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Abstract— In this paper we present representations and
mechanisms that facilitate continuous learning of visual con-
cepts in dialogue with a tutor and show the implemented robot
system. We present how beliefs about the world are created
by processing visual and linguistic information and show how
they are used for planning system behaviour with the aim at
satisfying its internal drive – to extend its knowledge. The
system facilitates different kinds of learning initiated by the
human tutor or by the system itself. We demonstrate these
principles in the case of learning about object colours and basic
shapes.

I. INTRODUCTION

Cognitive systems are often characterised by their ability
to learn, communicate and act autonomously. By combining
these competencies, the system can incrementally learn by
engaging in mixed initiative dialogues with a human tutor.
In this paper we focus on representations and mechanisms
that enable such interactive learning and present a system
designed to acquire visual concepts through interaction with
a human.

Such continuous and interactive learning is important
from several perspectives. A system operating in a real life
environment is continuously exposed to new observations
(scenes, objects, actions etc.) that cannot be envisioned in
advance. Therefore, it has to be able to update its knowledge
continuously based on the newly obtained visual information
and information provided by a human teacher. Assuming
that the information provided by the human is correct, such
interactive learning can significantly facilitate, and increase
the robustness of, the learning process, which is prone to
errors due to unreliable robot perception capabilities. By
assessing the system’s knowledge, the human can adapt
their way of teaching and drive the learning process more
efficiently. Similarly, the robot can take the initiative, and
ask the human for the information that would increase its
knowledge most, which should in turn lead to more efficient
learning.

In this paper we describe how our robot George, depicted
in Fig. 1, learns and refines visual conceptual models of
colours and two basic shapes, either by attending to infor-
mation deliberately provided by a human tutor (tutor-driven
learning: e.g., H: ‘This is a red box.’) or by taking initiative
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of Ljubljana, Slovenia
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Fig. 1. Scenario setup.

itself, asking the tutor for specific information about an
object in the scene (situated tutor-assisted learning: e.g., G:
‘Is the elongated object yellow?’), or even asking questions
that are not related to the current scene (non-situated tutor-
assisted learning: e.g., G: ‘Can you show me something
red?’)1. Our approach unifies these cases into an integrated
approach including incremental visual learning, selection of
learning goals, continual planning to select actions for op-
timal learning behaviour, and a dialogue subsystem. George
is one system in a family of integrated systems that aim to
understand where their own knowledge is incomplete and
that take actions to extend their knowledge subsequently.
Our objective is to demonstrate that a cognitive system
can efficiently acquire conceptual models in an interactive
learning process that is not overly taxing with respect to tutor
supervision and is performed in an intuitive, user-friendly
way.

Interactive continuous learning using information obtained
from vision and language is a desirable property of any
cognitive system, therefore several systems have been de-
veloped that address this issue (e.g., [1], [2], [3], [4], [5],
[6], [7]). Different systems focus on different aspects of this
problem, such as the system architecture and integration [3],
[4], [6], learning [1], [2], [6], [7], or social interaction [5].
Our work focuses on the integration of visual perception
and processing of linguistic information by forming beliefs
about the state of the world; these beliefs are then used in
the learning process for updating the current representations.
The system behaviour is driven by a motivation framework
which facilitates different kinds of learning in a dialogue
with a human teacher, including self-motivated learning,
triggered by autonomous knowledge gap detection. Also,

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.



George is based on a distributed asynchronous architecture,
which facilitates inclusion of other components that could
bring additional functionalities into the system in a coherent
and systematic way (such as navigation and manipulation).

The paper is organised as follows. In §II we present the
competencies and representations that allow integrated, con-
tinuous learning, and describe the system we have developed.
In §III we focus on different types of learning mechanisms.
The experimental results are then presented in §IV. We
conclude the paper with a discussion and some concluding
remarks in §V.

II. SYSTEM COMPETENCIES AND REPRESENTATIONS

A robotic system capable of interactive learning in dia-
logue with a human needs to have several competencies (the
ones that enable it to demonstrate such behaviour) and has
to be able to process the different types of representations
stemming from different modalities. Fig. 2 concisely depicts
the main competencies of our system and the relationships
between them. By processing visual information and com-
municating with the human, the system forms beliefs about
the world. They are exploited by the behaviour generation
mechanism that selects the actions to be performed in order
to extend the system’s knowledge about visual properties. In
the following we first describe the individual competencies
and representations, then show how they are integrated into
a unified robot system.

