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Abstract. The CSFreiturg teamhasbecome=2000champiorthethird timein
thehistoryof RoboCupThesucces®f ourteamcanprobablybeattributedto its
robustsensoiinterpretatiorandits teamplay. In this paperwe will focuson new
developmentsn our vision system,in our pathplanner andin the cooperation
component.

1 Intr oduction

Althoughthe generalsetup the hardwareandsoftwarearchitectureof CS Freiturg at
the RoboCup2000competition[16] turnedout to be quite satisfactorythereappeared
to be room for improvementsFirst of all, the hardwarewasnot asreliableasit used
to be whenthe robotswere boughtin 1997. Secondly therewere quite a numberof
softwarecomponentén the systemthatcouldbeimproved.

For this reasonwe investedin new hardwarewhich led to a significantimprove-
mentin robustnesslin fact, thefinal gameagainsthe OsakaTrackieswaspartiallywon
becaus®ur hardwarevasvery reliable.

On the softwareside,a numberof improvementswere madeon the systemlevel,
suchasintegratinganew camerasystemFurthermorewe workedon componentshat
we consideredas critical, suchasthe vision system,the path planningmodule,and
the modulefor cooperatie play. The improvementsof thesecomponentswhich are
describedbelow, did indeedgive us the competitive edge.However, it also became
clearthatthereactvenesdy the OsakaTradkiesis hardto matchwith ourteam.

2 Hardware

Whenwe first participatedat RoboCupin 1998we usedPioneerl robotsasmanufac-
turedby ActivMedia To recognizethe ball ball we employedthe Cognatiromevision
systemmanufacturedy Newton Labs which was available installedin the Pioneer
1 robots.Our effort in hardwaredevelopmentwaslimited to mountinga SICK laser
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rangefinder for self localizationand objectrecognitionandbuilding a simplekicking
device with partsfrom the Marklin Metallbaukastent-or local informationprocessing
the robotswere equippedwith Libretto 70CT notebooksandthey usedthe Wavelan
radio ethernetfrom LucentTedinologiesto communicatevith eachother[6].

Eventhoughwe maintainedhe samegenerahardwaresetup we virtually replaced
every partof this setupin the pastfour years.In 1999we replacedhelaserrangefind-
erswith the SICKLMS200model. They provide depthinformationfor a 180° field of
view with anangularesolutionof 0.5° andanaccurag of 1 cm|[9]. For RoboCup2000
we startedto makemajor mechanicahndelectronicalmodificationsto our robots.We
installednickel-cadmiunbatteriesbecausef their light weightandhigh speedchag-
ing capability To improve the ball handlingandshootingcapabilityof our robotsSICK
AG assistedus in building a new kicking device with movable ball steeringflippers,
which canbeturnedto an uprightpositionandback. The kicking device is strainedby
awind-screerwiper motorandreleasedy a solenoid[16].

This year we madefurther hardware
modificationsin orderto increasethe per
formanceof ourteam.Figurel shavsone
of our robotsasit competedhis year We
installedPioneef2 boards which now al-
low therobotsto move considerablyfaster
with the same Pittman motors that we
have beenusingduringthe pastyears.For
more precisemovementswe substituted
therearcasteiwheelby a casteroller. To
be able to develop our own vision soft-
ware we replacedthe old vision system
by a SonyDFW-V500digital camea and
SR 4 switchedto SonyVaio PCG-C1VEnote-

— ——— booksbecauseof their IEEE 1394 inter-

Fig.1. A CSFreiturg Player face.We alsoupgradedheWaveLancards
tothenew 11 Mbit/s (2.4GHz) cards.To getourlaserrangefindersto work via the USB
portwe hadto find a circuit diagramfor a RS422-USBcornverterboard,capableof a
500Mbaudrate', which SICK AG then manufacturedor us. For an artificial intelli-
genceresearchgrouphardwaredevelopmentandmaintenancésn'’t a trivial taskat all
andwould certainly not have beenpossiblewithout the help of SICK AG. Even only
adaptingour softwareto the nev hardwareconsumed lot of our preparatiortime for
thisyearstournament.

