
Behavior Recognition and Opponent Modelling for
Adaptive Table Soccer Playing

Thilo Weigel, Klaus Rechert and Bernhard Nebel

Institut für Informatik
Universität Freiburg

79110 Freiburg, Germany
weigel,rechert,nebel@informatik.uni-freiburg.de

Abstract. We present an approach for automatically adapting the behavior of
an autonomous table soccer robot to a human opponent player. For this, basic
actions are recognized as they are performed by the human player and charac-
teristic action observations are used to establish a model of the opponent. Based
on the model, the opponent’s playing skills are classified with respect to different
levels of expertise and its particular offensive and defensive skills are assessed.
In response to the knowledge about the opponent, the robot adapts the veloci-
ties at which it attacks and defends in order to provide entertaining games for a
wide range of human players with different playing skills. Experiments on two
different table soccer robots validate our approach.

1 Introduction

For an autonomous system, the best strategy for achieving a certain goal often depends
on the behavior of other agents. As the agents usually differ in their behavior patterns,
the ability to adapt to these differences dynamically is very beneficial for optimizing
the agent’s behavior.

Reinforcement learning is a common technique for adapting an agent’s policy to the
environment [1]. As this is done in a trial-and-error fashion, an agent generally doesn’t
derive explicit knowledge about the encountered agents, but rather implicitly learns to
act in the most appropriate way. Unfortunately, in realistic environments reinforcement
learning approaches are usually too slow to be used for online adaption.

In contrast, deliberate modification of an agent’s behavior based on recognized fea-
tures of other encountered agents allows to adapt in a much more efficient way. How-
ever, this requires to explicitly gather and classify information about other agents’ be-
havior patterns. In game playing, one would like to obtain a model of the opponent
which characterizes its playing style, playing skills and general strategy. Based on that
model, the agent then selects a specific strategy which promises to be the optimal re-
sponse to the opponent.

In this paper, we present an approach for the automated adaption of a table soccer
robot to its human opponent1. The basis for the approach is the robust vision-based
recognition of basic skills as they are performed by the human players. According to

1 Table soccer is also commonly known as foosball.

the observations, the opponent is classified with respect to different opponent models.
In consequence, the robot adapts its behavior taking into account the implications of the
most likely model.

The approach is evaluated on two variants of a real table soccer robot. A first proto-
type version called KiRo uses an overhead color camera for observing the players and
the ball [2]. A commercial version called StarKick uses a black and white camera per-
ceiving the ball from underneath the table. In many test games StarKick showed to be
a competitive challenge even for advanced human players [3]. Figure 1 shows pictures
of KiRo and StarKick.

(a) (b)

Fig. 1. The table soccer robots KiRo (a) and StarKick (b).

The benefit of adapting to the opponent is twofold. On the one hand, weaknesses of
the opponent can be exploited, but on the other hand, the playing level can be adjusted
so that the game stays interesting for less experienced players, as well.

In contrast to the work presented in this paper, many related approaches have only
been evaluated in simulated environments. In the context of simulated robotic soccer,
basic soccer skills were formalized and recognized using Hidden Markov Models [4].
For representing different classes of adversaries, it was proposed to capture the oppo-
nent strategic behavior by accumulating position information in grids and to use deci-
sion tree learning for classifying the opponent according to similarities of these grids
[5]. The ATAC approach models the opponent team behavior by probabilistic represen-
tations of the opponents’ predicted locations. The models have been successfully used
to adapt coordinated team plans for setplays [6].

The rest of this paper is structured as follows. In Section 2 the recognition of basic
actions based on vision data is described. Section 3 presents how the observed actions
and action parameters are used to derive a model of the opponent’s playing style and

playing skills. In Section 5 we discuss experimental results and we conclude with Sec-
tion 6.

