
On Boolean Functions Encodable as a Single
Linear Pseudo-Boolean Constraint

Jan-Georg Smaus

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 52, 79110
Freiburg im Breisgau, Germany, smaus@informatik.uni-freiburg.de

June 28, 2007 (slight corrections)

Technical Report of Universität Freiburg No. 230
AVACS Technical Report No. 13

Abstract. A linear pseudo-Boolean constraint (LPB) is an expression
of the form a1 · `1 + . . . + am · `m ≥ d, where each `i is a literal (it
assumes the value 1 or 0 depending on whether a propositional variable
xi is true or false) and a1, . . . , am, d are natural numbers. An LPB is
a generalisation of a propositional clause, on the other hand it is a re-
striction of integer linear programming. LPBs can be used to represent
Boolean functions more compactly than the well-known conjunctive or
disjunctive normal forms. In this paper, we address the question: how
much more compactly? We compare the expressiveness of a single LPB
to that of related formalisms, and give an algorithm for computing an
LPB representation of a given formula if this is possible.
Note: This report is the long version of [18] and contains the proofs
omitted there for space reasons.

1 Introduction

A linear pseudo-Boolean constraint (LPB) [1, 3, 5–8] is an expression of the form
a1`1 + . . . + am`m ≥ d. Here each `i is a literal of the form xi or x̄i ≡ 1 − xi,
i.e. xi becomes 0 if xi is false and 1 if xi is true, and vice versa for x̄i. Moreover,
a1, . . . , am, d are natural numbers.

An LPB can be used to represent a Boolean1 function; e.g. x1 + x̄2 + x3 ≥ 3
represents the same function as the propositional formula x1 ∧ ¬x2 ∧ x3 (we
identify propositional formulae with functions). It has been observed that a
function can be often represented more compactly as a set of LPBs than as
a conjunctive or disjunctive normal form (CNF or DNF) [5–8]. E.g. the LPB
2x1+x̄2+x3+x4 ≥ 2 corresponds to the DNF x1∨(¬x2∧x3)∨(¬x2∧x4)∨(x3∧x4).

The interest in Boolean functions, or propositional logic, comes from count-
less applications in verification, (symbolic) model checking and design automa-
tion concerning finite state systems [1, 3–8, 12, 13, 21].

Previous works on LPBs [1, 5–8] have focused on generalising techniques ap-
plied in CNF-based propositional satisfiability solving [12, 13, 21] to LPBs, em-
phasising that this is beneficial because of the compactness of LPB representa-
tions. Dixon and Ginsberg show that since LPBs are a special case of integer
programming, the cutting planes proof system, a standard technique in opera-
tions research (OR), can be applied to LPBs. Cutting planes is a generalisation
of resolution, a standard technique in artificial intelligence (AI). Cutting planes
proofs can be exponentially shorter than resolution proofs [6].

But where do the LPBs come from? One possibility is that for an application
domain, one gives a direct representation of a problem as a set of LPBs (usually
1 Whenever we say “function” we mean “Boolean function”.

interpreted as conjunction but also a disjunction is thinkable) and argues that
the alternative representation as CNF would be less compact [1, 6, 8]. Another
possibility is that one considers problem representations given as a CNF or
DNF and transforms these into compact LPB representations. We are not aware
that the latter has ever been proposed. In addition, except [8] (discussed in
Subsec. 6.1), all the arguments that we found in favour of LPBs were not strictly
about LPBs but about cardinality constraints, which are a subclass of LPBs.
This raises the question: how can a propositional formula be transformed into
an LPB representation that is as compact as possible? As a first but crucial step
towards this aim, we believe that one should study the question which functions
can be expressed by a single LPB, i.e. whether or not a given CNF or DNF
represents a threshold function [15]. This is the topic of this paper.

In Sec. 3 we show that there is an inclusion chain from clauses to cardinal-
ity constraints to LPBs to the monotone functions (functions represented by a
formula where each variable occurs only in one polarity).

In Sec. 4 we recall the difficulty of determining the number of monotone
functions, and give some results on the cardinality of classes of functions. We
give an upper bound for the blowup of using a DNF instead of an LPB encoding.

In Sec. 5, we show that if a DNF can be expressed by an LPB, then the dual
CNF can be expressed by a very similar LPB, and vice versa.

In Sec. 6 we give a theorem that states that φ can be represented as an LPB
if and only if φ can be decomposed into several smaller formulae, each of which
can be represented by an LPB, and all these LPBs are in a certain sense very
similar. Based on this theorem we give an algorithm for converting a DNF φ to
an LPB if possible.

2 Preliminaries

We assume the reader to be familiar with the basic notions of propositional logic.
An m-dimensional Boolean function f is a function Boolm → Bool . We

say that f properly depends on the ith argument if there exist β ∈ Bool i−1,
β′ ∈ Boolm−i with f(β, 0, β′) 6= f(β, 1, β′).

We follow [5]. A 0-1 ILP constraint is an inequality of the form

a1x1 + . . . + amxm ≥ d ai, d ∈ R, xi ∈ Bool (Bool ≡ {0, 1}). (1)

We identify 0 with false and 1 with true. We call the ai coefficients and d the
degree [9].

Using the relation x̄i ≡ 1 − xi and noting that it is sufficient to consider
integer coefficients, one can rewrite a 0-1 ILP constraint as a linear pseudo-
Boolean constraint (LPB)

a1`1 + . . . + am`m ≥ d ai ∈ N, d ∈ Z, `i ∈ {xi, x̄i}. (2)

For example, x1 − 0.5x2 − 0.5x3 ≥ 0 can be written as 2x1 + x̄2 + x̄3 ≥ 2. An
occurrence of a literal xi (resp., x̄i) is called an occurrence of xi in positive
(resp., negative) polarity. Note that if d ≤ 0, then the LPB is a tautology. The
reason for allowing for negative d will become apparent in Subsec. 6.2.

An LPB where ai = 1 or ai = 0 for all i ∈ [1..m] is called a cardinality
constraint (e.g. for m = 4: 1x1+0x2+1x3+0x4 ≥ 1, in short x1+x3 ≥ 1). Note
that

∑
i∈J `i ≥ 1 (resp.,

∑
i∈J `i ≥ |J |) corresponds to

∨
i∈J `i (resp.,

∧
i∈J `i).

A CNF is a formula of the form c1 ∧ . . . ∧ cn where each clause cj is a
disjunction of literals. A DNF is defined dually; a conjunction of literals is called
a (dual) clause. Formally, CNFs and DNFs are sets of sets of literals, i.e. the
order of clauses and the order of literals within a clause are insignificant. For

2

CNFs and DNFs, we assume without loss of generality that no clause is a subset
of another clause (the latter clause would be redundant since it is absorbed).
Given a CNF, the dual DNF is obtained by swapping ∧ and ∨. Any Boolean
function can be represented by a CNF or DNF [20].

An assignment σ is a mapping {x1, . . . , xm} → Bool . The notion ‘σ satis-
fies an LPB I’ is defined as expected [7].

3 Inclusion Results

The results of this section are not difficult but provide some useful insights into
the expressiveness of an LPB or cardinality constraint.

Following [19], we define monotone functions as follows.

Definition 3.1. A function is monotone (or unate [5]) if it can be written as
∨,∧-combination of literals, where each variable occurs in only one polarity. A
monotone function is isotone if all variables occur in positive polarity.

We will now show that the functions representable by a single LPB are a
subset of the monotone functions, and related results. It turns out that the
polarity of a particular variable is an issue that is orthogonal to these results:
each monotone function has 2m variants obtained by modifying the polarity of
each variable. Thus in this section, we assume without loss of generality that
each variable has positive polarity.

We say that assignment σ minimally satisfies the LPB I if σ satisfies I and
any assignment obtained from σ by changing any variable occurring in I from
true to false does not satisfy I. We say that a dual clause corresponds to an
assignment if it consists of the variables assigned true by σ.

Proposition 3.2. An LPB I represents the DNF that consists of exactly those
dual clauses that correspond to assignments that minimally fulfill I.

We now give an inclusion result between the functions representable as a
single LPB and monotone functions.

Lemma 3.3. Every LPB represents a monotone function. For m ≥ 4, there is
at least one monotone function not represented by any LPB. For m ≤ 3, each
monotone function can be represented as LPB.