3 Vision

The implementationof our new vision systemconsistsof two major softwareparts,
onefor region sggmentationby color andonefor the mappingfrom imagecoordinates
to positionsof objectson the field. The region segmentationby color is carriedout

! http:/mwwitdichip.com/Files/usb-422.zip



on 320x240Pixelsin YUV color spaceusingthe CMVision library.? Due to the fast
algorithm([3], our systemis capableto work with eventwo camerasat a rate of 30Hz.
Fromthe segmentedregionsthe world coordinatesare computed For this purposewe
implementedwo alternatve solutions,describedelow.

3.1 Tsaicameracalibration

Tsai's cameramodel[15] is basedon the pinholemodelof perspectie projection,and
consistf six extrinsic andfive intrinsic parametersTheextrinsic parameterslescribe
thetranslation(7,, 7,,, 7.) androtation(R,, R, R.) from theworld coordinateframe
W tothecameracoordinatdrameC. Theintrinsic parametergicludetheeffectivefocal
length f, theradiallensdistortion«, a scalefactors, andtheimagecenter(C,, Cy),
alsoknown as principal point. Generally the objective of calibrationis to determine
optimalvaluesfor theseparameterfrom a setof known pointsin theworld coordinate
frame (zw, yw, 2w) andtheir correspondingixelsin the sensomlane(z,, x,). Once
the intrinsic parameterare determinedthey can be usedfor differentpositionsand
orientationsof the cameraThe extrinsic parametershowever, have to bere-calibrated
whenthe cameranovesrelatively to theworld coordinatedrameorigin.

With thecalibratedparametersynecanpredictthepixel (z,,, z,,) in thesensoplane
from agivenpoint (2., Y, 2 ) iIn W by threetransformations:

1. Rigid body transformation Transformatiorfrom theworld coordinateframeto
the cameracoordinateframe: [ z. y. zc]T = R 2w yu 2w ]T + [Te Ty T, ]T ,
whereR = Rot(R;)Rot(Ry)Rot(R.)

2. Perspectiveprojection Due to the pinhole model, the undistortedpixel coordi-
natescanbe calculatecby thetheoremof intersectindines: z, = f22, z, = fg—:

3. Distortion transformation Transformationfrom undistortedpixels to distorted
oneswith thedistortionfactorxi: z, = z4(1 + k1p?), yu = ya(l + k1p?) , Wwhere

p= i+

Sincetheball is usuallylocatedon thefield plane,a coplanarcalibrationwasused.
As mentionedabove, the calibrationprocesscanbe divided into two parts,which are
intrinsic and extrinsic parametecalibration.For the intrinsic parametercalibrationa
small dot matrix was placedon different positionsin front of the camera.Data for
extrinsic parametecalibrationwasgeneratedrom alarge dotmatrix, whichwasplaced
onthesocceffield planein front of therobot.

Anotherpossibility to generatecalibrationdatais to take snapshot®f the ball on
thefield directly. This comeswith theadwantagehatthe errorfrom calculatingthe blob
centerontheimageis reflectedn the data.However, it turnedout thatthe datawastoo
noisy for the Tsai optimizationprocedurewhich wasindicatedby a high calibration
error.

2 http://parrotfish.coral.cs.cmu.edu/cmvision/



3.2 Interpolation

Besidesthe analytical Tsai method,we alsouseda methodfrom the last yearsteam
for linear interpolation[13]. The methodinterpolatesthe position of the ball based
on trianglesgeneratedrom a priori collectedworld to image correspondence3he
mappingtakesplaceby identifying the triangle which encloseghe consideredixel.
This trianglecanbe mappedo a triangleon thefield which thenis usedto interpolate
theobjectsposition.

For auniformdistribution of thetrianglesthe Delaunaytriangulationhasbeenused.
Figure 2 shaws the generatedriangleson the imageand the field respectiely. The
denseoccurrenceof samplesat the bottom of both picturesindicatesthat more sam-
pleshave beencollectedfrom positionsin the vicinity of the robotthanfrom distant
positions.

