
Relaxation Refinement: A New Method to
Generate Heuristic Functions

Jan-Georg Smaus1 and Jörg Hoffmann2

1 University of Freiburg, Germany, smaus@informatik.uni-freiburg.de
2 SAP Research, Karlsruhe, Germany, joe.hoffmann@sap.com

Abstract. In artificial intelligence, a relaxation of a problem is an over-
approximation whose solution in every state of an explicit search provides
a heuristic solution distance estimate. The heuristic guides the explo-
ration, potentially shortening the search by exponentially many search
states. The big question is how a good relaxation for the problem at hand
should be derived. In model checking, overapproximations are called ab-
stractions, and abstraction refinement is a powerful method developed
to derive approximations that are sufficiently precise for verifying the
system at hand. In our work, we bring these two paradigms together.
We pioneer the application of (predicate) abstraction refinement for the
generation of heuristic functions that are intelligently adapted to the
problem at hand. We investigate how an abstraction refinement process
for generating heuristic functions should differ from the process used in
the verification context. We do so in the context of DMC of timed au-
tomata. We obtain a variety of interesting insights about this approach.

Keywords: Directed model checking, abstraction refinement, predicate
abstraction, timed automata

1 Introduction

In artificial intelligence (AI), a relaxation of a problem is an overapproximation
of the problem. During an explicit search in the state space of the problem, in
each state s the relaxed problem is solved starting from s, and the length of
the relaxed solution is used as a heuristic distance estimate, i.e., an estimate of
the distance from s to the nearest solution state. States with lower estimated
distance are explored first. It is well known that this strategy can exponentially
decrease the explored part of the state space (e.g. [22]). Recently, the same idea
has been applied for falsification, namely in directed model checking (DMC) [11],
which is the search for errors using a heuristic function.

Both in AI and in DMC, the main question to be addressed is how to define
the approximation that underlies the heuristic function. Different definitions
yield different heuristics, and this makes all the difference between being and
not being able to find an error. Intuitively, the heuristic function should capture
sufficient information for predicting whether a state is likely to lead to an error.
Doing so requires knowledge about the reasons for the error in the particular

system considered. The “hot trail” we follow is to use methods coming from the
field of model checking to learn this kind of knowledge.

In model checking, overapproximations are called abstractions, and have been
used for verification. Applying the formalism of abstract interpretation [7], an
abstraction of a system is designed so that if some undesirable state is unreach-
able in the abstraction, then it is surely unreachable in the original system.
A highly successful method in this context is abstraction refinement [2, 6, 23]:
starting from some trivial abstraction, the abstract state space is computed. If
there is no path to the undesirable state (error path), the system is safe and one
can stop. Otherwise, one determines if the path is spurious, i.e., if it does not
correspond to a path in the original system. If it is spurious, one examines the
path and tries to refine the abstraction in order to exclude this spurious error
path in the next iteration. If the path is not spurious, an error has been found.
The process of repeated refinement iterations is called refinement loop.

Given these facts, the obvious question that springs to mind is: can, and
how can, we use abstraction refinement to devise heuristic functions that are
intelligently adapted to the system at hand? This question may be of relevance
in many different contexts, ranging from DMC in various model checking for-
malisms to the various search problems traditionally considered in AI. Here, we
investigate this question in the context of DMC of timed automata.

In our own previous work [16], we have shown how one can use predicate
abstraction [14] to generate heuristic functions for DMC of timed automata
using Uppaal [4]. Following the pattern database approach [8], the abstract state
space is built before the actual search for an error starts; during the search, the
abstract state space is used as a look-up table for retrieving the heuristic values.
The abstraction predicates in that work were mostly generated by reading the
predicates directly off transition guards in the system. We also made an initial
experiment with abstraction refinement, realised via the abstraction refinement
model checker (ARMC) [23]. The conclusion from the latter experiment was that
off-the-shelf abstraction refinement is not a good method for deriving heuristic
functions. An intuitive explanation is that in off-the-shelf abstraction refinement,
the abstraction is tailored to capture a lot of information about one particular
error path; other regions of the state space unrelated to that path are abstracted
coarsely. When used as a heuristic function, such an abstraction yields precise
estimates for states near the error path, but imprecise – overly optimistic –
estimates otherwise. This can have the unwanted effect that states unrelated to
the error path obtain lower heuristic estimates, and are preferred in the search. In
addition, using off-the-shelf abstraction refinement, we have insufficient control
to be able to tune the balance between heuristic quality and heuristic cost.

In this paper, while being inspired by ARMC, we do not use ARMC off-
the-shelf, because we want to experiment with different methods of doing ab-
straction refinement in the context of heuristic generation, to find a method is
more suitable for defining useful heuristic functions. Let us briefly explain the
strategies we tried. The error state in our benchmarks is given by a formula
(loc(p1) = `1) ∧ (loc(p2) = `2), stating that process p1 is in location `1 and p2

is `2. The simplest method we tried is to use an initial abstraction consisting of
the predicates loc(p1) = `1, loc(p2) = `2, so that the abstraction could always
distinguish an error state from a non-error state. Alternatively, we generated
two abstractions based on initial predicates loc(p1) = `1 and loc(p2) = `2 kept
separate. Somewhat surprisingly, the latter turned out to be better, and can
compete with other heuristics we use for comparison. To overcome the focus of
the abstraction refinement on one particular path, we then tried to base each
refinement step on several paths, rather than just a single path. The most sur-
prising result for us was that this had no positive impact. We learnt that the
way predicates are added based on an abstract path sometimes implies that
the refinement loop terminates with an extremely coarse abstraction, and yet
there is no “incentive” to refine this abstraction. Moreover, we learnt that this
is not a question of choosing the right paths. To tackle this problem, we used
initial abstractions based on “random” predicates as additional “seed” for the
abstraction refinement. The results are generally unstable; sometimes they are
extremely good.

Our overall experiments suggest that abstraction refinement is useful for se-
lecting predicates from a certain repertoire so that the set obtained is informative
enough yet small enough not to pose a prohibitive computational overhead; in
this respect the present approach is an advance over [16]. We had also hoped
that abstraction refinement can, compared to other ways of generating predi-
cates, significantly enhance the repertoire itself; but, at least in our benchmarks,
this does not seem to be the case. It remains to be seen if and how the situation
changes in the context of DMC in other formalisms (or even just other bench-
marks), and in the context of AI search problems. As such, our work provides
only a first exploration of a much larger research topic.

