
Behavior-based Multi-Robot Collision Avoidance

Dali Sun, Alexander Kleiner, Bernhard Nebel

Abstract— Autonomous robot teams that simultaneously dis-
patch transportation tasks are playing a more and more
important role in the industry. In this paper we consider the
multi-robot motion planning problem in large robot teams
and present a decoupled approach by combining decentralized
path planning methods and swarm technologies. Instead of
a central coordination, a proper behavior which is directly
selected according to the context is used by the robot to keep
cooperating with others and to resolve path collisions. We show
experimentally that the quality of solutions and the scalability
of our method are significantly better than those of conventional
decoupled path planning methods. Furthermore, compared to
conventional swarm approaches, our method can be widely
applied in large-scale environments.

I. INTRODUCTION

With shortening product life cycles and increasing de-
mands for diversification of products, more flexibility and re-
configurability are needed in the field of logistics. However,
fixed conveyor installations that have to be rebuilt when
production lines change, are nowadays still be widely used
for the material flow. Therefore, autonomous systems which
can organize transportation tasks autonomously are playing
an increasingly important role in today’s logistic centers and
manufacturing plants.

Besides the task assignment problem, i.e., allocating robots
to different tasks [10], another challenge in this domain
is to efficiently coordinate the simultaneous navigation of
large robot teams in confined and cluttered environments. In
general, multi-robot motion planning can be solved by either
considering the joint configuration space of the robots [1]
or by deploying decoupled techniques that separate the
problems of motion planning and coordination [6]. The first
approach is intractable for large robot teams because the
dimension of the joint configuration space is growing expo-
nentially with increasing number of robots. The decoupled
approach is generally incomplete and yields in most cases to
sub-optimal solutions.

In this paper, we propose a behavior-based multi-robot col-
lision avoidance (BBMRCA) method in large robot teams in-
spired by the concept of swarm intelligence [5], [8]. Through
biological research on insects, ants and birds in nature, it was
found that the coordination problem in a large numbers of
such animals can be very efficiently solved by using swarm
behavior without any central coordination. The key point
is that swarm behavior can be triggered automatically by
relatively simple rules followed by individuals. Although lots
of applications have been developed for robotics and video

D. Sun and B. Nebel are with the Department of Computer Science,
University of Freiburg, Germany

A. Kleiner is with the Department of Computer and Information Science,
Linköping University, Sweden

games, almost none of these perfectly fits for structured and
heavily crowded environments. Combining with traditional
path planning methods and swarm intelligence, our approach
focuses on how to solve the problem in dynamic, structured
and crowded environments. In short, a path for each robot is
computed without considering any of the other robots. All
robots execute their paths simultaneously. If a path collision
occurs during execution time, a situation specific behavior
is automatically selected that avoids that collision by issuing
appropriate behaviors that might temporarily deviate from
the original and optimal path. In our application behaviors
are selected according to specific traffic rules that directly
emerge from the context. The path will be re-planned, when
the avoiding behavior has failed or a deadlock has been
detected. Re-planning will also be triggered whenever the
next waypoint in the path is fully blocked by obstacles, which
can, for example, occur when the real environment deviates
too much from the initial grid map. Note that intra-logistics
and production environments cannot be considered as static
since, for example, objects such as pallets and crates can be
replaced.