Proof. The first statement is a consequence of Prop. 3.2 (the dual clauses men-
tioned there contain no negated variables).

The second statement is witnessed by the example (x1 ∧ x2) ∨ (x3 ∧ x4):
Suppose I ≡ a1x1 +a2x2 +a3x3 +a4x4 ≥ d is equivalent to (x1∧x2)∨ (x3∧x4).
Then some straightforward considerations about when I must be true imply that
a1 + a3 < d, a2 + a4 < d, a1 + a2 ≥ d, a3 + a4 ≥ d, which is a contradiction.

Concerning the third statement: We show that there are exactly 9 isotone
functions properly depending on 3 variables. The remaining generalisations are
straightforward. The following enumeration shows all CNFs representing isotone
functions, and the respective LPB representations:

x1 ∨ x2 ∨ x3 x1 + x2 + x3 ≥ 1
x1 ∧ (x2 ∨ x3) 2x1 + x2 + x3 ≥ 3 (+2 symmetric ones)

(x1 ∨ x2) ∧ (x1 ∨ x3) 2x1 + x2 + x3 ≥ 2 (+2 symmetric ones)
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) x1 + x2 + x3 ≥ 2

x1 ∧ x2 ∧ x3 x1 + x2 + x3 ≥ 3 ut

We now give an inclusion result between LPBs and cardinality constraints.

3

Lemma 3.4. Every cardinality constraint is an LPB. For m ≥ 3, there is at least
one LPB not expressible as cardinality constraint. For m ≤ 2, each monotone
function can be represented as a cardinality constraint.

Proof. The first statement holds by definition. The second is witnessed by the
example 2x1 + x2 + x3 ≥ 2.

Concerning the third statement: By inspection it can be seen that there are
14 monotone functions (6 of which are isotone) of which 10 can be represented
as a usual clause, and another 4 can be represented as cardinality constraint. ut

We now give an inclusion result between cardinality constraints and clauses.

Lemma 3.5. Every clause is a cardinality constraint. For every m ≥ 0, there is
at least one cardinality constraint not expressible as clause.

Proof. A cardinality constraint with d = 1 corresponds to a clause. On the
other hand, true is represented by the cardinality constraint

∑m
i=1 xi ≥ 0 (even

for m = 0) but by no clause (the empty clause corresponds to false). ut

Summarising, we have “clauses” ⊆ “cardinality constraints” ⊆ “LPBs” ⊆
“monotone functions”, where these inclusions are strict except for very small
dimensions.

4 Counting Boolean Functions

For comparing the expressiveness of formalisms for Boolean functions, it is of
interest to compare the cardinalities of the function classes that can be expressed
by the formalisms. Note, however, that from such comparisons we cannot infer
how much blowup there is when translating from one formalism to another. We
will come back to this point at the end of this section.

Proposition 4.1. There are 2(2m) m-dimensional Boolean functions [20].

The question of how many monotone functions there are is called Dede-
kind’s problem, unsolved for more than a century. To be precise, Dedekind’s
problem is to determine the number of isotone m-dimensional functions (Dede-
kind numbers). Confusingly, what we call isotone is sometimes called monotone,
but we use the terminology of [19]. Nobody has found yet a closed form expression
for the Dedekind numbers. In 1999, they have been calculated for up to m =
8, where the value is 56130437228687557907788. The Dedekind numbers are
Sequence A000372 of [16]. Although the number of isotone functions is large,
it is a small fraction of the number 2(2m) of Boolean functions [19]. The best
known bound for the Dedekind numbers is given by [11].

We show that the number of monotone functions is related to the number of
isotone functions, so that finding a closed form expression for the former cannot
be easier than for the latter. We need the following notations.

Definition 4.2. We denote by I≤(m) the number of m-dimensional isotone
functions (Dedekind numbers); by I=(m) the number of isotone functions that
properly depend on m variables; and by M≤(m), M=(m) the corresponding
numbers of monotone functions.

Lemma 4.3. The following identities hold:

I≤(m) =
m∑

i=0

(
m

i

)
I=(i) (3)

M=(m) = 2mI=(m) (4)

M≤(m) =
m∑

i=0

(
m

i

)
M=(i) =

m∑
i=0

(
m

i

)
2iI=(i) (5)

4

Proof. For (3), any m-dimensional isotone function that depends properly on i
variables is given by choosing i out of m variables (there are

(
m
i

)
ways of doing

this), and then by choosing one of the I=(i) i-dimensional isotone functions that
properly depend on i variables. Since 0 ≤ i ≤ m, we get the given sum.

Each monotone function properly depending on m variables can be obtained
by taking a uniquely determined isotone function properly depending on m vari-
ables and changing the polarity for some of the variables; there are clearly 2m

ways of doing this, giving (4).
The reasoning for (5) is as for (3), where the second equality follows from

(4). ut

The following table shows some of the values. Note that I=(3) = 9 and
M≤(2) = 14 have already been mentioned in Sec. 3.

m I=(m) I≤(m) M=(m) M≤(m)
0 2 2 2 2
1 1 3 2 4
2 2 6 8 14
3 9 20 72 104
4 114 168 1824 2170

The number of LPBs describing distinct m-dimensional functions will prob-
ably not be easier to describe than the Dedekind numbers [14, p. 64][15]. It is
not difficult though to make a statement about cardinality constraints.

Lemma 4.4. There are 2+
∑m

k=1

(
m
k

)
·2k ·k cardinality constraints representing

distinct m-dimensional functions.

Proof. It is easy to see that there are many ways of representing true and false
as cardinality constraints. We show that there are

∑m
k=1

(
m
k

)
· 2k · k cardinal-

ity constraints representing distinct non-trivial (i.e., other than true and false)
Boolean functions.

The cardinality constraint can involve between 1 and m variables. Given
k ∈ [1..m], there are

(
m
k

)
ways of choosing those variables. Each variable can be

positive or negative, giving 2k. The degree can be between 1 and k. ut

Also it is not difficult to make a statement about (dual) clauses.

Proposition 4.5. There are 3m m-dimensional functions expressible as clauses,
and likewise for dual clauses.

Proof. Each variable is either not in the clause or positive or negative. ut

Arguing as in Prop. 4.5, one can give a loose upper bound 3m · m for the
number of cardinality constraints, since the degree can be between 1 and m. So
the number of cardinality constraints is at most a linear factor above that of
usual clauses. However, encoding one cardinality constraint as CNF can entail
an exponential blowup in formula size (not considering encodings involving aux-
iliary variables, encodings which are not equivalence preserving). More precisely,
encoding x1+. . .+xm ≥ k requires

(
m

(m−k)+1

)
=

(
m

k−1

)
clauses of length m−k+1

as CNF [3] and
(
m
k

)
dual clauses of length k as DNF (in [7], this is said for CNF

but in fact it should be DNF). Note that
(

m
bm/2c

)
≥ 2m/2.

The blowup when encoding an LPB as CNF or DNF is not worse however.

Lemma 4.6. Let I ≡
∑m

i=1 aixi ≥ d be an LPB. The DNF (CNF) φ represented
by I has at most

(
m

bm/2c
)

clauses.

5

Proof. By Sec. 2, formally φ must be a subset of ℘({x1, . . . , xm}) such that no
clause of φ is a subset of another clause of φ. Thus, for any chain ∅ = c0 ⊂ . . . ⊂
cm = {x1, . . . , xm} where ck ⊆ {x1, . . . , xm} and |ck| = k for all k ∈ [0..m], φ
must contain at most one clause from c0, . . . , cm. For each k ∈ [0..m], there are(
m
k

)
different subsets of {x1, . . . , xm} having k elements. Now

(
m
k

)
is maximal

for k = bm/2c, and thus φ can contain at most
(

m
bm/2c

)
clauses. ut

Thus, an LPB can represent more DNFs than a cardinality constraint but
not bigger DNFs. For example, 3x1 + 2x2 + 2x3 + x4 ≥ 4 represents a DNF of 4
dual clauses, while 2x1 + 2x2 + 2x3 + 2x4 ≥ 4 (which is effectively a cardinality
constraint) represents a DNF of 6 dual clauses.

Note that the CNF or DNF corresponding to an LPB must be distinguished
from translations of an LPB that introduce additional variables [2].