This paper is organised as follows. In the next section, we introduce timed
automata. In Sec. 3, we explain predicate abstraction for heuristic generation.
In Sec. 4, we explain how predicates are generated by refinement based on an
error path in ARMC, and how this approach is adapted for generating heuristic
functions. In Sec. 5 we report on experiments, in Sec. 6 we discuss related work,
and in Sec. 7 we conclude.

2 Timed Automata in Uppaal

We introduce timed automata [1] here following the terminology of Uppaal [4],
which is an integrated tool environment for modelling, simulation and verifica-
tion of real-time systems. We restrict to the features that we actually consider
in our benchmarks and implementation.

A timed automaton is a finite (ω-)automaton enhanced with real-valued
variables called clocks and integer variables. Instead of the usual word state
we speak of a location of a timed automaton, since a state in our parlance
consists of a location together with a value for each variable of the automaton.
One location is marked as initial.

bright

off

dim press?

x<=10
press?

press?
x:=0

x>10
press?

study

idle

relax

t
y<5

y>10
press!press!

y:=0

press!press!
y:=0

press!

Fig. 1. A system composed of two processes

Locations can be connected by directed edges. An edge can be labelled with
a clock (resp. integer) guard, which is a conjunction of conditions of the form
x ./ c or x − y ./ c (resp. c ./ 0), where x, y are clocks and c is an expression
using natural constants and integer variables, and ./ ∈ {<,≤,=,≥, >}. An edge
can also be labelled with one or several effects, which are assignments to an
integer variable or resets of a clock variable to 0. A location can be labelled with
an invariant, which is of the same form as a guard and states a condition that
must hold while the automaton remains in this location. One usually requires
that clock invariants are downwards closed, i.e., ./ ∈ {<,≤}.

An automaton as described so far is called a process; several processes can
be composed to a network of automata, called system, as follows: a state is
characterised by a location for each of its processes and a value for each of its
variables. An edge may be labelled by a synchronisation label ch? or ch! where ch
is a symbol called channel. If one process has an edge labelled ch? and another
process has an edge labelled ch!, then the two must be taken simultaneously to
obtain a transition. An edge of a process that has no synchronisation label can
be taken alone; this is called a τ -transition.

Figure 1 shows an example. The process on the left-hand side models a
lamp switch and the process on the right-hand side models the lamp user. We
are dealing here with a widespread design of lamps where pressing the button
twice “quickly” causes the light to be bright, whereas pressing it once causes
the light to be dimmed if it was off before, and switches the light off otherwise.
We illustrate some of the above concepts: x and y are clocks, off is a location
(marked as initial by the double circle), x > 10 is a guard, x := 0 is an effect,
y < 5 is an invariant of location t, and ‘press’ is a channel.

A run or path is defined in an intuitive way (see [1, 4, 5] for a formal def-
inition): the system starts in its initial state, some time passes (during which
all clocks increase at the same speed, and all relevant location invariants must
hold), then a transition allowed by the guards is made (which takes no time) and
its effects are applied, reaching a new state, and so forth. Here is a run for the
lamp example (L and U stand for the “lamp” and “user” process, respectively):

(L.off ,U.idle, x = 0, y = 0) → (L.off ,U.idle, x = 31, y = 31)
press−→

(L.dim,U.t, x = 0, y = 0) → (L.dim,U.t, x = 2, y = 2)
press−→

(L.bright,U.study, x = 2, y = 2)

The state space S is the directed graph where the nodes are all states, and the
edges are the transitions. The set of error or target states which are undesirable
are given by a formula φ, specifying a condition on the locations and variables.

3 Predicate Abstraction for Heuristic Generation

In this section we recall our previous work [16]; we explain technically how
heuristics for Uppaal are computed based on predicate abstraction.

A predicate is a logic formula that “talks” about the system. We consider
three kinds of predicates: location predicates loc(proc) = ` stating that process
proc is in location `; and integer, resp. clock predicates, defined like guards,
see Sec. 2.

A vector P = (p1, . . . , pm) of predicates defines a predicate abstraction;
e.g. P = (loc(1) = 3, x > 2, y = 0). We sometimes regard P as a set. When
|P| = m, we call a vector in {T,U,F}m an abstract state or TUF-vector for
P. Here, T,U,F stand for true, unknown, and false. We usually assume that P
is clear from the context.

Viewing a state s as a valuation of the system variables, we use the notation
s |= ψ to say that the formula ψ is true under s, and φ |= ψ means that ψ is
true under every valuation under which φ is true.

Given a concrete state s, i.e., a vector consisting of a location for each
process and a value for each variable, the abstraction of s is a vector b =
(b1, . . . , bm) ∈ {T,F}m where bi = T if s |= pi and bi = F if s |= ¬pi. E.g. if s =
(loc(1) = 2, loc(2) = 4, x = 2.3, y = 4.7) and P is as above, then the abstraction
of s is FTF.

For an abstract state b, we denote by [b] the concretisation of b, i.e., [b] =
{s | for all i ∈ [1..m], s |= pi if bi = T, s |= ¬pi if bi = F}. For b,b′ ∈ {T,U,F}m,
we say that b′ subsumes b if [b′] ⊇ [b], which is the case iff b′ is obtained
from b by replacing zero or more occurrences of T or F by U. The abstract
state space for P, denoted [S]P , is the directed graph where the nodes are all
TUF-vectors for P, and there is an edge from b1 to b2 iff there exist s1 ∈ [b1]
and s2 ∈ [b2] so that there is an edge from s1 to s2 in S (see Sec. 2). Note that
[S]P is an over -approximation of S, i.e., every concrete path corresponds to an
abstract path but not necessarily vice versa. This can be seen as follows: suppose

we have four concrete states s1, s2, s′2, s3 such that s1 → s2 and s′2 → s3 hold
in S but s1 → s′2 and s2 → s3 do not hold in S, and [s2] = [s′2]; then we have
[s1] → [s2] → [s3] in [S]P although s3 might not be reachable from s1 is S.

Given an error condition φ as in Sec. 2, the abstract error state is defined
as the TUF-vector b = (b1, . . . , bm) where bi = T if φ |= pi, and bi = F if
φ |= ¬pi, and bi = U otherwise. Note that φ might not uniquely determine the
value of each predicate pi. In addition, we obtain a precision loss due to the
fact that we consider the predicates in isolation. E.g., it might be the case that
φ |= (p1 ∧ p2 ∧ p3)∨ (p1 ∧¬p2 ∧¬p3), so that we should have two abstract error
states TTT and TFF, but instead, we just take the abstract error state TUU.
This merging is referred to as Cartesian abstraction [3].

The abstract state space is computed starting from the abstract error state
and computing its abstract predecessors to obtain the first layer ; then all pre-
decessors of those states give the second layer, and so forth. Whenever a state
is computed that is subsumed by a state computed earlier, then the new state
will be ignored. This computation is called regression.