Silver et al. introduced a decentralized approach for large
robot team (WHCA) for reducing computation time [9].
However, their method is incomplete and there is no guar-
antee on the quality of the computed solutions. Wang et
al. introduced a tractable algorithm for multi-agent path
planning (MAPP) on undirected graphs [13]. Even though
the algorithm is incomplete in the general case, it provides
formal completeness guarantees on a class of so-called
slidable problems. Luna et al. proposed a fast algorithm that
can provide completeness guarantees for a general class of
problems without any assumptions about the graphs topol-
ogy [7]. Although the solution quality is noticeably better
when compared to WHCA, there are still no solution quality
guarantees. Rubenstein et al. presented a low-cost robot
(Kilobot) to provide a testing platform for research on swarm
algorithms [8]. They demonstrated some popular swarm
behaviors with 29 Kilobots. Kushleyev et al. described the
architecture and algorithms to coordinate a team of quad-
rotors in known three-dimensional environments [5]. They
demonstrated with 20 quad-rotors how a team perform a tight
formation flight and how four groups of four quad-rotors
fly through a window. Kiva System is widely recognized
as a whole solution concerned with fulfilling orders in a
distribution environment, however Kiva System can neither
be integrated into existing company infrastructure nor operate
in the presence of humans.

The reminder of this paper is organized as follows. In
Section II the problem is formally described and in Sec-
tion III a description of the target system is provided. In

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 1668

Section IV the method for collision avoidance is described.
In Section V results from experiments are presented and
we finally conclude in Section VI. Additionally, the video
attachment ”bbmrca.mpg” illustrates this method and helps
the people better understand the concept.

II. PROBLEM FORMULATION

We consider the problem of coordinating the execution
of delivery tasks by a team of autonomous robots, e.g., the
transportation of crates containing goods, between a set of
fixed stations S. For each delivery task dkl ∈ D(t) a robot
has to be assigned to finalize the delivery by transporting
the corresponding crate from station k ∈ S to station l ∈ S.
We assume that the assignment problem has been solved
(e.g. by DHHT as shown in our previous work [10]), and
hence restrict our attention to the problem of solving the
multiple robot motion planning problem as defined in the
following. Let R = {R1, R2, . . . , Rn} be the set of n
robots navigating simultaneously on a two-dimensional grid
map. During planning, each robot has a start configuration
si ∈ Cfree and a goal configuration gi ∈ Cfree, where Cfree
is the subset of configurations robots can take on without
colliding with static obstacles. For each robot Ri ∈ R a
path πi : [0, Ti]→ Cfree will be computed by executing the
A* algorithm on a grid map with obstacles grown according
to the outer radius of the robot footprint. Note that Ti denotes
the individual path length of robot Ri. If Ri does not have
any potential collision with other robots while following path
πi, Ti is equal to the final path length. In case of a path
collision between Ri and Rj , Ri or Rj has to take a detour
or hold its position to avoid the collision. We denote by Πij

the increased cost (in our implementation increased time) for
solving a collision between two robots Ri and Rj either due
to the taken detour or induced wait steps. The problem is to
develop a decoupled collision avoidance system to minimize
the overall costs for avoiding collisions during the entire
transportation process of all robots that is given by

min
∑
(i,j)

Πij .

III. SYSTEM OVERVIEW

Our system is based on the KARIS (Kleinskalige Au-
tonomes Redundantes Intralogistiksystem) [3] platform (see
Figure 1) developed by a joint effort of several companies
and universities of the “Intralogistic Network” in south
Germany. The long-term goal of this project is to deploy
hundreds of these elements to solve tasks such as au-
tonomously organizing the material flow between stations
in intra-logistics and production environments. The element
has a size of 50×50 cm, a payload of 60 kg, and is capable
of recharging its batteries via contact-less rechargers let into
the ground. Each element is equipped with a holonomic drive
to facilitate docking behaviors and a conveyor for loading
and unloading crates when docked with a loading station.
The conveyor has an integrated RFID reader that allows to
directly read out from the crate the ID of the destination
station when the crate is placed on the conveyor.

(a) (b)
Fig. 1. (a) The KARIS element. (b) Safe navigation among humans.

