
Applying Automati Planning Systems to Airport

Ground-Tra� Control � A Feasibility Study

Sebastian Trüg, Jörg Ho�mann, and Bernhard Nebel

Institut für Informatik

Universität Freiburg

79110 Freiburg, Germany

hlast namei�informatik.uni-freiburg.de

Abstrat. Planning tehniques have matured as demonstrated by the

performane of automati planning systems at reent international plan-

ning system ompetitions. Nowadays it seems feasible to apply planning

systems to real-world problems. In order to get an idea of what the per-

formane di�erene between speial-purpose tehniques and automati

planning tehniques is, we applied these tehniques to the airport tra�

ontrol problem and ompared it with a speial purpose tool. In addi-

tion to a performane assessment, this exerise also resulted in a domain

model of the airport tra� ontrol domain, whih was used as a benh-

mark in the 4th International Planning Competition.

1 Introdution

Planning tehniques have matured as demonstrated by the performane of auto-

mati planning systems at reent international planning system ompetitions [1,

12℄. Current planning systems are able to generate plans with hundred steps and

more ompared with ten steps or less ten years ago. Given the inherent omplex-

ity of the planning problem, this is a dramati improvement. The reason for this

performane boost is the use of new algorithms and the development of powerful

heuristis [2, 3℄.

In order to assess how feasible it is to apply automati planning systems to

real-world problems, we used these tehniques to solve the operational airport

ground-tra� ontrol problem [8℄. This is an NP-omplete problem that an

be haraterized as a job-shop sheduling problem with bloking. Using speial-

purpose tehniques, it an be solved approximately for a realisti number of

airplanes (roughly 50) on realisti airports (suh as Frankfurt airport).

So how far do we get with planning tehniques for this problem? As our ex-

periments indiate, the expressiveness of urrent planning systems approahes

the point where one an formulate the tra� problem as a planning problem.

From a performane point of view, the results are less enouraging. The planners

we evaluate in our experiments are only good enough for small airports with few

airplanes. One has to put this result into perspetive, however. Speial-purpose

sheduling tehniques are, of ourse, highly optimized for the partiular shedul-

ing problem. Furthermore, the performane penalty to be expeted for general-

purpose solutions is always quite high and often prohibitive. On the positive



side, the exerise of formalizing the tra� problem has led to a new halleng-

ing, real-world benhmark problem for automati planning systems.

1

Indeed,

the domain was used as a benhmark in IPC-4, the 4th International Planning

Competition. The results obtained by the ompetitors in IPC-4 are somewhat

more enouraging than our own results. The IPC-4 results were available just a

few days before the deadline for the onferene version of this paper. We provide

a short summary of the results.

The rest of the paper is strutured as follows. In Setion 2, we give a de-

sription of the airport ground-tra� ontrol problem. Setion 3 desribes then

the formalization using PDDL [11℄, the de fato standard for planning systems.

In order to allow existing planning systems to be used, we also desribe how to

ompile the PDDL spei�ation into basi STRIPS. Based on that, in Setion 4,

the results of our experiments, and a summary of the IPC-4 results, are given.

Setion 5 summarizes and onludes.

2 The Airport Ground-Tra� Control Problem

In a nutshell, the airport ground-tra� ontrol problem onsists of oordinating

the movements of airplanes on the airport so that they reah their planned

destinations (runway or parking position) as fast as possible � whereby ollisions

shall be, of ourse, avoided.

The airplanes move on the airport infrastruture, whih onsists of runways,

taxi ways, and parking positions. Airplanes are generally divided into the three

`Wake Vortex Categories': light, medium, and heavy, whih lassify them a-

ording to their engine exhaust. A moving airplane an either be in-bound or

out-bound. In-bound airplanes are reently landed and are on their way from

the runway to a parking position, usually a gate. Out-bound airplanes are ready

for departure, meaning they are on their way to the departure runway. Sine

airplanes are not able to move bakwards, they need to be pushed bak from the

gate on the taxiway where they start up their engines. Some airports provide

di�erent park positions that allow an airplane to start its engines diretly but

to simplify the situation we assume that an airplane always needs to be pushed

bak.

The ground ontroller has to ommuniate to the airplanes whih ways they

shall take and when to stop. While suh guidane an be given purely reatively,

it pays o� to base deisions on antiipating the future. Otherwise it may happen

that airplanes blok eah other and need more time than neessary to reah their

destinations on the airport. The objetive is to minimize the overall summed up

traveling times of all airplanes.