Computing the predecessor of an abstract state b is a logical deduction task.
To compute the predecessor of b obtained by applying (backward) some edge
(pair) t, we construct a formula using the variables occurring in P and in the
guards, effects, and invariants of (the sources and targets of) t, where we prime (′)
the variables to denote their value in the target location; the unprimed variants
correspond to the source location. First, b translates into ψb =

∧
bi=T p

′
i ∧∧

bi=F ¬p′i, where p′i denotes the result of priming each variable in pi. Secondly,
t translates into a formula ψt that expresses the effect of applying t, by relating
the values of the variables in the sources and targets. E.g. if t has an effect
i := i+ 1 then one of the conjuncts of ψt will be i′ = i+ 1.

The exact method of determining all the abstract predecessor states of b
would be as follows: we enumerate all abstract states a ∈ {T,F}m, build a
formula ψa =

∧
ai=T pi∧

∧
ai=F ¬pi in analogy to ψb but with unprimed variables,

and check if ψb ∧ ψt ∧ ψa is satisfiable. If yes, then there is an assignment to
the variables, corresponding to concrete states in [a] and [b], respectively, with a
transition between these concrete states, and hence a is an abstract predecessor
state of b.

However, the method described in the previous paragraph would be too in-
efficient because we would have to enumerate 2m abstract states. Instead, we
again apply Cartesian abstraction: we compute just one abstract predecessor
state a of b w.r.t. t by taking each predicate pi in isolation: if pi is implied by
ψb∧ψt, then ai = T; if ¬pi is implied by ψb∧ψt, then ai = F; otherwise ai = U.
For checking the implications we use the solver ICS [13].

Since we compute the abstract state space [S]P backwards starting from
the error state, we obtain the distance of each abstract state from the abstract
error state for free. This information is stored in a so-called pattern database,
which is implemented as a certain tree data structure [15] supporting efficient
subsumption tests. The pattern database is the basis for defining the heuristic
value of a concrete Uppaal search state s. Essentially, the lookup of a heuristic

���
`0 -j := j + 2 ���

`1 -j := j + 1 ���
`2 -i == j ���

`3

Fig. 2. Predicate Generation in ARMC

value for a concrete Uppaal search state s works as follows: the abstraction of s
is computed; call it b; now consider all c in the pattern database that subsume
b; among those, take the one whose (precomputed) distance to the abstract
error state is minimal; this distance is the heuristic value of s (see [16] for more
details).

We (and others before us [12, 17]) have experienced that combining several
simple abstractions is often better than having one complicated abstraction.
Thus we usually have several sets of abstraction predicates and thus abstract
spaces and “raw” heuristic functions. The latter can be combined by taking, for
each concrete search state, the maximum or the sum.3 We refer to this as MAX
option, SUM option, resp.

4 Abstraction Refinement

When predicate abstraction refinement is used for verification, one successively
refines an abstraction by adding predicates in order to exclude spurious error
paths. But which predicates? We explain here how the abstraction refinement
model checker (ARMC) [23] answers this question, since we generate predicates
in the same way. We immediately jump to a timed automata setting. So the aim
is to verify a timed automaton, i.e. to show that a certain error location `err is
unreachable.

A predicate is of the form e1 ./ e2 where e1, e2 are expressions involving
integer variables and ./ ∈ {=,≤, <,≥, >}. Each location ` is associated with a set
of predicates P`, and an abstract state is a pair (`,a) where a ∈ {T,U}|P`|. Note
that in the verification context [23], one only distinguishes true and unknown.

The abstraction refinement loop starts with an initial abstraction where P` =
∅ for all `. We now explain how one iteration of the loop works. Assume that we
have a current abstraction, i.e., a P` for each `. We compute an abstract error
path `0 → . . .→ `n = `err, i.e. a path from the initial location to `err. By treating
`0 → . . .→ `n backward, we generate new predicate sets P ′

`0
, . . . ,P ′

`n
as follows:

P ′
`n

:= P`n ; if P ′
`i+1

is already computed, and `i → `i+1 has guard g1 ∧ . . . ∧ gr

and assignments x1 := e1, . . . , xk := ek, then P`i
= ({g1, . . . , gr} ∪ P ′

`i+1
)[xk 7→

ek, . . . , x1 7→ e1]∪P`i (the notation [x 7→ e] denotes the replacement of x by e).
In Fig. 2 we illustrate a fragment of an error path. Here, i == j is a guard.

Starting with P`i = ∅ for i ∈ [0..3] we obtain P ′
`3

= ∅, P ′
`2

= {i = j}, P ′
`1

= {i =
j+1} and P ′

`0
= {i = j+3}. Each P ′

` corresponds to the weakest precondition of
i = j w.r.t. the subsequent updates, i.e. it expresses exactly the condition under

3 The issue of admissibility is discussed in [16].

which `2 → `3 can be taken. If `0 is the initial location of the automaton and
we assume that variables are initialised to 0, then P ′

`0
,P ′

`1
,P ′

`2
,P ′

`3
are sufficient

to exclude this spurious error path (fragment), i.e., this error path will not be
computed again.

We adopt the method of generating predicates just described. Yet there are
some differences between ARMC and our setting. Unlike ARMC, our abstract
states represent location information only to the extent that there are location
predicates. Therefore, our abstract paths can be spurious for location reasons,
i.e., we could have a transition `0 → `1 followed by a transition `′1 → `2 where
`1 6= `′1, because the abstraction cannot distinguish `1 from `′1. One could of
course change this, but our experiments suggest that abstractions preserving all
location information lead to abstract state spaces that are much too expensive
to compute. Therefore, we do not have a different predicate set per location, but
an abstraction is given by one global predicate set.

More importantly, as explained in the introduction, our aim is not to exclude
all spurious error paths (verification), but to characterise a sufficiently large envi-
ronment of the error state with sufficient precision to provide a good heuristic.4

Therefore, instead of basing one refinement step on one path from the initial
to the error state, we can base one refinement step on arbitrarily many paths
starting from an arbitrary state and leading to the error state.

We present the core of our abstraction refinement algorithm: the generation
of new predicates based on a single abstract path. Given a set of predicates P
and an abstract path t1, . . . , tn leading to the abstract error state, we refine P
as shown in Fig. 3. To simplify the presentation, we only show the case of a
synchronised transition. We denote by edge!(t), edge?(t) the two edges of t, and
by targ(d), src(d) the target and source locations, and by proc(d) the process of
an edge d.