5 Duality

We show that if a DNF can be represented as an LPB, then the dual CNF can
also be represented as an LPB, and the two LPBs are closely related. As in
Sec. 3, we assume that each variable has positive polarity.

Theorem 5.1. If a DNF is represented by an LPB I ≡
∑m

i=1 aixi ≥ d, then
the dual CNF is represented by

∑m
i=1 aixi ≥

∑m
i=1 ai + 1− d, and vice versa.

Proof. For a CNF φ ≡ c1∧ . . .∧ cn or a DNF φ ≡ c1∨ . . .∨ cn, for any cj , we call
the set of variable indices occurring in cj a horizontal index set of φ. Moreover,
we call any set V ⊆ [1..m] such that ∀j ∈ [1..n]. ∃xi ∈ cj . i ∈ V holds a vertical
index set of φ.

Assume now the DNF φ ≡ c1 ∨ . . .∨ cn is represented by I ≡
∑m

i=1 aixi ≥ d.
If we make all the variables in one cj true, then φ must be true. If we make
all the variables with indices in a vertical index set false, then φ must be false.
Hence for all horizontal index sets H and all vertical index sets V , it must hold
that: ∑

i∈H

ai ≥ d and
∑
i/∈V

ai < d (6)

Let φ′ be the CNF dual to φ. Note that φ, φ′ have the same horizontal and
vertical index sets. If we make all the variables in one cj false, then φ′ must be
false. If we make all the variables with indices in a vertical index set true, then
φ′ must be true. So if I ′ ≡

∑m
i=1 a′ixi ≥ d′ is an LPB representing φ′, then for

all horizontal index sets H and all vertical index sets V , it must hold that:∑
i/∈H

a′i < d′ and
∑
i∈V

a′i ≥ d′ (7)

We show that by setting a′i = ai for i ∈ [1..m] and d′ =
∑m

i=1 ai + 1 − d, (7) is
fulfilled and thus I ′ is indeed an LPB representing φ′.

Let H be an arbitrary horizontal index set of φ. Then we have∑
i∈H

ai ≥ d ⇒
∑
i∈H

ai > d− 1 ⇒ 0 <
∑
i∈H

ai + 1− d ⇒
∑
i/∈H

ai <

m∑
i=1

ai + 1− d,

thus the first inequality of (7) holds. Now let V be an arbitrary vertical index
set of φ. Then we have∑

i/∈V

ai < d ⇒
∑
i/∈V

ai ≤ d− 1 ⇒ 0 ≥
∑
i/∈V

ai + 1− d ⇒
∑
i∈V

ai ≥
m∑

i=1

ai + 1− d,

thus the second inequality of (7) holds.
The proof of the converse is analogous. ut

6

Note the border cases:
∑m

i=1 aixi ≥
∑m

i=1 ai represents a conjunction (of
variables),

∑m
i=1 aixi ≥ 1 represents a disjunction.

Example 5.2. Consider 5x1 + 2x2 + 2x3 + 2x4 ≥ i for i ∈ [1..11]. Note first that
for i = 1, 2 the represented function is the same, and the dual of that function
is represented by setting i = 11, 10. Similarly one has i = 3, 4 vs. i = 9, 8. For
i = 5, the DNF is x1 ∨ (x2 ∧ x3 ∧ x4), and the dual CNF x1 ∧ (x2 ∨ x3 ∨ x4) is
represented by setting i = 7. For i = 6, the LPB represents (x1 ∧ x2) ∨ (x1 ∧
x3)∨ (x1∧x4)∨ (x2∧x3∧x4). According to Thm. 5.1, since 12−6 = 6, the dual
CNF is represented by the same LPB, which means that the CNF is equivalent
to its dual. This can easily be confirmed.

6 Representing a DNF as LPB

In this section we present an algorithm for the problem of converting a DNF
to an equivalent LPB if possible.2 Any results of this section can be applied to
CNFs rather than DNFs using Sec. 5. In this section, by a clause we always mean
a dual clause. As before, we assume that each variable has positive polarity.

6.1 Determining the Order of Coefficients

Given a DNF φ, one can determine a size order of the potential coefficients of
an LPB representing φ. That is to say, if φ can be represented as an LPB at all,
then the coefficients must respect this order.

The following notion is useful for reasoning about the structure of a formula.

Definition 6.1. Variables x and y are symmetric in φ if φ is equivalent to the
formula obtained by exchanging x and y. A set of variables Y is symmetric in
φ if each pair in Y is symmetric in φ.

Since the clause order and the order within a clause of a DNF or CNF is
insignificant, symmetry is a straightforward syntactic property.

The following lemma relates symmetric variables to identical coefficients.

Lemma 6.2. Let I ≡
∑m

i=1 aixi ≥ d be an LPB representing the DNF φ. For
any i, k ∈ [1..m], if ai = ak then xi, xk are symmetric in φ; moreover, there exists
an LPB

∑m
i=1 a′ixi ≥ d′ representing φ such that if xi, xk are symmetric in φ

then a′i = a′k.

Proof. For the first statement, for any clause that corresponds to an assign-
ment that minimally satisfies I, the clause obtained by swapping xi and xk also
corresponds to an assignment that minimally satisfies I.

For the second statement, assume that φ can be represented by I and consider
symmetric variables xi, xk. For any assignment that minimally satisfies I, the
symmetry of xi, xk in φ implies that the assignment obtained by swapping the
truth values of xi, xk also minimally satisfies I. But then one can see that by
defining a′i = a′k = ai + ak, a′l = 2al for all l ∈ [1..m] \ {i, k}, and d′ = 2d,
the LPB I ′ represents φ and meets the requirement for xi, xk (intuitively, one
replaces ai and ak by their average). The argument must be repeated for any
pair of symmetric variables. ut

2 By Prop. 3.2, there is of course a näıve semi-decision procedure for this problem,
involving enumeration of all LPBs.

7

For example, x1 ∨ x2 can be represented by 2x1 + x2 ≥ 1 or x1 + x2 ≥ 1.
We want to measure how often a variable occurs in a DNF, taking the length

of the clauses into account. Intuitively, a variable is “important” if it occurs in
many clauses and if it occurs in short clauses. To formalise this, we consider
multisets of natural numbers. We represent multisets as strings of numbers in
ascending order, written, e.g. {[1, 1, 2]}.

Definition 6.3. Let A, B be two multisets of numbers. We write B � A if B
is obtained from A as follows: for each occurrence of a number n in A, either
leave this occurrence in B, or replace it by an arbitrary (possibly 0) number of
occurrences of numbers > n. We write B ≺ A if B � A and A 6� B.

Example 6.4. We have {[2, 2, 2, 2]} � {[2, 2, 2]} � {[2, 2, 3]} � {[2, 3]}.

Note that {[2, 2, 3]} � {[2, 3]} can be established in two ways: removing one
2 from {[2, 2, 3]}, or removing the 3 from {[2, 2, 3]} and then replacing one 2
from {[2, 2]} by one 3. � is a total order on multisets of natural numbers. In our
representation, to determine whether A � B, one must simply cut off the longest
common prefix of A and B. If the remainder of A starts with a smaller number
than that of B, or if the remainder of B is empty, then A � B.

Definition 6.5. For a DNF φ, define OP(φ, x) as the multiset having one oc-
currence of n for each clause of length n in φ that contains x. We call OP(φ, x)
the occurrence pattern of x.

Example 6.6. Consider φ ≡ (x1∧x2)∨(x1∧x3)∨(x1∧x4)∨(x1∧x5)∨(x2∧x3)∨
(x2 ∧ x4) ∨ (x3 ∧ x4 ∧ x5). The occurrence patterns are OP(φ, x1) = {[2, 2, 2, 2]},
OP(φ, x2) = {[2, 2, 2]}, OP(φ, x3) = OP(φ, x4) = {[2, 2, 3]}, and OP(φ, x5) =
{[2, 3]}. φ can be represented by 4x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5.

To give some more intuition, compare x1 and x2, say. For clause x1 ∧ x4,
replacing x1 by x2 yields another clause of φ, but for x1∧x5 this is not the case.
OP(φ, x1) therefore has one more occurrence of 2 than OP(φ, x2). The fact that
replacing x1 by x2 in x1 ∧ x5 does not yield another clause of φ means that x1

must have a bigger coefficient than x2, in any LPB representing φ.