For the purpose of autonomous navigation, each element
is equipped with two SICK S300 laser range finders (LRFs)
mounted in two opposing corners, wheel odometry, and an
inertial measurement unit (IMU). Navigation is based on
grid maps, which are generated from data collected by once
steering a single robot manually through the environment.
We use Monte-Carlo localization [2] with wheel odometry,
IMU, and range readings from the two LRFs for localizing
robots on the grid map. Furthermore, the typical hybrid
architecture is deployed consisting of two components, which
are a deliberative planning layer based on the grid map
and a reactive safety layer based on the LRF data directly.
Figure 1 (b) depicts the demonstration of the system during
the Logimat fair in Stuttgart where it was deployed to deliver
cups with freshly made coffee and to collect cups that have
been used by the visitors.

IV. BEHAVIOR-BASED COLLISION AVOIDANCE

As state above, we are assuming that the job assignment
problem to be solved (e.g. by DHHT [10]) and each robot
Ri ∈ R gets a job assignment. For each robot a path
will be computed with A* algorithm and the paths are
executed simultaneously by the robots. During this process,
robots are constantly exchanging information about their
position, path, and status whenever they are within direct
communication range. The robots are synchronized not with
a global clock but messages and all communications are
local (no broadcast but to neighbors only). With help of the
FrontAreaCheck function, each robot continuously checks
whether other robots are situated within its way. The front
area is defined by a rectangle as showed in Figure 2. The
origin of this area is the current position of the robot. The
orientation of the front area depends on the current position
of the robot and the next waypoint from the path to be
reached, whereas the current orientation of the robot is
ignored. In other words, if the robot rotates at its current
location, the orientation of the front area will not change.
The critical area is located in the front area and corresponds
to the drive channel needed by the robot.

The closest robot to the origin in the front area will be
selected by the front area check and the robot in the critical
area will be preferably selected. That means, if any robot is
located in the critical area, the robots which are not in the
critical area will be ignored.

A. Definition of behaviors

To solve the multi-robot coordination problem, we defined
the following 8 behaviors.

1669

Fig. 2. Definition of the front area and the critical area.

1) FollowWayPoint: The robot follows the next waypoint
one by one in the path until the robot reaches the
goal station. After loading or unloading a crate at the
station, the robot will plan a new path to new goal and
execute FollowWayPoint again.

2) Avoid: The robot drives round the other robot which is
its partner, or an unknown obstacle which is considered
as its partner. When the partner is not in the front Area
any more, this behavior is then completed and the robot
will execute FollowWayPoint again.

3) Exchange: For a head-on collision, two robots pass
each other and they are each others partners. When the
partner is not in the front area any more, this behavior
is completed and the FollowWayPoint behavior will be
started again.

4) GoThrough: For a side collision, this robot is going
through the intersection, the other has to wait until this
robot passed. After passing through the intersection,
the behavior is completed and the FollowWayPoint
behavior will be executed again.

5) Dock: The robot reached the docking region of a
station and starts to dock at the station.

6) WaitKeepDistance: The robot wait for a partner and
keeps a certain distance to the partner. When the
partner leaves its front area, the behavior is completed
and the FollowWayPoint behavior will be executed
again.

7) WaitForGoThrough: When the partner is just doing
GoThrough behavior, this robot must wait and if
necessary, make the intersection free for the partner
to go through. If the partner stop his behavior or
leaves its critical area, the robot will change to do
FollowWayPoint again.

8) WaitForDocking: The robot must wait when another
robot is just docking at the same station.

The FollowWayPoint behavior uses the data from the laser
range finder (LRF) in order to avoid the unexpected and
unknown obstacles. The LRF data is also used in addition to
robot position data by the behaviors Avoid and Exchange.

In this paper we focus on intra-logistics problems and
therefore particular behaviors are needed for handling the
docking at stations. When a robot is docking at a station
and another robot arrives nearby, the latter should stop at a
certain distance from the station and wait until the former
leaves. When no robot is docking at the station, the robot

should check whether other robots besides arrived and are
ready to dock at the same time. The robot first comes first
serves. In case of the same arrival time, the robot with the
higher priority will dock at first. The priorities are defined
according to the robot IDs, which are unique in our system.
Only one robot can dock at a station at a time.