The algorithm processes the edge(pair)s of the abstract path back-
ward. The most relevant difference to ARMC is that the abstract path may
be spurious for location reasons. We maintain information about the cur-
rent location of each process in curloc. Whenever targ(edge!(ti)) is different
from curloc(proc(edge!(ti))) (or analogously for edge?), we have detected that
t1, . . . , tn is spurious for location reasons. We then add a location predicate that
will exclude the abstract path in the next iteration, and stop the processing of
the edge(pair)s (see lines marked “[”).

The algorithm must be embedded in one or several refinement loops, to gener-
ate one or several abstractions (see end of Sec. 3). Now there are three questions:

– What should the initial abstraction(s) be?
– How many and which abstract paths should be chosen for the refinement?
– When should the refinement loop stop?

We have tried many possible approaches to answering these questions, of which
we present some in Sections 5.2 to 5.4, after explaining the setup for our exper-
iments.
4 Whether or not a heuristic is good is measured here, as usual, by considering the

size of the explored state space (see Sec. 5).

procedure refine path(Predicates P, Path (t1, . . . , tn))
foreach process p do

curloc(p) := unknown od
for i := n to 1 do24 if curloc(proc(edge!(ti))) 6= unknown ∧ targ(edge!(ti)) 6= curloc(proc(edge!(ti)))

P := P ∪ {loc(proc(edge!(ti))) = curloc(proc(edge!(ti)))} break fi
curloc(proc(edge!(ti))) := src(edge!(ti))24 if curloc(proc(edge?(ti))) 6= unknown ∧ targ(edge?(ti)) 6= curloc(proc(edge?(ti)))
P := P ∪ {loc(proc(edge?(ti))) = curloc(proc(edge?(ti)))} break fi

curloc(proc(edge?(ti))) := src(edge?(ti))
foreach invariant g of targ(edge!(ti)), targ(edge?(ti)) do
P := P ∪ {g} od

foreach assignment i := e of edge!(ti), edge?(ti) in reverse order do
P := P[i 7→ e] ∪ P od

foreach guard g of edge!(ti), edge?(ti) and
foreach invariant g of src(edge!(ti)), src(edge?(ti)) do
P := P ∪ {g} od

od
return P

Fig. 3. Refining an abstraction based on a path t1, . . . , tn

5 Experiments

Our benchmarks come from two industrial case studies [9, 18]. Since we are
dealing with error detection, i.e., falsification, our examples had an error injected.

Examples “Mi” and “Ni”, i = 1, . . . , 4, come from a study called “Mutual
Exclusion”. This study models a real-time protocol to ensure mutual exclusion
of states in a distributed system via asynchronous communication [9]. An error
was injected by increasing an upper time bound. Examples “Ci”, i = 2, . . . , 9,
are a case study called “Single-tracked Line Segment” coming from an industrial
project partner of the UniForM-project [18]. The problem is to design a dis-
tributed real-time controller for a segment of tracks where trams share a piece of
track. The controller was modelled in terms of PLC-automata (PLC stands for
programmable logic controllers) [9, 18] and translated into timed automata. We
injected an error by manipulating a delay such that the asynchronous commu-
nication between some automata is faulty. The given set of PLC-automata had
eight input variables and we constructed eight models with decreasing size by
abstracting more and more of these inputs. The numbering of the benchmarks
is ad hoc, but the benchmarks become bigger with increasing i.

Concerning “Ci”, we observed that the model checking could be dramatically
simplified by a slight modification of the benchmarks, namely to reduce the
number of times a certain loop edge can be taken. This issue is completely
orthogonal to the topic of this paper, but we mention the fact that we used the
modified benchmarks for the sake of comparison with other works [10, 16, 19, 20].

We performed DMC using Uppaal. We used greedy best-first search [20], i.e.,
the search queue is a priority queue over the value of the heuristic function. The

Table 1. M1-M4, N1-N4: search space size | heuristic computing time | user time

M1 M2 M3 M4

hL 5656|n.a.|0.1 30743| n.a.| 0.3 18431| n.a.| 0.2 122973| n.a.| 1.3
hU 14679|n.a.|0.2 68407| n.a.| 0.9 75976| n.a.| 0.9 233378| n.a.| 2.8

syn 5000/10/SUM 23257| 0.3| 0.6 84475| 0.4| 1.5 92548| 0.4| 1.6 311049| 0.6| 4.7
syn 5000/10/MAX 23744| 0.3| 0.6 102042| 0.4| 1.7 98715| 0.4| 1.7 399114| 0.6| 5.6
syn 20000/20/SM 12780| 1.7|1.7 34947|10.7|10.7 55098|10.8|10.8 139875|15.1|15.1
1abs 5000/10 20188| 0.7| 0.8 39369| 0.3| 0.7 64522| 0.3| 1.0 110240| 0.3| 1.6

2abs 5000/10/SUM 14955| 0.7| 0.7 17753| 0.5| 0.6 86316| 0.4| 1.4 110240| 0.3| 1.5
2abs 5000/10/MAX 3769| 0.6| 0.6 7637| 0.5| 0.5 119108| 0.4| 1.7 32034| 0.3| 0.5

seed 100/10/SUM 18566| 0.6| 0.7 29253| 0.5| 0.8 64671| 0.5| 1.3 110240| 0.5| 1.8
seed 100/10/MAX 1050| 0.5| 0.5 3921| 0.6| 0.6 5514784| 0.5|97.6 32034| 0.5| 0.8
seed 5000/10/SUM 14955| 1.7|1.7 17753| 1.3| 1.3 86316| 1.0| 2.0 110240| 0.7| 2.0
seed 5000/10/MAX 3769| 1.7|1.7 7637| 1.3| 1.3 119096| 1.0| 2.4 32034| 0.7| 0.9

N1 N2 N3 N4

hL 16335|n.a.|0.5 88537| n.a.| 2.5 28889| n.a.| 0.6 226698| n.a.| 5.0
hU 25577|n.a.|0.8 132711| n.a.| 3.9 143969| n.a.| 4.2 747210| n.a.|20.0

syn 5000/10/SUM 36030| 0.3|1.8 178333| 0.5| 6.9 196535| 0.4| 7.7 983344| 0.6|37.4
syn 5000/10/MAX 31589| 0.3|1.3 163001| 0.4| 5.6 207665| 0.5| 7.5 1255213| 0.6|47.1
syn 20000/20/SM 17357| 1.7|2.1 63596|10.8|12.0 96202|10.6|12.4 445359|15.0|29.0
1abs 5000/10 31042| 0.7|1.8 91367| 0.3| 3.2 135906| 0.3| 4.9 353609| 0.3|12.5