2 Behavior Recognition

The basis for behavior recogniton are camera images as shown in Figure 2. The im-
ages are delivered by the vision system in YUV-format at 50 Hz2 with a resolution of
384×288 pixels. For StarKick, the possibility to detect the playing figures in the camera

(a) (b)

Fig. 2. Camera images delivered from KiRo’s overhead camera (a) and StarKick’s camera under-
neath the table (b).

images was traded for an infrared-based system which allows a very robust and reliable
ball detection. Only the own player position are available using motor controller feed-
back [3]. Even though all player positions can be extracted from KiRo’s camera images,
it is in general not possible to reliably detect which playing figure caused a certain ball
movement: Even at normal game velocities the ball can travel several centimeters be-
tween two consecutive camera frames and due to the limited image resolution the ball
can be recognized only with an accuracy of 3mm at best [7].

For these reasons, we decided to base our approach solely on the observed ball po-
sition during a game and the knowledge of the rods’ fixed axis locations. The ball’s
heading and velocity is determined from consecutive ball estimates which are main-
tained using a standard Kalman Filter.

In order to cope with the limited spatial and temporal resolution of the available
data, we chose a very coarse representation for defining and recognizing the most com-
mon actions during a table soccer game. For each player p and rod r, we introduce
a corresponding influence area Ipr

in which at least one of the rod’s playing figure
can manipulate the ball. Figure 3 shows the corresponding coordinate system and the
influence areas for the eight rods.

An action is now defined for an entire rod based on where the ball enters its influence
area, how it moves inside and where it leaves the influence area again. We distinguish
between the following possibilities for manipulating the ball:

2 This is achieved by processing each half-frame individually.

x

y

Fig. 3. The influence areas marked with different colors for the red and blue rods.

– BlockBall
A rod is said to have blocked the ball, when it prevented the ball from passing
without gaining control over it. This is expressed by the fact that the ball stayed
inside the influence area only for a short amount of time and it left the area at the
same side it entered.

– ControlBall
A rod is said to have controlled the ball, when it kept the ball motionless inside the
influence area for a significant amount of time.

– DribbleBall
A rod is said to have dribbled the ball, when it kept the ball inside the influence
area for a significant amount of time and the ball moved over a significant distance.

– KickBall
A rod is said to have kicked the ball, when it accelerated the ball considerably. A
kick can either reverse the ball’s trajectory or continue it when the ball arrived from
behind. After a dribble or control action, it is always assumed that a kick causes the
ball to finally leave the influence area.

– YieldBall
A rod is said to have yielded the ball, when the ball traversed the influence without a
significant change in velocity and orientation. This action may reflect the intention
to let the ball pass from behind, but also may be observed when an intended block
failed.

Here, the actions for blocking, kicking and yielding the ball refer to both directions
the ball can traverse an influence area. However, the direction of the ball is explicitly
considered when the opponent’s playing skills are assessed.

The above actions can be described more formally by a set of predicates which are
all based on directly observable features. Let (xt, yt, vt, αt) be the ball vector at time t
with (xt, yt) denoting the ball’s position, vt its velocity and αt its heading. Let further
be t = 0 the time the ball entered the influence area Ipr

3. We can then formally define

3 According to the camera’s frame rate each time step currently corresponds to 20 milliseconds.

the following predicates for the r-th rod of player p:

TimeOut: t >
∆rod

cosα0v0

(1)

BallMoved:
1

t

t
∑

i=0

√

x2

i + y2

i > ∆d (2)

BallLeft: xt /∈ Ipr
(3)

BallAccelerated: vt > av0 (4)
BallDirectionChanged: sgn(Xpr

− x0) = sgn(Xpr
− xt) (5)

Here, ∆rod denotes the distance between two neighboring rods. In order to capture,
when a ball was stopped by a rod, TimeOut checks, whether the current time t exceeds
the time, after which the ball is expected to leave the influence area again. In practice,
a timeout is only calculated if |α0| > 90◦ ∧ v0 > 0 is true. Furthermore, a lower and
upper bound limit the timeout to reasonable values. In our experiments, timeouts in the
interval [200msec, 750msec] gave very satisfying results. The ball’s movements inside
an influence area are summed up by the predicate BallMoved which is true when per
time step the ball traveled more than a certain minimum required distance. To detect if
the ball hast left the influence area, BallLeft checks, whether the ball coordinates still
belong to that area. The predicate BallAccelerated determines, if the ball’s initial ve-
locity increased considerably. In practice, the ball is only considered to be deliberately
accelerated by a player, if the following constraints hold for the initial and final ball
velocity: v0 < vmax ∧ vt > vmin. In our experiments, we achieved good results with
vmin = 350mm

s
and vmax = 5000mm

s
. The predicate BallDirectionChanged checks, if

the ball left the influence area to the same direction from where it entered. The distance
threshold ∆d and the acceleration factor a can be determined empirically. However, in
the future we plan to learn the their values automatically from training data.

