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Abstract. Planning techniques have matured as demonstrated by the
performance of automatic planning systems at recent international plan-
ning system competitions. Nowadays it seems feasible to apply planning
systems to real-world problems. In order to get an idea of what the per-
formance difference between special-purpose techniques and automatic
planning techniques is, we applied these techniques to the airport traffic
control problem and compared it with a special purpose tool. In addi-
tion to a performance assessment, this exercise also resulted in a domain
model of the airport traffic control domain, which was used as a bench-
mark in the 4th International Planning Competition.

1 Introduction

Planning techniques have matured as demonstrated by the performance of auto-
matic planning systems at recent international planning system competitions [1,
12]. Current planning systems are able to generate plans with hundred steps and
more compared with ten steps or less ten years ago. Given the inherent complex-
ity of the planning problem, this is a dramatic improvement. The reason for this
performance boost is the use of new algorithms and the development of powerful
heuristics [2, 3].

In order to assess how feasible it is to apply automatic planning systems to
real-world problems, we used these techniques to solve the operational airport
ground-traffic control problem [8]. This is an NP-complete problem that can
be characterized as a job-shop scheduling problem with blocking. Using special-
purpose techniques, it can be solved approximately for a realistic number of
airplanes (roughly 50) on realistic airports (such as Frankfurt airport).

So how far do we get with planning techniques for this problem? As our ex-
periments indicate, the ezpressiveness of current planning systems approaches
the point where one can formulate the traffic problem as a planning problem.
From a performance point of view, the results are less encouraging. The planners
we evaluate in our experiments are only good enough for small airports with few
airplanes. One has to put this result into perspective, however. Special-purpose
scheduling techniques are, of course, highly optimized for the particular schedul-
ing problem. Furthermore, the performance penalty to be expected for general-
purpose solutions is always quite high and often prohibitive. On the positive



side, the exercise of formalizing the traffic problem has led to a new challeng-
ing, real-world benchmark problem for automatic planning systems.! Indeed,
the domain was used as a benchmark in IPC-4, the 4th International Planning
Competition. The results obtained by the competitors in IPC-4 are somewhat
more encouraging than our own results. The IPC-4 results were available just a
few days before the deadline for the conference version of this paper. We provide
a short summary of the results.

The rest of the paper is structured as follows. In Section 2, we give a de-
scription of the airport ground-traffic control problem. Section 3 describes then
the formalization using PDDL [11], the de facto standard for planning systems.
In order to allow existing planning systems to be used, we also describe how to
compile the PDDL specification into basic STRIPS. Based on that, in Section 4,
the results of our experiments, and a summary of the IPC-4 results, are given.
Section 5 summarizes and concludes.

2 The Airport Ground-Traffic Control Problem

In a nutshell, the airport ground-traffic control problem consists of coordinating
the movements of airplanes on the airport so that they reach their planned
destinations (runway or parking position) as fast as possible — whereby collisions
shall be, of course, avoided.

The airplanes move on the airport infrastructure, which consists of runways,
taxi ways, and parking positions. Airplanes are generally divided into the three
‘Wake Vortex Categories’: light, medium, and heavy, which classify them ac-
cording to their engine exhaust. A moving airplane can either be in-bound or
out-bound. In-bound airplanes are recently landed and are on their way from
the runway to a parking position, usually a gate. Out-bound airplanes are ready
for departure, meaning they are on their way to the departure runway. Since
airplanes are not able to move backwards, they need to be pushed back from the
gate on the taxiway where they start up their engines. Some airports provide
different park positions that allow an airplane to start its engines directly but
to simplify the situation we assume that an airplane always needs to be pushed
back.

The ground controller has to communicate to the airplanes which ways they
shall take and when to stop. While such guidance can be given purely reactively,
it pays off to base decisions on anticipating the future. Otherwise it may happen
that airplanes block each other and need more time than necessary to reach their
destinations on the airport. The objective is to minimize the overall summed up
traveling times of all airplanes.