Computing the set of occurrence patterns for all variables in φ can be done in
time linear in |φ|. In fact, the number of elements of all occurrence patterns is ex-
actly the number of literals in φ. Thus sorting the variables w.r.t. the occurrence
patterns can be done in time polynomial in |φ|.

The next lemma says that the coefficients of an LPB representing a DNF
must correspond to the order given by the occurrence patterns. Thus, given a
DNF, we know that if it can be represented as an LPB, then the coefficients of
this LPB are ordered in a certain way.

Lemma 6.7. Let φ be a DNF represented by the LPB
∑m

i=1 aixi ≥ d. Then ai ≥
ak implies OP(φ, xi) � OP(φ, xk); moreover, there exists an LPB

∑m
i=1 a′ixi ≥ d′

representing φ such that OP(φ, xi) = OP(φ, xk) implies a′i = a′k.

Proof. Without loss of generality, assume a1 ≥ . . . ≥ am, and consider some
xi, xk with i < k, i.e. ai ≥ ak. We compare OP(φ, xi) and OP(φ, xk).

For each clause of length n in φ that contains xi and xk, we have an occurrence
of n in OP(φ, xi) and a uniquely matching occurrence of n in OP(φ, xk).

For each clause of length n in φ that contains xi, and for which replacing xi

with xk gives another clause in φ, we have an occurrence of n in OP(φ, xi) and
a uniquely matching occurrence of n in OP(φ, xk).

Now consider a clause of length n in φ that contains xi, and for which re-
placing xi with xk does not give another clause in φ (the reason for this must

8

be that the corresponding assignment does not fulfill I). For such a clause, re-
placing xi with xk plus additional variables may give a clause in φ, in which
case the occurrence of n in OP(φ, xi) is mapped to one or more occurrences of
numbers > n in OP(φ, xk) (note however that conversely, an occurrence of such
a number in OP(φ, xk) is not necessarily uniquely mapped to the occurrence
of n in OP(φ, xi)). Or it may be the case that no way of replacing xi with xk

plus additional variables gives a clause in φ, in which case the occurrence of n
in OP(φ, xi) is mapped to 0 occurrences of numbers > n in OP(φ, xk).

Summarising, we have OP(φ, xi) � OP(φ, xk), showing the first statement.
In particular, if there exists a clause of length n in φ that contains xi, and for

which replacing xi with xk does not give another clause in φ, then OP(φ, xi) �
OP(φ, xk). Therefore OP(φ, xi) = OP(φ, xk) implies that for each clause of
length n in φ that contains xi, swapping xi with xk also gives a clause in φ.
I.e. xi and xk are symmetric. Hence an LPB I ′ as required exists by Lemma
6.2. ut

The proof is illustrated by the following example.

Example 6.8. Consider (x1 ∧ x2)∨ (x1 ∧ x3)∨ (x1 ∧ x4)∨ (x1 ∧ x5)∨ (x1 ∧ x6)∨
(x2 ∧ x3)∨ (x2 ∧ x4)∨ (x2 ∧ x5)∨ (x2 ∧ x6)∨ (x3 ∧ x4 ∧ x5)∨ (x3 ∧ x4 ∧ x6). The
following picture illustrates the occurrence patterns of x1 and x5, and thereby
all four cases of the proof of Lemma 6.7:

x1 : x1 ∧ x5 x1 ∧ x2 x1 ∧ x3 x1 ∧ x4 x1 ∧ x6

| | � �
x5 : x1 ∧ x5 x2 ∧ x5 x3 ∧ x4 ∧ x5

The crucial point is the following: it is not possible that a clause containing x1

is mapped to a shorter clause containing x5, since a1 ≥ a5.

The following is a corollary of Lemmas 6.2 and 6.7.

Corollary 6.9. If the DNF φ is represented by an LPB I, then xi, xk are sym-
metric in φ iff xi, xk have identical occurrence patterns.

The results so far can be used to make statements about which DNFs can
definitely not be represented by a single LPB. For example, it has been said
that a single LPB can express an implication [7]. In [8], implications of the form
y → (x1∧x2) are expressed as LPB. In fact, we have a very limited result about
implications that can be expressed by one LPB, but one can show that even a
simple form of implications is beyond what can be expressed by a single LPB.

Lemma 6.10.
∑m

i=1 xi + m ȳ ≥ m expresses y → (x1 ∧ . . . ∧ xm) and m y +∑m
i=1 x̄i ≥ m expresses (x1 ∨ . . . ∨ xm) → y.
An implication of the form (x1 ∨ . . . ∨ xm) → (y1 ∧ . . . ∧ yl), where m, l ≥ 2

and xi 6≡ yk for all i ∈ [1..m] and k ∈ [1..l], cannot be expressed by a single LPB.

Proof. The first sentence is straightforward.
Concerning an implication of the form (x1∨. . .∨xm) → (y1∧. . .∧yl), note first

that it is equivalent to the DNF (¬x1∧ . . .∧¬xm)∨(y1∧ . . .∧yl). To simplify, we
flip the polarity of the xi so that all variables have positive polarity: So suppose
(x1 ∧ . . .∧ xm)∨ (y1 ∧ . . .∧ yl) is represented by I ≡

∑m
i=1 aixi +

∑l
i=1 biyi ≥ d.

By Cor. 6.9, a1 = . . . = am and b1 = . . . = bl and a1 6= b1. But then by
Prop. 3.2 and straightforward arithmetic considerations, the DNF represented
by I must contain at least one clause containing variables from x1, . . . , xm as
well as y1, . . . , yl, which is a contradiction. ut

This result has also been shown in [10].
As another example of a DNF that is not representable as LPB, consider

φ ≡ (x1 ∧ x2 ∧ x5)∨ (x1 ∧ x4)∨ (x3 ∧ x4 ∧ x5)∨ (x2 ∧ x3). We have OP(φ, xi) =
{[2, 3]} for i ∈ [1..4], and yet x1, . . . , x4 are not symmetric, and thus φ is not
representable as LPB.

9

6.2 Decomposing a DNF

We want to find an LPB representing φ if possible. Using Lemma 6.7, we can
establish the order of the coefficients. Assume the numbering is such that we have
OP(φ, x1) � . . . � OP(φ, xm). Consider now the maximal set X = {x1, . . . , xl}
such that OP(φ, x1) = . . . = OP(φ, xl) (=: OP(φ,X)). If X is not symmetric
in φ, then by Cor. 6.9, φ cannot be represented by an LPB and we can stop.
Otherwise, we partition φ according to how many variables from X each clause
contains. We then remove the variables from X from each clause, which gives
l+1 subproblems. Theorem 6.15 states under which conditions solutions to these
subproblems can be combined to an LPB for φ. However, since the solutions
have to be similar in a certain sense, it turns out that we cannot simply solve
the subproblems independently and then combine the solutions, but we must
solve the subproblems in parallel, as will be shown in Subsec. 6.3.

The following statements do not require X to be maximal, e.g. if {x1, . . . , x5}
is the maximal set such that OP(φ, x1) = . . . = OP(φ, x5), then the statements
will also hold for X = {x1, x2, x3}.

Note that our formalism bears a certain resemblance with [2], where one
considers LPBs obtained from a certain given LPB by removing some variables.

Definition 6.11. Let φ be a DNF and X a subset of its variables with |X| = l.
If φ contains a clause c ⊆ X, then let kmax be the length of the longest such
clause; otherwise let kmax := ∞. For 0 ≤ k ≤ l, we define S (φ,X, k) as the
disjunction of clauses from φ containing exactly min{k, kmax} variables from X,
with those variables removed.

When constructing the S (φ,X, k) from φ, we say that we split away the
variables in X from φ.

Example 6.12. Let φ ≡ (x1) ∨ (x2) ∨ (x3 ∧ x4) and X = {x1, x2}. We have
kmax = 1. Then S (φ,X, 0) = (x3 ∧ x4), S (φ,X, 1) = true (i.e. the disjunction of
twice the empty conjunction), and S (φ,X, 2) = true.

We must solve the l + 1 subproblems in such a way that the resulting LPBs
agree in all coefficients, and that the degree difference of neighbouring LPBs is
always the same. Before giving the theorem, we give two examples for illustration.