The collectionof adequatessampleshasbeencarriedout by assistancef our accu-
rateself-localization.The ball hasbeenplacedon a fixed positionon thefield, which
hasbeentakenasreference Subsequentlysnapshot®f the ball from differentrobot
position have beentakenand corvertedto samplesin the cameracoordinateframe.
Finally, atriangulationalgorithmproducedalist of triangles suchasshownn in figure2.
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Fig. 2. Distribution of triangleson the cameramage(a) andon thefield (b) afterthe Delaunay
triangulation

3.3 Evaluation

Figure 3 shavs the measuredhccurag in estimatingthe ball distanceand ball angle
by the two approacheswhile both approacheperformwell in estimatingthe direc-
tion of the ball, the Tsai methodseemdo be inaccuratén estimatinglarger distances.
We assumethatthis is partially causedby a poor coverageof the field by calibration
dotsduringthecalibrationof the extrinsic parametersA larger matrix would probably
improve the quality of the calibration.However, this is not alwayspracticableduring
RoboCupcompetitions.

In contrastdatacollectionfor theinterpolationis handledeasier The robotis pro-
grammedo takesamplesat particulampositionsautonomouslyFurthermorethequality
of the collecteddatacanbe evaluateddirectly by consideringthe triangle distribution
asshawn in figure 2. Also the effect of noisy measurementss not ascritical asit is
for the analyticalmethod,which usesnon-linearoptimizationto estimatethe model
parameters.



For mostdemandsn the RoboCupdomain,however, theresultedaccurag of both
methodssuffice, sincein mostcasedhedirectionof the ball is moreimportantthanan
accuratalistancesstimationbeyondthreemeters.
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Fig. 3. Accurag in estimatingthe direction(a) anddistance(b) of the ball by interpolationand
the Tsaimethod
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4 Path-Planning

Therobotic playersof our teamareequippedwith arich setof basicsoccerskills such
asGoToBall, GetBall MoveShootEint, ShootGoal etc. Detailsabouttheseskills can
befoundin our lastyears teamreport[16]. Someof theseskills, e.g.GoToBall which
enablea playerto move aroundobstaclescloseto the ball, requirethe planningof a
pathfrom the robot’s currentpositionto a target position.In addition,moreteamori-
entedskills like moving to a stratgic positiononthefield, or theautomatigpositioning
procedurebeforegamestartneedthe ability to find collision-freepaths too.

A prerequisitdor planningpathsis theexistenceof amodelof theworld. Although,
acrudeworld modelcanalreadybe usedfor generatingpaths,the integrity andaccu-
rag/ of theworld modelhasabig influenceon the quality of thecomputecpaths Fortu-
nately our robotshave accesso a comprehensie andaccuratevorld modelbuilt from
obsenationsof the LRF andthevision systemby thefull teamof robots[5,6,16].

Path planninghasbeenwell researcheavith a lot of interestingresultsfound [8].
Thereare at least3 basic cateyories approachegan be divided into: roadmapsgell
decompositionandpotentialfields.Recently probabilisticapproachebecamepopular
in particularfor finding pathsin a high-dimensionatonfigurationspace[7]. As our
robotsonly move in a 2 dimensionalworld andareableto turn on the spot, plus all
objectscanbereasonablyepresentedscircles,we canrestrictthe configuratiorspace
to only two dimensionsThus,a deterministicapproactcanbeemployed.

Roadmapalgorithmsarea popularway for finding pathsin the RoboCuperviron-
ment,e.g.the All BotzRoboCupteamin the small size leaguedevelopeda variantof
the extendedvisibility graph for finding pathsaroundotherplayers[2]. We alsoim-
plementeda versionof the extendedvisibility graphfor our first participationin 1998
[6]. However, this approachhasthe dravbackthatit dependon the chosemminimum



distancetherobotshouldkeepto obstacleslf chosersmall,thealgorithmcangenerate
pathsthataretoo closeto therobots.Especiallyfor soccerthis canbe disadwantageous
asobstacledike opponentrobotsare moving and collisionsare likely to happen.On
the otherhand,alarge valuefor the minimumdistancemight causethe plannerto fail
finding a path. Sinceit is difficult to find a goodtradeoff we developeda new path
planningapproachhasedon a combinationof potentialfields andcell decomposition.
We will shav a comparisorof thetwo approacheattheendof this section.

