 robots.Our effort in hardwaredevelopmentwaslimited to mountinga SICK laser�
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rangefinder for self localizationandobjectrecognitionandbuilding a simplekicking
device with partsfrom theMärklin Metallbaukasten.For local informationprocessing
the robotswere equippedwith Libretto 70CTnotebooksand they usedthe Wavelan
radioethernetfrom LucentTechnologiesto communicatewith eachother[6].

Eventhoughwemaintainedthesamegeneralhardwaresetup,wevirtually replaced
every partof this setupin thepastfour years.In 1999we replacedthelaserrangefind-
erswith theSICKLMS200model.They provide depthinformationfor a

�
	���

field of

view with anangularresolutionof
������


andanaccuracy of 1 cm[9]. For RoboCup2000
we startedto makemajormechanicalandelectronicalmodificationsto our robots.We
installednickel-cadmiumbatteriesbecauseof their light weightandhigh speedcharg-
ing capability. To improvetheball handlingandshootingcapabilityof our robotsSICK
AG assistedus in building a new kicking device with movableball steeringflippers,
which canbeturnedto anuprightpositionandback.Thekicking device is strainedby
awind-screenwipermotorandreleasedby asolenoid[16].

Fig.1. A CSFreiburg Player

This year we madefurther hardware
modificationsin orderto increasetheper-
formanceof our team.Figure1 showsone
of our robotsasit competedthis year. We
installedPioneer-2 boards,which now al-
low therobotsto moveconsiderablyfaster
with the samePittman motors that we
have beenusingduringthepastyears.For
more precisemovementswe substituted
therearcasterwheelby a casterroller. To
be able to develop our own vision soft-
ware we replacedthe old vision system
by a SonyDFW-V500digital camera and
switchedto SonyVaio PCG-C1VEnote-
booksbecauseof their IEEE 1394 inter-
face.WealsoupgradedtheWaveLancards

to thenew 11Mbit/s (2.4GHz)cards.To getourlaserrangefindersto workvia theUSB
port we hadto find a circuit diagramfor a RS422-USBconverterboard,capableof a
500Mbaudrate1, which SICK AG then manufacturedfor us. For an artificial intelli-
genceresearchgrouphardwaredevelopmentandmaintenanceisn’t a trivial taskat all
andwould certainlynot have beenpossiblewithout thehelp of SICK AG. Even only
adaptingour softwareto thenew hardwareconsumeda lot of our preparationtime for
thisyear’s tournament.

3 Vision

The implementationof our new vision systemconsistsof two major softwareparts,
onefor region segmentationby color andonefor themappingfrom imagecoordinates
to positionsof objectson the field. The region segmentationby color is carriedout

1 http://www.ftdichip.com/Files/usb-422.zip



on 320x240Pixels in YUV color spaceusingthe CMVision library.2 Due to the fast
algorithm[3], our systemis capableto work with eventwo camerasat a rateof 30Hz.
Fromthesegmentedregionstheworld coordinatesarecomputed.For this purposewe
implementedtwo alternativesolutions,describedbelow.

3.1 Tsai cameracalibration

Tsai’s cameramodel[15] is basedon thepinholemodelof perspective projection,and
consistsof six extrinsic andfive intrinsicparameters.Theextrinsic parametersdescribe
thetranslation�����������������
� androtation ��� ���!� �"�!� �
� from theworld coordinateframe
W to thecameracoordinateframeC. Theintrinsicparametersincludetheeffectivefocal
length # , theradial lensdistortion $ � , a scalefactor %&� andtheimagecenter �(')���*')�+� ,
alsoknown asprincipal point. Generally, the objective of calibrationis to determine
optimalvaluesfor theseparametersfrom a setof known pointsin theworld coordinate
frame �(,�-.�*/0-.�!12-3� andtheir correspondingpixels in the sensorplane ��,546�!,57
� . Once
the intrinsic parametersare determined,they can be usedfor differentpositionsand
orientationsof thecamera.Theextrinsic parameters,however, have to bere-calibrated
whenthecameramovesrelatively to theworld coordinateframeorigin.