Example 6.13. Consider φ ≡ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3 ∧ x4)
and X = {x1}. Then S (φ,X, 0) = x2 ∧x3 ∧x4, represented by x2 + x3 + x4 ≥ 3.
Moreover, S (φ,X, 1) = x2 ∨ x3 ∨ x4, represented by x2 + x3 + x4 ≥ 1.

Since the coefficients of the two LPBs agree, it turns out that φ can be
represented by 2x1 + x2 + x3 + x4 ≥ 3. The coefficient of x1 is given by the
difference of the two degrees, i.e. 3− 1.

Example 6.14. Consider φ ≡ (x1 ∧ x2)∨ (x1 ∧ x3 ∧ x4)∨ (x2 ∧ x3 ∧ x4) and X =
{x1, x2}. We have S (φ,X, 0) = false, represented by x3 + x4 ≥ 4, S (φ,X, 1) =
x3 ∧ x4, represented by x3 + x4 ≥ 2, and S (φ,X, 2) = true, represented by
x3 + x4 ≥ 0. The DNF φ is represented by 2x1 + 2x2 + x3 + x4 ≥ 4. The
coefficient of x1, x2 is given by 4−2 = 2−0 = 2 (the degrees are “equidistant”).

Theorem 6.15. Let φ be a DNF in variables x1, . . . , xm and suppose X =
{x1, . . . , xl} are symmetric variables such that OP(φ,X) is maximal w.r.t. � in
φ. Then φ is represented by an LPB

∑m
i=1 aixi ≥ d, where a1 = . . . = al, iff for

all k ∈ [0..l], the DNF S (φ,X, k) is represented by
∑m

i=l+1 aixi ≥ d− k · a1.

Proof. For an assignment σ and a set of variables V , we denote by σ \ V the
assignment that is undefined on V and else equal to σ. We denote by σ ∪ {V 7→
true} the assignment that maps all variables of V to true and is else equal to

10

σ. For a clause c, we denote by c \ V the clause obtained from c by deleting the
variables in V .

Let n be the greatest number such that φ contains a clause c ⊆ X with
|c| = n; set n to l + 1 if no such clause exists. Since the variables in X are
symmetric, by Def. 6.11 the following holds for all k ≤ n:

If c ∈ S (φ,X, k), then for all V ⊆ X with |V | = k, we have c ∪ V ∈ φ. (8)

Throughout, we use Prop. 3.2 and use I as “macro” for
∑m

i=1 aixi ≥ d and I ′ as
“macro” for

∑m
i=l+1 aixi ≥ d− k · a1.

“⇐”: We assume that each S (φ,X, k) is represented by I ′, and show that
the assignments minimally fulfilling I correspond exactly to the clauses of φ.

a) Consider an assignment σ that minimally fulfils I and makes exactly k vari-
ables from X true, say, the set V ⊆ X. Note that k ≤ n, since if making n
variables from X true fulfils I, then an assignment that makes more than n
variables from X true cannot minimally fulfil I. Then σ \V minimally fulfils
I ′, and hence c \ V ∈ S (φ,X, k), where c is the clause corresponding to σ.
By (8) this implies c ∈ φ.

b) Conversely, consider a clause c in φ that contains exactly k variables from
X, say the set V ⊆ X. Then c \ V ∈ S (φ,X, k) by Def. 6.11 and thus σ \ V
minimally fulfils I ′, where σ is the assignment corresponding to c, and thus
σ minimally fulfils I.

“⇒”: We assume that φ is represented by I and show that for each k the as-
signments minimally fulfilling I ′ correspond exactly to the clauses of S (φ,X, k).

c) Consider an arbitrary k ∈ [1..l].
If n < k ≤ l, then n < l, and since I represents φ, it follows that n · a1 ≥ d
and hence d−k ·a1 ≤ 0, thus only the empty assignment fulfils I ′ minimally.
The empty assignment corresponds to the empty clause, which is the only
clause in S (φ,X, k) by Def. 6.11.
Otherwise, let σ be an assignment that minimally fulfils I ′ and c the clause
corresponding to σ. Then for any V ⊆ X with |V | = k, the assignment
σ ∪ {V 7→ true} fulfils I. By definition of n we have (n− 1) · a1 < d (making
n−1 variables from X true is not sufficient to fulfill I) and so since k ≤ n, we
have d−(k−1)·a1 > 0. This, together with, a1 = . . . = al > al+1 ≥ . . . ≥ am,
implies that the assignment σ ∪ {V 7→ true} fulfils I minimally and hence
c ∪ V ∈ φ and hence c ∈ S (φ,X, k).

d) Conversely, consider a clause c ∈ S (φ,X, k) and let σ be the assignment
corresponding to c.
If n < k ≤ l, then S (φ,X, k) = true and σ is the empty assignment. Since
d− k · a1 ≤ 0 as in point c, σ minimally fulfils I ′.
Otherwise by (8), for any V ⊆ X with |V | = k, we have that c ∪ V ∈ φ and
thus σ ∪ {V 7→ true} is an assignment that minimally fulfils I, and thus σ
minimally fulfils I ′. ut

The remaining problem is that a DNF might be represented by various LPBs,
and so even if the LPBs computed recursively do not have agreeing coefficients
and equidistant degrees, one might find alternative LPBs (such as the non-
obvious LPB for false in Ex. 6.14) so that Thm. 6.15 can be applied.

Before addressing this problem, we generalise LPBs by recording to what
extent degrees can be shifted without changing the meaning. To formulate this,
we temporarily lift the restriction that coefficients and degrees must be integers.
How to obtain integers in the end is explained at the end of Subsec. 6.3.

11

Definition 6.16. Given an LPB I ≡
∑m

i=1 aixi ≥ d, we call s the mini-
mum degree of I if s is the smallest number (possibly −∞) such that for
any s′ ∈ (s, d], the LPB

∑m
i=1 aixi ≥ s′ represents the same function as I. We

call b the maximum degree if b is the biggest number (possibly ∞) such that∑m
i=1 aixi ≥ b represents the same function as I.

Note that the minimum degree of I is not a possible degree of I. Since the
minimum and maximum degrees of an LPB are more informative than its actual
degree, we introduce the notation

∑m
i=1 aixi ≥ (s, b] for denoting an LPB with

minimum degree s and maximum degree b.
The next lemma strengthens Thm. 6.15, stating that information about min-

imum and maximum degrees can be maintained with little overhead.

Lemma 6.17. Make the same assumptions as in Thm. 6.15, and assume that for
all k ∈ [0..l], the DNF S (φ,X, k) is represented by Ik ≡

∑m
i=l+1 aixi ≥ d−k ·a1.

Moreover, for all k ∈ [0..l], let sk, bk be minimum and maximum degrees of Ik,
respectively. Then s := maxk∈[0..l](sk + k · a1), b := mink∈[0..l](bk + k · ak) are
the minimum and maximum degrees of

∑m
i=1 aixi ≥ d.

Proof. In the first part, we first prove that s is ≥, and secondly that it is ≤ the
minimum degree of

∑m
i=1 aixi ≥ d.

We show that for any d′ with s < d′ ≤ d, any assignment σ satisfying∑m
i=1 aixi ≥ d′ also satisfies

∑m
i=1 aixi ≥ d. So let σ be such an assignment, and

let k be the number of variables from x1, . . . , xl that are made true by σ. Then
σ satisfies

m∑
i=l+1

aixi ≥ d′ − k · a1 (9)

for any s < d′ ≤ d, and since sk + k · a1 ≤ s by definition of s, the assignment σ
satisfies (9) for any sk +k ·a1 < d′ ≤ d, or equivalently, σ satisfies

∑m
i=l+1 aixi ≥

d′ for any sk < d′ ≤ d−k ·a1. Thus by definition of sk, σ satisfies
∑m

i=l+1 aixi ≥
d− k · a1, and so σ satisfies

∑m
i=1 aixi ≥ d.