Visual 
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Beliefs

Fig. 2. System competencies and relationships between them.

A. Vision

To autonomously learn visual object concepts the system
needs to identify the moment when new objects are presented
as a learning opportunity. Since initially there are no models
for these yet, it cannot rely on model-based recognition, but
requires a more general mechanism. To this end the system
uses a generic bottom-up 3D attention mechanism suited for
indoor environments that are typical for many robotic tasks.

To make the problem of generic segmentation of unknown
objects tractable we introduce the assumption that objects are
presented on a table, or any other supporting surface. Based
on 3D point clouds obtained from a stereo rig, the system
detects (possibly multiple) supporting planes using a variant
of particle swarm optimization [8]. Any parts sticking out

from the supporting plane form spaces of interest (SOIs),
i.e. anything that is potentially interesting, without regard
to its properties. These SOIs are subsequently validated by
tracking them over time, based on persistence, stability and
size.

As segmentation based on the stereo 3D point cloud
alone tends to be imperfect and can include background,
especially for weakly textured objects, stable SOIs are aug-
mented with a precise segmentation mask using the graph cut
algorithm [9] based on combined colour and 3D information.
Object properties to be learned, such as colour and shape,
are then extracted based on the segmentation mask.

B. Visual learning and recognition

To efficiently store and generalise the extracted visual
information, the visual concepts are represented as generative
models. These generative models take the form of probability
density functions (pdf) over the feature space, and are
constructed in an online fashion from new observations. The
continuous learning proceeds by extracting the visual data
in the form of multidimensional features (e.g., multiple 1D
features relating to shape, texture, colour and intensity of
the observed object) and the online discriminative Kernel
Density Estimator (odKDE) [10] is used to estimate the
pdf in this multi-dimensional feature space. The odKDE
estimates the probability density functions by a mixture of
Gaussians, is able to adapt using only a single data-point at
a time, does not assume specific requirements on the target
distribution, and automatically adjusts its complexity by
compressing the models. The odKDE penalizes discrimina-
tion loss during compression of the generative models that it
builds from the data stream, thus introducing a discriminative
criterion function in the construction of generative models. A
particularly important feature of the odKDE is that it allows
adaptation from the positive examples (learning) as well as
negative examples (unlearning) [11].

Therefore, during online operation, a multivariate genera-
tive model is continually maintained for each of the visual
concepts and for mutually exclusive sets of concepts (e.g.,
all colours) the optimal feature subspace is continually being
determined by feature selection. This feature subspace is then
used to construct a Bayesian classifier, which can be used for
recognition of individual object properties. However, since
the system is operating in an online manner, the system
could at any moment encounter a concept that has not been
observed before. We model the probability of this occurring
with an “unknown model”, which should account for poor
classification when none of the learnt models supports the
current observation strongly enough. Having built such a
knowledge model and Bayesian classifier, recognition is done
by inspecting a posteriori probability (AP) of individual
concepts and the unknown model.

Such a knowledge model is also appropriate for detecting
gaps and uncertainty in knowledge. By analysing the AP for
an object, the system determines the information gain for
every concept. The information gain estimates how much the
system would increase its knowledge, if it were to receive



information from the tutor about the particular concept
related to a particular object in the scene (e.g., the colour of
the object). This serves as a basis for triggering situated tutor-
assisted learning. Furthermore, the system can also inspect
its models and determine which model is the weakest or
the most ambiguous. Based on this estimate, the information
gain for every concept is again calculated; this time, it does
not relate to a particular object and serves as a basis for
initiating non-situated tutor-assisted learning.

C. Beliefs

Each unit of information describing an entity (e.g., an ob-
ject) is expressed as a probability distribution over a space of
alternative values (e.g., different colours, or different shapes).
These values are formally expressed as propositional logical
formulae. The resulting system is given formal semantics by
translating the units of information into formulae in Markov
Logic [12]. We call these units of information beliefs [13].

Beliefs are constrained both spatio-temporally and epis-
temically. They include a frame stating where and when the
described entity is assumed to exist, and an epistemic status
stating for which agent(s) (the robot, the human tutor) the
information contained in the belief holds. Finally, beliefs are
also given an ontological category used to sort the various
belief types.

The epistemic status of an epistemic object indicates for
which agent(s) the information in the object holds. We define
three epistemic statuses of beliefs:

• Private beliefs, coming from within the robot as direct
or indirect results of its experience of the environment.