With thecalibratedparameters,onecanpredictthepixel �(, 4 �*, 7 � in thesensorplane
from agivenpoint �(, - �*/ - �*1 - � in W by threetransformations:

1. Rigid body transformation Transformationfrom theworld coordinateframeto

the cameracoordinateframe: 8&,59:/09;129�<>=@?A�B80,�-C/0-C12-D<>=FEG8*� � � � � � <*= ,
where �B?H�JI2K
�(� � ���JI2K
��� � ���JI2K
��� � �

2. Perspectiveprojection Due to the pinholemodel, the undistortedpixel coordi-
natescanbecalculatedby thetheoremof intersectinglines: , 4 ?L# �NM� M �*, 7 ?L# � M� M

3. Distortion transformation Transformationfrom undistortedpixels to distorted
oneswith thedistortionfactor $ � : ,54O?L,�P�� � EQ$ �*R � �&�*/04O?L/NP�� � ES$ �>R � � , whereR ?UT , �P ES/ �P
Sincetheball is usuallylocatedon thefield plane,a coplanarcalibrationwasused.

As mentionedabove, the calibrationprocesscanbe divided into two parts,which are
intrinsic andextrinsic parametercalibration.For the intrinsic parametercalibrationa
small dot matrix was placedon different positionsin front of the camera.Data for
extrinsicparametercalibrationwasgeneratedfrom alargedotmatrix,whichwasplaced
onthesoccerfield planein front of therobot.

Anotherpossibility to generatecalibrationdatais to takesnapshotsof the ball on
thefield directly. Thiscomeswith theadvantagethattheerrorfrom calculatingtheblob
centeron theimageis reflectedin thedata.However, it turnedout thatthedatawastoo
noisy for the Tsai optimizationprocedure,which wasindicatedby a high calibration
error.

2 http://parrotfish.coral.cs.cmu.edu/cmvision/



3.2 Interpolation

Besidesthe analyticalTsai method,we alsouseda methodfrom the last yearsteam
for linear interpolation[13]. The methodinterpolatesthe position of the ball based
on trianglesgeneratedfrom a priori collectedworld to imagecorrespondences.The
mappingtakesplaceby identifying the trianglewhich enclosesthe consideredpixel.
This trianglecanbemappedto a triangleon thefield which thenis usedto interpolate
theobjectsposition.

For auniformdistributionof thetrianglestheDelaunaytriangulationhasbeenused.
Figure 2 shows the generatedtriangleson the imageand the field respectively. The
denseoccurrenceof samplesat the bottomof both picturesindicatesthat moresam-
pleshave beencollectedfrom positionsin the vicinity of the robot thanfrom distant
positions.

Thecollectionof adequatesampleshasbeencarriedout by assistanceof our accu-
rateself-localization.Theball hasbeenplacedon a fixed positionon thefield, which
hasbeentakenasreference.Subsequently, snapshotsof the ball from differentrobot
position have beentakenand convertedto samplesin the cameracoordinateframe.
Finally, a triangulationalgorithmproduceda list of triangles,suchasshown in figure2.

(a) (b)

Fig. 2. Distribution of triangleson thecameraimage(a) andon thefield (b) aftertheDelaunay
triangulation

3.3 Evaluation

Figure3 shows the measuredaccuracy in estimatingthe ball distanceandball angle
by the two approaches.While both approachesperformwell in estimatingthe direc-
tion of theball, theTsaimethodseemsto be inaccuratein estimatinglargerdistances.
We assumethat this is partially causedby a poor coverageof the field by calibration
dotsduringthecalibrationof theextrinsic parameters.A largermatrix wouldprobably
improve the quality of the calibration.However, this is not alwayspracticableduring
RoboCupcompetitions.