From a formal point of view, one considers the problem with a time horizon
of say one hour and schedules all movements, minimizing the movement times
of the planes. Of course, because the situation changes continually (new planes
arrive and schedules cannot be executed as planned), continuous rescheduling is

! The full encoding of the problem can be found in the technical report version of this
paper [14].



necessary. We will consider, however, only the static optimization problem with
a given situation on the airport and a time horizon of a fixed time span.

Our domain representation and implementation is based on software by Wolf-
gang Hatzack, namely on a system called Astras: Airport Surface ground TRAffic
Simulator. This is a software package that was originally designed to be a train-
ing platform for airport controllers. Astras provides a two-dimensional view of
the airport, allowing the user to control the airplanes by means of point and
click. Astras also includes features for simulating the traffic flow on an airport
over the course of a specified time window, as well as an automated controller
(named Acore) driven by a greedy re-scheduling approach [8]. Our PDDL domain
encoding is based on Astras’s internal representation of airports. We generated
our test instances by software that is integrated with Astras. During an air-
port simulation, if desired by the user our software exports the current traffic
situation in various PDDL encodings.

3 The PDDL Encoding of the Airport Domain

The central object in the PDDL encoding of the airport domain is the airplane
that moves over the airport infrastructure. The airport infrastructure is built
out of segments. An airplane always occupies one segment and may block several
others depending on its type. Our assumption here is that medium and heavy
airplanes block the segment behind them whereas light airplanes only block the
segment they occupy. Blocked segments cannot be occupied by another airplane.
To handle terms like behind we need to introduce direction in segments. Since
our segments are two-dimensional objects we need exactly two directions which
we quite inappropriately call north and south. Every segment has its north end
and its south end so it becomes possible to talk about direction in a segment.

To model the airplane movement we need at least two actions. The move
action describes the normal forward movement of an airplane from one segment
to another. The pushback action describes backward movement when an airplane
is being pushed back from its park position.

We also introduce an airplane state. An airplane can either be moving, be
pushed, be parked, or be airborne. We want to make sure that an airplane only
moves backwards while being pushed from its park position and only moves
forward if not. The parked state is necessary since a parked airplane’s engines are
off and thus the airplane does not block any segments except the one it occupies
unlike when moving. If a plane is airborne, i.e. the plane took off already, then
that means that the plane is not relevant to the ground traffic anymore.

The actions park and startup describe the transitions between the different
states. As one may expect the park action makes sure the airplane only blocks
the occupied segment while the startup action does the exact opposite. It initially
blocks segments depending on the airplane type.

A last action is needed to completely remove the airplane from the airport
after takeoff. This action is called takeoff and makes sure the airplane does not
block or occupy any segment anymore.



In the following we describe our different encodings of the airport domain: a
durative and non-durative ADL [13] encoding, a STRIPS [6] encoding where the
ADL constructs were compiled out, finally a means to model runway blocking
for landing airplanes.

3.1 ADL Encoding

Our domain has four types of objects: airplane, segment, direction, and airplan-
etype.

The airplane type (its Wake Vortex Category) is described with the has-type
predicate:

(has-type ?a - airplane ?t - airplanetype)

The airplane state is described with four predicates:

(airborne ?a - airplane ?s - segment)
(is-moving 7a - airplane)

(is-pushed ?a - airplane)

(is-parked 7a - airplamne 7s - segment)

The is-parked predicate has a second parameter stating the park position the
airplane is parked at. The second parameter of the airborne predicate just states
from which segment the airplane took off. This is useful in case an airport pro-
vides several departure runways and we want to force an airplane to use a specific
one. Apart from the airplane state we also need to describe the current position
of an airplane and its heading:

(at-segment ?a - airplane ?s - segment)
(facing 7a - airplane 7d - direction)

We need several predicates to describe the airport structure. All the following
predicates are static; they will be set once in the initial state and never be
changed.