• Attributed beliefs, i.e. beliefs about the human’s beliefs,
are the robot’s conjecture about the cognitive state of
the human tutor. These are typically an indirect result
of intention recognition (language understanding).

• Shared beliefs, denoting the robot’s view of the common
ground between the robot and the human.

Besides beliefs, which represent situated information,
other kinds of epistemic objects are needed for nonsituated
information, e.g. information gathered by the system over
several entities, but not specifically tied to any of them. One
such type of epistemic object, representing models for modal
concepts (e.g. generative models for visual properties, see II-
B), is called a model status.

Beliefs, being high-level symbolic representations, provide
a shared model of the environment which can be therefore
altered by dialogue and further exploited by higher-level
processes such as motivation and planning.

D. Situated dialogue

In task-oriented dialogues between a human and a robot,
there is more to dialogue than just understanding words. The
robot needs to understand what is being talked about, but
it also needs to understand why it was told something. In
other words, what the human intends the robot to do with
the information in the larger context of their joint activity.

Therefore, understanding language can be phrased as
an intention recognition problem: given an utterance from

the human, how do we find the intention behind it? We
extend Thomason and Stone’s abductive account of language
understanding, planning and production [14], in which agents
actively monitor and maintain common ground, and to this
end they attempt to abductively recognize the others’ inten-
tions as explanations of their observed (linguistic) behaviour.
Our extension of this approach is based on explicit reasoning
over the beliefs of agents involved in the interaction [15].

Conceptually, we can distinguish three main components
in charge of the robot’s language competence:

• Language understanding, i.e. the process of recognising
the intention behind the human’s utterance. This in-
cludes relating linguistic expressions such as references
to entities in the situated (belief) context.

• Dialogue management is a deliberative component in
the situated dialogue loop. Given a context update (e.g.
a recognised intention), dialogue management selects
actions to be performed by the language subsystem.
This action is also expressed as an intention, this time
the robot’s intention to act.

• Language production is then the process of realising the
robot’s intention given the situated context.

E. Behaviour generation

In order to create intelligent behaviour an integrated
collection of competencies, systems such as George require
mechanisms to marshall these competencies, in pursuit of
desired future states. For reasons of generality and flexibility
we have chosen to use AI planning to generate intelligent
behaviour in George. There are three elements to planning
which must be tightly integrated in an intelligent robot:
goal generation and management; planning; and execution.
Execution in our system is relatively simple (a set of medi-
ator components that trigger other components when a plan
requires it), so here we will focus on the two preceding steps
in the process.

For an intelligent robot to be truly autonomous it must be
capable of generating its own goals and selecting which ones
to pursue when [16]. George features a motivation framework
which is capable of generating goals from the results of
sensing and internal processing, and selecting which of
these to pass on to planning. Goals are generated to satisfy
drives, general dispositions to attain particular future states.
George has one primary drive: to extend its knowledge. This
drive leads George to be curious about its world. We have
previously shown the benefits of a motivation framework
featuring such a drive in a mobile robot [17] and are now
exploring its use in learning and dialogue. The knowledge
extension drive has three associated goal generators. The
first generates goals for learning when the human provides
tutoring information about an object, and a corresponding
attributed belief is created (tutor-driven learning). The second
goal generator monitors the private beliefs of the robot
for perceived objects. If any object belief indicates that
there is uncertainty in the underlying representation of the
corresponding concept (colour or shape), a goal is generated
to ask the human for information about this property (situated



tutor-assisted learning). The final goal generator inspects the
model status, an epistemic object carrying the information
about the learnt models of visual concepts. It generates goals
to ask to see new objects with particular properties if the
models for these properties are not particularly discriminative
(non-situated tutor-assisted learning).

The motivation framework selects which goal to achieve
based on their potential information gain and associated cost.
These values are derived from the system’s models and the
reliability of recognition of the currently observed objects,
and are stored in the beliefs. The selected goals are forwarded
to the planning subsystem.

At the heart of the planning subsystem is Fast Down-
ward [18], a classical planner. Given an initial state, a set
of actions, and a goal formula, classical planning is about
finding sequences of actions turning the initial state into a
state satisfying the goal formula. As the classical planning
approach relies on having a complete and certain description
of the situation the agent is faced with, a condition that is not
met in the George scenario, we extend the planner to handle
uncertainty using continual planning [19]. In this optimistic
approach, the planner assigns desired effects to actions with
uncertain outcomes, and monitors their execution in order
to replan whenever the optimistic assumption was violated.
Combined with the described goal generation and selection
processes this results in a robust, domain-independent and
easily expandable system that controls the robot’s behaviour.