Thebasicalgorithmis describedn detailin Topor'swork [14]. Dueto limited space
we will only give a brief overviewv and presentextensionsthat improved the perfor
manceof the algorithm.The pathplanningalgorithmusesa potentialfield for finding
its way throughthe obstaclesThis potentialfield consistof anattractingforcetowards
thetargetpositionandrepulsie forcesarisingfrom otherplayers the ball (optionally),
andthefield boundariesAn additionalpotentialfield directsthe searctinto therobot’s
currentheading.In our approachwe approximateheworld into a grid of 10 x 10 cm
cells.

Thesearchalgorithmmaintainsagrid of theworld whereeachcell holdsaboolean
indicatingif thecell hasalreadybeenvisited.Furthermorea priority queues usedwith
elementzonsistingof a cell index andits correspondingotentialvalue. Thealgorithm
startswith the target position and follows the negative gradientof the potentialfield
to the robot. In eachiterationthe potentialand gradientvalue of the cell referringto
the currentpositionarecomputedoy summingup pre-computegbotentialandgradient
fieldsof theindividualforces.Cellindex andpotentialvalueof cellsthatarenotalready
visitedareinsertedinto the priority queue Note, thatalthoughwe discretizethe world
into agrid, thealgorithmstill computespositionswith floating point precision.

Figure4(a)illustrateshow this algorithmfindsa patharoundanobstacle Notethat
we searchfrom the target towardsthe robot and not vice versa,since otherwisethe
robotwould first move directly in direction of the obstaclebeforeturningto the side.
In eachcycle of therobotcontrol program(every 100ms),a new pathis computedand
therobotsmoothlymovesaroundtheobstaclgFigures4(b) and(c)). Theexamplealso
shavsthatin ouralgorithmre-usinga previously computecpathlike in theapproachof
BaltesandHildreth [2] is hot possiblewithout majormodifications.

(b) (©

Fig. 4. Path planningaroundan obstacleusing potentialfields: initial plan (a), plan after robot
moved closerto obstacle(b), andfinal straight-linepathto target (3). Potentialvaluesareindi-
catedby grey-scalelevelswherelower potentialsappeaidarker

Figure 5 displaystwo featureswe addedto the original algorithm. If a playeris
in possessionf the ball andis headingtowardsthe opponentgoal, we surelydo not



wantotherrobotsto interferewith it. This canbeachiezedby addingadditional virtual
potentialsn front of the ball-owning robot (Figure5(a)).
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Fig. 5. Extrapotentialfieldsareaddedin front of the active player(a). To reduceoscillationthe
centerof gravity of anobstaclas shiftedaccordingo the pathcomputedn thelastcycle: without
(b) andwith hysteresishift (c).

(b)

A problemin pathplanningin generalis that of oscillation.A situationwherean
obstacles in betweenrobot andtamet canleadto sucha problem (seeFigure 4(a)).
If the position of the obstacleis noisy, e.g. becausehe sensorgelivers noisy data,
the pathplanningalgorithmmight find pathsaroundthe obstacleon both sideswith
equalchance Sincepathsarere-plannedevery 100 ms, the robot might continuously
choosaheotherway. Thiscouldbeobsenedin experimentsn ourlaboratoryincluding
the robotbumpinginto the obstaclebecauset wasnt ableto decidewhich way to go
around.

A directionalpotentialfield that prefersthe robot’s currentheadinghelpsavoiding
suchscenariosHowever, if therobotis far from the obstacle the algorithm still can
oscillate.For RoboCup2001 we addeda new techniquefor directingthe searchinto
theright way. Basedon the pathcomputedn the previously cycle a hysteresishift is
appliedto theindividual potentialfields of the obstaclesThis shift movesthe centerof
gravity of a potentialfield while still retainingthe shapeat the borderof the obstacle,
i.e.thecenterof theobstaclds shiftedwhile the obstaclestill occupiethe samespace.
Dueto this shift, the gradientchangesandforcesthe searchto go aroundthe obstacle
in thesameway asin thepreviouscycle. Figures5(b) and(c) give anexample.