In contrast,datacollectionfor theinterpolationis handledeasier. Therobotis pro-
grammedto takesamplesatparticularpositionsautonomously.Furthermore,thequality
of thecollecteddatacanbe evaluateddirectly by consideringthe triangledistribution
asshown in figure 2. Also the effect of noisy measurementsis not ascritical as it is
for the analyticalmethod,which usesnon-linearoptimizationto estimatethe model
parameters.



For mostdemandsin theRoboCupdomain,however, theresultedaccuracy of both
methodssuffice,sincein mostcasesthedirectionof theball is moreimportantthanan
accuratedistanceestimationbeyondthreemeters.
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Fig. 3. Accuracy in estimatingthedirection(a) anddistance(b) of theball by interpolationand
theTsaimethod

4 Path-Planning

Theroboticplayersof our teamareequippedwith a rich setof basicsoccerskills such
asGoToBall, GetBall, MoveShootFeint, ShootGoal, etc.Detailsabouttheseskills can
befoundin our lastyear’s teamreport[16]. Someof theseskills, e.g.GoToBall which
enablea playerto move aroundobstaclescloseto the ball, requirethe planningof a
pathfrom therobot’s currentpositionto a target position.In addition,moreteamori-
entedskills like moving to astrategic positiononthefield, or theautomaticpositioning
procedurebeforegamestartneedtheability to find collision-freepaths,too.

A prerequisitefor planningpathsis theexistenceof amodelof theworld.Although,
a crudeworld modelcanalreadybe usedfor generatingpaths,the integrity andaccu-
racy of theworld modelhasabig influenceonthequalityof thecomputedpaths.Fortu-
nately, our robotshave accessto a comprehensive andaccurateworld modelbuilt from
observationsof theLRF andthevision systemby thefull teamof robots[5,6,16].

Path planninghasbeenwell researchedwith a lot of interestingresultsfound [8].
Thereare at least3 basiccategoriesapproachescan be divided into: roadmaps,cell
decomposition,andpotentialfields.Recently, probabilisticapproachesbecamepopular,
in particularfor finding pathsin a high-dimensionalconfigurationspace[7]. As our
robotsonly move in a 2 dimensionalworld andareableto turn on the spot,plus all
objectscanbereasonablyrepresentedascircles,wecanrestricttheconfigurationspace
to only two dimensions.Thus,a deterministicapproachcanbeemployed.

Roadmapalgorithmsarea popularway for finding pathsin theRoboCupenviron-
ment,e.g.theAll BotzRoboCupteamin thesmall sizeleaguedevelopeda variantof
the extendedvisibility graph for finding pathsaroundotherplayers[2]. We also im-
plementeda versionof theextendedvisibility graphfor our first participationin 1998
[6]. However, this approachhasthedrawbackthat it dependson thechosenminimum



distancetherobotshouldkeepto obstacles.If chosensmall,thealgorithmcangenerate
pathsthataretoocloseto therobots.Especiallyfor soccerthiscanbedisadvantageous
asobstacleslike opponentrobotsaremoving andcollisionsare likely to happen.On
theotherhand,a largevaluefor theminimumdistancemight causetheplannerto fail
finding a path.Sinceit is difficult to find a goodtradeoff we developeda new path
planningapproachbasedon a combinationof potentialfields andcell decomposition.
Wewill show a comparisonof thetwo approachesat theendof thissection.

Thebasicalgorithmis describedin detailin Topor’swork [14]. Dueto limited space
we will only give a brief overview andpresentextensionsthat improved the perfor-
manceof thealgorithm.Thepathplanningalgorithmusesa potentialfield for finding
its waythroughtheobstacles.Thispotentialfield consistsof anattractingforcetowards
thetargetpositionandrepulsive forcesarisingfrom otherplayers,theball (optionally),
andthefield boundaries.An additionalpotentialfield directsthesearchinto therobot’s
currentheading.In our approachwe approximatetheworld into a grid of

�
�WVQ�0�
cm

cells.