The basic actions can now be defined using the above predicates: An action is con-
sidered to be recognized if the conjunction of some of the – potentially negated – pred-
icates is true. The decision tree shown in Figure 4 represents these formulas and detects
an action for the rod whose influence area currently contains the ball.

The decision tree is evaluated in every cycle. An action can be classified either
when the ball changed to another influence area or when a timeout occurred. If both
BallLeft and Timeout are false, no action is classified. In case no classification is made,
one could in principle try to estimate the action currently taking place. However, as an
action usually happens within only a few cycles, predictions ahead of time are generally
very uncertain.

The predicate BallAccelerated reflects, if a kick action occurred. For dribble and
control actions the corresponding initial ball velocity is set to zero: v0 = 0. This way,
after a control or dribble action, always a kick is classified as well. Please note, that
the time t is reset to zero after an action is recognized and thus consecutive dribble or
control actions may be detected. Such sequences are merged to one single action.

Figure 5 shows an example series of camera images while the blue attacker is kick-
ing the ball. As can bee seen, the kicking action takes place within only a few millisec-
onds.

YieldBallDribbleBallControlBall BlockBall

KickBall

yesno

no

no

BallMoved

BallLeft

BallAcceleratedTimeout

No Classification DirectionChanged

no

no yes

yes yes

yes

Fig. 4. The decision tree for classifying the basic table soccer actions.

t = 0 ms t = 20 ms t = 40 ms

t = 60 ms t = 80 ms t = 100 ms

Fig. 5. Camera images in a 100 ms period during a kick action of the blue attacker.

In some special cases, the described method does not yield the desired action classi-
fications. However, using specific domain knowledge, some observations can be filtered
and some can be created artificially for improving the classification results.

Since the goalkeeper’s movements are limited to the area in front of its goal, it
cannot reach the lateral positions of its influence area. In consequence, when a ball is
bounced back from the goal border, a block action would be assessed even though it is
impossible that the goalkeeper actively blocked the ball. In such cases, the correspond-
ing observations are filtered and no action is classified.

When the ball moves very fast, it may cross entire influence areas inbetween two
consecutive camera frames so that no ball observations are available for these areas.
As in such situations the corresponding rods obviously let the ball pass, appropriate

observations are generated artificially so that YieldBall actions are assessed for these
rods.

Another special situation occurs, when a goal was shot and the ball is thrown in
again from the center of the horizontal table border. In these situations, the ball does
not traverse neighboring influence areas and thus no yield actions should be classified.
Such situations can be detected reliably by checking if the ball was last observed in a
defender’s or goalkeeper’s influence area and then (re-)appeared in a rectangle around
the regions where the ball can be thrown in. In consequence, the above heuristic is
suspended, the ball’s initial velocity v0 is assumed to be zero and the allowed timeout is
initialized with a fixed value. This way, after a throw in, always a KickBall is assessed,
but a ControlBall or a DribbleBall are only classified when there was a certain time
delay before the kick action.

3 Opponent Modelling

A player’s expertise and general playing style can be assessed based on the observed
frequency and characteristics of the recognized basic actions. For this, a set of param-
eters is observed and evaluated for each occurrence of a basic action. We distinguish
between the same actions as presented in section 2. Each observation is rated with re-
spect to a predefined standard yielding a value in the interval [0, 1]. For example, the
rating of the ball’s velocity vt after a kick action is mapped to [0, 1] by the following
function:

rvel
kick =

0, if vt < vmin

vt − vmin

vmax − vmin

, if vmin < vt < vmax

1, else

(6)

Here, vmin and vmax denote predefined minimum and maximum velocities, which were
set in our case to 300mm

sec
and 2000mm

sec
, respectively.