Potentiaffield methodscanbe trappedn local minima.In our approactthis canbe
detectedy examiningthevisitedflag of thecell thatrefersto the currentposition.If a
cell is visited for the secondime, a bestfirst searchis startedbeginning with the cell
thathasthelowestpotentialin the priority queueln bestfirst searchthe currentcell is
removed from the queueandits 4 neighborsaareexaminedandinsertedinto the priority
gueuef notalreadyvisited. Thisleadsto a wave-frontsearchn the potentialfield until
thenggative gradientof a cell pointstowardsa non-visitedcell wherethe algorithmcan
follow steepestiecentagain.Figure6 shavs anexample.

For evaluatingthe path planner we conductedsereral experimentsusingrandom
start,targetandobjectpositionsin asimulatedervironmentof size81 x 45. In average,
the runningtime waslessthan 1.5 msecon a PentiumMMX 233 MHz. In 35 out of
5000casesthe algorithmneededmorethan 15 msecandthe maximumrun time was
about29 msec Thus,the approachs well suitedfor continuougpathplanning.

A lastexperimentwasconductedo comparehe performancef the new algorithm
to the extendedvisibility graphapproachwe employedfor our first participation[6].
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Fig. 6. Evaluationof the pathplanner Bestfirst searchin local minima (a). Dark cellsindicate
stepswherebestfirst searcthasbeenapplied light cellsreferto steepestiecentiterations.Com-
parisonof path planningmethods(b). Dashedline refersto shortestpath ascomputedby the
extendedvisibility graph,solidline reflectspathgeneratedby our new potentialfield method.

Figure6 (b) shavs the setup.The extendedvisibility approachhasthe propertythat
it computesshortestpathsand for the given scenarioit returnedthe path that goes
throughthe middle of the field. In contrast,our new approacHeadsthe robotaround
theobstaclegloseto thewall. Althoughthelengthof thepathatthewall is significantly
longerthanthe shortesbne,our robotsneedmuchlesstime following thelongerpath
(13 s) thanfollowing the shorterone (24 s) becauseour motion controllerallows for
higherspeedsf obstaclesrefar.

5 TeamCoordination

Soccelis acomplex gamewhereateamusuallyhasto meetseveralrequirementstthe
sametime. To ensurethatin any gamesituationa teamis preparedo defendits own
goal,but alsoreadyto attackthe opponengoal, thevariousteamplayershave to carry
out differenttasksandneedto positionthemselesat appropriatestratgical positions
on the field. In this sectionwe describeour methodfor determiningsuch positions
dependingon the currentgamesituationandillustrate how our playersdecidewhich
positionthey shouldoccupy

To expressthata playerhasataskwhichis relatedto a positionin the teamforma-
tion we saya playerpursuesa certainrole [12]. Distinguishirg betweendifferentareas
of responsibilitywe establishedhefollowingroles:

— active the active playeris in chage of dealingwith the ball. The playerwith this
role hasvariouspossibleactionsto approactthe ball or to bring the ball forward
towardsthe opponengoal.

— stratggic: the task of the stratgic playeris to securethe defenselt maintainsa
positionwell backin ourown half.

— support the supportingplayer senes the teamconsideringthe currentgamesit-
uation. In defensve play it complementghe teams’ defensve formationandin
offensive play it presentstself to receve a passcloseto theopponentgoal.

— goalkeeperthegoalkeepestaysonits goalline andmovesdependingn the balls
position,directionandvelocity.