B. Definition of the traffic rules
Like the FollowWayPoint behavior, the robot should con-

tinuously check the front area for a new possible collision in
executing other behaviors. Once a new possible collision is
found in the front area, the robot will select a new behavior
using the traffic rules. The traffic rules for each behavior are
defined as following.

1) FollowWayPoint: Algorithm 1.
2) Avoid: Algorithm 2.
3) Exchange: Algorithm 2.
4) GoThrough: Algorithm 3.
5) Dock: When a path collision happens, the robot will

keep moving towards the goal instead of selecting
a new behavior. In this case, the other robots will
automatically give way.

6) WaitKeepDistance: Algorithm 4.
7) WaitForGoThrough: Algorithm 4.
8) WaitForDocking: In stead of changing the behavior,

the robot will move back or move into a less crowded
area when another robot is too close to it. However,
the robot will stop WaitForDocking and execute Fol-
lowWayPoint again when it is too far away from the
station because of the avoiding movement.

Algorithm 1: SolveFollowWayPointCollision
Data: the robot in the front area
Result: select a new behavior
begin

switch behavior of the robot do
case FollowWayPoint ∨Avoid ∨
Exchange ∨GoThrough

WaitKeepDistance;
case Dock

if pathCollision then
Avoid;

else
WaitKeepDistance;

case WaitKeepDistance ∨
WaitForGoThrough ∨WaitForDocking

SolveActiveAndWaitCollision(robot);

end

The path collision consists of rear-end collision, head-
on collision and side collision. The function SolveActive-
AndWaitCollision is used to decide whether to circumnav-
igate another robot or not. In case other robots have the
same goal station or are also within the critical area, the
circumnavigation has to be delayed. Otherwise, if no other
robots are within the front area doing an active behavior, the
circumnavigation can proceed.

1670

Algorithm 2: SolveAvoidCollision
Data: the robot the front area
Result: select a new behavior
begin

switch behavior of the Robot do
case FollowWayPoint ∨Avoid ∨ Exchange

if rearEndCollision then
WaitKeepDistance;

else if (headOnCollision ∨
sideCollision) ∧ lowOrder(robot) then

WaitKeepDistance;

case GoThrough
if pathCollision then

WaitKeepDistance;

case Dock
if pathCollision then

Avoid;
else

WaitKeepDistance;

case WaitKeepDistance ∨
WaitForGoThrough ∨WaitForDocking

SolveActiveAndWaitCollision(robot);

end

The function lowOrder determines the priority of robots.
The robot with a shorter distance to the last goal station has
a higher priority. In case of the same distance, the priority is
determined by the IDs. The idea behind this function is that
if a station is crowded by many robots, the robot closest to
the station should first start to leave the crowded region.

The function noOtherActive is used to check whether other
robots in the front area are executing an active behavior. The
idea behind this function is to prevent additional possible
collisions when other robots in the same area are already
engaged in avoiding collisions.

C. Deadlock and Re-plan
In case of a failure to execute the behaviors, the robot will

plan a new path to the goal. For this purpose, a virtual wall
will be built between the current position of the robot and
its next waypoint in the search space expanded by A*. In
this way, A* will avoid using the original waypoint in the
path and find a new path. The failure of different behaviors
is defined as follows:

1) FollowWayPoint: If the robot found an unexpected and
unknown obstacles that blocks the entire front area, but
no other robots are located in the front area.

2) Avoid: If the robot can’t find any free space in the
front area to execute this behavior and there are no
other robots except its partner in the clear area.

3) Exchange: If both the robot and its partner can’t find
free space to execute this behavior. The robot with
lower ID will re-plan its path and the robot with higher
ID will change to WaitKeepDistance behavior.

4) GoThrough: The execution time exceeds 30.0 sec.