With ro
a denoting the rating of an observation o for the action a and action denoting

a placeholder for any possible action, the following observation ratings are taken into
account:

– rnum
action – The percentage of occurences of an action with respect to the total number

of observed actions so far
– rvel

action – The ball’s maximum velocity while an action took place
– rdistance

dribble – The distance the ball moved during DribbleBall

– rgain
kick – How far the ball was shot by KickBall relative to the distance it could be

shot until reaching the opponent goal

The observations can directly be related to a player’s level of expertise. Other observa-
tions like the time the ball was kept inside an influence area by a control action, or the
distance the ball traveled during a dribble action would not necessarily reveal, how well
the opponent plays, but rather show the opponent’s playing style.

Two additional observations can be interpreted as observing two higher level ac-
tions:

– MoveKick
A MoveKick is performed, when a rod moves the ball sideways with considerable
speed and then kicks the ball forward immediately. This action is observed, when a
fast DribbleBall is directly followed by a KickBall.

– ControlledDribble
A ControlledDribble is performed, when a rod controls the ball right after it drib-
bled the ball. This action is observed, when at least one time a DribbleBall is im-
mediately followed by a ControlBall.

As these actions usually require advanced playing skills, they are helpful for distin-
guishing between unexperienced and more advanced players.

The ratings of the different observations for one action are now combined to one
quality measure for that particular action. As the rating of an action’s occurrence fre-
quency does not relate to an individual action but rather provides an additional global
quality measure, it is incorporated at a later stage. In fact, for Block, Control, Yield
and ControlledDribble actions, only their occurrence frequency is of interest4. There-
fore, only the following quality measures have to be calculated as the weighted sum of
observation ratings:

qdribble =
w1r

vel
dribble + w2r

distance
dribble

w1 + w2

(7)

qkick =
w3r

gain
kick + w4r

vel
kick

w3 + w4

(8)

qmoveKick =
w5r

gain
moveKick + w6r

vel
moveKick + w7r

vel
dribble

w5 + w6 + w7

(9)

where the w{1...7} denote some weights.

Usually, an action is carried out by a player with different quality levels during a
game. The performance of a player may sometimes be very bad due to mistakes and
sometimes be very good just by luck. In order to capture a player’s general playing
skills, we therefore eliminate such “outliers” and assume, that a player’s real capabilities
are best reflected by the quality measure which occurred the most times. For this, we
discretize the quality measures corresponding to one action into quality levels and build
a histogram over these levels. The maximum of a histogram is then taken as the overall
quality measure. Figure 6 shows such a histogram for the kick qualities of three different
players and illustrates, how better players achieve higher qualities.

The playing skills of an opponent player can now be assessed based on the actions’
quality measures and occurrence frequencies. We distinguish between general skills
for blocking, kicking and controlling the ball and additionally consider if a player is

4 For block actions, the velocity at which the ball approaches a rod could be taken as a quality
measure. However, the quality would then depend very much on the opponent’s kicking skills.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05
0.10

0.15
0.20

0.25
0.30

0.35
0.40

0.45
0.50

0.55
0.60

0.65
0.70

0.75
0.80

0.85
0.90

0.95

nu
m

be
r o

f o
cc

ur
en

ce
s

kick quality

advanced amateur beginner

Fig. 6. The normalized number of occurrences of the kick qualities for three human players with
different levels of expertise.

capable of performing the more difficult actions ControlledDribble and MoveKick:

SKick = q̂kick (10)

SBlock =
w1r

num
block + w2(1 − rnum

yield)

w1 + w2

(11)

SControl =
w3q̂dribble + w4r

num
dribble + w5r

num
control + w6(1 − rnum

lost)

w3 + w4 + w5 + w6

(12)

SBontrolledDribble = rnum
controlledDribble (13)

SMoveKick =
w7q̂moveKick + w8r

num
moveKick

w7 + w8

(14)

Here, Ss denotes a certain skill s, q̂a denotes the maximum quality extracted from the
histogram for action a and w{1...8} are weights (different to those used in formulas 7 –
9). Since even beginners kick the ball very often while more experienced players may
choose to control the ball more often, we decided to ignore the occurrence frequency
when assessing the kicking skills. In order to capture a players defensive skills, for block
actions only the ones with the ball rolling towards the own goal are counted. Assuming
that a player always at least intends to block the ball, additionally the occurrence per-
centage of yield actions which let the ball pass contrary to the own playing affect the
blocking skills. The control skill summarizes a player’s ability to deliberately control
the ball and consequently, the occurrence frequency of dribble and control actions as
well as the dribble quality is relevant. Additionally, the number of times the ball was
lost is considered. This is the case whenever the velocity of a kick after a dribble or
control action is rated as zero. Only low ratings rnum

lost can yield high control skills, in-
dicating that most of the times the ball was deliberately played rather than accidentally
lost.