We now show that there exists an assignment σ satisfying
∑m

i=1 aixi ≥ s
which does not satisfy

∑m
i=1 aixi ≥ d. Let k be the number for which sk + k · a1

is maximal, i.e. s = sk+k·a1. Then by definition of sk, there exists an assignment
σ′ on xl+1, . . . , xm satisfying

∑m
i=l+1 aixi ≥ sk but not satisfying

∑m
i=l+1 aixi ≥

d−k ·a1. If we extend σ′ to an assignment σ making k of the variables x1, . . . , xl

true, then σ satisfies
∑m

i=1 aixi ≥ s but not
∑m

i=1 aixi ≥ d.
In the second part, we first prove that b is ≤, and secondly that it is ≥ the

maximum degree of
∑m

i=1 aixi ≥ d.
Let σ be an assignment satisfying

∑m
i=1 aixi ≥ d. We show that σ satisfies∑m

i=1 aixi ≥ b. Let k be the number of variables from x1, . . . , xl that are made
true by σ. Then σ satisfies

∑m
i=l+1 aixi ≥ d− k · a1, and by the definition of bk,

σ satisfies
∑m

i=l+1 aixi ≥ bk, and so since bk ≥ b − k · a1 by definition of b, the
assignment σ satisfies

∑m
i=l+1 aixi ≥ b− k · a1, and so σ satisfies

∑m
i=1 aixi ≥ b.

We now show that there exists an assignment σ satisfying a1x1+. . .+amxm ≥
d which does not satisfy

∑m
i=1 aixi ≥ b′, for any b′ > b. Let k be the number for

which bk + k · ak is minimal, i.e. b = bk + k · ak. Then by definition of bk there
exists an assignment σ′ on xl+1, . . . , xm satisfying

∑m
i=l+1 aixi ≥ bk = b− k · ak

but not satisfying
∑m

i=l+1 aixi ≥ b′ − k · ak for any b′ > b. If we extend σ′

to an assignment σ making k of the variables x1, . . . , xl true, then σ satisfies∑m
i=1 aixi ≥ b but not

∑m
i=1 aixi ≥ b′. ut

6.3 Composing LPBs

Theorem 6.15 suggests a recursive algorithm where, at least conceptually, in the
base case we have at most 2m trivial problems of determining an LPB, trivial
since the formula for which we must find an LPB is either true or false.

12

S(·, x3..4, 0) ≡ f S(·, x3..5, 0) ≡ f

S(·, x1, 0) S(·, x2, 0) ≡ S(·, x3, 0) ≡ f S(·, x3..4, 1) ≡ f S(·, x3..5, 1) ≡ f

≡ (x2 ∧ x3)∨ (x3 ∧ x4 ∧ x5) S(·, x3, 1) S(·, x3..4, 2) ≡ x5
S(·, x3..5, 2) ≡ f

(x2 ∧ x4)∨ ≡ (x4 ∧ x5) S(·, x3..5, 3) ≡ t

(x3 ∧ x4 ∧ x5) S(·, x2, 1) ≡ S(·, x3, 0) ≡ x4
S(·, x3..4, 0) ≡ f

x3 ∨ x4 S(·, x3, 1) ≡ t S(·, x3..4, 1) ≡ t

φ S(·, x3..4, 2) ≡ t

S(·, x3, 0) ≡ S(·, x3..4, 0) ≡ x5
S(·, x3..5, 0) ≡ f

S(·, x1, 1) S(·, x2, 0) ≡ x4 ∨ x5 S(·, x3..4, 1) ≡ t S(·, x3..5, 1) ≡ t

≡ x2 ∨ x3
x3 ∨ x4 ∨ x5 S(·, x3, 1) ≡ t S(·, x3..4, 2) ≡ t S(·, x3..5, 2) ≡ t

∨x4 ∨ x5
S(·, x2, 1) ≡ t S(·, x3, 2) ≡ t S(·, x3..4, 3) ≡ t S(·, x3..5, 3) ≡ t

S(·, x3..5, 4) ≡ t

Table 2. The recursive problems of Ex. 6.18

Example 6.18. Consider Ex. 6.6. To find an LPB for φ, we must find LPBs
for S (φ, {x1}, 0) and S (φ, {x1}, 1). To find an LPB for S (φ, {x1}, 0), we must
find LPBs for S (S (φ, {x1}, 0), {x2}, 0) and S (S (φ, {x1}, 0), {x2}, 1), and so forth.
Table 2 gives all the formulae for which we must find LPBs. For a concise notation
we use some abbreviations which we explain using S (·, x3..5, 0) ≡ f in the top-
right corner: it stands for S ((x3 ∧ x4 ∧ x5), {x3, x4, x5}, 0) ≡ false, i.e. the ‘·’
stands for the nearest non-shaded formula to the left, here (x3 ∧ x4 ∧ x5). Note
how we arranged the subproblem formulae in the table: e.g. (x3∧x4∧x5) has three
symmetric variables that are split away to obtain the subproblems to be solved,
so these subproblems are located three columns to the right of (x3 ∧ x4 ∧ x5).
The two shaded boxes in between contain the subproblems obtained by splitting
away only {x3}, {x3, x4}, resp.

The algorithm we propose is not a purely recursive one, since the subproblems
at each level must be solved in parallel. Explained using the example, we first
find LPBs for the formulae in the rightmost column, which have 0 variables and
hence we must determine 0 coefficients. Next to the left, we have formulae that
contain (at most) x5, and we determine LPBs representing these, where we use
the same a5 for all formulae! Then we determine a4, and so forth.

Taking (x3 ∧ x4 ∧ x5) in Table 2 as an example, Thm. 6.15 suggests that
a3, a4, a5 should be equal (x3, x4, x5 are symmetric) and determined in one go.
However, since a3, a4, a5 also have to represent other subproblem formulae where
x3, x4, x5 are not necessarily symmetric, one cannot determine a3, a4, a5 in one
go, but rather first a5, then a4, then a3. Therefore, it is necessary to define and
interpret formulae obtained by splitting away fewer variables than one could
split away, in the sense of Thm. 6.15. These are the shaded formulae.

We call the formulae in column l + 1 the l-successors. Shaded formulae are
called auxiliary, the others are called main. Formulae that have no further formu-
lae to the right are called final. The following definition formalises these notions.

Definition 6.19. Let φ be a DNF in m variables. Then φ is the 0-successor of
φ. Furthermore, φ is a main successor of φ. Moreover, if φ′ is a main n-successor
of φ, and l is maximal so that xn+1, . . . , xn+l are symmetric in φ′, then for all
l′, k with 1 ≤ l′ ≤ l and 0 ≤ k ≤ l′, we say that S (φ′, {xn+1, . . . , xn+l′}, k) is an
(n+ l′)-successor of φ. The (n+ l)-successors are called main, and for l′ < l, the
(n + l′)-successors are called auxiliary. If xn+1, . . . , xn+l are the only variables
of φ′, then we call the (n + l)-successors final.

Note in particular x3 ∨ x4 in column 3 in Table 2. It does not contain x5,
and so we obtain final 4-successors in the last-but-one column. Clearly, a final
successor of φ is either true or false.

13

Proposition 6.20. Assume φ, φ′, n, l as in Def. 6.19. For 0 < l′ < l and
0 ≤ k ≤ l′, we have

S (S (φ′, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 0) ≡ S (φ′, {xn+1, . . . , xn+l′+1}, k)
S (S (φ′, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 1) ≡ S (φ′, {xn+1, . . . , xn+l′+1}, k + 1)

For example, consider S ((x3∧x4∧x5), {x3}, 1) ≡ (x4∧x5) in Table 2. We have
S ((x4 ∧ x5), {x4}, 0) ≡ S ((x3 ∧ x4 ∧ x5), {x3, x4}, 1) and S ((x4 ∧ x5), {x4}, 1) ≡
S ((x3∧x4∧x5), {x3, x4}, 2). More generally, each non-final successor is associated
with two formulae in the column right next to it, one slightly up and one slightly
down, obtained by splitting away the variable with the smallest index. This is
not surprising per se and corresponds to a näıve approach where we ignore
symmetries and always only split away one variable at a time (for applying
Thm. 6.15), thereby constructing 2m formulae in the rightmost column. The
point of Prop. 6.20 is that we can usually construct fewer formulae since

S (S (φ, {xn+1, . . . , xn+l′}, k), {xn+l′+1}, 1)

and
S (S (φ, {xn+1, . . . , xn+l′}, k + 1), {xn+l′+1}, 0)

coincide. In Table 2, we have 12 final formulae rather than 25 = 32.
The following theorem states if and how one can find the next coefficient and

degrees for representing all k-successors of φ provided one has coefficients and
degrees for representing all (k + 1)-successors.