2abs 5000/10/SUM 17584| 0.7|1.2 38216| 0.5| 1.6 157491| 0.4| 5.5 353609| 0.3|12.4
2abs 5000/10/MAX 4031| 0.7|0.7 18914| 0.5| 1.0 242012| 0.4| 8.7 119802| 0.3| 3.9

seed 100/10/SUM 27364| 0.6|1.4 71411| 0.6| 2.9 132538| 0.5| 5.0 353609| 0.5|13.0
seed 100/10/MAX 1209| 0.5|0.5 15920| 0.6| 1.0 117276| 0.6| 4.5 119802| 0.5| 4.3
seed 5000/10/SUM 17584| 1.7|2.0 38216| 1.3| 2.3 157491| 1.0| 6.2 353609| 0.7|13.0
seed 5000/10/MAX 4031| 1.6|1.6 18914| 1.3| 1.7 241968| 1.0| 9.3 119802| 0.7| 4.4

interface to Uppaal is the one introduced in [19].5 For the experiments, we used
a machine with two Intel Xeon processors running at 3.02 GHz with 6 GB RAM.

We present results for six kinds of heuristics here. First, we have heuristics hL

and hU , which are based on a heuristic method from AI planning [20]. Second,
we have heuristic “syn” based on extracting abstraction predicates from the
guards of a system [16]. Third, we have a heuristic based on refinement of a
single error path with initial predicate set {loc(p1) = `1, loc(p2) = `2} (“1abs”),
and fourth, a heuristic based on two abstractions obtained by having two initial
predicate sets {loc(p1) = `1}, {loc(p2) = `2} (“2abs”). Fifth, we have a method
where refinement is based on several abstract paths (Table 3), and finally, a
method where we use initial predicate sets that contain “random” predicates as
additional “seed” for the abstraction refinement.

The entries in Tables 1 and 2 are of the form a|b|c. Here, a is the size of the
search space explored by Uppaal, i.e., the number of explored states (not to be
confused with the size of the abstract state space!). The second figure b is the
total time in seconds taken for precomputing the heuristic, and c is the total

5 The Uppaal source code was provided to our group by Gerd Behrmann.

Table 2. C2-C9: search space size | heuristic computing time | user time

C2 C3 C4 C5

hL 4059| n.a.| 0.2 3253| n.a.| 0.2 2683| n.a.| 0.2 87342| n.a.| 6.5
hU 5629| n.a.| 0.4 4756| n.a.| 0.3 3471| n.a.| 0.2 19598| n.a.| 1.2

syn 5000/10/SUM 2866| 3.3| 3.3 2691| 3.8| 3.8 3941| 5.3| 5.3 68077| 5.9| 6.0
syn 5000/10/MAX 2421| 3.7| 3.7 2360| 3.8| 3.8 1621| 5.3| 5.3 518| 5.9| 5.9
syn 20000/20/SUM 9938| 8.5| 8.5 5446| 9.2| 9.2 11061|13.4|13.4 timeout| |
syn 20000/20/MAX 18085| 8.2| 8.2 9506| 8.8| 8.8 21712|13.0|13.0 timeout| |
1abs 5000/10 28303| 1.3| 1.3 13458| 1.4| 1.4 11836| 1.6| 1.6 378| 2.0| 2.0

2abs 5000/10/SUM 7382| 1.4| 1.4 2866| 1.5| 1.5 2679| 1.8| 1.8 258| 2.0| 2.0
2abs 5000/10/MAX 5616| 1.4| 1.4 3612| 1.4| 1.4 3376| 1.7| 1.7 299| 2.0| 2.0

seed 100/10/SUM 5154| 0.5| 0.5 4793| 0.6| 0.6 4002| 0.8| 0.8 657| 0.5| 0.5
seed 100/10/MAX 7011| 0.6| 0.6 4196| 0.6| 0.6 3512| 0.8| 0.8 797| 0.5| 0.5
seed 5000/10/SUM 6849| 5.7| 5.7 3496| 5.9| 5.9 3140| 6.6| 6.6 583| 7.8| 7.8
seed 5000/10/MAX 5612| 6.0| 6.0 3608| 6.0| 6.0 3374| 6.7| 6.7 304| 7.8| 7.8

C6 C7 C8 C9

hL 16284| n.a.| 1.3 79769| n.a.| 6.2 37202| n.a.| 2.6 134489| n.a.| 9.1
hU 9327| n.a.| 0.5 46193| n.a.| 2.6 6569| n.a.| 0.5 127924| n.a.| 11.0

syn 5000/10/SUM 13518| 6.7| 6.7 71916| 7.1| 7.1 61871|10.4|10.4 156445|14.5| 15.0
syn 5000/10/MAX 1514| 6.3| 6.3 17534| 7.6| 7.6 39158|11.2|11.2 146810|15.8| 16.7
syn 20000/20/SUM 6176|14.1|14.1 32290|15.4|15.4 30394|18.3|18.3 31280|25.8| 25.8
syn 20000/20/MAX 863|13.8|13.8 9603|16.4|16.4 19682|19.9|19.9 22176|27.9| 27.9
1abs 5000/10 16346| 2.0| 2.0 102611| 2.1| 2.7 329298| 2.2| 5.2 1637759| 1.9| 19.1
2abs 5000/10/SUM 3127| 2.2| 2.2 31584| 2.3| 2.4 106065| 2.8| 3.9 451610| 3.2| 8.8
2abs 5000/10/MAX 3549| 2.1| 2.1 31676| 2.3| 2.3 103416| 2.8| 3.6 359530| 3.2| 7.4

seed 100/10/SUM 18711| 0.6| 0.8 110878| 0.7| 1.9 333488| 0.6| 4.5 1623070| 0.7| 20.0
seed 100/10/MAX 20583| 0.6| 0.8 119415| 0.7| 2.0 340927| 0.7| 4.6 1637147| 0.7| 20.3
seed 5000/10/SUM 20250| 8.0| 8.0 118830| 8.1| 8.1 290987|10.0|11.8 1270802|12.0| 30.0
seed 5000/10/MAX 3539| 7.6| 7.6 31610| 7.9| 7.9 103140| 9.3| 9.3 358171|11.3|14.7

user time for the Uppaal model checking as measured by the Linux command
time, including the precomputation time b. Note that in some cases b is equal
to c because the time for the actual Uppaal model checking is negligible. We
have highlighted the best and the worst figures. For each example, those figures
within factor 2 of the best figure are in boldface, and those within factor 2 of
the worst are in italics.