An opponent model for assessing a player’s level of expertise can now be defined
as a vector containing the five skill measures:

O = (SKick,SBlock,SControl,SControlledDribble,SMoveKick)T (15)

The state chart in Figure 7 shows the allowed action sequences while the action pa-
rameters of one team are extracted. The state chart validates a sequence and rejects it, if
it is not possible that the basic actions are followed by each other in that way. The states
Receiving, Dribbling and Kicking are reached, when an action moved the ball to a rod
of the own team. Whenever a state transition takes place, the parameters of the action
which caused the transition are updated. The state OpponentHasBall illustrates, how
control of the ball shifts to the opponent team. The opponent team, in turn, maintains
another state chart for the own parameter extraction. The state transitions are labeled
with actions, that may cause the transition. Bold letters indicate actions of the own team
and actions printed in grey show actions of the opponent. If an action is carried out by
the same rod, it is plotted in italics. An action is displayed in normal letters, if it shifts
the ball control to another rod. For further processing, consecutive controlled dribble
and dribble actions are merged to one single controlled dribble action.

Kick

Dribbling

Kicking

Dribble

Kick
Kick

Block
Yield

Yield Opponent
Has Ball

Receiving

MoveKick

Yield

MoveKick

Yield

ControlledDribble
MoveKick

Dribble
Block
Control

Yield

Fig. 7. The state chart for modeling the opponent.

A typical game sequence could look like the following: The opponent attacker
shoots the ball past the own defender towards the own goalkeeper. The goalkeeper
blocks the ball such that it rolls back to the own defender which now stops the ball.
The defender then starts to move the ball inside its influence area, stopping it once in a
while. Eventually, it shoots the ball forward past the opponent attacker and the own mid-
field, until the opponent midfield finally stops the ball. In the state chart, this sequence
would start in the OpponentHasBall state, from where the opponent kick caused a tran-
sition to the Receiving state. The block action would lead again to the Receiving state.
The alternating dribble and control actions would shift between the Dribbling and Re-
ceiving states, which would be merged to one single controlled dribble action. If the ball

moved before it was kicked by the defender, a move kick action would transfer from the
Dribbling to the OpponentHasBall state. Otherwise, a regular kick would transfer from
Receiving to OpponentHasBall. As the opponent attacker lets the ball pass trough, the
kick action continues and the Kicking state is reached again. However, the own midfield
rod yields the ball, too, and the OpponentHasBall state is finally reached.

A resulting model vector describing an observed opponent can now be classified
with respect to predefined opponent classes. In our case, these classes describe different
levels of playing expertise and are defined by model vectors with fixed quality measures.
In our experiments, we used the following definitions:

– Obeginner = (0.4, 0.3, 0.2, 0.0, 0.0)T

– Oamateur = (0.6, 0.5, 0.3, 0.2, 0.3)T

– Oadvanced = (0.8, 0.8, 0.8, 0.8, 0.7)T

– Oexpert = (1.0, 1.0, 1.0, 1.0, 1.0)T

For comparing an observed opponent model M with an opponent class C, the match
between M and C is defined as the sum of the squared differences between the corre-
sponding skill measures:

match(M, C) =
∑

a∈A

(SC
a − SM

a)2, (16)

where A = {kick, block, control, dribble, controlledDribble, moveKick}.
Classifying a model vector M can now be considered as finding the class C with the

minimum deviation to M . Thus, minimizing match yields the desired classification:

class(M) = arg min
C∈O

match(M, C), (17)

where O = {Obeginner ,Oamateur ,Oamateur ,Oamateur}. The function class(M) as-
sesses the general level of expertise of an observed opponent player. This information
can be used in the following for adapting the own behavior appropriately.