From a formal point of view, one onsiders the problem with a time horizon

of say one hour and shedules all movements, minimizing the movement times

of the planes. Of ourse, beause the situation hanges ontinually (new planes

arrive and shedules annot be exeuted as planned), ontinuous resheduling is

1

The full enoding of the problem an be found in the tehnial report version of this

paper [14℄.



neessary. We will onsider, however, only the stati optimization problem with

a given situation on the airport and a time horizon of a �xed time span.

Our domain representation and implementation is based on software by Wolf-

gang Hatzak, namely on a system alled Astras: Airport Surfae ground TRA�

Simulator. This is a software pakage that was originally designed to be a train-

ing platform for airport ontrollers. Astras provides a two-dimensional view of

the airport, allowing the user to ontrol the airplanes by means of point and

lik. Astras also inludes features for simulating the tra� �ow on an airport

over the ourse of a spei�ed time window, as well as an automated ontroller

(named Aore) driven by a greedy re-sheduling approah [8℄. Our PDDL domain

enoding is based on Astras's internal representation of airports. We generated

our test instanes by software that is integrated with Astras. During an air-

port simulation, if desired by the user our software exports the urrent tra�

situation in various PDDL enodings.

3 The PDDL Enoding of the Airport Domain

The entral objet in the PDDL enoding of the airport domain is the airplane

that moves over the airport infrastruture. The airport infrastruture is built

out of segments. An airplane always oupies one segment and may blok several

others depending on its type. Our assumption here is that medium and heavy

airplanes blok the segment behind them whereas light airplanes only blok the

segment they oupy. Bloked segments annot be oupied by another airplane.

To handle terms like behind we need to introdue diretion in segments. Sine

our segments are two-dimensional objets we need exatly two diretions whih

we quite inappropriately all north and south. Every segment has its north end

and its south end so it beomes possible to talk about diretion in a segment.

To model the airplane movement we need at least two ations. The move

ation desribes the normal forward movement of an airplane from one segment

to another. The pushbak ation desribes bakward movement when an airplane

is being pushed bak from its park position.

We also introdue an airplane state. An airplane an either be moving, be

pushed, be parked, or be airborne. We want to make sure that an airplane only

moves bakwards while being pushed from its park position and only moves

forward if not. The parked state is neessary sine a parked airplane's engines are

o� and thus the airplane does not blok any segments exept the one it oupies

unlike when moving. If a plane is airborne, i.e. the plane took o� already, then

that means that the plane is not relevant to the ground tra� anymore.

The ations park and startup desribe the transitions between the di�erent

states. As one may expet the park ation makes sure the airplane only bloks

the oupied segment while the startup ation does the exat opposite. It initially

bloks segments depending on the airplane type.

A last ation is needed to ompletely remove the airplane from the airport

after takeo�. This ation is alled takeo� and makes sure the airplane does not

blok or oupy any segment anymore.



In the following we desribe our di�erent enodings of the airport domain: a

durative and non-durative ADL [13℄ enoding, a STRIPS [6℄ enoding where the

ADL onstruts were ompiled out, �nally a means to model runway bloking

for landing airplanes.

3.1 ADL Enoding

Our domain has four types of objets: airplane, segment, diretion, and airplan-

etype.

The airplane type (its Wake Vortex Category) is desribed with the has-type

prediate:

(has-type ?a - airplane ?t - airplanetype)

The airplane state is desribed with four prediates:

(airborne ?a - airplane ?s - segment)

(is-moving ?a - airplane)

(is-pushed ?a - airplane)

(is-parked ?a - airplane ?s - segment)

The is-parked prediate has a seond parameter stating the park position the

airplane is parked at. The seond parameter of the airborne prediate just states

from whih segment the airplane took o�. This is useful in ase an airport pro-

vides several departure runways and we want to fore an airplane to use a spei�

one. Apart from the airplane state we also need to desribe the urrent position

of an airplane and its heading:

(at-segment ?a - airplane ?s - segment)

(faing ?a - airplane ?d - diretion)

We need several prediates to desribe the airport struture. All the following

prediates are stati; they will be set one in the initial state and never be

hanged.

(an-move ?s1 ?s2 - segment ?d - diretion)

(an-pushbak ?s1 ?s2 - segment ?d - diretion)

(move-dir ?s1 ?s2 - segment ?d - diretion)

(move-bak-dir ?s1 ?s2 - segment ?d - diretion)

(is-bloked ?s1 - segment ?t - airplanetype ?s2 - segment ?d - diretion)

(is-start-runway ?s - segment ?d - diretion)

The an-move prediate states that an airplane may move from segment s1 to

segment s2 if its faing diretion d. The an-pushbak prediate desribes the

possible bakward movement whih is similar to the an-move prediate. In our

enodings, the an-move prediate holds only for pairs of segments that belong

to the standard routes on the airport � this is ommon pratie in reality (as

reroutes are likely to ause trouble or at least onfusion), and yields muh better

planner performane.

