
Applying Automati
 Planning Systems to Airport

Ground-Tra�
 Control � A Feasibility Study

Sebastian Trüg, Jörg Ho�mann, and Bernhard Nebel

Institut für Informatik

Universität Freiburg

79110 Freiburg, Germany

hlast namei�informatik.uni-freiburg.de

Abstra
t. Planning te
hniques have matured as demonstrated by the

performan
e of automati
 planning systems at re
ent international plan-

ning system 
ompetitions. Nowadays it seems feasible to apply planning

systems to real-world problems. In order to get an idea of what the per-

forman
e di�eren
e between spe
ial-purpose te
hniques and automati


planning te
hniques is, we applied these te
hniques to the airport tra�



ontrol problem and 
ompared it with a spe
ial purpose tool. In addi-

tion to a performan
e assessment, this exer
ise also resulted in a domain

model of the airport tra�
 
ontrol domain, whi
h was used as a ben
h-

mark in the 4th International Planning Competition.

1 Introdu
tion

Planning te
hniques have matured as demonstrated by the performan
e of auto-

mati
 planning systems at re
ent international planning system 
ompetitions [1,

12℄. Current planning systems are able to generate plans with hundred steps and

more 
ompared with ten steps or less ten years ago. Given the inherent 
omplex-

ity of the planning problem, this is a dramati
 improvement. The reason for this

performan
e boost is the use of new algorithms and the development of powerful

heuristi
s [2, 3℄.

In order to assess how feasible it is to apply automati
 planning systems to

real-world problems, we used these te
hniques to solve the operational airport

ground-tra�
 
ontrol problem [8℄. This is an NP-
omplete problem that 
an

be 
hara
terized as a job-shop s
heduling problem with blo
king. Using spe
ial-

purpose te
hniques, it 
an be solved approximately for a realisti
 number of

airplanes (roughly 50) on realisti
 airports (su
h as Frankfurt airport).

So how far do we get with planning te
hniques for this problem? As our ex-

periments indi
ate, the expressiveness of 
urrent planning systems approa
hes

the point where one 
an formulate the tra�
 problem as a planning problem.

From a performan
e point of view, the results are less en
ouraging. The planners

we evaluate in our experiments are only good enough for small airports with few

airplanes. One has to put this result into perspe
tive, however. Spe
ial-purpose

s
heduling te
hniques are, of 
ourse, highly optimized for the parti
ular s
hedul-

ing problem. Furthermore, the performan
e penalty to be expe
ted for general-

purpose solutions is always quite high and often prohibitive. On the positive



side, the exer
ise of formalizing the tra�
 problem has led to a new 
halleng-

ing, real-world ben
hmark problem for automati
 planning systems.

1

Indeed,

the domain was used as a ben
hmark in IPC-4, the 4th International Planning

Competition. The results obtained by the 
ompetitors in IPC-4 are somewhat

more en
ouraging than our own results. The IPC-4 results were available just a

few days before the deadline for the 
onferen
e version of this paper. We provide

a short summary of the results.

The rest of the paper is stru
tured as follows. In Se
tion 2, we give a de-

s
ription of the airport ground-tra�
 
ontrol problem. Se
tion 3 des
ribes then

the formalization using PDDL [11℄, the de fa
to standard for planning systems.

In order to allow existing planning systems to be used, we also des
ribe how to


ompile the PDDL spe
i�
ation into basi
 STRIPS. Based on that, in Se
tion 4,

the results of our experiments, and a summary of the IPC-4 results, are given.

Se
tion 5 summarizes and 
on
ludes.

2 The Airport Ground-Tra�
 Control Problem

In a nutshell, the airport ground-tra�
 
ontrol problem 
onsists of 
oordinating

the movements of airplanes on the airport so that they rea
h their planned

destinations (runway or parking position) as fast as possible � whereby 
ollisions

shall be, of 
ourse, avoided.

The airplanes move on the airport infrastru
ture, whi
h 
onsists of runways,

taxi ways, and parking positions. Airplanes are generally divided into the three

`Wake Vortex Categories': light, medium, and heavy, whi
h 
lassify them a
-


ording to their engine exhaust. A moving airplane 
an either be in-bound or

out-bound. In-bound airplanes are re
ently landed and are on their way from

the runway to a parking position, usually a gate. Out-bound airplanes are ready

for departure, meaning they are on their way to the departure runway. Sin
e

airplanes are not able to move ba
kwards, they need to be pushed ba
k from the

gate on the taxiway where they start up their engines. Some airports provide

di�erent park positions that allow an airplane to start its engines dire
tly but

to simplify the situation we assume that an airplane always needs to be pushed

ba
k.

The ground 
ontroller has to 
ommuni
ate to the airplanes whi
h ways they

shall take and when to stop. While su
h guidan
e 
an be given purely rea
tively,

it pays o� to base de
isions on anti
ipating the future. Otherwise it may happen

that airplanes blo
k ea
h other and need more time than ne
essary to rea
h their

destinations on the airport. The obje
tive is to minimize the overall summed up

traveling times of all airplanes.