As our goalkeepehasa specialhardwaresetupfor his taskit never changests
role. Thethreefield players however, aremechanicallyidenticalandswitchtheir roles
dynamicallywheneer necessary



5.1 Positions

Our approachto determinethe target positionsassociatedvith the field playerroles
is similar to the SFAR methodof the CMU teamin the small size league[11]. From
the currentsituationasobsered by the players,a potentialfield is constructedvhich
includesrepulsie forcesarisingfrom undesirablepositionsandattractingforcesfrom
desirableones.

Figure 7 shows an exampleof a po-
tential field for the desiredposition of
theactive player Darkcellsindicatevery
undesirablgositionswhereagight posi-
tions representery desirablepositions.
The resulting positionis markedwhite.
We consideitheidealpositionfor theac-
tive playerto be at leasta certaindis-
tanceaway from otherplayersandat an
optimumdistanceand angleto the ball.
While the optimumdistanceis fixed, the optimumangleis determinecby interpolat-
ing betweena defensive and an offensive variantdependingon the balls’ position. A
defendingplayershouldbe placedbetweerthe ball andour own goal, but in offensive
play theball shouldbe betweerthe playerandthe opponengoal.

Figure 8 shavs the potential field
for the desiredposition of the strataic
player It is basedon the samegamesit-
uation and usesthe samecolors as the
examplefor the active player We want
thestrateic playerto staywell behindall
playersandthe ball andpreferpositions
closeto the horizontalcenterlineof the
field. Only the active playeris assignea
repulsie force explicitly in orderto en-
force stayingout of its way. Otherplayersare avoidedimplicitly by the pathplanner
whichfindsanappropriateositioncloseto the desiredone.

Figure 9 shavs how in the same
game situation as above the defensie
supportpositionis determinedWe want
thesupporterto stayaway from all other
playersand at a certaindistanceto the
ball. As the supporting player should
complementheteams’defensve forma-
tion, we additionallypreferpositionsbe-
hind andasidetheactive playet

Even thoughthe resulting positions
arein generalsimilar to the onesa humanobsenrer would establish,we needecdto
make somerestrictionsin orderto avoid "hysteric” behaior resultingfrom "overre-
acting” to the constantlychangingenvironment.Becauseur robotsareturning rather

Fig.7. Potentialfield for determiningthe
active position

Fig.8. Potentialfield for determiningthe
stratgic position

Fig.9. Potentialfield for determiningthe
supportposition



slowly they needa lot of time for even minor position changesWe thereforefavor a

players’currentpositionwith a persistencealueandare quitetolerantregardinghow

closeour defendingplayersactuallyneedto getto their positions.In ordernotto loose
too much of precisioneither we adjustthis tolerancedynamicallydependingon the

playerscurrentangleto its target position.By allowing largetolerancedor largeangles
but requiringsmall tolerancedor smallangles,we achieve thata playeronly startsto

updateits positionif the new positiondiffersconsiderablyfrom the old one.But once
the playeris moving towardsthat positionthe playerintendsto approacht ascloseas
possible.

Statisticshasedn thelog files of our Seattlegamesshaow thatthe balancebetween
teamsis reflectedin the averagedistancesbetweenthe tamget positionsof our three
field players.Againststrongteamsour playersintendedto stay in a rathercompact
formationwith averagedistance®f 2051mmagainsflrackies(1:0) or 2270mmagainst
Fusion(2:0). Whenourteamwasclearlydominantthe playerswerespreadwvider over
thefield with averagedistancef 3000mmagainstCMU or 3657mmagainstRobosix
(16:0).

The fact thatin the Seattlegamesthe active playerwason averageonly 973mm
away from its target positionindicatesthat our playersmanagedo maintaina forma-
tion wherealwaysat leastone robot wascloseto the ball. Also the fact that the area
for possiblestratgic positionsis quite restrictedis reflectedin the respectie average
distanceof only 892mm.As the supportpositiondiffers considerablyin offensive and
defensie play, the correspondingplayershovedthelargestoffsetto its tamget position
(1857mm).Evaluatingthe log files also shaved that thereis still room for improve-
ment.As it is a tedioustaskto testandevaluateteambehaior onlinewith realrobots,
we intendto rely moreon the simulatorthatwe arecurrentlyimplementing.