The move-dir and move-bak-dir prediates state the airplane's heading af-

ter moving from segment s1 to segment s2. That means that in a orret air-

port domain fat �le every an-move (an-pushbak) prediate has its move-dir

(move-bak-dir) ounterpart.



(:ation move

:parameters (?a - airplane

?t - airplanetype

?d1 - diretion

?s1 - segment

?s2 - segment

?d2 - diretion)

:preondition (and

(has-type ?a ?t)

(is-moving ?a)

(at-segment ?a ?s1)

(faing ?a ?d1)

(an-move ?s1 ?s2 ?d1)

(move-dir ?s1 ?s2 ?d2)

(not (exists (?a1 - airplane) (and (not (= ?a1 ?a))

(bloked ?s2 ?a1))))

(forall (?s - segment) (imply (and (is-bloked ?s ?t ?s2 ?d2)

(not (= ?s ?s1)))

(not (oupied ?s))

))

)

:effet (and

(at-segment ?a ?s2)

(not (at-segment ?a ?s1))

(oupied ?s2)

(not (oupied ?s1))

(when (not (= ?d1 ?d2))

(and (faing ?a ?d2)

(not (faing ?a ?d1))))

(bloked ?s2 ?a)

(when (not (is-bloked ?s1 ?t ?s2 ?d2))

(not (bloked ?s1 ?a)))

(forall (?s - segment) (when (is-bloked ?s ?t ?s2 ?d2)

(bloked ?s ?a)

))

(forall (?s - segment) (when (and (is-bloked ?s ?t ?s1 ?d1)

(not (= ?s ?s2))

(not (is-bloked ?s ?t ?s2 ?d2))

)

(not (bloked ?s ?a))

))

)

)

Fig. 1. ADL move ation

The is-bloked prediate is used to handle all bloking. It says that segment

s1 will be bloked by an airplane of type t at segment s2 faing into diretion

d. We will see the use of this prediate in the move ation's e�et in detail.

The last prediate, is-start-runway, states that an airplane at segment s fa-

ing diretion d is allowed to takeo�. This is an essential prediate as we annot

allow an airplane to takeo� wherever it (or better: the planner) wants.

Finally, we need two prediates to desribe the urrent situation on the air-

port regarding bloked and oupied segments:

(oupied ?s - segment)

(bloked ?s - segment ?a - airplane)



3.1.1 Non-durative ations Now we will look at the ations used in the

non-durative ADL domain in detail.

The most important one is learly the move ation (see Figure 1). The pa-

rameters have the following meaning: an airplane a of type t faing diretion

d1 on segment s1 moves to segment s2 and then faes diretion d2. The �rst

four prediates in the preondition make sure the airplane is in a proper state,

meaning it is loated in the right segment faing the right diretion. Prediates

�ve and six represent the airport struture as desribed above. The last two

formulas are the really interesting ones as they deal with segment bloking. The

�rst one makes sure that no other airplane bloks the segment our airplane is

moving to. Here we use the full power of ADL to hek for every airplane if it

is bloking segment s2. Our moving airplane annot blok itself so we exlude

it from the hek. The seond formula is used to make sure that none of the

segments our airplane will blok after the movement is oupied by another air-

plane. To ahieve that we use the is-bloked prediate. Its instanes give us the

segments that will be bloked one our airplane has moved to segment s2. If we

�nd suh a segment we make sure its not oupied sine a segment may not be

oupied and bloked by di�erent airplanes at the same time. We skip segment

s1 sine it is always oupied by our airplane.

If all of these onditions apply, the move ation may be exeuted. Most of the

e�ets should be self-explanatory: updating of the oupied segment, hanging

the heading if neessary, and bloking the oupied segment. Again, the blok-

ing is the part where full ADL is needed. We iterate over all segments to �nd

those that are bloked from our airplane after the movement and those that

were bloked before the movement. The latter ones need to be unbloked with

exeption of those bloked after the movement. Again, the is-bloked prediate

is the entral tool.

The pushbak ation di�ers only little from the move ation. That is why we

will skip a detailed desription here and take a look at one of the more interesting

ations used for performing the transitions of the airplane state.

The startup ation (see Figure 2) represents the proess of starting the air-

plane's engines after it has been pushed bak from its park position and thus

is learly only needed for out-bound airplanes. That is why the preonditions

ontain the is-pushing prediate. The startup ation represents the proess of

the airplane starting its engines. That means it begins bloking segments. So we

need the exat same hek for oupied segments as in the move ation and also

the bloking formula in the ation's e�et. Apart from that we only update the

airplane state to is-moving.