Algorithm 3: SolveGoThroughCollision
Data: the robot in the front area
Result: select a new behavior
begin

switch behavior of the Robot do
case FollowWayPoint ∨Avoid ∨ Exchange

if rearEndCollision then
WaitKeepDistance;

case GoThrough
if rearEndCollision then

WaitKeepDistance;
else if (headOnCollision ∨
sideCollision) ∧ lowOrder(robot) then

WaitKeepDistance;

case Dock
if pathCollision then

Avoid;
else

WaitKeepDistance;

case WaitKeepDistance ∨
WaitForGoThrough ∨WaitForDocking

SolveActiveAndWaitCollision(robot);

end

Algorithm 4: SolveWaitKeepDistanceCollision
Data: the robot in the front area
Result: select a new behavior
begin

switch behavior of the robot do
case Avoid ∨ Exchange ∨GoThrough

if Avoid me then
Cooperate with the robot with a proper
active behavior;

case Dock
if pathCollision then

Avoid;

case WaitKeepDistance ∨
WaitForGoThrough ∨WaitForDocking

if Wait for me then /* Deadlock */
if lowOrder(robot) then

Drive around the robot with a proper
active behavior;

else
if ¬sameGoalStation ∧
¬inCriticalArea ∧
noOtherActive(robot) then

Drive around the robot with a proper
active behavior;

end

1671

It is possible that robots run into deadlocks by waiting
for each within circular chain. The problem with two robots
is solved by algorithm 4. However, the problem with more
than two robots can’t be solve with the traffic rules only.
Hence, a deadlock detection mechanism is used for auto-
matically detecting this problem. Each robot that executes
a “Wait” behavior sends a so-called “WaitMessage” at a
certain frequency to it’s partner (we used 2 second intervals
during our experiments). The ID of this robot is added to the
“WaitMessage”. If the partner is not doing a Wait behavior, it
will ignore this “WaitMessage”. Otherwise, the partner will
first check whether the “WaitMessage” already contains the
ID information about itself. If that is the case, a deadlock will
be detected and the partner has to plan an alternative path. If
not, the partner will add its own ID to the “WaitMessage” and
send the message to the robot which the partner is waiting
for.

Now we discuss the method’s capability in avoiding dead-
locks. Outside of the docking region, the path collision within
a certain group of robots executing FollowWayPoint, Avoid,
Exchange, and GoThrough behavior will be solved by the
traffic rules. Only one robot can execute the GoThrough
behavior while the other robots have to wait. Inside of
the docking region, the Dock behavior dominates over all
other active behaviors. On the assumption that there is no
overlap between the docking regions of any two stations, it
is impossible that two robots are doing the Dock behavior in
the same region and at the same time. Therefore, a cycling of
the active behaviors within the same group of robots cannot
occur. This will ensure that at least one robot in this group
will keep moving toward its goal.

All active behaviors except the Dock behavior can degrade
to the Wait behavior. In this case the robots can build a cyclic
dependency and wait for each other. This problem is solved
by the deadlock detection and re-planing method as described
above. If the robot that executed the re-planning can always
find an alternative path from any position to any station, then
at least one robot will be released from the Deadlock and
moving towards its goal.

V. EXPERIMENTAL RESULTS

For evaluating our approach we conducted a series of
experiments in three different environments. Figure 3 depicts
those three environments used for testing our approach. The
size of the Building 78 map is 33m x 30m, the ASE map
is 94m x 82m, and the KNO map is 88m x 43m. On each
map we defined several loading stations (green rectangle): 4
stations on Building 78, 9 on ASE, and 6 on KNO.

We modified and used the Stage software library [12] for
simulating large robot teams. One advantage of the Stage is
that it allows us to build simulation worlds directly from
grid maps, which in our case were generated from real
environments.