5.2 Roles

After afield playerhasdeterminedhe bestactive, stratgic andsupportpositionfrom
its perspectie, it calculatesutilities which arebasicallya heuristicfor thetime it would
takethe playerto reachthecorrespondingosition. Thefollowing criteriaaretakeninto
account:

— The(euclidian)distanceo the target position

— Theanglenecessaryo turntherobottowardsthe target position

— The anglenecessaryor the robotto turn at the target positionin orderto facein
directionof theball

— The anglebetweenthe robot andthe ball (it is more desirable especiallyfor the
active player to approactthetargetpositionalreadyfacingin directionof theball)

— Objectsbetweerthe playerandthetargetposition

Thetotal utility is now computedastheweightedsumof all criteria.In orderto decide
which role to take a player sendstheseutilities to its teammatesand comparegshem
with therecevedones.

Following a similar approachtakenby the ARTteam[4],® eachplayer's objective
is to takea role sothatthe sumof the utilities of all playersis maximized.In contrast

% Note, however, thatour approactwasdevelopedindependently



to the ART approacha playerdoesnt takeits desiredrole right avay, but checksfirst
if not anotherplayer currently pursueshe samerole and considershatrole bestfor
itself aswell. As the world modelsof our playersare not identical, the perspecties
of our playerscanin fact differ. Thereforea playeronly takesa role if eitherno other
playeris currentlypursuingthatrole or thepursuingplayersignalsthatit actuallywants
to changéits role. Thatway we reducewith only little extra communicatioreffort the
numberof situationswheremorethanoneplayerownsthe samerole.

A problemfor this approachare situations wheredifferentplayerscomeup with
very similar utilities for a certainrole andthe rolesmightoscillate.However, by adding
a hysteresidactorto the utility of a player’s currentrole we ensurethata playeronly
givesuparoleif itsrealutility for thatroleis clearlyworsethantheoneof its teammate.

| |GoalkeepefActive | Stratgic|Suppor}

Rolekept 986.9s | 54s| 5.7s | 8.1s
Rolenot unique% of playingtime| 0% |2.17%| 1.23% | 1.06%
Rolenotuniqueaveragetime Os 0.203s| 0.218s |0.206s

Table 1. Evaluationof role assignmeninethod

Tablel displaysa statisticsevaluatingour role assignmentethod.All valuesare
averagedover the gamesplayedat RoboCup2001in SeattleIn thefirst line thetimes
our playerskepta certainrole arelisted. Interestinglythe valuesfor the field players
aresimilarto theaveragerole switchtime of 7 secondstatedby the ARTteam([4]. The
secondine shavshow muchof thetotal playingtime a role waspursuedoy morethan
oneplayer Thefactthatfor the active playerthis happenedn only 2.17%of the total
playingtime andin evenlesscasedor theotherroles,demonstrateshatour methodto
avoid suchsituationsworks successfullyThe averagevaluesfor thetimes,arole was
notunique(in line three),givesfurther evidencefor this.

Whenevaluatingthelog files of our Seattlegameswe alsonotedthattheroleswere
usually quite equally distributed betweenour players.However, in gameswherewe
scoreda lot of goals,the playerwith the mostoffensive startingpositionheldthe active
role considerabljjongerthanits teammates.

6 Conclusion

The developmentof robotic soccerduring the last five yearswas quite impressie. In
1997therobotshit theball only occasionally- andoftenkickedit in thewrongdirection
(or even into the own goal). In 2001, the gameslooked much more interesting.The
developmentof our teamfollowedthis generalpath.In 1998,our main advantagevas
that our robotsknew their own position— which helpedto avoid own goals.Over the
last four years,we concentratean the improvementof our hardwareon the sensor
interpretatiorprocesspn cooperatie sensingandon teamplay. As demonstratedhis
gave CS Freilurg the chanceto win the championshighreetimes. However, having
watchedthe final gameagainstOsakaTrackies we got the impressionthata point is



reachedvhereit is hardto improve our robotssothatthey areableto dominatea game
againsta fast,reactve teamsuchasthe Tracies
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