The park ation does the opposite of the startup ation by unbloking all

segments exept the oupied one.

The takeo� ation makes sure the airplane is ompletely removed from the

airport meaning it does not blok or oupy any segments anymore.

De�nition 1. A orret state of an airplane a is de�ned by the following fats:

1. a is at exatly one segment or is airborne.



(:ation startup

:parameters (?a - airplane ?t - airplanetype ?s - segment ?d - diretion)

:preondition (and

(is-pushing ?a)

(has-type ?a ?t)

(at-segment ?a ?s)

(faing ?a ?d)

(forall (?s1 - segment)

(imply (and (is-bloked ?s1 ?t ?s ?d)

(not (= ?s ?s1)))

(not (oupied ?s1))

))

)

:effet (and

(not (is-pushing ?a))

(is-moving ?a)

(forall (?s1 - segment)

(when (is-bloked ?s1 ?t ?s ?d)

(bloked ?s1 ?a)

))

)

)

Fig. 2. ADL startup ation

2. a oupies exatly the segment it is at or is airborne.

3. If a is airborne it neither oupies nor bloks any segments.

4. a is faing in exatly one diretion or is airborne.

5. If a is moving or being pushed it only bloks the segments determined by the

is-bloked prediate and the one it oupies.

6. If a is parked it only bloks the segment it oupies.

7. a never bloks a segment oupied by another airplane.

8. a never oupies a segment bloked by another airplane.

Proposition 1. If all airplanes had a orret state before exeuting an ation

of the airport domain they also have orret states afterwards.

The (straightforward) proof to Proposition 1 an be found in our TR [14℄.

3.1.2 Durative ations To obtain a domain with ation durations, we en-

rihed the above ation enodings with the obvious �at start�, �at end�, and �over

all� �ags for the preonditions and e�ets. The duration of move and pushbak

ations is alulated as a funtion of segment length (airplane veloity is assumed

as a �xed number). The duration of startup ations is alulated as a funtion

of the number of engines. The park and the takeo� ation's durations are both

set to �xed values.

3.2 STRIPS

Most urrent PDDL planning systems an not handle full ADL, espeially dura-

tive ADL. To work around this problem and make the airport domain aessible



(:ation pushbak_seg_pp_0_60_seg_ppdoor_0_40_south_south_medium

:parameters (?a - airplane)

:preondition (and

(has-type ?a medium)

(is-pushing ?a)

(faing ?a south)

(at-segment ?a seg_pp_0_60)

(not_oupied seg_ppdoor_0_40)

(not_bloked seg_ppdoor_0_40 airplane_CFBEG)

(not_bloked seg_ppdoor_0_40 airplane_DAEWH)

)

:effet (and

(not (oupied seg_pp_0_60))

(not_oupied seg_pp_0_60)

(not (bloked seg_pp_0_60 ?a))

(not_bloked seg_pp_0_60 ?a)

(not (at-segment ?a seg_pp_0_60))

(oupied seg_ppdoor_0_40)

(not (not_oupied seg_ppdoor_0_40))

(bloked seg_ppdoor_0_40 ?a)

(not (not_bloked seg_ppdoor_0_40 ?a))

(at-segment ?a seg_ppdoor_0_40)

)

)

Fig. 3. A STRIPS pushbak ation: pushing a medium airplane from seg_pp_0_60

to seg_ppdoor_0_40 heading south

to most planning systems we need to remove the ADL onstruts to reate a

STRIPS only version.

Due to the lak of quanti�ed variables there is no way to determine whih

segments need to be unbloked and unoupied when moving. In our ontext

this di�ulty an be takled by pre-instantiating. We reate one move (and

pushbak) ation for every pair of segments, for every airplane type, and for

every possible pair of diretions assoiated to moving between the segments.

We an then do the required state updates without the de-tour to onditions

over the is-bloked prediate. (More formally, the onditional e�ets disappear

beause their onditions are all stati.) We end up with a single non-instantiated

parameter for the move and pushbak ations: the partiular airplane that is

moved.

The bloked prediate depends on an airplane. In the ADL version a quanti-

�ed preondition iterates over all airplanes to hek if a segment is bloked. In

STRIPS, instead we use a separate hek for every airplane on the airport.

STRIPS does not allow negated preonditions. We need negated preondi-

tions to test for unbloked and unoupied segments, so we emulate their be-

havior using a standard translation approah. We introdue not_bloked and

not_oupied prediates, and make sure that these always exhibit the intended

behavior (i.e. they are assigned the inverse values initially, and every ation e�et

is updated to a�et them inversely).