From a formal point of view, one 
onsiders the problem with a time horizon

of say one hour and s
hedules all movements, minimizing the movement times

of the planes. Of 
ourse, be
ause the situation 
hanges 
ontinually (new planes

arrive and s
hedules 
annot be exe
uted as planned), 
ontinuous res
heduling is

1

The full en
oding of the problem 
an be found in the te
hni
al report version of this

paper [14℄.



ne
essary. We will 
onsider, however, only the stati
 optimization problem with

a given situation on the airport and a time horizon of a �xed time span.

Our domain representation and implementation is based on software by Wolf-

gang Hatza
k, namely on a system 
alled Astras: Airport Surfa
e ground TRA�


Simulator. This is a software pa
kage that was originally designed to be a train-

ing platform for airport 
ontrollers. Astras provides a two-dimensional view of

the airport, allowing the user to 
ontrol the airplanes by means of point and


li
k. Astras also in
ludes features for simulating the tra�
 �ow on an airport

over the 
ourse of a spe
i�ed time window, as well as an automated 
ontroller

(named A
ore) driven by a greedy re-s
heduling approa
h [8℄. Our PDDL domain

en
oding is based on Astras's internal representation of airports. We generated

our test instan
es by software that is integrated with Astras. During an air-

port simulation, if desired by the user our software exports the 
urrent tra�


situation in various PDDL en
odings.

3 The PDDL En
oding of the Airport Domain

The 
entral obje
t in the PDDL en
oding of the airport domain is the airplane

that moves over the airport infrastru
ture. The airport infrastru
ture is built

out of segments. An airplane always o

upies one segment and may blo
k several

others depending on its type. Our assumption here is that medium and heavy

airplanes blo
k the segment behind them whereas light airplanes only blo
k the

segment they o

upy. Blo
ked segments 
annot be o

upied by another airplane.

To handle terms like behind we need to introdu
e dire
tion in segments. Sin
e

our segments are two-dimensional obje
ts we need exa
tly two dire
tions whi
h

we quite inappropriately 
all north and south. Every segment has its north end

and its south end so it be
omes possible to talk about dire
tion in a segment.

To model the airplane movement we need at least two a
tions. The move

a
tion des
ribes the normal forward movement of an airplane from one segment

to another. The pushba
k a
tion des
ribes ba
kward movement when an airplane

is being pushed ba
k from its park position.

We also introdu
e an airplane state. An airplane 
an either be moving, be

pushed, be parked, or be airborne. We want to make sure that an airplane only

moves ba
kwards while being pushed from its park position and only moves

forward if not. The parked state is ne
essary sin
e a parked airplane's engines are

o� and thus the airplane does not blo
k any segments ex
ept the one it o

upies

unlike when moving. If a plane is airborne, i.e. the plane took o� already, then

that means that the plane is not relevant to the ground tra�
 anymore.

The a
tions park and startup des
ribe the transitions between the di�erent

states. As one may expe
t the park a
tion makes sure the airplane only blo
ks

the o

upied segment while the startup a
tion does the exa
t opposite. It initially

blo
ks segments depending on the airplane type.

A last a
tion is needed to 
ompletely remove the airplane from the airport

after takeo�. This a
tion is 
alled takeo� and makes sure the airplane does not

blo
k or o

upy any segment anymore.



In the following we des
ribe our di�erent en
odings of the airport domain: a

durative and non-durative ADL [13℄ en
oding, a STRIPS [6℄ en
oding where the

ADL 
onstru
ts were 
ompiled out, �nally a means to model runway blo
king

for landing airplanes.

3.1 ADL En
oding

Our domain has four types of obje
ts: airplane, segment, dire
tion, and airplan-

etype.

The airplane type (its Wake Vortex Category) is des
ribed with the has-type

predi
ate:

(has-type ?a - airplane ?t - airplanetype)

The airplane state is des
ribed with four predi
ates:

(airborne ?a - airplane ?s - segment)

(is-moving ?a - airplane)

(is-pushed ?a - airplane)

(is-parked ?a - airplane ?s - segment)

The is-parked predi
ate has a se
ond parameter stating the park position the

airplane is parked at. The se
ond parameter of the airborne predi
ate just states

from whi
h segment the airplane took o�. This is useful in 
ase an airport pro-

vides several departure runways and we want to for
e an airplane to use a spe
i�


one. Apart from the airplane state we also need to des
ribe the 
urrent position

of an airplane and its heading:

(at-segment ?a - airplane ?s - segment)

(fa
ing ?a - airplane ?d - dire
tion)

We need several predi
ates to des
ribe the airport stru
ture. All the following

predi
ates are stati
; they will be set on
e in the initial state and never be


hanged.

(
an-move ?s1 ?s2 - segment ?d - dire
tion)

(
an-pushba
k ?s1 ?s2 - segment ?d - dire
tion)

(move-dir ?s1 ?s2 - segment ?d - dire
tion)

(move-ba
k-dir ?s1 ?s2 - segment ?d - dire
tion)

(is-blo
ked ?s1 - segment ?t - airplanetype ?s2 - segment ?d - dire
tion)

(is-start-runway ?s - segment ?d - dire
tion)

The 
an-move predi
ate states that an airplane may move from segment s1 to

segment s2 if its fa
ing dire
tion d. The 
an-pushba
k predi
ate des
ribes the

possible ba
kward movement whi
h is similar to the 
an-move predi
ate. In our

en
odings, the 
an-move predi
ate holds only for pairs of segments that belong

to the standard routes on the airport � this is 
ommon pra
ti
e in reality (as

reroutes are likely to 
ause trouble or at least 
onfusion), and yields mu
h better

planner performan
e.