(can-move ?sl ?s2 - segment ?d - direction)

(can-pushback ?sl 7s2 - segment ?d - direction)

(move-dir 7sl ?s2 - segment ?d - direction)

(move-back-dir ?sl ?s2 - segment ?d - direction)

(is-blocked ?sl - segment ?t - airplanetype ?s2 - segment ?d - direction)
(is-start-runway ?s - segment ?d - direction)

The can-move predicate states that an airplane may move from segment sI to
segment s2 if its facing direction d. The can-pushback predicate describes the
possible backward movement which is similar to the can-move predicate. In our
encodings, the can-move predicate holds only for pairs of segments that belong
to the standard routes on the airport — this is common practice in reality (as
reroutes are likely to cause trouble or at least confusion), and yields much better
planner performance.

The move-dir and move-back-dir predicates state the airplane’s heading af-
ter moving from segment s! to segment s2. That means that in a correct air-
port domain fact file every can-move (can-pushback) predicate has its move-dir
(move-back-dir) counterpart.



(:action move
:parameters (?a - airplane
7t - airplanetype
?7d1l - direction
?sl - segment
?7s2 - segment
?d2 - direction)
:precondition (and
(has-type 7a ?t)
(is-moving 7a)
(at-segment ?7a 7sl)
(facing 7a 7d1)
(can-move ?sl 7s2 7d1)
(move-dir ?sl 7s2 7d2)
(not (exists (%al - airplane) (and (not (= 7al Za))
(blocked ?s2 7al))))
(forall (7s - segment) (imply (and (is-blocked ?s 7t 7s2 7d2)
(not (= 7s ?s1)))
(not (occupied 7s))
)
)
reffect (and
(at-segment 7a ?s2)
(not (at-segment ?a ?sl1))
(occupied ?s2)
(not (occupied 7s1))
(when (not (= ?d1 ?d2))
(and (facing ?a ?d2)
(not (facing ?a 7d1))))
(blocked ?s2 ?7a)
(when (not (is-blocked ?sl ?t ?s2 ?7d2))
(not (blocked ?sl 7a)))
(forall (7s - segment) (when (is-blocked ?s 7t ?s2 7d2)
(blocked ?s ?a)
)
(forall (?s - segment) (when (and (is-blocked 7s 7t 7sl 7dl1)
(not (= 7s 7s2))
(not (is-blocked ?s ?t ?s2 ?d2))
)
(not (blocked 7s ?a))
))

Fig. 1. ADL mowve action

The is-blocked predicate is used to handle all blocking. It says that segment
s1 will be blocked by an airplane of type ¢ at segment s2 facing into direction
d. We will see the use of this predicate in the move action’s effect in detail.

The last predicate, is-start-runway, states that an airplane at segment s fac-
ing direction d is allowed to takeoff. This is an essential predicate as we cannot
allow an airplane to takeoff wherever it (or better: the planner) wants.

Finally, we need two predicates to describe the current situation on the air-
port regarding blocked and occupied segments:

(occupied 7s - segment)
(blocked ?s - segment 7a - airplane)



3.1.1 Non-durative actions Now we will look at the actions used in the
non-durative ADL domain in detail.

The most important one is clearly the move action (see Figure 1). The pa-
rameters have the following meaning: an airplane a of type t facing direction
d1 on segment sI moves to segment s2 and then faces direction d2. The first
four predicates in the precondition make sure the airplane is in a proper state,
meaning it is located in the right segment facing the right direction. Predicates
five and six represent the airport structure as described above. The last two
formulas are the really interesting ones as they deal with segment blocking. The
first one makes sure that no other airplane blocks the segment our airplane is
moving to. Here we use the full power of ADL to check for every airplane if it
is blocking segment s2. Our moving airplane cannot block itself so we exclude
it from the check. The second formula is used to make sure that none of the
segments our airplane will block after the movement is occupied by another air-
plane. To achieve that we use the is-blocked predicate. Its instances give us the
segments that will be blocked once our airplane has moved to segment s2. If we
find such a segment we make sure its not occupied since a segment may not be
occupied and blocked by different airplanes at the same time. We skip segment
s1 since it is always occupied by our airplane.

If all of these conditions apply, the move action may be executed. Most of the
effects should be self-explanatory: updating of the occupied segment, changing
the heading if necessary, and blocking the occupied segment. Again, the block-
ing is the part where full ADL is needed. We iterate over all segments to find
those that are blocked from our airplane after the movement and those that
were blocked before the movement. The latter ones need to be unblocked with
exception of those blocked after the movement. Again, the is-blocked predicate
is the central tool.