Figure 3 shows an example of a non-durative STRIPS pushbak ation.

Now that we moved almost everything from the fat into the domain dela-

ration it is obvious that we need a separate domain de�nition for eah airport



situation. The fat �le merely de�nes the airplanes' starting state and the goal.

All airport layout is impliitly de�ned by the move ations. Thus we an drop

the is-bloked, an-move, move-dir, an-pushbak, and move-bak-dir prediates.

The STRIPS domain version an be enrihed with durations exatly like the

ADL version.

3.3 Time Windows

The ontrollers of most large airports in the world only ontrol their fore-�eld

but not the airspae above the airport. In partiular, they an not hange the

landing times of airplanes, and independently of what they deide to do the

respetive runway will be bloked when a plane lands.

We have to model something like segment s is bloked from time x to time y.

Clearly this an only be ahieved with durative PDDL. The language for IPC-4,

PDDL 2.2 [5℄, introdued Timed Initial Literals, whih provide a very simple

solution to the time-window problem. They allow the spei�ation of a literal

together with a time stamp at whih the literal will beome true. For example:

(at 119 (bloked seg_27 dummy_landing_airplane))

The above statement in the �:init� setion of the fat �le will make sure that

segment seg_27 gets bloked at time 119. To unblok the segment after the

landing we use a similar statement.

(at 119 (not (bloked seg_27 dummy_landing_airplane)))

Sine the bloking prediate's seond parameter is an airplane and we only

simulate the landings but not the airplanes themselves, we use a dummy airplane

for all landing ations. The dummy airplane is used nowhere else. (It does not

have a orret state in the sense of De�nition 1, but obviously this does not

a�et the orretness of our overall enoding.)

3.4 Optimization Criterion

We were not able to model the real optimization riterion of airport ground

tra� ontrol. The standard riterion in PDDL is to minimize the exeution

time, the makespan, of the plan. In our enoding of the domain this omes down

to minimizing the arrival time of the last airplane. But the real objetive is,

as said above, to minimize the overall summed up travel time of all airplanes.

There appears to be no good way of modeling this riterion in urrent PDDL.

The di�ulty lies in aessing the waiting times of the planes, i.e. the times

at whih they stay on a segment waiting for some other plane to pass. If one

introdues an expliit waiting ation then one must disretize time, in order to

be able to tell the planner how long the plane is supposed to wait. For PDDL2.2,

the introdution of a speial �uent �urrent-time� was onsidered, returning the

time point of its evaluation in the plan exeution. Using suh a �look on the



lok�, one ould make eah plane reord its arrival time, and thus formulate the

true optimization riterion in Airport. The IPC-4 organizing ommittee deided

against the introdution of a �urrent-time� variable as it seems to be problemati

from an algorithmi point of view (it implies a ommitment to preise time points

at planning time), and not relevant anywhere else but in the airport domain.

4 Results

To evaluate the performane of state-of-the-art planning systems in the Air-

port domain, we reated �ve saling example airports that we named �Minimal�,

�Mintoy�, �Toy�, �Half-MUC�, and �MUC�. The smallest of these airports is the

smallest possible airport Astras an handle. The two largest airports orrespond

to one half of Munih Airport, MUC, respetively to the full MUC airport. Fig-

ure 4 shows skethes of the �Minimal� airport, and of the �MUC� airport.

(a)

(b)

Fig. 4. Skethes of the �Minimal� (a) and �MUC� (b) airports. Park position segments

are marked in blak, while the segments airplanes an takeo� from are marked in white.

For eah airport, we reated a number of test examples that saled by the

number of airplanes to be moved, and by the number of time windows (if any).

As indiated earlier in the paper, the test examples were generated by run-

ning an Astras simulation of the respetive airport, then seleting various traf-

� situations during the simulation and putting them out in our di�erent ver-

sions/enodings of the domain.

In our experiments, we ran the planners FF [9℄, IPP [10℄, MIPS [4℄, and LPG

[7℄. These planners are available online (programmed by one of the authors, in



the ases of FF and IPP), and are suitable to represent the state-of-the-art in

sub-optimal and (step-)optimal fully automated planning during the last 5 or 6

years, judging from the results of the international planning ompetitions. FF

was the winner of the 2000 ompetition, and is able to handle non-durational

ADL representations. MIPS was awarded a 2nd plae at both the 2000 and 2002

ompetitions, and handles durational STRIPS as well as timed initial literals.

LPG was the winner of the 2002 ompetition, and handles durational STRIPS

representations. IPP is the only optimal planner in our olletion; it is based on

the Graphplan [2℄ approah, handles non-durational ADL representations, and

�nds plans with a provably smallest number of parallel time steps.