A comparison between the Adaptive Road Map Optimiza-
tion (ARMO), introduced in our previous work [4], and the
decoupled technique based on prioritized planning (PRIOR)
from Berg and colleagues [11], will be presented in the
following sections. Based on linear programming, ARMO

(a) (b)

(c)
Fig. 3. Snapshot pictures captured from Stage utilized for experiments:
(a) the Building 78 map generated in robot experimental area of University
of Freiburg, (b) the ASE map generated in a real logistic center. (c) KNO
map generated in a large distribution center.

computes an optimal road map according to environmental
constrains and the demand for transportation tasks from
stations. After each robot planed the path based on the road
map, the path is executed by the navigation module. In
decoupled prioritized planning, the path is planned iteratively
after a pro-defined priority scheme. When the ith robot plans
its path, then the paths of the i − 1, i − 2, . . . , i − k robot
that were planned beforehand are considered as dynamic
obstacles. In order to guarantee completeness with decoupled
planners, it is required that start and goal locations of each
robot are so-called garage configurations, i.e., configurations
that are not part of Cfree of any other robot.

Under the same settings several experiments with the same
number and identical sequence of delivery tasks (#Del.) were
conducted for each planning method. The maximum allowed
velocity of the robot was set to 0.8 m/s for all three methods.
The completion times (CTime) was measured in seconds,
which mainly reflects the efficiency of the different methods.
In addition, the average velocity over all robots (avg. v) was
also measured in meter per second. The average velocity
not only provide a different perspective to the efficiency, but
also indicates the energy consumption of robots. Normally,
the moving needs more energy than the standing; in other
words, lower velocity means less energy consumption at the
same period. All experiments were tested with a machine
configured with Intel(R) Core i7-3770 (3.4 GHz) processor,
8 GB main memory and Ubuntu 12.04 64-Bit version.

Building 78
#R M #Del. avg. v (m/s) CTime (s)

20
ARMO 144 0.23 1416
PRIOR 144 0.13 4544

BBMRCA 144 0.12 2560

40
ARMO 216 0.12 2144
PRIOR 216 0.09 9144

BBMRCA 216 0.09 3889

TABLE I
EXPERIMENT RESULTS OF MAP BUILDING 78.

Table I shows the results of experiments on the map
“Building 78”. The free space of this environment is rela-

1672

Map Name ASE
#R M #Del. avg. v (m/s) CTime(s)

20
ARMO 196 0.35 2438
PRIOR 196 0.24 4636

BBMRCA 196 0.31 2401

50

ARMO 294 0.20 2732
PRIOR 294 0.15 8229

BBMRCA 294 0.20 3250

100

ARMO 294 0.11 2826
PRIOR 294 0.14 10206

BBMRCA 294 0.16 2685

TABLE II
EXPERIMENT RESULTS OF MAP ASE.

KNO
#R M #Del. avg. v (m/s) CTime(s)

20
ARMO 112 0.40 1746
PRIOR 112 0.25 4184

BBMRCA 112 0.36 1902

50
ARMO 196 0.29 1743
PRIOR 196 0.16 8131

BBMRCA 196 0.25 2604

100
ARMO 252 0.16 2114
PRIOR 252 0.14 17977

BBMRCA 252 0.19 2612

TABLE III
EXPERIMENT RESULTS OF MAP KNO.

tively small, particularly when it is crowded with 20 to 40
robots. Therefore, it is not surprising that ARMO had the
best results. However, ARMO requires much more time for
computing the optimal road map. Moreover, since the robots
can only move on the road map, another weakness of ARMO
is that it cannot efficiently deal with the situation of dynamic
changes of the map. Compared to ARMO, BBMRCA is more
flexible. Furthermore, with almost same energy consumption,
the efficiency of BBMRCA is nearly double of PRIOR
(44% with 20 robots and 57% with 40 robots); That means,
BBMRCA is more energy efficiency than PRIOR.