Thesearchalgorithmmaintainsagrid of theworld whereeachcell holdsaboolean
indicatingif thecell hasalreadybeenvisited.Furthermore,apriority queueis usedwith
elementsconsistingof acell index andits correspondingpotentialvalue.Thealgorithm
startswith the target position andfollows the negative gradientof the potentialfield
to the robot. In eachiterationthe potentialandgradientvalueof the cell referringto
thecurrentpositionarecomputedby summingup pre-computedpotentialandgradient
fieldsof theindividualforces.Cell index andpotentialvalueof cellsthatarenotalready
visitedareinsertedinto thepriority queue.Note,thatalthoughwe discretizetheworld
into a grid, thealgorithmstill computespositionswith floatingpointprecision.

Figure4(a)illustrateshow thisalgorithmfindsa patharoundanobstacle.Notethat
we searchfrom the target towardsthe robot andnot vice versa,sinceotherwisethe
robotwould first move directly in directionof the obstaclebeforeturning to theside.
In eachcycle of therobotcontrolprogram(every 100ms),a new pathis computedand
therobotsmoothlymovesaroundtheobstacle(Figures4(b)and(c)). Theexamplealso
showsthatin ouralgorithmre-usingapreviouslycomputedpathlike in theapproachof
BaltesandHildreth [2] is notpossiblewithout majormodifications.

(a) (b) (c)

Fig. 4. Path planningaroundan obstacleusingpotentialfields: initial plan (a), plan after robot
moved closerto obstacle(b), andfinal straight-linepathto target (3). Potentialvaluesareindi-
catedby grey-scalelevelswherelower potentialsappeardarker.

Figure5 displaystwo featureswe addedto the original algorithm. If a player is
in possessionof the ball andis headingtowardsthe opponentgoal,we surelydo not



wantotherrobotsto interferewith it. Thiscanbeachievedby addingadditional,virtual
potentialsin front of theball-owningrobot(Figure5(a)).

(a) (b) (c)

Fig. 5. Extrapotentialfieldsareaddedin front of theactive player(a).To reduceoscillationthe
centerof gravity of anobstacleis shiftedaccordingto thepathcomputedin thelastcycle:without
(b) andwith hysteresisshift (c).

A problemin pathplanningin generalis that of oscillation.A situationwherean
obstacleis in betweenrobot andtarget canleadto sucha problem(seeFigure4(a)).
If the position of the obstacleis noisy, e.g. becausethe sensorsdeliversnoisy data,
the pathplanningalgorithmmight find pathsaroundthe obstacleson both sideswith
equalchance.Sincepathsarere-plannedevery 100ms, the robot might continuously
choosetheotherway. Thiscouldbeobservedin experimentsin ourlaboratoryincluding
the robotbumpinginto theobstaclebecauseit wasn’t ableto decidewhich way to go
around.

A directionalpotentialfield thatpreferstherobot’scurrentheadinghelpsavoiding
suchscenarios.However, if the robot is far from the obstacle,the algorithmstill can
oscillate.For RoboCup2001we addeda new techniquefor directingthe searchinto
theright way. Basedon thepathcomputedin thepreviously cycle a hysteresisshift is
appliedto theindividualpotentialfieldsof theobstacles.Thisshift movesthecenterof
gravity of a potentialfield while still retainingtheshapeat theborderof theobstacle,
i.e. thecenterof theobstacleis shiftedwhile theobstaclestill occupiesthesamespace.
Dueto this shift, thegradientchangesandforcesthesearchto go aroundtheobstacle
in thesamewayasin thepreviouscycle.Figures5(b)and(c) giveanexample.