2

IPP won the

ADL trak of the 1998 ompetition.

The planners were run under Linux on a 6 GB RAM omputer with 4 Xeon

3.06 GHz CPUs. We report total runtimes as put out by the systems. When-

ever a planning system ran out of memory on an example, the respetive table

entry shows a ���. We used a runtime uto� of 10 minutes, and examples not

solved within that time are marked by �>>�. We �rst give our results for the

non-durational Airport domain, then for the durational domain without time

windows, �nally for the full durational domain with time windows. We then pro-

vide a brief summary of the results obtained for the airport domain in the 2004

ompetition.

4.1 Non-durational results

In the non-durational domain, two of our tested systems � namely FF and IPP

� ould handle the original non-ompiled ADL domain. We ran FF and IPP

on both the ADL and STRIPS enodings of the domain, and we ran LPG and

MIPS on the STRIPS enoding only. Table 1 shows the results. We only report

runtimes, not plan quality. From a real-life perspetive, talking about plan qual-

ity � summed up travel time � does not make muh sense in a non-durational

setting where ations don't take any time.

Instanes with a number of airplanes not solved by any of our planners are

not shown in the table. We observe the following. First, in the ADL enoding

no planner is able to sale to the MUC airports. The failure is due to a memory

explosion in the pre-proessing routines of both FF and IPP, whih ground out

all ations.

3

Strangely, in those ADL instanes that are feasible FF is a lot

more e�ient than in the orresponding STRIPS instanes. We investigated this

phenomenon but ould not �nd an explanation for it. It appears to be due to

the internal ordering of the ation instanes. Our seond observation is that

all planners sale reasonably well in the smaller arti�ial airports, but run into

2

Of ourse, �nding step-optimal movement sequenes is a long way away from the

real optimization riterion in ontrolling airport ground tra�. Nevertheless, we �nd

it interesting to see how far an optimal planner sales in the domain.

3

While grounding out the ations omes very lose to what we did in the STRIPS

ompilation, FF and IPP do it in a general way and fail during the reation of the

neessary thousands of 1st order formulas (i.e., pointer tree strutures).



ADL STRIPS

Airport Nr. planes FF IPP FF IPP LPG MIPS

Minimal 1 0.03 0.02 0.01 0.01 0.02 0.09

Minimal 2 0.05 0.04 0.01 0.02 0.09 0.11

Mintoy 1 0.39 0.26 0.02 0.05 0.08 0.25

Mintoy 2 0.59 0.42 0.01 0.21 0.09 0.30

Mintoy 3 0.85 0.86 0.02 0.57 0.16 0.67

Mintoy 4 1.09 5.56 0.76 9.54 17.45 15.12

Toy 1 0.55 0.35 0.02 0.08 0.18 0.30

Toy 2 0.79 0.55 0.03 0.24 0.48 0.36

Toy 3 1.38 1.05 0.06 0.38 0.62 0.68

Toy 4 1.50 3.52 3.04 4.63 0.82 37.12

Toy 5 1.80 239.19 19.30 190.76 9.84 38.64

Toy 6 2.52 >> 5.57 >> 22.17 164.31

Toy 7 6.60 >> >> >> � >>

Half-MUC 2 � � 0.25 8.96 >> 6.25

Half-MUC 3 � � 0.37 18.73 � 13.51

Half-MUC 4 � � 0.88 49.92 � �

Half-MUC 5 � � 1.34 61.14 � �

Half-MUC 6 � � 1.82 87.76 � �

Half-MUC 7 � � 3.59 131.13 � �

Half-MUC 8 � � 4.52 173.68 � �

Half-MUC 9 � � 5.60 240.01 � �

Half-MUC 10 � � 8.52 � � �

MUC 2 � � 0.40 32.81 � �

MUC 3 � � 0.62 63.93 � �

MUC 4 � � 0.83 109.00 � �

MUC 5 � � 335.38 289.18 � �

Table 1. Runtime results (in seonds) for the non-durational enodings of the Airport

domain.

trouble on the real-life sized MUC airports. On the negative side, LPG and MIPS

solve hardly any of the MUC instanes � it is unlear if this is due to the size of the

searh spaes, or to implementational di�ulties with the pre-ompiled STRIPS

enoding. On the positive side, FF and IPP an solve Half-MUC instanes even

with many airplanes, and sale up to 5 planes on the real-life MUC airport.