Theorem 6.21. Assume φ as in Thm. 6.15 and some k with 0 ≤ k ≤ m − 1,
and let Φk be the set of k-successors of φ. For every non-final φ′ ∈ Φk, suppose
we have two LPBs

∑m
i=k+2 aixi ≥ (sφ′0, bφ′0] and

∑m
i=k+2 aixi ≥ (sφ′1, bφ′1],

representing S (φ′, {xk+1}, 0) and S (φ′, {xk+1}, 1), respectively.
If it is possible to choose ak+1 such that

max
φ′∈Φk

(sφ′0 − bφ′1) < ak+1 < min
φ′∈Φk

(bφ′0 − sφ′1), (10)

then for all φ′ ∈ Φk, the LPB
∑m

i=k+1 aixi ≥ (sφ′ , bφ′] represents φ′, where

sφ′ = max{sφ′0, sφ′1 + ak+1}, bφ′ = min{bφ′0, bφ′1 + ak+1} for non-final φ′

(11)

sφ′ = −∞, bφ′ = 0 for φ′ ≡ true, sφ′ =
∑m

i=k+1ai, bφ′ = ∞ for φ′ ≡ false (12)

If maxφ′∈Φk
(sφ′0 − bφ′1) ≥ minφ′∈Φk

(bφ′0 − sφ′1), then no ak+1, sφ′ , bφ′ exist
such that

∑m
i=k+1 aixi ≥ (sφ′ , bφ′] represents φ′ for all φ′ ∈ Φk.

Proof. First consider an arbitrary non-final φ′ ∈ Φk. By Thm. 6.15, if we choose
any dφ′0, dφ′1 such that sφ′0 < dφ′0 ≤ bφ′0 and sφ′1 < dφ′1 ≤ bφ′1, then we
can set ak+1 := dφ′0 − dφ′1, and Iφ′ ≡

∑m
i=k+1 aixi ≥ dφ′0 represents φ′. This

however means that sφ′0 − bφ′1 < ak+1 < bφ′0 − sφ′1, i.e. ak+1 can obtain any
desired value in this range by choosing dφ′0, dφ′1 accordingly.

Clearly, an ak+1 fulfilling sφ′0 − bφ′1 < ak+1 < bφ′0 − sφ′1 for all φ′ ∈ Φk

exists iff (10) holds.
Now consider a final φ′ ∈ Φk. It can only be true or false, and the degrees in

(12) are straightforward.
It remains to show that if (10) holds, the minimum and maximum of the new

LPBs are as stated in (11). But this follows from Lemma 6.17. ut

The m-successors of φ are represented by LPBs with an empty sum as l.h.s.:∑m
i=m+1 aixi ≥ (0,∞] for false,

∑m
i=m+1 aixi ≥ (−∞, 0] for true. Then we

proceed using Thm. 6.21, in each step choosing an arbitrary ak+1 fulfilling (10).

14

4x1 + 3x2+ 3x2+

2x3 + 2x4+ 2x3 + 2x4+ 2x3 + 2x4+ 2x4+
P5

i=6 aixi

x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . ≥ . . .

(1,∞] (0,∞]

(3,∞] (1,∞] (0,∞]
(4, 5] (2, 3] (0, 1] (0,∞]

(4, 5] (−∞, 0]

(1, 2] (1,∞]
(1, 2] (−∞, 0] (−∞, 0]

(4, 5] (−∞, 0]

(0, 1] (0,∞]

(0, 1] (−∞, 0] (−∞, 0]

(0, 1] (0, 1] (−∞, 0] (−∞, 0] (−∞, 0]
(−∞, 0] (−∞, 0] (−∞, 0] (−∞, 0]

(−∞, 0]

Table 3. LPBs for Ex. 6.18

Example 6.22. Consider again Ex. 6.18. Table 3 is arranged in strict correspon-
dence to Table 2 and shows LPBs for all successors of Φ. In the top line we give
the l.h.s. of the LPBs, which is of course the same for each LPB in a column. In
the main table, we list the minimum and maximum degree of each formula.

In the first step, applying (10), we have to choose a5 so that

max{0−∞, 0−∞, 0− 0, 0− 0,−∞− 0,−∞− 0,−∞− 0} < a5 <
min{∞− 0,∞− 0,∞−−∞, ∞−−∞, 0−−∞, 0−−∞, 0−−∞}.

Choosing a5 = 1 will do. The minimum and maximum degrees in column 5 are
computed using (11); e.g. the topmost (1,∞] is (max{0, 0+1},min{∞,∞+1}].

In the next step, we have to choose a4 so that

max{1−∞, 1− 1, 1− 0,−∞− 0, 0− 0,−∞− 0,−∞− 0} < a4 <
min{∞− 1,∞− 0, ∞−−∞, 0−−∞, 1−−∞, 0−−∞, 0−−∞}.

Choosing a4 = 2 will do. Note that the bound 1−0 < a4 comes from the middle
box of the fifth column and thus ultimately from x3∨x4. Our algorithm enforces
that a4 > a5, which must hold for an LPB representing x3 ∨ x4.

In the next step, a3 can also be chosen to be any number > 1 so we choose
2 again.3 In the next step, 2 < a2 < 4 must hold so we choose a2 = 3. Finally,
3 < a1 < 5 must hold so we choose a1 = 4. We obtain the LPB 4x1 + 3x2 +
2x3 + 2x4 + x5 ≥ (4, 5] given in Ex. 6.6.

We have seen in the example how our algorithm works. However, since the
choice of ak+1 is not unique in general, one might be worried that a bad choice
of ak+1 might later lead to non-applicability of Thm. 6.21.

The following lemma says that we do not have to worry about this. It states
that every vector of coefficients (a1, . . . , am) that is suitable for representing φ
corresponds, for every k ∈ [1..m− 1], to a vector (ak+1, . . . , am) that is suitable
for simultaneously representing all k-successors of φ, and more importantly, vice
versa: every vector (ak+1, . . . , am) that is suitable for simultaneously representing
all k-successors of φ corresponds to a vector (a1, . . . , am) that is suitable for
representing φ. Since in the intermediate steps of the algorithm, we have a vector
(ak+1, . . . , am) suitable for representing all k-successors of φ, we know that this
vector can be completed.
3 The algorithm could be improved by determining a3 and a4 in one go since x3, x4

are symmetric in φ. We refrain from spelling this out to avoid further complication.

15

Lemma 6.23. For any DNF φ′ of m variables, let

Aφ′ := {(a1, . . . am) | ∃d such that
m∑

i=1

aixi ≥ d represents φ′}.

Moreover, for any set A of m-tuples and any k ∈ [1..m− 1], define chop(A, k) =
{(ak+1, . . . am) | (a1, . . . am) ∈ A}, and let Φk be the set of k-successors of φ,
where φ is a DNF that can be represented as an LPB. Then for all k ∈ [1..m−1]

chop(Aφ, k) =
⋂

φ′∈Φk

Aφ′

Proof. Since true and false can be represented using arbitrary coefficients, we
disregard them here.

We show the statement by induction on k. For k = 1, the statement fol-
lows from Thm. 6.15. Now suppose the statement holds for some k. Again by
Thm. 6.15, for every φ′ ∈ Φk we have

chop(Aφ′ , 1) = AS(φ′,{xk},0) ∩ AS(φ′,{xk},1) (13)

But then (using the induction hypothesis, (13) and some straightforward trans-
formations)

chop(Aφ, k + 1) = chop(chop(Aφ, k), 1) hyp.= chop(
⋂

φ′∈Φk
Aφ′ , 1) =⋂

φ′∈Φk
chop(Aφ′ , 1)

(13)
=

⋂
φ′∈Φk

(AS(φ′,{xk},0) ∩ AS(φ′,{xk},1)) =
⋂

φ′∈Φk+1
Aφ′ .

ut

However, there are some pragmatic choices. As stated in the example, to
obtain an LPB with small coefficients, one might always choose ak+1 as the
smallest possible integer value. It might also occur, though not in the above
example, that ak+1 is forced to be between neighbouring integers, in which case
it cannot be an integer itself. In this case, one can multiply all LPBs of the
current system by 2 (this obviously preserves the meaning of the LPBs) before
proceeding so that ak+1 can be chosen to be an integer.

From the construction of the successors (see Table 2) it follows that all for-
mulae in a column together have size less than all formulae in the column to the
left of it, so that the entire table has size less than |φ|·(m+1). One can thus show
that the complexity of the algorithm is polynomial in the size of φ, while the
size of φ itself can be exponential in m. In fact, this is the most interesting case,
because in this case an LPB representation may yield an exponential saving.