The pushback action differs only little from the move action. That is why we
will skip a detailed description here and take a look at one of the more interesting
actions used for performing the transitions of the airplane state.

The startup action (see Figure 2) represents the process of starting the air-
plane’s engines after it has been pushed back from its park position and thus
is clearly only needed for out-bound airplanes. That is why the preconditions
contain the is-pushing predicate. The startup action represents the process of
the airplane starting its engines. That means it begins blocking segments. So we
need the exact same check for occupied segments as in the move action and also
the blocking formula in the action’s effect. Apart from that we only update the
airplane state to is-mowving.

The park action does the opposite of the startup action by unblocking all
segments except the occupied one.

The takeoff action makes sure the airplane is completely removed from the
airport meaning it does not block or occupy any segments anymore.

Definition 1. A correct state of an airplane a is defined by the following facts:

1. a is at exactly one segment or is airborne.



(:action startup
:parameters (?a - airplane ?t - airplanetype ?s - segment ?d - direction)
:precondition (and
(is-pushing 7a)
(has-type ?a ?t)
(at-segment ?a 7s)
(facing 7a 7d)
(forall (?sl - segment)
(imply (and (is-blocked 7sl ?t 7s ?d)
(not (= ?s ?s1)))
(not (occupied 7s1))
)
)
reffect (and
(not (is-pushing ?a))
(is-moving 7a)
(forall (?sl - segment)
(when (is-blocked 7sl ?t 7s ?d)
(blocked 7sl ?a)
)
)

Fig. 2. ADL startup action

a occupies exactly the segment it is at or is airborne.

If a is airborne it neither occupies nor blocks any segments.

a is facing in exactly one direction or is airborne.

If a is moving or being pushed it only blocks the segments determined by the
is-blocked predicate and the one it occupies.

If a is parked it only blocks the segment it occupies.

a never blocks a segment occupied by another airplane.

a never occupies a segment blocked by another airplane.

Cuds o

P N>

Proposition 1. If all airplanes had a correct state before executing an action
of the airport domain they also have correct states afterwards.

The (straightforward) proof to Proposition 1 can be found in our TR [14].

3.1.2 Durative actions To obtain a domain with action durations, we en-
riched the above action encodings with the obvious “at start”, “at end”, and “over
all” flags for the preconditions and effects. The duration of move and pushback
actions is calculated as a function of segment length (airplane velocity is assumed
as a fixed number). The duration of startup actions is calculated as a function
of the number of engines. The park and the takeoff action’s durations are both
set to fixed values.

3.2 STRIPS

Most current PDDL planning systems can not handle full ADL, especially dura-
tive ADL. To work around this problem and make the airport domain accessible



(:action pushback_seg_pp_0_60_seg_ppdoor_0_40_south_south_medium
:parameters (?a - airplane)
:precondition (and
(has-type 7a medium)
(is-pushing ?a)
(facing ?a south)
(at-segment ?a seg_pp_0_60)
(not_occupied seg_ppdoor_0_40)
(not_blocked seg_ppdoor_0_40 airplane_CFBEG)
(not_blocked seg_ppdoor_0_40 airplane_DAEWH)
)
reffect (and
(not (occupied seg_pp_0_60))
(not_occupied seg_pp_0_60)
(not (blocked seg_pp_0_60 7a))
(not_blocked seg_pp_0_60 7a)
(not (at-segment ?a seg_pp_0_60))
(occupied seg_ppdoor_0_40)
(not (not_occupied seg_ppdoor_0_40))
(blocked seg_ppdoor_0_40 7a)
(not (not_blocked seg_ppdoor_0_40 ?a))
(at-segment 7a seg_ppdoor_0_40)

Fig.3. A STRIPS pushback action: pushing a medium airplane from seg pp 0 60
to seg_ppdoor_ 0 40 heading south

to most planning systems we need to remove the ADL constructs to create a
STRIPS only version.