F. The integrated system

We integrated the competencies described above in a
robotic system. The implementation of the robot is based
on CAS, the CoSy Architecture Schema [20]. The schema is
essentially a distributed working-memory model composed
of several subarchitectures (SAs) implementing different
functionalities. George is composed of four such SAs, as
depicted in Fig. 4 (here, the components are depicted as
rounded boxes and exchanged data structures as rectangles,
with arrows indicating a conceptual information flow).

The Visual SA processes the scene as a whole using stereo
pairs of images and identifies spaces of interest, where the
potential objects are segmented and subjected to individual
processing, as described in §II-A. Fig. 3 depicts a sample
observed scene and segmented 3D points as well as detected
objects. The visual features are then extracted, and used for
recognition (and learning) of objects and qualitative visual
attributes using the methodology outlined in §II-B. Based on
the recognition results, a private belief about every object is
generated.

The beliefs can also be altered by the Dialogue SA through
dialogue processing. The system uses off the shelf software
for speech recognition and production and the developed
techniques presented in §II-D for recognition of human’s
intentions, reference resolution, and realisation of the robot’s
intentions in the situated context.

All of the beliefs are collected in the Binder SA, which
represents a central hub for gathering information from dif-
ferent modalities (subarchitectures) about entities currently

Fig. 3. Observed scene and detected objects.

perceived in the environment. They are monitored by the
Planning SA, which generates the robot behavior as described
in subsection II-E. The beliefs are first used to trigger the
motivation mechanism to produce the learning goals and then
for generating the planning state. Finally, during execution
action requests are sent to the Visual and the Dialogue SAs
to perform actions that generate the desired behaviour. The
actual mechanisms that drive these behaviours are described
in the following section.

III. LEARNING MECHANISMS

To maximize learning efficiency a cognitive system has to
be able to exploit different kinds of learning opportunities
that require different kinds and levels of learning initiative.
In our case a learning opportunity is represented by a
perceived object and by the information available about that
object, while the learning initiative (besides the learning
act itself) involves acquiring new information about the
perceived object from the tutor. In this sense we designed
three approaches for obtaining required information from
the tutor. All three approaches can be used in combination,
i.e. in mixed-initiative learning (dialogue). These learning
mechanisms are described in the following subsections; the
most important part of the process-flow for each of them is
also depicted in Fig. 4.

A. Tutor-driven learning

In the tutor-driven learning mechanism, the robot relies
on the tutor’s initiative to provide information about the
visible objects. The learning act occurs, when (i) the visual
subsystem detects an object and processes its visual features
and (ii) the information provided by the tutor is successfully
attributed to the same object. This results in two beliefs in the
binder subsystem: a private belief about the object and the
recognized object properties for the visual information; and
an attributed belief about the same object for the information
provided by the tutor. These two beliefs are the prerequisites
for the motivation subsystem to create a planning goal for
visual learning. The goal will be committed to planning
and execution only if the expected information gain for the
learning action (provided by the visual subsystem) is high
enough. Since both prerequisites for the learning are present
(visual information from the private belief and a label from
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Fig. 4. Schematic system architecture with indicated process flow for three learning mechanisms.

the attributed belief), the planner generates a trivial plan – a
sequence of learning actions, one for each property provided
by the tutor. The execution subsystem delegates the visual
learner in the visual subsystem to carry out the actions.

B. Situated tutor-assisted learning

In situated tutor-assisted learning the robot shows a greater
degree of initiative. In fact, if the tutor does not provide infor-
mation about a visible object, the robot can, depending on its
current ability to recognise that specific object, ask a question
about the object’s properties. In this case, the motivation
subsystem reacts to the private belief only. The robot asks
about the object property with the highest information gain,
since it expects that the model of the corresponding object
property will profit most if it gets the information it asks for.
In the absence of an attributed belief the planner generates
a more complex plan to ask questions about missing infor-
mation. The execution subsystem generates a corresponding
robot intention, which is further managed by the Dialogue
SA, resulting in the synthesis of the corresponding generated
utterance. Depending on the confidence in the recognition
results the planner can select between polar questions (e. g.
“Is the color of this object red?”) and open questions when
the recognition confidence is very low (e. g. “What is the
color of this object?”). After the tutor provides the answer,
the workflow is similar to the tutor-driven learning.