The move-dir and move-ba
k-dir predi
ates state the airplane's heading af-

ter moving from segment s1 to segment s2. That means that in a 
orre
t air-

port domain fa
t �le every 
an-move (
an-pushba
k) predi
ate has its move-dir

(move-ba
k-dir) 
ounterpart.



(:a
tion move

:parameters (?a - airplane

?t - airplanetype

?d1 - dire
tion

?s1 - segment

?s2 - segment

?d2 - dire
tion)

:pre
ondition (and

(has-type ?a ?t)

(is-moving ?a)

(at-segment ?a ?s1)

(fa
ing ?a ?d1)

(
an-move ?s1 ?s2 ?d1)

(move-dir ?s1 ?s2 ?d2)

(not (exists (?a1 - airplane) (and (not (= ?a1 ?a))

(blo
ked ?s2 ?a1))))

(forall (?s - segment) (imply (and (is-blo
ked ?s ?t ?s2 ?d2)

(not (= ?s ?s1)))

(not (o

upied ?s))

))

)

:effe
t (and

(at-segment ?a ?s2)

(not (at-segment ?a ?s1))

(o

upied ?s2)

(not (o

upied ?s1))

(when (not (= ?d1 ?d2))

(and (fa
ing ?a ?d2)

(not (fa
ing ?a ?d1))))

(blo
ked ?s2 ?a)

(when (not (is-blo
ked ?s1 ?t ?s2 ?d2))

(not (blo
ked ?s1 ?a)))

(forall (?s - segment) (when (is-blo
ked ?s ?t ?s2 ?d2)

(blo
ked ?s ?a)

))

(forall (?s - segment) (when (and (is-blo
ked ?s ?t ?s1 ?d1)

(not (= ?s ?s2))

(not (is-blo
ked ?s ?t ?s2 ?d2))

)

(not (blo
ked ?s ?a))

))

)

)

Fig. 1. ADL move a
tion

The is-blo
ked predi
ate is used to handle all blo
king. It says that segment

s1 will be blo
ked by an airplane of type t at segment s2 fa
ing into dire
tion

d. We will see the use of this predi
ate in the move a
tion's e�e
t in detail.

The last predi
ate, is-start-runway, states that an airplane at segment s fa
-

ing dire
tion d is allowed to takeo�. This is an essential predi
ate as we 
annot

allow an airplane to takeo� wherever it (or better: the planner) wants.

Finally, we need two predi
ates to des
ribe the 
urrent situation on the air-

port regarding blo
ked and o

upied segments:

(o

upied ?s - segment)

(blo
ked ?s - segment ?a - airplane)



3.1.1 Non-durative a
tions Now we will look at the a
tions used in the

non-durative ADL domain in detail.

The most important one is 
learly the move a
tion (see Figure 1). The pa-

rameters have the following meaning: an airplane a of type t fa
ing dire
tion

d1 on segment s1 moves to segment s2 and then fa
es dire
tion d2. The �rst

four predi
ates in the pre
ondition make sure the airplane is in a proper state,

meaning it is lo
ated in the right segment fa
ing the right dire
tion. Predi
ates

�ve and six represent the airport stru
ture as des
ribed above. The last two

formulas are the really interesting ones as they deal with segment blo
king. The

�rst one makes sure that no other airplane blo
ks the segment our airplane is

moving to. Here we use the full power of ADL to 
he
k for every airplane if it

is blo
king segment s2. Our moving airplane 
annot blo
k itself so we ex
lude

it from the 
he
k. The se
ond formula is used to make sure that none of the

segments our airplane will blo
k after the movement is o

upied by another air-

plane. To a
hieve that we use the is-blo
ked predi
ate. Its instan
es give us the

segments that will be blo
ked on
e our airplane has moved to segment s2. If we

�nd su
h a segment we make sure its not o

upied sin
e a segment may not be

o

upied and blo
ked by di�erent airplanes at the same time. We skip segment

s1 sin
e it is always o

upied by our airplane.

If all of these 
onditions apply, the move a
tion may be exe
uted. Most of the

e�e
ts should be self-explanatory: updating of the o

upied segment, 
hanging

the heading if ne
essary, and blo
king the o

upied segment. Again, the blo
k-

ing is the part where full ADL is needed. We iterate over all segments to �nd

those that are blo
ked from our airplane after the movement and those that

were blo
ked before the movement. The latter ones need to be unblo
ked with

ex
eption of those blo
ked after the movement. Again, the is-blo
ked predi
ate

is the 
entral tool.

The pushba
k a
tion di�ers only little from the move a
tion. That is why we

will skip a detailed des
ription here and take a look at one of the more interesting

a
tions used for performing the transitions of the airplane state.