5.1 Other Heuristics Used for Comparison

On the one hand, we used two heuristics introduced in [20], which are among
the best heuristics for these benchmarks [19]. There, a heuristic method from AI
planning is adapted, based on a notion of “monotonicity” where it is assumed
that a state variable accumulates, rather than changes, its values. In Tables
1 and 2 and in [20], there are two heuristics referred to as hL (which states in
which layer of the relaxed transition graph a state can be found, and is a strongly
underestimating heuristic) and hU (which gives an actual path in the abstract

system, and may be overestimating). Since hL and hU are computed on-the-fly,
there is no heuristic precomputation.

Concerning the runtime, hL and hU are very often among the best by far.
Concerning the size of the explored state space, they are more often among the
worst than among the best. The heuristics are relatively expensive to compute
per state which shows for N3, C5, C9, but the fact that the runtime is so small
whenever the size of the explored search space is small exhibits the advantage
of on-the-fly computation: in contrast, for heuristics based on predicate abstrac-
tion and pattern databases, it could happen that a heuristic is very good but
expensive to compute because the abstract state space is big.

On the other hand, we compared with a kind of abstraction we developed
previously [16], where the repertoire of predicates consists of all guards and
invariants that textually occur in the system definition, together with all possible
location predicates. Since taking one abstraction based on all these predicates
is much too inefficient to compute, we only take the predicates of one single
process, generate an abstract state space, and see if the number of states or the
number of layers exceeds certain thresholds. If yes, we take the current predicate
set for defining one pattern database and start generating another one based
on another process. Otherwise, we continue to add the predicates coming from
another process to the current abstraction. Typically we end up with two or three
abstractions this way. The results are referred to as “syn” for “syntax-based”.

A notation such as “5000/10/SUM”, used not only for “syn” but also for
other heuristics, means that the threshold on the number of states (resp., layers)
is 5000 (resp., 10), and that we use the SUM option (see Sec. 3). The figures
for “syn 20000/20/MAX” and “syn 20000/20/SUM” are identical in Table 1
because only one (or only one non-trivial) abstraction was generated, which is
why we write “SM”.

For M and N, the results are never among the best and often among the
worst. For C, the explored state space size is sometimes among the best (note in
particular C9), but often among the worst as far as the runtimes are concerned,
as computing the heuristic is so expensive. The problem with “syn” is that
composing predicate sets along process boundaries as described above is a very
coarse approach: it can happen that we have a predicate set that is very small
and yields a heuristic that is fast to compute but not very good, and then
adding the predicates from another process immediately results in an abstraction
that might be good but is extremely expensive to compute.6 In contrast, with
our abstraction refinement the differences between subsequent abstractions will
typically be much smaller so that the balance between heuristic quality and
heuristic computation time can be better tuned.

6 This problem also occurs when we use off-the-shelf abstraction refinement [16].

5.2 Using the (Joint or Separate) Target Locations as Initial
Predicates

In our benchmarks the error condition is given by a formula of the form
(loc(p1) = `1) ∧ (loc(p2) = `2), i.e., the error state consists of process p1 be-
ing in `1 and p2 being in `2 simultaneously. The simplest setup we tried is the
following: the initial abstraction consists of the two location predicates for the
two target locations.7 The abstraction can thus definitely distinguish a target
state from a non-target state, which in our intuition is a good basis for a heuris-
tic function. In each step, the refinement is based on a single abstract path of
maximal length in the current abstract space. The results for this strategy are
marked in Tables 1 and 2 with “1abs”.

As a termination criterion for the refinement, we used thresholds on the size of
the abstract state space and on the number of layers as in Sec. 5.1. Whenever one
of them is exceeded, then the current abstraction will be the last one generated
in this refinement loop. The thresholds were chosen to pose a sensible limit on
the computational resources spent in building the abstractions.

Although it seems intuitively reasonable to have an initial abstraction that
contains location predicates for both target locations, on the other hand one
may also argue that it is good to combine several abstractions, and a simple way
of doing this is to have two abstractions, each based on the initial predicate set
{loc(pi) = `i} for i = 1, 2. Everything else is as before. The results are marked
in the tables with “2abs”.

Concerning the size of the explored state space, “2abs” is better than “1abs”
on most examples. This suggests that, ceteris paribus, the argument that having
several different heuristics is better than having just one outweighs the argument
that a good heuristic should at least capture the difference between a target state
and a non-target state. Therefore, in the investigation of other aspects of the
design space presented in the sequel, we decided to base the initial abstractions
on the two targets kept separate.

Concerning the total runtime, “1abs” is sometimes negligibly better than
“2abs” because we only have to compute one abstract space instead of two.

Now compare “2abs” to the other heuristics. The results are never extraor-
dinarily bad: in the few cases where the results are among the worst, they are
“in good company”. The results are often among the best, but in none of these
cases are they dramatically better than the corresponding result for “seed”, see
Sec. 5.4. Compared to “syn”, the balance between heuristic quality and heuristic
computation time can be better tuned because the differences between subse-
quent abstractions are typically small.

7 Note that having two processes involved in the target condition does not mean that
the whole system consists of just these two processes.

Table 3. Refinement based on q paths of length l, setting 5000/10/SUM

l → w
1

w
2
,w
3
,w
4

↓ q M1

1,2,4,8 14955 22162

N1

1,2,4,8 17584 30269

w
1

w
2
,w
3
,w
4

M2

17753 38234

N2

38216 69276

w
1

w
2
,w
3
,w
4

M3

86316 61252

N3

157491 145018

w
1

w
2
,w
3
,w
4

M4

110240 110240

N4

353609 353609

l → w
1

w
2

w
3

w
4

↓ q C2

1 7382 13653 23389 23389

2,4,8 7382 12500 12500 12500

C3

1 2866 5208 9634 9634

2,4,8 2866 4819 4819 4819

C4

1 2679 4989 8587 8587

2,4,8 2679 4600 4600 4600

w
1

w
2

w
3

w
4

C5

258 258 522 522

258 258 258 258

C6

3127 14707 15925 15925

3127 12922 12922 12922

C7

31584 92322 98028 98028

31584 86465 86465 86465

w
1

w
2

w
3

w
4

C8

106065 293694 308413 308413

106065 288112 288112 288112

C9

451610 1412455 1560656 1560656

451610 1413494 1413494 1413494

5.3 Abstractions Based on Several Paths

In this setup, each iteration of the refinement loop is based on refining several
paths, each as shown in Fig. 3. We generated two abstractions, each based on
the initial predicate set {loc(pi) = `i} for i = 1, 2.