A thorougher analysis of the complexity of the algorithm will be due once it
is embedded into a more complete algorithm which converts an arbitrary DNF
(or CNF) into a set of LPBs. It is clear that such an algorithm would first
have to partition the DNF according to the polarity of each variable, which is
straightforward. The next step would be to partition a DNF where each variable
occurs in only one polarity into sub-DNFs each of which can be represented by
a single LPB. This step is nontrivial and the main topic for future work.

7 Conclusion

Linear pseudo-Boolean constraints have attracted interest because they can often
be used to represent Boolean functions more compactly than CNFs or DNFs,
and because techniques applied in CNF-based propositional satisfiability solving
can be generalised to LPBs, which can be more efficient than solving a problem
based on a CNF representation [1, 5–8]. This generalisation is essentially an

16

application of a technique known from OR to the field of AI, or more specifically,
propositional logic [6].

It is assumed here that the problems, as they arise in an application domain,
have a natural encoding as LPB, and that the CNF encoding would be larger.
Our work was initially motivated by three main issues, which were not addressed
in previous works.

Firstly, several authors have emphasised that an LPB representation of a
function can be exponentially more compact than a CNF representation [1, 5–8].
However, it is shown in fact that cardinality constraints can be exponentially
more compact than a CNF. Thus no evidence is given that the additional ex-
pressive power that LPBs have compared to cardinality constraints is useful.

Secondly, it has been noted en passant that a single LPB can be used to
express an implication [7], but it remains unclear what kind of implications can
or cannot be expressed. In fact, our Lemma 6.10 shows that the power of an
LPB for expressing implications is very limited.

Most importantly, since an LPB representation can be more compact than a
CNF representation, one might use LPB encodings even in cases where they do
not arise naturally from the application domain. That is, one might convert a
CNF to a (small) set of LPBs and then apply LPB solving [1, 5–8]. Here we see
the potential for practical application of our work.

As a further comment on the first point, Barth [3] mentions that LPBs arise in
AI applications [4]. Since he used a solver that could only deal with cardinality
constraints, he proposes a transformation of LPBs to cardinality constraints.
Note that this transformation goes in the opposite direction compared to ours,
from a more concise to a less concise representation.

In [8], LPBs are used for bounded model checking. At one point, an LPB of
the form x1 + x2 + 2ȳ ≥ 2 (which is not a cardinality constraint) is used.

Apart from that, the above works say little about where the problem in-
stances come from, and if anything, then these are in fact cardinality constraints
rather than LPBs. In [1], problems Min-Cover, Max-SAT, and MAX-ONEs are
mentioned. E.g. Max-SAT is the problem of finding a variable assignment that
maximises the number of satisfied clauses of an unsatisfiable SAT instance. Fur-
thermore, applications from design automation [5], the pigeonhole problem [6],
and gate level netlists [7] are mentioned as applications.

However, we are not suggesting that our approach of converting a CNF or
DNF to an LPB is the only way to go. If for a problem domain, there is a
natural direct encoding as an LPB not going via CNF or DNF, then this should
definitely be considered.

Hooker has proposed an algorithm for generating the strongest 0-1 ILP con-
straints, within a candidate set T , that are implied by a set S of 0-1 ILP con-
straints [9]. Letting T be the set of all LPBs, the algorithm can be used to
transform a CNF to an LPB. However, the algorithm is practical only for cer-
tain restrictions of T . In the general case, which we need here, it is unclear if
the algorithm is any better than enumerating and checking all LPBs. This is
however an interesting topic for future work.

Complementary to this paper, we have also obtained results about Boolean
functions that can definitely not be represented compactly as a set of LPBs. More
precisely, there is a class of monotone functions for which the DNF representation
is exponential and the LPB representation saves nothing [17].

We summarise our contributions to the understanding of LPBs. We demon-
strated that the functions expressible as one LPB constraint are a strict subset
of the monotone functions. We gave some results about the cardinality of various
classes of Boolean functions, and showed that the blowup when encoding an LPB
as CNF or DNF is not worse than when encoding a cardinality constraint. We
showed that the problems of encoding a DNF or a CNF as LPB have a very sim-

17

ple duality. Finally and most importantly, we gave an algorithm for computing
an LPB representation for a DNF whenever this is possible.

Acknowledgements This work was supported by the German Research Council
(DFG) as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB TR14/AVACS). I would
like to thank Markus Behle, Martin Fränzle, Marc Herbstritt, Christian Herde,
Felix Klaedtke, Bernhard Nebel, and the other AVACS colleagues, for useful
discussions.

References

1. Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic
ILP versus specialized 0-1 ILP: an update. In Lawrence T. Pileggi and Andreas
Kuehlmann, editors, Proceedings of the 2002 IEEE/ACM International Conference
on Computer-Aided Design, pages 450–457. ACM, 2002.

2. Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A translation of pseudo
Boolean constraints to SAT. Journal on Satisfiability, Boolean Modeling and Com-
putation, 2:191–200, 2006.

3. Peter Barth. Linear 0-1 inequalities and extended clauses. In Andrei Voronkov,
editor, Proceedings of the 4th International Conference on Logic Programming and
Automated Reasoning, volume 698 of LNCS, pages 40–51. Springer-Verlag, 1993.

4. Peter Barth and Alexander Bockmayr. Solving 0-1 problems in CLP(PB). In
Proceedings of the 9th Conference on Artificial Intelligence for Applications. IEEE,
1993.

5. Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver.
In Proceedings of the 40th Design Automation Conference, pages 830–835. ACM,
2003.

6. Heidi E. Dixon and Matthew L. Ginsberg. Combining satisfiability techniques from
AI and OR. The Knowledge Engineering Review, 15:31–45, 2000.

7. Martin Fränzle and Christian Herde. Efficient SAT engines for concise logics:
Accelerating proof search for zero-one linear constraint systems. In Moshe Y. Vardi
and Andrei Voronkov, editors, Proceedings of the 10th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, volume 2850 of
LNCS, pages 302–316. Springer-Verlag, 2003.

8. Martin Fränzle and Christian Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design, 2006. Online
version, http://dx.doi.org/10.1007/s10703-006-0031-0. Print version in press.

9. John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of
Mathematics and Artificial Intelligence, 6(1-3):271–286, 1992.

10. John N. Hooker and Hong Yan. Tight representations of logical constraints as
cardinality rules. Mathematical Programming, 85(2):363–377, 1999.

11. Daniel Kleitman and George Markowsky. On Dedekind’s problem: the number of
isotone Boolean functions. II. Transactions of the American Mathematical Society,
213:373–390, 1975.

12. João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

13. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, pages 530–535. ACM, 2001.

14. Raúl Rojas. Neural Networks. A Systematic Introduction. Springer-Verlag, 1996.

15. Ching Lai Sheng. Threshold Logic. Academic Press, 1969.

16. Neil J. A. Sloane. On-line encyclopedia of integer sequences.
http://www.research.att.com/∼njas/sequences/Seis.html.

17. Jan-Georg Smaus. Representing Boolean functions as linear pseudo-Boolean con-
straints. In Youssef Hamadi, editor, Proceedings of the CP 2006 Workshop on the
Integration of SAT and CP techniques, 2006.

18

18. Jan-Georg Smaus. On Boolean functions encodable as a single linear pseudo-
Boolean constraint. In Pascal Van Hentenryck and Laurence Wolsey, editors, Pro-
ceedings of the 4th International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems, vol-
ume 4510 of LNCS, pages 288–302. Springer-Verlag, 2007.

19. Vetle Ingvald Torvik and E. Trintaphyllou. Inference of monotone Boolean func-
tions. In Chris A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Opti-
mization, pages 472–480. Kluwer Academic Publishers, 2001.

20. Ingo Wegener. The Complexity of Boolean Functions. Wiley & Sons,
http://eccc.uni-trier.de/eccc-local/ECCC-Books/wegener book readme.html,
1987.

21. Hantao Zhang. SATO: An efficient propositional prover. In William McCune,
editor, Proceedings of the 14th International Conference on Automated Deduction,
volume 1249 of LNCS, pages 272–275. Springer-Verlag, 1997.

19