Due to the lack of quantified variables there is no way to determine which
segments need to be unblocked and unoccupied when moving. In our context
this difficulty can be tackled by pre-instantiating. We create one move (and
pushback) action for every pair of segments, for every airplane type, and for
every possible pair of directions associated to moving between the segments.
We can then do the required state updates without the de-tour to conditions
over the is-blocked predicate. (More formally, the conditional effects disappear
because their conditions are all static.) We end up with a single non-instantiated
parameter for the move and pushback actions: the particular airplane that is
moved.

The blocked predicate depends on an airplane. In the ADL version a quanti-
fied precondition iterates over all airplanes to check if a segment is blocked. In
STRIPS, instead we use a separate check for every airplane on the airport.

STRIPS does not allow negated preconditions. We need negated precondi-
tions to test for unblocked and unoccupied segments, so we emulate their be-
havior using a standard translation approach. We introduce not_blocked and
not_ occupied predicates, and make sure that these always exhibit the intended
behavior (i.e. they are assigned the inverse values initially, and every action effect
is updated to affect them inversely).

Figure 3 shows an example of a non-durative STRIPS pushback action.

Now that we moved almost everything from the fact into the domain decla-
ration it is obvious that we need a separate domain definition for each airport



situation. The fact file merely defines the airplanes’ starting state and the goal.
All airport layout is implicitly defined by the move actions. Thus we can drop
the is-blocked, can-move, move-dir, can-pushback, and move-back-dir predicates.
The STRIPS domain version can be enriched with durations exactly like the
ADL version.

3.3 Time Windows

The controllers of most large airports in the world only control their fore-field
but not the airspace above the airport. In particular, they can not change the
landing times of airplanes, and independently of what they decide to do the
respective runway will be blocked when a plane lands.

We have to model something like segment s is blocked from time x to time y.
Clearly this can only be achieved with durative PDDL. The language for IPC-4,
PDDL 2.2 [5], introduced Timed Initial Literals, which provide a very simple
solution to the time-window problem. They allow the specification of a literal
together with a time stamp at which the literal will become true. For example:

(at 119 (blocked seg_27 dummy_landing_airplane))

The above statement in the “:init” section of the fact file will make sure that
segment seg 27 gets blocked at time 119. To unblock the segment after the
landing we use a similar statement.

(at 119 (not (blocked seg_27 dummy_landing airplane)))

Since the blocking predicate’s second parameter is an airplane and we only
simulate the landings but not the airplanes themselves, we use a dummy airplane
for all landing actions. The dummy airplane is used nowhere else. (It does not
have a correct state in the sense of Definition 1, but obviously this does not
affect the correctness of our overall encoding.)

3.4 Optimization Criterion

We were not able to model the real optimization criterion of airport ground
traffic control. The standard criterion in PDDL is to minimize the execution
time, the makespan, of the plan. In our encoding of the domain this comes down
to minimizing the arrival time of the last airplane. But the real objective is,
as said above, to minimize the overall summed up travel time of all airplanes.
There appears to be no good way of modeling this criterion in current PDDL.
The difficulty lies in accessing the waiting times of the planes, i.e. the times
at which they stay on a segment waiting for some other plane to pass. If one
introduces an explicit waiting action then one must discretize time, in order to
be able to tell the planner how long the plane is supposed to wait. For PDDL2.2,
the introduction of a special fluent “current-time” was considered, returning the
time point of its evaluation in the plan execution. Using such a “look on the



clock”, one could make each plane record its arrival time, and thus formulate the
true optimization criterion in Airport. The IPC-4 organizing committee decided
against the introduction of a “current-time” variable as it seems to be problematic
from an algorithmic point of view (it implies a commitment to precise time points
at planning time), and not relevant anywhere else but in the airport domain.

4 Results

To evaluate the performance of state-of-the-art planning systems in the Air-
port domain, we created five scaling example airports that we named “Minimal”,
“Mintoy”, “Toy”, “Half-MUC”, and “MUC”. The smallest of these airports is the
smallest possible airport Astras can handle. The two largest airports correspond
to one half of Munich Airport, MUC, respectively to the full MUC airport. Fig-
ure 4 shows sketches of the “Minimal” airport, and of the “MUC” airport.