The startup a
tion (see Figure 2) represents the pro
ess of starting the air-

plane's engines after it has been pushed ba
k from its park position and thus

is 
learly only needed for out-bound airplanes. That is why the pre
onditions


ontain the is-pushing predi
ate. The startup a
tion represents the pro
ess of

the airplane starting its engines. That means it begins blo
king segments. So we

need the exa
t same 
he
k for o

upied segments as in the move a
tion and also

the blo
king formula in the a
tion's e�e
t. Apart from that we only update the

airplane state to is-moving.

The park a
tion does the opposite of the startup a
tion by unblo
king all

segments ex
ept the o

upied one.

The takeo� a
tion makes sure the airplane is 
ompletely removed from the

airport meaning it does not blo
k or o

upy any segments anymore.

De�nition 1. A 
orre
t state of an airplane a is de�ned by the following fa
ts:

1. a is at exa
tly one segment or is airborne.



(:a
tion startup

:parameters (?a - airplane ?t - airplanetype ?s - segment ?d - dire
tion)

:pre
ondition (and

(is-pushing ?a)

(has-type ?a ?t)

(at-segment ?a ?s)

(fa
ing ?a ?d)

(forall (?s1 - segment)

(imply (and (is-blo
ked ?s1 ?t ?s ?d)

(not (= ?s ?s1)))

(not (o

upied ?s1))

))

)

:effe
t (and

(not (is-pushing ?a))

(is-moving ?a)

(forall (?s1 - segment)

(when (is-blo
ked ?s1 ?t ?s ?d)

(blo
ked ?s1 ?a)

))

)

)

Fig. 2. ADL startup a
tion

2. a o

upies exa
tly the segment it is at or is airborne.

3. If a is airborne it neither o

upies nor blo
ks any segments.

4. a is fa
ing in exa
tly one dire
tion or is airborne.

5. If a is moving or being pushed it only blo
ks the segments determined by the

is-blo
ked predi
ate and the one it o

upies.

6. If a is parked it only blo
ks the segment it o

upies.

7. a never blo
ks a segment o

upied by another airplane.

8. a never o

upies a segment blo
ked by another airplane.

Proposition 1. If all airplanes had a 
orre
t state before exe
uting an a
tion

of the airport domain they also have 
orre
t states afterwards.

The (straightforward) proof to Proposition 1 
an be found in our TR [14℄.

3.1.2 Durative a
tions To obtain a domain with a
tion durations, we en-

ri
hed the above a
tion en
odings with the obvious �at start�, �at end�, and �over

all� �ags for the pre
onditions and e�e
ts. The duration of move and pushba
k

a
tions is 
al
ulated as a fun
tion of segment length (airplane velo
ity is assumed

as a �xed number). The duration of startup a
tions is 
al
ulated as a fun
tion

of the number of engines. The park and the takeo� a
tion's durations are both

set to �xed values.

3.2 STRIPS

Most 
urrent PDDL planning systems 
an not handle full ADL, espe
ially dura-

tive ADL. To work around this problem and make the airport domain a

essible



(:a
tion pushba
k_seg_pp_0_60_seg_ppdoor_0_40_south_south_medium

:parameters (?a - airplane)

:pre
ondition (and

(has-type ?a medium)

(is-pushing ?a)

(fa
ing ?a south)

(at-segment ?a seg_pp_0_60)

(not_o

upied seg_ppdoor_0_40)

(not_blo
ked seg_ppdoor_0_40 airplane_CFBEG)

(not_blo
ked seg_ppdoor_0_40 airplane_DAEWH)

)

:effe
t (and

(not (o

upied seg_pp_0_60))

(not_o

upied seg_pp_0_60)

(not (blo
ked seg_pp_0_60 ?a))

(not_blo
ked seg_pp_0_60 ?a)

(not (at-segment ?a seg_pp_0_60))

(o

upied seg_ppdoor_0_40)

(not (not_o

upied seg_ppdoor_0_40))

(blo
ked seg_ppdoor_0_40 ?a)

(not (not_blo
ked seg_ppdoor_0_40 ?a))

(at-segment ?a seg_ppdoor_0_40)

)

)

Fig. 3. A STRIPS pushba
k a
tion: pushing a medium airplane from seg_pp_0_60

to seg_ppdoor_0_40 heading south

to most planning systems we need to remove the ADL 
onstru
ts to 
reate a

STRIPS only version.

Due to the la
k of quanti�ed variables there is no way to determine whi
h

segments need to be unblo
ked and uno

upied when moving. In our 
ontext

this di�
ulty 
an be ta
kled by pre-instantiating. We 
reate one move (and

pushba
k) a
tion for every pair of segments, for every airplane type, and for

every possible pair of dire
tions asso
iated to moving between the segments.

We 
an then do the required state updates without the de-tour to 
onditions

over the is-blo
ked predi
ate. (More formally, the 
onditional e�e
ts disappear

be
ause their 
onditions are all stati
.) We end up with a single non-instantiated

parameter for the move and pushba
k a
tions: the parti
ular airplane that is

moved.

The blo
ked predi
ate depends on an airplane. In the ADL version a quanti-

�ed pre
ondition iterates over all airplanes to 
he
k if a segment is blo
ked. In

STRIPS, instead we use a separate 
he
k for every airplane on the airport.