4 Behavior Adaption

An agent can utilize the knowledge of the opponent’s playing skills in various ways.
One goal could be to exploit weaknesses of the opponent for increasing the own playing
performance. Against weaker opponents, a goal could also consist in lowering the own
playing standard to the opponent level for keeping the game interesting.

Since StarKick is capable of beating even advanced human players, its playing level
usually needs to be lowered in order to maintain the game entertaining for the average
human player. This can be achieved by lowering the velocities at which the robot shoots
the ball and at which it moves a rod towards a certain blocking position. While the first
weakens the robot’s offense, the latter decreases its defensive play.

A more elaborate way of adaption would consist in employing different types of
actions according to the opponent’s playing characteristics. Currently, we are working
on actions for dribbling and passing the ball. These actions provide a very attractive

game to watch but also have a higher risk of loosing the ball to the opponent. Therefore,
the use of these actions could be made dependend on the risk that an opponent would
take too much advantage of them.

At present, we adapt the own behavior based on adapting the move and shoot veloc-
ities such that the game maintains balanced between the robot and the human opponent.
Based on the opponent model proposed in the previous section, there are two alterna-
tives for doing so. Both approaches adjust the velocities by multiplying constant factors
fmove, fturn ∈ [0, 1] to the maximum velocity at which a rod moves and turns.

One way to establish these factors is to refer to predefined values according to the
assessed opponent playing level. Table 1 shows the mapping from opponent playing
level to velocity factors which we used in our experiments.

Beginner Amateur Advanced Expert

fmove 0.4 0.6 1.0 1.0
fturn 0.2 0.5 0.8 1.0

Table 1. The factors for the maximum move and turn velocity with respect to the opponent’s level
of expertise.

Instead of only considering the general level of expertise, the opponent’s defensive
and offensive capabilities can be assessed individually for adapting in a more direct way
to its strengths and weaknesses. A second adaption scheme therefore adjusts the max-
imum move velocity in response to the opponent’s offensive skills and the maximum
turn velocity according to the opponent’s defensive skill level. For this, from the model
vector an opponent’s defensive and offensive skill level is calculated as follows:

Sdefense =
1

3
(Sblock + Scontrol + QcontrolledDribble) (18)

Soffense =
1

2
(Qkick + QmoveKick) (19)

The maximum velocities are then adapted in direct response to the currently ob-
served opponent’s offensive and defensive skill level, i.e. fmove = Soffense and
fturn = Sdefense.

Of course, the velocity factors could also simply be established depending on the
current game score. However, the score might not always be available and the goal of
this work is not to balance the game score but to adapt the difficulty of scoring a goal
to an appropriate level for the human player.

5 Results

For the evaluation of our approach, we recorded twelve log files during games on both
KiRo and StarKick. Three different human players – a beginner, an amateur and an
advanced human player – played two games on each table. In one game, the robot

played with maximum move and turn velocities. In the other game, the robot played
very slowly so that the human players had more opportunities to play “their style”
without being disturbed. Each log file contains the raw video data recorded at 50 Hz,
summing up to a total amount of 14.4 GB of data for evaluation.

For evaluating the action classification, we hand-labeled the log files specifying at
which positions the system should assess a certain action. However, as stepping through
a log file is a very time consuming process, we only evaluated the first minute (3000
frames) of each log file. Figure 8 shows the results of comparing the manually created
ground truth to the output of our system for KiRo (a) and StarKick (b). Always the
human opponent and the robot were evaluated. We distinguished between correct clas-
sifications, mismatches, false positives and false negatives. When a different action than
stated in the ground truth was recognized, a mismatch was counted. When an observed
action didn’t appear in the ground truth, a false positive was recorded. Conversely, if
the ground truth contained an action where no action was recognized, a false negative
was counted.

 0

 50

 100

 150

 200

 250

 300

 350

Kick Block Yield Dribble NoAction Total

nu
m

be
r o

f a
ct

io
ns

Correct
Mismatch
FalsePositive
FalseNegative

 0

 50

 100

 150

 200

 250

 300

 350

Kick Block Yield Dribble NoAction Total

nu
m

be
r o

f a
ct

io
ns

Correct
Mismatch
FalsePositive
FalseNegative

(a) (b)

Fig. 8. Action classification results for games against KiRo (a) and games against StarKick (b).