It is interesting to note that the optimal planner IPP is ompetitive with the

sub-optimal planner FF, and even outperforms LPG and MIPS � a very unusual

phenomenon in today's planning landsape. Apparently, the heuristi funtion

enoded in the planning graph is of high quality (omparable to the quality of

heuristis based on ignoring the delete lists) in the airport domain. Altogether,

it seems that planners are not too far away from real-life performane in the

non-durational setting of this domain.

4.2 Durational results

From the real-life perspetive, of ourse the durational version of the Airport

domain is the more interesting one, partiularly the version inluding time win-

dows for the landing airplanes. Of our tested systems, only LPG and MIPS an

handle durations, and only MIPS an handle the timed initial literals neessary

to enode the time windows. Both LPG and MIPS handle only STRIPS repre-

sentations so we ould not run the ADL enoding. See the results for the STRIPS



enodings in Table 2. We only report runtime. The found plans are all optimal

with respet to the summed up overall travel time, see the disussion below.

No Time Windows Time Windows

Airport Nr. planes LPG MIPS MIPS

Minimal 1 0.03 0.15 0.18

Minimal 2 0.04 0.26 0.30

Mintoy 1 0.44 0.42 0.55

Mintoy 2 1.63 2.06 2.71

Mintoy 3 0.17 13.56 13.79

Mintoy 4 >> 74.88 19.45

Toy 1 0.10 0.50 1.16

Toy 2 0.37 2.41 13.77

Toy 3 0.24 13.65 83.59

Toy 4 2.76 101.51 102.68

Toy 5 3.46 >> >>

Toy 6 5.48 >> >>

Toy 7 >> >> >>

Half-MUC 2 >> 94.52 157.76

Half-MUC 3 � 405.19 497.93

Table 2. Runtime results (in seonds) for the durational STRIPS enoding of the

Airport domain, with and without time windows.

As above, instanes solved by none of the planners are not shown in the table.

The obvious observation regarding runtime is that the durational domain is muh

harder for our planners than the non-durational domain � though as above it is

unlear if LPG's and MIPS's ine�ieny in the MUC airports is due to searh

omplexity, or to the pre-ompiled STRIPS enoding. LPG is generally more

e�ient than MIPS in the smaller airports, but fails ompletely in the larger

Half-MUC airport.

Regarding plan quality, as said above already LPG andMIPS �nd the optimal

plans in all ases they an handle, i.e. they return the plans with the smallest

possible summed up overall travel time. We heked that by hand. While this

is a good result, one should keep two things in mind. First, LPG and MIPS do

not know about the real optimization riterion so it is largely a matter of hane

if or if not the plan they �nd is optimal with respet to that riterion. Seond,

the instanes shown here � those ases that LPG and MIPS an handle � are

very simple. With just a few airplanes, there is not muh potential for (possibly)

harmful interations between the intended travel routes of these planes. In the

above examples, often it is the ase that there is just one non-redundant solution

(a solution that does not leave planes standing around waiting without reason),

and that this solution is the optimal one. Spei�ally this is the ase in the two

Half-MUC instanes solved by MIPS.

We also wanted to run Aore, the (sub-optimal) sheduler integrated with

Astras, on the above instanes (i.e. in the respetive tra� situations during

the simulation with Astras), and ompare the results with those of our planners.

This turned out to not be feasible. In the small airports, there are a lot of parking

on�its, i.e. ases where an in-bound airplane is headed for a parking position



that is oupied by an out-bound airplane. Suh situations do rarely our in

reality (in fat, the �ight shedules try to avoid these situations), and Aore an't

handle them. In the larger MUC airports, on the other hand, our planners ould

not solve many instanes. In the two Half-MUC instanes solved by MIPS, Aore

�nds the trivially optimal solutions just like MIPS does. Generally, onerning

runtime Aore is vastly superior to our planners. Aore an solve instanes with

50 planes and more on Frankfurt airport, whih is far beyond the salability of

the tested planning systems.

4.3 IPC-4 results

As said in the introdution, the IPC-4 results beame available just a few days

before the deadline for the version of this paper to be inluded in the onfer-

ene proeedings. We were therefore, and for spae reasons, unable to inlude a

detailed disussion of these results, but we onsider it interesting to provide at

least a brief aount of what happened. The IPC-4 results were obtained on the

same mahine that we used in the experiments above.

Some progress was made in the non-durational performane. Three planners

(�Fast Downward�, �SGPlan�, and the new version of LPG) were able to solve

Half-MUC with up to 12 planes within 100 seonds. Fast Downward even solved

a MUC example with 15 planes within 200 seonds. The progress made on the

durational performane is yet more impressive: even in the presene of time

windows, the performane of LPG and �SGPlan� was very similar to that in

the non-durational domain, easily (within 100 ses) solving Half-MUC examples

with up to 11 planes, and solving MUC examples with up to 5 planes within

30 minutes. For optimal planners, not so muh progress ould be observed. The

most e�ient optimal planner in the non-durational domain, �SATPLAN04�, was

roughly as e�ient as IPP in our own experiments. There were only three optimal

planners that ould handle durations, and only a singe Half-MUC instane (with

two planes) got solved by them within 30 minutes.