For each target, the refinement loop works as follows: given the current ab-
stract space, we select several paths for doing refinement — selecting all paths
would be too expensive, selecting just one path might result in too few predi-
cates being added in the refinement step. Moreover, the longer the abstract path
the more predicates will be added due to this path. Therefore our intuition was
that the number and quality of the predicates added are strongly correlated to
the length of the abstract paths one chooses, and so we decided that all abstract
paths should all have the same length l, which is thus a parameter of the method.
Technically, in an ad hoc random way one selects up to q states in the abstract
state space such that there is an abstract path of length l from such a state to
the error state. Then one refines the current abstraction based on these paths.

In Table 3, we show the explored state space size depending on q and l. Here
w is the number of layers of the current abstract state space, e.g., l = w

2 means
that the refinement is based on abstract paths whose length is half the maximal
length of any path in the current abstract state space. We set l to a minimum
of 3 to avoid some extremely short paths. Note that the results for l = w

1 , q = 1
are necessarily identical to those of “2abs 5000/10/SUM”.

The parameter q has little influence on the number of explored states. I.e.,
it does not seem to matter which or how many of the paths are chosen for the
refinement. This is a bit surprising, and contrary to our intuition [16] that off-
the-shelf abstraction refinement is too much focused on a single path, which

should be bad because it leads to abstractions that are fine in some regions and
coarse in others. In contrast, the parameter l is important. If l is too small, then
the refinement will not “take off”, i.e., it will converge very quickly generating
very few predicates (with M3 and N3 as exceptions).

We analysed some of the predicate sets generated for our benchmarks more
closely. Our observations suggest the following thesis: it is not the case that
the above strategy could lead to many very different predicate sets, depending
on how the parameters are chosen. Rather, for reasonably chosen parameters,
an abstraction refinement based on one of the target locations will converge
to a certain predicate set. This convergence can happen very early and the
predicate set can be very small. This motivates the method described next,
adding additional “seeds” for the abstraction. We go back to taking q = 1 and l
maximal, as in Sec. 5.2.

5.4 Generating Several Abstractions Based on “Random Seeds”

Using the setups above, we observed that our refinement sometimes reaches a
fixpoint extremely early, way before any “artificial” termination criterion (see
Sec. 5.1) applies. If the final transition of the abstract path is ` → `′ and the
initial abstraction is just the predicate loc = `′, then the abstract space will have
two states T and F, and the refinement will not add any predicates. Generally,
if the abstract path consists of location-wise consistent edges and either there
are no integer guards/invariants or they have already been added, then the
refinement stops, and this can happen very early, so that the abstraction is
extremely coarse.

Our idea to overcome this phenomenon is to insert a “random” location
predicate as an additional “seed” for the abstraction refinement, i.e., to use a
slightly finer initial abstraction. As a first näıve realisation of this, we generated
abstractions by refinement based on each pair (loc = `0, loc = `) where `0 is a
target location and ` any other location, for any process. This will give dozens
of abstract spaces for our examples, so we had to find ways of generating fewer
abstractions yet sufficiently many interesting ones. After observing that many
generated spaces are extremely similar, we pruned spaces that are likely to be
similar to previously generated spaces, as follows: firstly, if for a refinement based
on some seed predicate, the generated abstract space in the first refinement
iteration consists of abstract states where the seed predicate is always U, then
we deem the seed predicate to be useless and abort the refinement based on it.
Secondly, we take at most one location predicate per system process as seed, that
is to say, we consider the location predicates of each process in turn, but once
we have successfully generated an abstraction for the current location predicate,
we disregard all remaining location predicates of the current process. With this
approach, we typically obtained between four and six abstractions.

The results are marked in Tables 1 and 2 with the word “seed”. The results
are very unstable, sometimes extremely good, sometimes extremely bad. An
improvement of the approach could be to allow for random restarts, that is to
say, whenever the error search is taking too long, one might abort the search and

compute a new heuristic function, obtained by modifying some of the parameters.
This is in loose analogy to random restarts in propositional satisfiability solving
[21]. Alternatively, one could have several searches running in parallel, based on
several abstractions obtained by choosing the parameters in different ways.

For the M and N examples, the search space sizes are sometimes the same
for “100/10” and “5000/10”. Also, some search space sizes are identical to the
respective values for “2abs”. Of course, we do not believe that this is a pure
coincidence, but rather, that it is due to the fact that the underlying abstractions
are similar. While inspection confirms this to some extent, it is not obvious that
the abstractions should be so extremely similar, but we do not consider this to
be a particularly important issue.

6 Related Work

Using pattern database heuristics for DMC has been proposed in [25]. The sys-
tems considered are finite-state transition systems, where each state consists of
an assignment of values from a finite domain to the state variables. In a next
step, it is assumed that a state can be encoded as a bitvector. Unlike in our
work, the bits are not interpreted as logical formulas that “talk about” system
states, and predicate abstraction is not even mentioned. The encoding of states
as bitvectors is no abstraction, in the sense of information loss; it is only in the
next step that a pattern database abstraction is defined by ignoring some of the
bits. Note that there is no abstraction refinement in that work.

Another work by the same authors [24] does consider refinement, however it
is not the abstractions that are refined, but the abstract error paths themselves
are refined, removing those that are spurious.

In [12], pattern database heuristics are also used for DMC. Refinement is not
considered. It is observed that combining several pattern databases is useful.

In [10], DMC of timed automata is considered. The heuristic function is based
on an abstraction that merges locations until there are at most N locations left,
where N is a parameter. The heuristic function is read off the overall merged
automaton. This approach does not involve predicate abstraction or refinement.

We have already mentioned another approach to DMC, which we used for
comparison because it is among the best for our benchmarks [20]. Several heuris-
tic functions including [10, 20] have been joined in the tool Uppaal/DMC [19].

In our own previous work [16], we have presented a first implementation of
predicate abstraction for DMC of timed automata, including one approach where
the abstraction was generated using refinement. Unlike in the work presented
here, in the implementation we actually used the tool ARMC [23]. The setup of
the refinement process differs substantially from the one of this paper — most
importantly, in [16] we have a preprocessing of the original system splitting it into
several subsets of its processes, similarly as described for “syn”. The motivation
for implementing the refinement process ourselves instead of relying on ARMC
is that we wanted to cater for the aspects that are different in our scenario, as
discussed in Sec. 4.

7 Discussion

In this paper, we have presented various methods of setting up a predicate ab-
straction refinement loop for the purpose of generating heuristic functions for
DMC.

We found that generating predicates by collecting guards along abstract
paths is useful for generating reasonably small and good abstractions (Sec. 5.2),
in contrast to the syntax-based abstractions [16] that tend to be too big (“syn”).
So the main benefit is that abstraction refinement selects good predicates from
a repertoire.