STRIPS does not allow negated pre
onditions. We need negated pre
ondi-

tions to test for unblo
ked and uno

upied segments, so we emulate their be-

havior using a standard translation approa
h. We introdu
e not_blo
ked and

not_o

upied predi
ates, and make sure that these always exhibit the intended

behavior (i.e. they are assigned the inverse values initially, and every a
tion e�e
t

is updated to a�e
t them inversely).

Figure 3 shows an example of a non-durative STRIPS pushba
k a
tion.

Now that we moved almost everything from the fa
t into the domain de
la-

ration it is obvious that we need a separate domain de�nition for ea
h airport



situation. The fa
t �le merely de�nes the airplanes' starting state and the goal.

All airport layout is impli
itly de�ned by the move a
tions. Thus we 
an drop

the is-blo
ked, 
an-move, move-dir, 
an-pushba
k, and move-ba
k-dir predi
ates.

The STRIPS domain version 
an be enri
hed with durations exa
tly like the

ADL version.

3.3 Time Windows

The 
ontrollers of most large airports in the world only 
ontrol their fore-�eld

but not the airspa
e above the airport. In parti
ular, they 
an not 
hange the

landing times of airplanes, and independently of what they de
ide to do the

respe
tive runway will be blo
ked when a plane lands.

We have to model something like segment s is blo
ked from time x to time y.

Clearly this 
an only be a
hieved with durative PDDL. The language for IPC-4,

PDDL 2.2 [5℄, introdu
ed Timed Initial Literals, whi
h provide a very simple

solution to the time-window problem. They allow the spe
i�
ation of a literal

together with a time stamp at whi
h the literal will be
ome true. For example:

(at 119 (blo
ked seg_27 dummy_landing_airplane))

The above statement in the �:init� se
tion of the fa
t �le will make sure that

segment seg_27 gets blo
ked at time 119. To unblo
k the segment after the

landing we use a similar statement.

(at 119 (not (blo
ked seg_27 dummy_landing_airplane)))

Sin
e the blo
king predi
ate's se
ond parameter is an airplane and we only

simulate the landings but not the airplanes themselves, we use a dummy airplane

for all landing a
tions. The dummy airplane is used nowhere else. (It does not

have a 
orre
t state in the sense of De�nition 1, but obviously this does not

a�e
t the 
orre
tness of our overall en
oding.)

3.4 Optimization Criterion

We were not able to model the real optimization 
riterion of airport ground

tra�
 
ontrol. The standard 
riterion in PDDL is to minimize the exe
ution

time, the makespan, of the plan. In our en
oding of the domain this 
omes down

to minimizing the arrival time of the last airplane. But the real obje
tive is,

as said above, to minimize the overall summed up travel time of all airplanes.

There appears to be no good way of modeling this 
riterion in 
urrent PDDL.

The di�
ulty lies in a

essing the waiting times of the planes, i.e. the times

at whi
h they stay on a segment waiting for some other plane to pass. If one

introdu
es an expli
it waiting a
tion then one must dis
retize time, in order to

be able to tell the planner how long the plane is supposed to wait. For PDDL2.2,

the introdu
tion of a spe
ial �uent �
urrent-time� was 
onsidered, returning the

time point of its evaluation in the plan exe
ution. Using su
h a �look on the




lo
k�, one 
ould make ea
h plane re
ord its arrival time, and thus formulate the

true optimization 
riterion in Airport. The IPC-4 organizing 
ommittee de
ided

against the introdu
tion of a �
urrent-time� variable as it seems to be problemati


from an algorithmi
 point of view (it implies a 
ommitment to pre
ise time points

at planning time), and not relevant anywhere else but in the airport domain.

4 Results

To evaluate the performan
e of state-of-the-art planning systems in the Air-

port domain, we 
reated �ve s
aling example airports that we named �Minimal�,

�Mintoy�, �Toy�, �Half-MUC�, and �MUC�. The smallest of these airports is the

smallest possible airport Astras 
an handle. The two largest airports 
orrespond

to one half of Muni
h Airport, MUC, respe
tively to the full MUC airport. Fig-

ure 4 shows sket
hes of the �Minimal� airport, and of the �MUC� airport.

(a)

(b)

Fig. 4. Sket
hes of the �Minimal� (a) and �MUC� (b) airports. Park position segments

are marked in bla
k, while the segments airplanes 
an takeo� from are marked in white.

For ea
h airport, we 
reated a number of test examples that s
aled by the

number of airplanes to be moved, and by the number of time windows (if any).

As indi
ated earlier in the paper, the test examples were generated by run-

ning an Astras simulation of the respe
tive airport, then sele
ting various traf-

�
 situations during the simulation and putting them out in our di�erent ver-

sions/en
odings of the domain.