As is shown in Table II for the map “ASE”, the perfor-
mance of BBMRCA is nearly as well as that of ARMO
and in some cases (with 20 robots and 100 robots) even
better than ARMO. One reason for this is that ARMO
generates only orthogonal road map and in this environment,
the orthogonal lines may not the shortest path between
stations. Compared to PRIOR, BBMRCA has a significant
better performance and the results have shown up to 70%
improvement. Additionally, BBMRCA is better scalable by
varying the number of the robots.

The results of experiments on the map “KNO” are shown
in Table III. Although the drivable space of this environment
is very limited, the performance of our method is at the
same level as ARMO. The average velocities of ARMO
and BBMRCA were also nearly identical. Furthermore, by
comparisons with PRIOR, the efficiency of BBMRCA had
led to an improvement up to 85%. And as can be seen in this
table, the completion time of PRIOR was raised significantly
with increasing number of robots, while the number of robots
had hardly any impact on the efficiency of BBMRCA.

VI. CONCLUSION
We proposed a behavior-based multi-robot collision avoid-

ance in large robot teams. Experimental results have shown
that the quality of solutions and the scalability are at
same level as ARMO and significant better than those of
conventional decoupled prioritized planning methods. The
main advantage of BBMRCA compared to ARMO is that
BBMRCA doesn’t need any pre-processing such as com-
puting the optimal road-map, which requires much time for
large and complex environments. BBMRCA is as flexible as
PRIOR, when an unexpected and unknown obstacles appears.
Compared to common swarm technologies, our method is
more suitable in complicated environments, such as confined
and cluttered logistic centers and manufacturing plants.

Although at present our method is specially used to
implement a solution to the intra-logistic problems, in the
future, it can also be adopted to solve other multi-agent
motion planning problems in similar scenarios, for example,
for distributed agents in video games. Furthermore, the
experiment on the real KARIS system will be planned as
the next step, when a large number of real KARIS robots
are available to us.

ACKNOWLEDGMENT

This work has been funded by a BMBF grant 02PJ2667 as
part of the KARIS PRO project, and supported by ELLIIT,
the Strategic Area for ICT research, funded by the Swedish
Government.

REFERENCES

[1] J. Barraquand and J.-C. Latombe. Robot motion planning: A dis-
tributed representation approach. International journal of robotics
research, 10:628–649, 1991.

[2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 1998.

[3] H. Hippenmeyer, K. Furmans, T. Stoll, and F. Schönung. Ein
neuartiges Element für zukünftige Materialflusssysteme. Hebezeuge
Fördermittel: Fachzeitschrift für Technische Logistik, (6), 2009.

[4] A. Kleiner, D. Sun, and D. Meyer-Delius. Armo: Adaptive road map
optimization for large robot teams. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems (IROS), pages 3276–3282, San
Francisco, California, 2011.

[5] Alex Kushleyev, Daniel Mellinger, and Vijay Kumar. Towards a swarm
of agile micro quadrotors. Robotics: Science and Systems, July 2012.

[6] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[7] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative
path-finding with completeness guarantees. In Toby Walsh, editor,
IJCAI, pages 294–300. IJCAI/AAAI, 2011.

[8] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot:
A low cost scalable robot system for collective behaviors. In ICRA,
pages 3293–3298. IEEE, 2012.

[9] David Silver. Cooperative pathfinding. In R. Michael Young and
John E. Laird, editors, AIIDE, pages 117–122. AAAI Press, 2005.

[10] D. Sun, A. Kleiner, and C. Schindelhauer. Decentralized hash tables
for mobile robot teams solving intra-logistics tasks. In Proc. of the
9th Int. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), pages 923–930, Toronto, Canada, 2010.

[11] J.P. van den Berg and M.H. Overmars. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems (IROS), pages 430–435, 2005.

[12] R. Vaughan. Massively multi-robot simulation in stage. Swarm
Intelligence, 2(2):189–208, 2008.

[13] Ko-Hsin Cindy Wang and Adi Botea. Tractable multi-agent path
planning on grid maps. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI’09, pages 1870–1875, San
Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

1673