(b)

Fig. 4. Sketches of the “Minimal” (a) and “MUC” (b) airports. Park position segments
are marked in black, while the segments airplanes can takeoff from are marked in white.

For each airport, we created a number of test examples that scaled by the
number of airplanes to be moved, and by the number of time windows (if any).
As indicated earlier in the paper, the test examples were generated by run-
ning an Astras simulation of the respective airport, then selecting various traf-
fic situations during the simulation and putting them out in our different ver-
sions/encodings of the domain.

In our experiments, we ran the planners FF [9], IPP [10], MIPS [4], and LPG
[7]. These planners are available online (programmed by one of the authors, in



the cases of FF and IPP), and are suitable to represent the state-of-the-art in
sub-optimal and (step-)optimal fully automated planning during the last 5 or 6
years, judging from the results of the international planning competitions. FF
was the winner of the 2000 competition, and is able to handle non-durational
ADL representations. MIPS was awarded a 2nd place at both the 2000 and 2002
competitions, and handles durational STRIPS as well as timed initial literals.
LPG was the winner of the 2002 competition, and handles durational STRIPS
representations. IPP is the only optimal planner in our collection; it is based on
the Graphplan [2] approach, handles non-durational ADL representations, and
finds plans with a provably smallest number of parallel time steps.? IPP won the
ADL track of the 1998 competition.

The planners were run under Linux on a 6 GB RAM computer with 4 Xeon
3.06 GHz CPUs. We report total runtimes as put out by the systems. When-
ever a planning system ran out of memory on an example, the respective table
entry shows a “—”. We used a runtime cutoff of 10 minutes, and examples not
solved within that time are marked by “>>". We first give our results for the
non-durational Airport domain, then for the durational domain without time
windows, finally for the full durational domain with time windows. We then pro-
vide a brief summary of the results obtained for the airport domain in the 2004
competition.

4.1 Non-durational results

In the non-durational domain, two of our tested systems — namely FF and IPP
- could handle the original non-compiled ADL domain. We ran FF and IPP
on both the ADL and STRIPS encodings of the domain, and we ran LPG and
MIPS on the STRIPS encoding only. Table 1 shows the results. We only report
runtimes, not plan quality. From a real-life perspective, talking about plan qual-
ity — summed up travel time — does not make much sense in a non-durational
setting where actions don’t take any time.

Instances with a number of airplanes not solved by any of our planners are
not shown in the table. We observe the following. First, in the ADL encoding
no planner is able to scale to the MUC airports. The failure is due to a memory
explosion in the pre-processing routines of both FF and IPP, which ground out
all actions.® Strangely, in those ADL instances that are feasible FF is a lot
more efficient than in the corresponding STRIPS instances. We investigated this
phenomenon but could not find an explanation for it. It appears to be due to
the internal ordering of the action instances. Our second observation is that
all planners scale reasonably well in the smaller artificial airports, but run into

2 Of course, finding step-optimal movement sequences is a long way away from the
real optimization criterion in controlling airport ground traffic. Nevertheless, we find
it interesting to see how far an optimal planner scales in the domain.

3 While grounding out the actions comes very close to what we did in the STRIPS
compilation, FF and IPP do it in a general way and fail during the creation of the
necessary thousands of 1st order formulas (i.e., pointer tree structures).