Potentialfield methodscanbetrappedin localminima.In our approachthiscanbe
detectedby examiningthevisitedflagof thecell thatrefersto thecurrentposition.If a
cell is visited for thesecondtime, a bestfirst searchis startedbeginning with the cell
thathasthelowestpotentialin thepriority queue.In bestfirst search,thecurrentcell is
removedfrom thequeueandits 4 neighborsareexaminedandinsertedinto thepriority
queueif notalreadyvisited.This leadsto a wave-frontsearchin thepotentialfield until
thenegativegradientof acell pointstowardsanon-visitedcell wherethealgorithmcan
follow steepestdecentagain.Figure6 showsanexample.

For evaluatingthe pathplanner, we conductedseveral experimentsusingrandom
start,targetandobjectpositionsin asimulatedenvironmentof size

	5�;VYXZ�
. In average,

the runningtime waslessthan1.5 msecon a PentiumMMX 233MHz. In 35 out of
5000cases,the algorithmneededmorethan15 msecandthemaximumrun time was
about29 msec. Thus,theapproachis well suitedfor continuouspathplanning.

A lastexperimentwasconductedto comparetheperformanceof thenew algorithm
to the extendedvisibility graphapproachwe employedfor our first participation[6].



(a) (b)

Fig. 6. Evaluationof thepathplanner. Bestfirst searchin local minima (a). Dark cells indicate
stepswherebestfirst searchhasbeenapplied,light cellsreferto steepestdecentiterations.Com-
parisonof path planningmethods(b). Dashedline refersto shortestpath ascomputedby the
extendedvisibility graph,solid line reflectspathgeneratedby ournew potentialfield method.

Figure6 (b) shows the setup.The extendedvisibility approachhasthe propertythat
it computesshortestpathsand for the given scenarioit returnedthe path that goes
throughthe middleof the field. In contrast,our new approachleadsthe robot around
theobstaclescloseto thewall. Althoughthelengthof thepathatthewall is significantly
longerthantheshortestone,our robotsneedmuchlesstime following thelongerpath
(13 s) thanfollowing the shorterone(24 s) becauseour motion controllerallows for
higherspeedsif obstaclesarefar.

5 TeamCoordination

Socceris acomplex gamewhereateamusuallyhasto meetseveralrequirementsat the
sametime. To ensurethat in any gamesituationa teamis preparedto defendits own
goal,but alsoreadyto attacktheopponentgoal,thevariousteamplayershave to carry
out differenttasksandneedto positionthemselvesat appropriatestrategical positions
on the field. In this sectionwe describeour methodfor determiningsuchpositions
dependingon the currentgamesituationandillustratehow our playersdecidewhich
positionthey shouldoccupy.

To expressthata playerhasa taskwhich is relatedto a positionin theteamforma-
tion we saya playerpursuesa certainrole [12]. Distinguishing betweendifferentareas
of responsibilitywe establishedthefollowing roles:

– active: theactive playeris in charge of dealingwith theball. Theplayerwith this
role hasvariouspossibleactionsto approachthe ball or to bring theball forward
towardstheopponentgoal.

– strategic: the task of the strategic player is to securethe defense.It maintainsa
positionwell backin ourown half.

– support: the supportingplayerserves the teamconsideringthe currentgamesit-
uation. In defensive play it complementsthe teams’defensive formation and in
offensiveplay it presentsitself to receive apasscloseto theopponentsgoal.

– goalkeeper: thegoalkeeperstayson its goalline andmovesdependingon theballs
position,directionandvelocity.

As our goalkeeperhasa specialhardwaresetupfor his task it never changesits
role.Thethreefield players,however, aremechanicallyidenticalandswitchtheir roles
dynamicallywhenever necessary.



5.1 Positions

Our approachto determinethe target positionsassociatedwith the field player roles
is similar to the SPAR methodof the CMU teamin the small size league[11]. From
thecurrentsituationasobserved by the players,a potentialfield is constructedwhich
includesrepulsive forcesarisingfrom undesirablepositionsandattractingforcesfrom
desirableones.