In our experiments, we ran the planners FF [9℄, IPP [10℄, MIPS [4℄, and LPG

[7℄. These planners are available online (programmed by one of the authors, in



the 
ases of FF and IPP), and are suitable to represent the state-of-the-art in

sub-optimal and (step-)optimal fully automated planning during the last 5 or 6

years, judging from the results of the international planning 
ompetitions. FF

was the winner of the 2000 
ompetition, and is able to handle non-durational

ADL representations. MIPS was awarded a 2nd pla
e at both the 2000 and 2002


ompetitions, and handles durational STRIPS as well as timed initial literals.

LPG was the winner of the 2002 
ompetition, and handles durational STRIPS

representations. IPP is the only optimal planner in our 
olle
tion; it is based on

the Graphplan [2℄ approa
h, handles non-durational ADL representations, and

�nds plans with a provably smallest number of parallel time steps.

2

IPP won the

ADL tra
k of the 1998 
ompetition.

The planners were run under Linux on a 6 GB RAM 
omputer with 4 Xeon

3.06 GHz CPUs. We report total runtimes as put out by the systems. When-

ever a planning system ran out of memory on an example, the respe
tive table

entry shows a ���. We used a runtime 
uto� of 10 minutes, and examples not

solved within that time are marked by �>>�. We �rst give our results for the

non-durational Airport domain, then for the durational domain without time

windows, �nally for the full durational domain with time windows. We then pro-

vide a brief summary of the results obtained for the airport domain in the 2004


ompetition.

4.1 Non-durational results

In the non-durational domain, two of our tested systems � namely FF and IPP

� 
ould handle the original non-
ompiled ADL domain. We ran FF and IPP

on both the ADL and STRIPS en
odings of the domain, and we ran LPG and

MIPS on the STRIPS en
oding only. Table 1 shows the results. We only report

runtimes, not plan quality. From a real-life perspe
tive, talking about plan qual-

ity � summed up travel time � does not make mu
h sense in a non-durational

setting where a
tions don't take any time.

Instan
es with a number of airplanes not solved by any of our planners are

not shown in the table. We observe the following. First, in the ADL en
oding

no planner is able to s
ale to the MUC airports. The failure is due to a memory

explosion in the pre-pro
essing routines of both FF and IPP, whi
h ground out

all a
tions.

3

Strangely, in those ADL instan
es that are feasible FF is a lot

more e�
ient than in the 
orresponding STRIPS instan
es. We investigated this

phenomenon but 
ould not �nd an explanation for it. It appears to be due to

the internal ordering of the a
tion instan
es. Our se
ond observation is that

all planners s
ale reasonably well in the smaller arti�
ial airports, but run into

2

Of 
ourse, �nding step-optimal movement sequen
es is a long way away from the

real optimization 
riterion in 
ontrolling airport ground tra�
. Nevertheless, we �nd

it interesting to see how far an optimal planner s
ales in the domain.

3

While grounding out the a
tions 
omes very 
lose to what we did in the STRIPS


ompilation, FF and IPP do it in a general way and fail during the 
reation of the

ne
essary thousands of 1st order formulas (i.e., pointer tree stru
tures).



ADL STRIPS

Airport Nr. planes FF IPP FF IPP LPG MIPS

Minimal 1 0.03 0.02 0.01 0.01 0.02 0.09

Minimal 2 0.05 0.04 0.01 0.02 0.09 0.11

Mintoy 1 0.39 0.26 0.02 0.05 0.08 0.25

Mintoy 2 0.59 0.42 0.01 0.21 0.09 0.30

Mintoy 3 0.85 0.86 0.02 0.57 0.16 0.67

Mintoy 4 1.09 5.56 0.76 9.54 17.45 15.12

Toy 1 0.55 0.35 0.02 0.08 0.18 0.30

Toy 2 0.79 0.55 0.03 0.24 0.48 0.36

Toy 3 1.38 1.05 0.06 0.38 0.62 0.68

Toy 4 1.50 3.52 3.04 4.63 0.82 37.12

Toy 5 1.80 239.19 19.30 190.76 9.84 38.64

Toy 6 2.52 >> 5.57 >> 22.17 164.31

Toy 7 6.60 >> >> >> � >>

Half-MUC 2 � � 0.25 8.96 >> 6.25

Half-MUC 3 � � 0.37 18.73 � 13.51

Half-MUC 4 � � 0.88 49.92 � �

Half-MUC 5 � � 1.34 61.14 � �

Half-MUC 6 � � 1.82 87.76 � �

Half-MUC 7 � � 3.59 131.13 � �

Half-MUC 8 � � 4.52 173.68 � �

Half-MUC 9 � � 5.60 240.01 � �

Half-MUC 10 � � 8.52 � � �

MUC 2 � � 0.40 32.81 � �

MUC 3 � � 0.62 63.93 � �

MUC 4 � � 0.83 109.00 � �

MUC 5 � � 335.38 289.18 � �

Table 1. Runtime results (in se
onds) for the non-durational en
odings of the Airport

domain.

trouble on the real-life sized MUC airports. On the negative side, LPG and MIPS

solve hardly any of the MUC instan
es � it is un
lear if this is due to the size of the

sear
h spa
es, or to implementational di�
ulties with the pre-
ompiled STRIPS

en
oding. On the positive side, FF and IPP 
an solve Half-MUC instan
es even

with many airplanes, and s
ale up to 5 planes on the real-life MUC airport.