| [ ADL STRIPS
[Airport _[Nr. planes|| FF [ IPP || FF_| IPP |[LPG|MIPS|

[Minimal [ 1 _ [[0.03] 0.02 |[ 0.0L | 0.0L [0.02] 0.09 |

[Minimal | 2 ][0.05] 0.04 || 0.01 | 0.02 [0.09] 0.11 |
Mintoy 1 0.39] 0.26 [[ 0.02 | 0.05 [0.08] 0.25
Mintoy 2 0.59] 0.42 || 0.01 | 0.21 [0.09] 0.30
Mintoy 3 0.85] 0.86 || 0.02 | 0.57 [0.16] 0.67
Mintoy 1 1.09] 5.56 || 0.76 | 9.54 [17.45] 15.12
Toy i 0.55] 0.35 [[ 0.02 | 0.08 [0.18] 0.30
Toy 2 0.79] 0.55 || 0.03 | 0.24 | 0.48 ] 0.36
Toy 3 1.38] 1.05 || 0.06 | 0.38 | 0.62 | 0.68
Toy 4 1.50] 3.52 || 3.04 | 4.63 | 0.82|37.12
Toy 5 1.80[239.19][ 19.30 [190.76] 9.84 | 38.64
Toy 6 2.52] >> || 5.7 | >> [22.17]164.31
Toy 7 660 >> [ >> [ >> | — | >>
Half-MUC 2 — ] — [[025]8.96[>>]625
Half-MUC 3 — | — [[037 [1873] — [13.51
Hall-MUC 1 — | — [[os88 [49.92] — | —
Hall-MUC 5 — | — [[ 134 etaa| — | —
Hal-MUC 6 — | — [[182 8776 — | —
Hal-MUC 7 — | — [[ 359 [13La3] — | —
Half-MUC 8 — | — [[ 452 [17368 — | —
Half-MUC 9 — | — [[5.60 [240.01] — | —
Half-MUC| 10 — | — 852 — [ — | —
MUC 2 — ] — [[o40 (3281 — [ —
MUC 3 — | — [[062 6393 — | —
MUC 4 — | — [[0-83 [109.00 — | —
MUC 5 — | — [|335.38[289.18] — | —

Table 1. Runtime results (in seconds) for the non-durational encodings of the Airport
domain.

trouble on the real-life sized MUC airports. On the negative side, LPG and MIPS
solve hardly any of the MUC instances — it is unclear if this is due to the size of the
search spaces, or to implementational difficulties with the pre-compiled STRIPS
encoding. On the positive side, FF and IPP can solve Half-MUC instances even
with many airplanes, and scale up to 5 planes on the real-life MUC airport.
It is interesting to note that the optimal planner IPP is competitive with the
sub-optimal planner FF, and even outperforms LPG and MIPS — a very unusual
phenomenon in today’s planning landscape. Apparently, the heuristic function
encoded in the planning graph is of high quality (comparable to the quality of
heuristics based on ignoring the delete lists) in the airport domain. Altogether,
it seems that planners are not too far away from real-life performance in the
non-durational setting of this domain.

4.2 Durational results

From the real-life perspective, of course the durational version of the Airport
domain is the more interesting one, particularly the version including time win-
dows for the landing airplanes. Of our tested systems, only LPG and MIPS can
handle durations, and only MIPS can handle the timed initial literals necessary
to encode the time windows. Both LPG and MIPS handle only STRIPS repre-
sentations so we could not run the ADL encoding. See the results for the STRIPS



encodings in Table 2. We only report runtime. The found plans are all optimal
with respect to the summed up overall travel time, see the discussion below.

[ [[No Time Windows[[Time Windows|

[Airport  [Nr. planes[|LPG] MIPS [l MIPS |
[Minimal | 1 [[0.03] 0.15 I 0.18 |
[Minimal | 2 [[0.04] 0.26 1] 0.30 |
Mintoy 1 0.44 0.42 0.55
Mintoy 2 1.63 2.06 2.71
Mintoy 3 0.17 13.56 13.79
Mintoy 4 >> 74.88 19.45

Toy 1 0.10 0.50 1.16

Toy 2 0.37 2.41 13.77

Toy 3 0.24 13.65 83.59

Toy 4 2.76 101.51 102.68

Toy 5 3.46 >> >>

Toy 6 5.48 >> >>

Toy 7 >> >> >>
[Half-MUC] 2 [>>1 9452 157.76 |
[Half-MUC] 3 [ — 1 40519 497.93 |

Table 2. Runtime results (in seconds) for the durational STRIPS encoding of the
Airport domain, with and without time windows.

As above, instances solved by none of the planners are not shown in the table.
The obvious observation regarding runtime is that the durational domain is much
harder for our planners than the non-durational domain — though as above it is
unclear if LPG’s and MIPS’s inefficiency in the MUC airports is due to search
complexity, or to the pre-compiled STRIPS encoding. LPG is generally more
efficient than MIPS in the smaller airports, but fails completely in the larger
Half-MUC airport.