[Discussion. . .]
For evaluating the modeling of the opponent, we compared the classification results

to the real level of expertise of the human players Figure 9(a) shows the classification
results for each playing level. Figure 9(b) shows the quality measures averaged over
the log files corresponding to the same human player. It can be seen, how the qualities
increase with an increasing level of expertise.

[Discussion. . .]
For evaluating the behavior adaption, an advanced human player played a two

minute game against StarKick. In the first minute, the human played like a beginner.
Then, it played the best as possible. Figure 10(a) shows the velocities assessed accord-
ing to the currently determined opponent playing level and Figure 10(b) depicts the
velocities with respect to the currently assessed defensive and offensive playing skills.
During the game, StarKick uses the velocities of Figure 10(b) for adapting to the op-
ponent.Starting with maximum velocities it decreased its velocities in order to meet the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Beginner Amateur Advanced

M
at

ch
 in

 %

Correct
FalsePositive

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Beginner Amateur Advanced

sk
ill

 q
ua

lit
y

KickQ
BlockQ
ControlQ
DribbleQ
ControlledDribbleQ
MoveKickQ

(a) (b)

Fig. 9. Classification results for the human players with respect to their level of expertise (a) and
assessed skill qualities with respect to the human player’s level of expertise (b).

human’s playing level. After the human player increased its performance after a minute,
also StarKick started to raise its game velocities again.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 1000 2000 3000 4000 5000 6000

ve
lo

ci
ty

frame number

fmove
fturn

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 1000 2000 3000 4000 5000 6000

ve
lo

ci
ty

frame number

fmove
fturn

(a) (b)

Fig. 10. Evolution over time of the adapted move and turn velocities (a) (b).

[Discussion. . .]

6 Conclusion

In this paper, we presented an approach for automatically adapting the behavior of an
autonomous table soccer robot to a human opponent. Experiments show, that it is pos-
sible to recognize basic actions in a robust way, that the opponent can reliably be clas-
sified with respect to different levels of playing expertise, and that the robot adapts its
behavior successfully to the playing level of the opponent player.

In the future, we would like to adapt not only the move and shoot velocities but also
respond with alternative actions to the opponent’s particular playing characteristics. For
an even better understanding of the opponent behavior, additionally its playing style

could be assessed and general observations about the course of the game, e.g. the ball’s
distribution over the field could be taken into account.

References

1. Sutton, R., Barto, A., eds.: Reinforcement Learning: an Introduction. MIT-Press, Cambridge,
Massachusetts (1998)

2. Weigel, T., Nebel, B.: KiRo – An Autonomous Table Soccer Player. In Kaminka, G., Lima,
P., Rojas, R., eds.: RoboCup-2002: Robot Soccer World Cup VI. Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, Heidelberg, New York (2003) 119–127

3. Weigel, T.: KiRo – A Table Soccer Robot Ready for Market. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). (2005)

4. Han, K., Veloso, M.: Automated Robot Behavior Recognition Applied to Robotic Soccer. In
Hollerbach, J., Koditschek, D., eds.: Robotics Research: The Ninth International Symposium.
Springer-Verlag, London (2000) 199–204

5. Riley, P., Veloso, M.: On Behavior Classification in Adversarial Environments. In Parker,
L., Bekey, G., Barhen, J., eds.: Distributed Autonomous Robotic Systems 4. Springer-Verlag,
Berlin, Heidelberg, New York (2000) 371–380

6. Riley, P., Veloso, M.: Planning for Distributed Execution through Use of Probabilistic Oppo-
nent Models. In: Proceedings of the Sixth International Conference on Artificial Intelligence
Planning Systems (AIPS). (2002) 72–81

7. Weigel, T., Zhang, D., Rechert, K., Nebel, B.: Adaptive Vision for Playing Table Soccer. In:
Proceedings of the 27th German Conference on Artificial Intelligence, Ulm, Germany (2004)
424–438