Moreover, we hoped that abstraction refinement enlarges the repertoire of
predicates, as in Fig. 2, where the predicate i = j + 3 cannot be read off the
system syntax. We have looked into this, and it seems to be of hardly any
significance. For our benchmarks it happens very rarely (though not never!)
that a predicate is generated that is not contained as a guard or invariant in the
system. Thus for these benchmarks, generating predicates by updating guards
and invariants is overly subtle and complicated.

Basing the refinement loop on several, not necessarily error paths rather than
just one path did not have the positive impact of adding more predicates that we
hoped (Sec. 5.3). As we explained in Sec. 5.4, this is mostly due to the fact that
the refinement can reach a fixpoint at a very early point: the abstract paths,
even though extremely short, do not give rise to the addition of any further
predicates.

The idea of adding seeds (Sec. 5.4) provides a remedy to this problem. The
idea can be varied in many ways, of which we discussed some. It can yield very
good results, but the results are quite unpredictable, and we still hope to enhance
abstraction refinement using some technique which systematically improves on
the method of Sec. 5.2.

In fact, suppose there is a more stable solution to the problem of early conver-
gence, consistently obtaining reasonably good results. Then this solution might
provide the key to boosting the performance of our initial idea, basing the re-
finement on several paths rather than just one path. This is a promising issue
to be explored in further work.

In summary, while the application of abstraction refinement for the intelligent
creation of heuristic functions is an exciting idea, making this idea work in
practice is non-trivial and involves several subtle issues. A variety of these issues
has been identified and investigated in our work. It remains to be seen in future
work how the prevailing difficulties can be overcome. In particular, it may be
that some of the issues disappear or are less critical in other search problems.
Hence investigating the method in other contexts – other DMC formalisms or
AI problems – is important.

Acknowledgements This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB TR14/AVACS).
We would like to thank Henning Dierks, Sebastian Kupferschmid, Bernhard

Nebel, Andreas Podelski, and Martin Wehrle for useful discussions and help
with the implementation. We could also like to thank the anonymous reviewers
of this paper for their useful comments.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

2. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Completeness of ab-
straction refinement for software model checking. In Joost-Pieter Katoen and
Perdita Stevens, editors, Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume 2280 of
LNCS. Springer-Verlag, 2002.

3. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. International Journal on Software
Tools for Technology Transfer, 5(1):49–58, 2003.

4. Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on
Uppaal. In Marco Bernardo and Flavio Corradini, editors, Revised Lectures on
Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS, pages
200–236, 2004.

5. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Con-
currency and Petri Nets 2003, volume 3098 of LNCS, pages 87–124. Springer-
Verlag, 2004.

6. Edmund Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based
counterexample-guided abstraction refinement. IEEE Transactions on Computer
Aided Design, 23(7):1113–1123, 2004.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symposium on Principles of Programming Languages,
pages 238–252, 1977.

8. Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Computational
Intelligence, 14(3):318–334, 1998.

9. Henning Dierks. Comparing model checking and logical reasoning for real-time
systems. Formal Aspects of Computing, 16(2):104–120, 2004.

10. Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking
with distance-preserving abstractions. In Antti Valmari, editor, Proceedings of the
13th International SPIN Workshop on Model Checking Software, volume 3925 of
LNCS, pages 19–34. Springer-Verlag, 2006.

11. Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-
state model checking in the validation of communication protocols. International
Journal on Software Tools for Technology, 5(2-3):247–267, 2004.

12. Stefan Edelkamp and Alberto Lluch-Lafuente. Abstraction in directed model check-
ing. In Proceedings of the ICAPS Workshop on Connecting Planning Theory with
Practice, pages 7–13, 2004.

13. Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and Natarajan Shankar. ICS:
Integrated canonizer and solver. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Proceedings of the 13th International Conference on Computer Aided Ver-
ification, volume 2102 of LNCS, pages 246–249. Springer-Verlag, 2001.

14. Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS.
In Orna Grumberg, editor, Proceedings of the 9th International Conference on
Computer Aided Verification, volume 1254 of LNCS, pages 72–83. Springer-Verlag,
1997.

15. Jörg Hoffmann and Jana Koehler. A new method to index and query sets. In
Thomas Dean, editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 462–467. Morgan Kaufmann, 1999.

16. Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko, Sebastian Kupferschmid,
and Andreas Podelski. Using predicate abstraction to generate heuristic functions
in UPPAAL. In Stefan Edelkamp and Alessio Lomuscio, editors, Post-Proceedings
of the 4th (2006) Workshop on Model Checking and Artificial Intelligence, volume
4428 of LNCS, pages 51–66. Springer-Verlag, 2007.

17. Richard E. Korf. Finding optimal solutions to Rubik’s Cube using pattern
databases. In Proceedings of the 14th National Conference on Artificial Intelli-
gence and 9th Innovative Applications of Artificial Intelligence Conference, pages
700–705. MIT Press, 1997.

18. Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The UniForM workbench, a universal development environment for formal meth-
ods. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, Proceedings of
the World Congress on Formal Methods in the Development of Computing Systems,
volume 1709 of LNCS, pages 1186–1205. Springer-Verlag, 1999.

19. Sebastian Kupferschmid, Klaus Dräger, Jörg Hoffmann, Bernd Finkbeiner, Hen-
ning Dierks, Andreas Podelski, and Gerd Behrmann. Uppaal/DMC – Abstraction-
based heuristics for directed model checking. In Orna Grumberg and Michael Huth,
editors, Proceedings of the 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 4424 of LNCS, pages 679–
682. Springer-Verlag, 2007.

20. Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Antti Valmari,
editor, Proceedings of the 13th International SPIN Workshop on Model Checking
Software, volume 3925 of LNCS, pages 35–52. Springer-Verlag, 2006.

21. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, pages 530–535. ACM, 2001.

22. Judea Pearl. Heuristic. Addison-Wesley, 1985.
23. Andreas Podelski and Andrey Rybalchenko. ARMC: the logical choice for software

model checking with abstraction refinement. In Michael Hanus, editor, Proceedings
of the 9th International Symposium on Practical Aspects of Declarative Languages,
volume 4354 of LNCS, pages 245–259. Springer-Verlag, 2007.

24. Kairong Qian and Albert Nymeyer. Abstraction-based model checking using
heuristical refinement. In Farn Wang, editor, Proceedings of the 2nd International
Conference on Automated Technology for Verification and Analysis, volume 3299
of LNCS, pages 165–178. Springer-Verlag, 2004.

25. Kairong Qian and Albert Nymeyer. Guided invariant model checking based on
abstraction and symbolic pattern databases. In Kurt Jensen and Andreas Podelski,
editors, Proceedings of the 10th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 2988 of LNCS, pages 497–
511. Springer-Verlag, 2004.