5 Conlusion

The results show that today's PDDL planning systems are not quite yet powerful

enough to handle the airport domain when it omes to real-life problems � for

that, the planners would have to be able to, like Aore, generate good solutions to

large airports (like Frankfurt) with many airplanes (roughly 50) in a few seonds.

Nonetheless, the results, espeially those obtained for the durational domain by

the sub-optimal planners in IPC-4, are very enouraging. They de�netely show

that today's state-of-the-art planners are a lot loser to real-life appliability

than they were some years ago. They even suggest that real-life appliability, at

least in this partiular domain, has ome within lose reah.

The ore problem in ontrolling the ground tra� on an airport is to resolve

the on�its that arise when two planes need to ross the same airport segment

[8℄. In our PDDL enoding, this ore problem is hidden deep in the domain



semantis, and it seems likely that the automated planners spend most of their

runtime unawares of the ore di�ulties. One an try to overome this by not

enoding in PDDL the physial airport, but only the on�its and their possible

solutions. Seeing if and how this is possible, ideally in onnetion with the real

optimization riterion, is an important topi for future work.

Referenes

1. Fahiem Bahus. The AIPS'00 planning ompetition. The AI Magazine, 22(3):47�

56, 2001.

2. Avrim L. Blum and Merrik L. Furst. Fast planning through planning graph anal-

ysis. Arti�ial Intelligene, 90(1-2):279�298, 1997.

3. Blai Bonet and Hétor Ge�ner. Planning as heuristi searh. Arti�ial Intelligene,

129(1-2):5�33, 2001.

4. Stefan Edelkamp. Taming numbers and durations in the model heking integrated

planning system. Journal of Arti�ial Intelligene Researh, 20(195-238), 2003.

5. Stefan Edelkamp and Jörg Ho�mann. PDDL2.2: The language for the lassial

part of the 4th international planning ompetition. Tehnial Report 195, Albert-

Ludwigs-Universität, Institut für Informatik, Freiburg, Germany, 2004.

6. Rihard E. Fikes and Nils Nilsson. STRIPS: A new approah to the appliation of

theorem proving to problem solving. Arti�ial Intelligene, 2:189�208, 1971.

7. A. Gerevini, A. Saetti, and I. Serina. Planning through stohasti loal searh

and temporal ation graphs in LPG. Journal of Arti�ial Intelligene Researh,

20:239�290, 2003.

8. Wolfgang Hatzak and Bernhard Nebel. Solving the operational tra� ontrol

problem. In A. Cesta, editor, Reent Advanes in AI Planning. 5th European Con-

ferene on Planning (ECP'01), Toledo, Spain, September 2001. Springer-Verlag.

9. Jörg Ho�mann and Bernhard Nebel. The FF planning system: Fast plan generation

through heuristi searh. Journal of Arti�ial Intelligene Researh, 14:253�302,

2001.

10. Jana Koehler, Bernhard Nebel, Jörg Ho�mann, and Yannis Dimopoulos. Extending

planning graphs to an ADL subset. In S. Steel and R. Alami, editors, Reent

Advanes in AI Planning. 4th European Conferene on Planning (ECP'97), volume

1348 of Leture Notes in Arti�ial Intelligene, pages 273�285, Toulouse, Frane,

September 1997. Springer-Verlag.

11. Drew MDermott et al. The PDDL Planning Domain De�nition Language. The

AIPS-98 Planning Competition Comitee, 1998.

12. M.Fox and D.Long. The AIPS-2002 international planning ompetition. In Pro-

eedings of the 6th International Conferene on Arti�ial Intelligene Planning

Systems (AIPS-02). AAAI Press, Menlo Park, 2002.

13. Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS and

the situation alulus. In R. Brahman, H. J. Levesque, and R. Reiter, editors,

Priniples of Knowledge Representation and Reasoning: Proeedings of the 1st In-

ternational Conferene (KR-89), pages 324�331, Toronto, ON, May 1989. Morgan

Kaufmann.

14. Sebastian Trüg, Jörg Ho�mann, and Bernhard Nebel. Applying automati plan-

ners to airport ground-tra� ontrol. Tehnial Report 199, Albert-Ludwigs-

Universität, Institut für Informatik, Freiburg, Germany, 2004.