It is interesting to note that the optimal planner IPP is 
ompetitive with the

sub-optimal planner FF, and even outperforms LPG and MIPS � a very unusual

phenomenon in today's planning lands
ape. Apparently, the heuristi
 fun
tion

en
oded in the planning graph is of high quality (
omparable to the quality of

heuristi
s based on ignoring the delete lists) in the airport domain. Altogether,

it seems that planners are not too far away from real-life performan
e in the

non-durational setting of this domain.

4.2 Durational results

From the real-life perspe
tive, of 
ourse the durational version of the Airport

domain is the more interesting one, parti
ularly the version in
luding time win-

dows for the landing airplanes. Of our tested systems, only LPG and MIPS 
an

handle durations, and only MIPS 
an handle the timed initial literals ne
essary

to en
ode the time windows. Both LPG and MIPS handle only STRIPS repre-

sentations so we 
ould not run the ADL en
oding. See the results for the STRIPS



en
odings in Table 2. We only report runtime. The found plans are all optimal

with respe
t to the summed up overall travel time, see the dis
ussion below.

No Time Windows Time Windows

Airport Nr. planes LPG MIPS MIPS

Minimal 1 0.03 0.15 0.18

Minimal 2 0.04 0.26 0.30

Mintoy 1 0.44 0.42 0.55

Mintoy 2 1.63 2.06 2.71

Mintoy 3 0.17 13.56 13.79

Mintoy 4 >> 74.88 19.45

Toy 1 0.10 0.50 1.16

Toy 2 0.37 2.41 13.77

Toy 3 0.24 13.65 83.59

Toy 4 2.76 101.51 102.68

Toy 5 3.46 >> >>

Toy 6 5.48 >> >>

Toy 7 >> >> >>

Half-MUC 2 >> 94.52 157.76

Half-MUC 3 � 405.19 497.93

Table 2. Runtime results (in se
onds) for the durational STRIPS en
oding of the

Airport domain, with and without time windows.

As above, instan
es solved by none of the planners are not shown in the table.

The obvious observation regarding runtime is that the durational domain is mu
h

harder for our planners than the non-durational domain � though as above it is

un
lear if LPG's and MIPS's ine�
ien
y in the MUC airports is due to sear
h


omplexity, or to the pre-
ompiled STRIPS en
oding. LPG is generally more

e�
ient than MIPS in the smaller airports, but fails 
ompletely in the larger

Half-MUC airport.

Regarding plan quality, as said above already LPG andMIPS �nd the optimal

plans in all 
ases they 
an handle, i.e. they return the plans with the smallest

possible summed up overall travel time. We 
he
ked that by hand. While this

is a good result, one should keep two things in mind. First, LPG and MIPS do

not know about the real optimization 
riterion so it is largely a matter of 
han
e

if or if not the plan they �nd is optimal with respe
t to that 
riterion. Se
ond,

the instan
es shown here � those 
ases that LPG and MIPS 
an handle � are

very simple. With just a few airplanes, there is not mu
h potential for (possibly)

harmful intera
tions between the intended travel routes of these planes. In the

above examples, often it is the 
ase that there is just one non-redundant solution

(a solution that does not leave planes standing around waiting without reason),

and that this solution is the optimal one. Spe
i�
ally this is the 
ase in the two

Half-MUC instan
es solved by MIPS.

We also wanted to run A
ore, the (sub-optimal) s
heduler integrated with

Astras, on the above instan
es (i.e. in the respe
tive tra�
 situations during

the simulation with Astras), and 
ompare the results with those of our planners.

This turned out to not be feasible. In the small airports, there are a lot of parking


on�i
ts, i.e. 
ases where an in-bound airplane is headed for a parking position



that is o

upied by an out-bound airplane. Su
h situations do rarely o

ur in

reality (in fa
t, the �ight s
hedules try to avoid these situations), and A
ore 
an't

handle them. In the larger MUC airports, on the other hand, our planners 
ould

not solve many instan
es. In the two Half-MUC instan
es solved by MIPS, A
ore

�nds the trivially optimal solutions just like MIPS does. Generally, 
on
erning

runtime A
ore is vastly superior to our planners. A
ore 
an solve instan
es with

50 planes and more on Frankfurt airport, whi
h is far beyond the s
alability of

the tested planning systems.

4.3 IPC-4 results

As said in the introdu
tion, the IPC-4 results be
ame available just a few days

before the deadline for the version of this paper to be in
luded in the 
onfer-

en
e pro
eedings. We were therefore, and for spa
e reasons, unable to in
lude a

detailed dis
ussion of these results, but we 
onsider it interesting to provide at

least a brief a

ount of what happened. The IPC-4 results were obtained on the

same ma
hine that we used in the experiments above.