Fig.7. Potential field for determiningthe
activeposition

Figure7 shows an exampleof a po-
tential field for the desiredposition of
theactiveplayer. Darkcellsindicatevery
undesirablepositionswhereaslight posi-
tions representvery desirablepositions.
The resultingposition is markedwhite.
Weconsidertheidealpositionfor theac-
tive player to be at least a certaindis-
tanceaway from otherplayersandat an
optimumdistanceandangleto the ball.

While the optimumdistanceis fixed, the optimumangleis determinedby interpolat-
ing betweena defensive andan offensive variantdependingon the balls’ position.A
defendingplayershouldbeplacedbetweentheball andour own goal,but in offensive
play theball shouldbebetweentheplayerandtheopponentgoal.

Fig.8. Potential field for determiningthe
strategic position

Figure 8 shows the potential field
for the desiredposition of the strategic
player. It is basedon thesamegamesit-
uation and usesthe samecolors as the
examplefor the active player. We want
thestrategic playerto staywell behindall
playersandtheball andpreferpositions
closeto the horizontalcenterlineof the
field. Only theactiveplayeris assigneda
repulsive force explicitly in orderto en-

forcestayingout of its way. Otherplayersareavoidedimplicitly by the pathplanner
whichfindsanappropriatepositioncloseto thedesiredone.

Fig.9. Potential field for determiningthe
supportposition

Figure 9 shows how in the same
game situation as above the defensive
supportpositionis determined.We want
thesupporterto stayaway from all other
playersand at a certaindistanceto the
ball. As the supporting player should
complementtheteams’defensive forma-
tion, we additionallypreferpositionsbe-
hindandasidetheactive player.

Even thoughthe resulting positions
are in generalsimilar to the onesa humanobserver would establish,we neededto
makesomerestrictionsin order to avoid ”hysteric” behavior resultingfrom ”overre-
acting” to theconstantlychangingenvironment.Becauseour robotsareturningrather



slowly they needa lot of time for even minor positionchanges.We thereforefavor a
players’currentpositionwith a persistencevalueandarequitetolerantregardinghow
closeour defendingplayersactuallyneedto getto theirpositions.In ordernot to loose
too muchof precisioneither, we adjustthis tolerancedynamicallydependingon the
playerscurrentangleto its targetposition.By allowing largetolerancesfor largeangles
but requiringsmall tolerancesfor smallangles,we achieve thata playeronly startsto
updateits positionif thenew positiondiffersconsiderablyfrom theold one.But once
theplayeris moving towardsthatpositiontheplayerintendsto approachit ascloseas
possible.

Statisticsbasedon thelog filesof our Seattlegamesshow thatthebalancebetween
teamsis reflectedin the averagedistancesbetweenthe target positionsof our three
field players.Against strongteamsour playersintendedto stay in a rathercompact
formationwith averagedistancesof 2051mmagainstTrackies(1:0)or 2270mmagainst
Fusion(2:0).Whenour teamwasclearlydominant,theplayerswerespreadwiderover
thefield with averagedistancesof 3000mmagainstCMU or 3657mmagainstRobosix
(16:0).

The fact that in the Seattlegamesthe active playerwason averageonly 973mm
away from its targetpositionindicatesthatour playersmanagedto maintaina forma-
tion wherealwaysat leastonerobot wascloseto the ball. Also the fact that the area
for possiblestrategic positionsis quite restrictedis reflectedin the respective average
distanceof only 892mm.As thesupportpositiondiffersconsiderablyin offensive and
defensive play, thecorrespondingplayershowedthelargestoffsetto its targetposition
(1857mm).Evaluatingthe log files alsoshowed that thereis still room for improve-
ment.As it is a tedioustaskto testandevaluateteambehavior onlinewith realrobots,
we intendto rely moreon thesimulatorthatwearecurrentlyimplementing.