Regarding plan quality, as said above already LPG and MIPS find the optimal
plans in all cases they can handle, i.e. they return the plans with the smallest
possible summed up overall travel time. We checked that by hand. While this
is a good result, one should keep two things in mind. First, LPG and MIPS do
not know about the real optimization criterion so it is largely a matter of chance
if or if not the plan they find is optimal with respect to that criterion. Second,
the instances shown here — those cases that LPG and MIPS can handle — are
very simple. With just a few airplanes, there is not much potential for (possibly)
harmful interactions between the intended travel routes of these planes. In the
above examples, often it is the case that there is just one non-redundant solution
(a solution that does not leave planes standing around waiting without reason),
and that this solution is the optimal one. Specifically this is the case in the two
Half-MUC instances solved by MIPS.

We also wanted to run Acore, the (sub-optimal) scheduler integrated with
Astras, on the above instances (i.e. in the respective traffic situations during
the simulation with Astras), and compare the results with those of our planners.
This turned out to not be feasible. In the small airports, there are a lot of parking
conflicts, i.e. cases where an in-bound airplane is headed for a parking position



that is occupied by an out-bound airplane. Such situations do rarely occur in
reality (in fact, the flight schedules try to avoid these situations), and Acore can’t
handle them. In the larger MUC airports, on the other hand, our planners could
not solve many instances. In the two Half-MUC instances solved by MIPS, Acore
finds the trivially optimal solutions just like MIPS does. Generally, concerning
runtime Acore is vastly superior to our planners. Acore can solve instances with
50 planes and more on Frankfurt airport, which is far beyond the scalability of
the tested planning systems.

4.3 IPC-4 results

As said in the introduction, the IPC-4 results became available just a few days
before the deadline for the version of this paper to be included in the confer-
ence proceedings. We were therefore, and for space reasons, unable to include a
detailed discussion of these results, but we consider it interesting to provide at
least a brief account of what happened. The IPC-4 results were obtained on the
same machine that we used in the experiments above.

Some progress was made in the non-durational performance. Three planners
(“Fast Downward”, “SGPlan”, and the new version of LPG) were able to solve
Half-MUC with up to 12 planes within 100 seconds. Fast Downward even solved
a MUC example with 15 planes within 200 seconds. The progress made on the
durational performance is yet more impressive: even in the presence of time
windows, the performance of LPG and “SGPlan” was very similar to that in
the non-durational domain, easily (within 100 secs) solving Half-MUC examples
with up to 11 planes, and solving MUC examples with up to 5 planes within
30 minutes. For optimal planners, not so much progress could be observed. The
most efficient optimal planner in the non-durational domain, “SATPLAN04”, was
roughly as efficient as IPP in our own experiments. There were only three optimal
planners that could handle durations, and only a singe Half-MUC instance (with
two planes) got solved by them within 30 minutes.

5 Conclusion

The results show that today’s PDDL planning systems are not quite yet powerful
enough to handle the airport domain when it comes to real-life problems — for
that, the planners would have to be able to, like Acore, generate good solutions to
large airports (like Frankfurt) with many airplanes (roughly 50) in a few seconds.
Nonetheless, the results, especially those obtained for the durational domain by
the sub-optimal planners in IPC-4, are very encouraging. They definetely show
that today’s state-of-the-art planners are a lot closer to real-life applicability
than they were some years ago. They even suggest that real-life applicability, at
least in this particular domain, has come within close reach.

The core problem in controlling the ground traffic on an airport is to resolve
the conflicts that arise when two planes need to cross the same airport segment
[8]. In our PDDL encoding, this core problem is hidden deep in the domain



semantics, and it seems likely that the automated planners spend most of their
runtime unawares of the core difficulties. One can try to overcome this by not
encoding in PDDL the physical airport, but only the conflicts and their possible
solutions. Seeing if and how this is possible, ideally in connection with the real
optimization criterion, is an important topic for future work.
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