Some progress was made in the non-durational performan
e. Three planners

(�Fast Downward�, �SGPlan�, and the new version of LPG) were able to solve

Half-MUC with up to 12 planes within 100 se
onds. Fast Downward even solved

a MUC example with 15 planes within 200 se
onds. The progress made on the

durational performan
e is yet more impressive: even in the presen
e of time

windows, the performan
e of LPG and �SGPlan� was very similar to that in

the non-durational domain, easily (within 100 se
s) solving Half-MUC examples

with up to 11 planes, and solving MUC examples with up to 5 planes within

30 minutes. For optimal planners, not so mu
h progress 
ould be observed. The

most e�
ient optimal planner in the non-durational domain, �SATPLAN04�, was

roughly as e�
ient as IPP in our own experiments. There were only three optimal

planners that 
ould handle durations, and only a singe Half-MUC instan
e (with

two planes) got solved by them within 30 minutes.

5 Con
lusion

The results show that today's PDDL planning systems are not quite yet powerful

enough to handle the airport domain when it 
omes to real-life problems � for

that, the planners would have to be able to, like A
ore, generate good solutions to

large airports (like Frankfurt) with many airplanes (roughly 50) in a few se
onds.

Nonetheless, the results, espe
ially those obtained for the durational domain by

the sub-optimal planners in IPC-4, are very en
ouraging. They de�netely show

that today's state-of-the-art planners are a lot 
loser to real-life appli
ability

than they were some years ago. They even suggest that real-life appli
ability, at

least in this parti
ular domain, has 
ome within 
lose rea
h.

The 
ore problem in 
ontrolling the ground tra�
 on an airport is to resolve

the 
on�i
ts that arise when two planes need to 
ross the same airport segment

[8℄. In our PDDL en
oding, this 
ore problem is hidden deep in the domain



semanti
s, and it seems likely that the automated planners spend most of their

runtime unawares of the 
ore di�
ulties. One 
an try to over
ome this by not

en
oding in PDDL the physi
al airport, but only the 
on�i
ts and their possible

solutions. Seeing if and how this is possible, ideally in 
onne
tion with the real

optimization 
riterion, is an important topi
 for future work.

Referen
es

1. Fahiem Ba

hus. The AIPS'00 planning 
ompetition. The AI Magazine, 22(3):47�

56, 2001.

2. Avrim L. Blum and Merri
k L. Furst. Fast planning through planning graph anal-

ysis. Arti�
ial Intelligen
e, 90(1-2):279�298, 1997.

3. Blai Bonet and Hé
tor Ge�ner. Planning as heuristi
 sear
h. Arti�
ial Intelligen
e,

129(1-2):5�33, 2001.

4. Stefan Edelkamp. Taming numbers and durations in the model 
he
king integrated

planning system. Journal of Arti�
ial Intelligen
e Resear
h, 20(195-238), 2003.

5. Stefan Edelkamp and Jörg Ho�mann. PDDL2.2: The language for the 
lassi
al

part of the 4th international planning 
ompetition. Te
hni
al Report 195, Albert-

Ludwigs-Universität, Institut für Informatik, Freiburg, Germany, 2004.

6. Ri
hard E. Fikes and Nils Nilsson. STRIPS: A new approa
h to the appli
ation of

theorem proving to problem solving. Arti�
ial Intelligen
e, 2:189�208, 1971.

7. A. Gerevini, A. Saetti, and I. Serina. Planning through sto
hasti
 lo
al sear
h

and temporal a
tion graphs in LPG. Journal of Arti�
ial Intelligen
e Resear
h,

20:239�290, 2003.

8. Wolfgang Hatza
k and Bernhard Nebel. Solving the operational tra�
 
ontrol

problem. In A. Cesta, editor, Re
ent Advan
es in AI Planning. 5th European Con-

feren
e on Planning (ECP'01), Toledo, Spain, September 2001. Springer-Verlag.

9. Jörg Ho�mann and Bernhard Nebel. The FF planning system: Fast plan generation

through heuristi
 sear
h. Journal of Arti�
ial Intelligen
e Resear
h, 14:253�302,

2001.

10. Jana Koehler, Bernhard Nebel, Jörg Ho�mann, and Yannis Dimopoulos. Extending

planning graphs to an ADL subset. In S. Steel and R. Alami, editors, Re
ent

Advan
es in AI Planning. 4th European Conferen
e on Planning (ECP'97), volume

1348 of Le
ture Notes in Arti�
ial Intelligen
e, pages 273�285, Toulouse, Fran
e,

September 1997. Springer-Verlag.

11. Drew M
Dermott et al. The PDDL Planning Domain De�nition Language. The

AIPS-98 Planning Competition Comitee, 1998.

12. M.Fox and D.Long. The AIPS-2002 international planning 
ompetition. In Pro-


eedings of the 6th International Conferen
e on Arti�
ial Intelligen
e Planning

Systems (AIPS-02). AAAI Press, Menlo Park, 2002.

13. Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS and

the situation 
al
ulus. In R. Bra
hman, H. J. Levesque, and R. Reiter, editors,

Prin
iples of Knowledge Representation and Reasoning: Pro
eedings of the 1st In-

ternational Conferen
e (KR-89), pages 324�331, Toronto, ON, May 1989. Morgan

Kaufmann.

14. Sebastian Trüg, Jörg Ho�mann, and Bernhard Nebel. Applying automati
 plan-

ners to airport ground-tra�
 
ontrol. Te
hni
al Report 199, Albert-Ludwigs-

Universität, Institut für Informatik, Freiburg, Germany, 2004.