5.2 Roles

After a field playerhasdeterminedthebestactive,strategic andsupportpositionfrom
its perspective,it calculatesutilities whicharebasicallyaheuristicfor thetime it would
taketheplayerto reachthecorrespondingposition.Thefollowingcriteriaaretakeninto
account:

– The(euclidian)distanceto thetargetposition
– Theanglenecessaryto turn therobottowardsthetargetposition
– The anglenecessaryfor the robot to turn at the target positionin orderto facein

directionof theball
– The anglebetweenthe robot andthe ball (it is moredesirable,especiallyfor the

active player, to approachthetargetpositionalreadyfacingin directionof theball)
– Objectsbetweentheplayerandthetargetposition

Thetotalutility is now computedastheweightedsumof all criteria.In orderto decide
which role to takea playersendstheseutilities to its teammatesandcomparesthem
with thereceivedones.

Following a similar approachtakenby theART team[4],3 eachplayer’s objective
is to takea role so that thesumof theutilities of all playersis maximized.In contrast
3 Note,however, thatourapproachwasdevelopedindependently.



to theARTapproacha playerdoesn’t takeits desiredrole right away, but checksfirst
if not anotherplayercurrentlypursuesthe samerole andconsidersthat role bestfor
itself as well. As the world modelsof our playersarenot identical, the perspectives
of our playerscanin fact differ. Thereforea playeronly takesa role if eitherno other
playeris currentlypursuingthatroleor thepursuingplayersignalsthatit actuallywants
to changeits role. Thatway we reducewith only little extra communicationeffort the
numberof situationswheremorethanoneplayerownsthesamerole.

A problemfor this approacharesituations,wheredifferentplayerscomeup with
verysimilarutilities for acertainroleandtherolesmightoscillate.However, by adding
a hysteresisfactor to theutility of a player’s currentrole we ensurethata playeronly
givesuparoleif its realutility for thatroleis clearlyworsethantheoneof its teammate.

GoalkeeperActive Strategic Support

Rolekept 986.9s 5.4s 5.7s 8.1s
Rolenotunique% of playingtime 0 % 2.17% 1.23% 1.06%
Rolenotuniqueaveragetime 0 s 0.203s 0.218s 0.206s

Table1. Evaluationof role assignmentmethod

Table1 displaysa statisticsevaluatingour role assignmentmethod.All valuesare
averagedover thegamesplayedat RoboCup2001in Seattle.In thefirst line the times
our playerskepta certainrole arelisted. Interestinglythe valuesfor the field players
aresimilar to theaveragerole switchtimeof 7 secondsstatedby theARTteam[4]. The
secondline showshow muchof thetotalplayingtimea role waspursuedby morethan
oneplayer. Thefact that for theactive playerthis happenedin only 2.17%of the total
playingtimeandin evenlesscasesfor theotherroles,demonstrates,thatourmethodto
avoid suchsituationsworkssuccessfully. Theaveragevaluesfor the times,a role was
notunique(in line three),givesfurtherevidencefor this.

Whenevaluatingthelog filesof ourSeattlegameswealsonotedthattheroleswere
usually quite equally distributedbetweenour players.However, in gameswherewe
scoreda lot of goals,theplayerwith themostoffensivestartingpositionheldtheactive
roleconsiderablylongerthanits teammates.

6 Conclusion

Thedevelopmentof roboticsoccerduring the last five yearswasquite impressive. In
1997therobotshit theball only occasionally– andoftenkickedit in thewrongdirection
(or even into the own goal). In 2001, the gameslookedmuchmore interesting.The
developmentof our teamfollowedthis generalpath.In 1998,our mainadvantagewas
thatour robotsknew their own position– which helpedto avoid own goals.Over the
last four years,we concentratedon the improvementof our hardware,on the sensor
interpretationprocess,on cooperative sensingandon teamplay. As demonstrated,this
gave CS Freiburg the chanceto win the championshipthreetimes.However, having
watchedthe final gameagainstOsakaTrackies, we got the impressionthata point is



reachedwhereit is hardto improveour robotssothatthey areableto dominatea game
againsta fast,reactive teamsuchastheTrackies.
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