C. Non-situated tutor-assisted learning

The robot’s initiative goes even a step further in non-
situated tutor-assisted learning. Here the robot also tries
to influence the visual information it is getting by making
requests to the tutor (e. g. “Could you show me something
red?”). The model status (an epistemic structure similar to a
belief) has a key role in deciding if and what kind of request
to make. The model status contains key information about the
visual models (knowledge) maintained by the visual learner.
The most important information is again the information
gain, which in this case estimates the reliability of a model
in general, not relating this utility to a particular object in
the scene (in contrast, the information gain stored in the
private belief denotes the utility of new information carried
by a particular object). The goal generator that triggers this
learning mechanism has the lowest priority and is usually
triggered when no objects are present in the scene. Therefore,
when the robot doesn’t have anything else to do, it asks the
tutor to show it an object with particular visual properties
that would potentially increase the robot’s models of these
properties most.

D. Sample dialogue

A sample, mixed-initiative dialogue is shown in Fig.5. The
first fragment shows the dialogue at the beginning, when



the system has not formed any model of any concept yet,
so it cannot recognize the object properties. The tutor then
presents individual objects to the robot and describes them
(tutor-driven learning, TD, in Fig.5). After the system gets the
information, it can first initiate and later sequentially update
the corresponding information. After a number of such
learning steps, the acquired models become more reliable
and George can take the initiative and try to learn without
being told to. In this curiosity-driven learning George can
pose an open or a polar question to the tutor, when it is
able to detect the object in the scene, but is not certain
about their recognition (tutor-assisted learning, TA). After the
tutor provides an answer, the robot updates or unlearns the
corresponding representations. Furthermore, the robot can
also analyse its internal models and ask the tutor to show an
object of a particular object property that would potentially
improve its representations most, not relating its questions
to the particular scene (non-situated tutor-assisted learning,
NS). In such mixed initiative dialogue, George continuously
improves the representations and learns reliable models of
basic visual concepts. After a while George can successfully
recognise the acquired concepts and provide reliable answers.

� H: Hi, Robot.
� R: Hi, there.
� H places an unknown object in front 

of the robot: 
Do you know what this is?

� R: I don’t know.

� H: This is an elongated object.
� R: Let me see.
� R verifies the assertion and 

modifies its model: OK.

� R: What colour is this object?
� H: It is blue.
� R: OK.

� H: Is this object red?
� R: No, it is blue.
� H places a green ball on the table: 

Could you tell me what shape it is?
� R: It is compact.
� H: Is the compact object green?
� R: Probably yes.

� H places another object 
on the table.

� R: Is this object red?
� H: No. It is blue.
� R: OK.

� H removes the objects from 
the table.

� R: Would you show me 
something yellow?

� H places a banana in front 
of the robot: 
This is yellow.

� R: I see. Is it also elongated?
� H: Yes, it is.
� OK.
� H places several objects 

on the table: What colour 
is the compact object?

� R: It is orange.
� H: Thanks.
� R: Good bye.

NS

TD

TA

TA

Fig. 5. Fragments from a mixed-initiative dialogue.

IV. EXPERIMENTAL RESULTS

A. System evaluation

Learning is a long-term phenomena; the system needs to
observe a number of training samples to build a reliable and
robust representation of the concept that is being modeled.
And in order to obtain reliable results, the experiment has
to be repeated several times. To test learning performance it
is therefore very impractical to conduct an experiment with
a real human tutor showing and describing the objects to
the system live. Instead, we captured the pairs of images
and manually labelled them. Then, we replaced the image
stream coming from the live cameras by reading these images
from file. We also implemented a simple finite automata

that emulated the tutor behaviour in the case of the tutor-
driven learning; since the ground truth information about the
visual properties of the objects was known, the emulated
tutor could describe every image that was shown to the
system. Apart from the camera input and speech recognition,
the entire system worked in the same way as in the case
of live operation, therefore we were able to evaluate the
performance of the whole system.

We collected a database of 1120 images of 129 objects;
some of them are shown in Fig. 6. We used 500 pairs of
images as training samples and the rest of them for testing the
recognition performance. The training images were shown to
the system one by one and the emulated tutor provided the
corresponding description of the objects’ properties, which
triggered the learning action, as in the case of tutor-driven
learning described in §III-A. Eight colours (red, green, blue,
yellow, black, white, orange, pink) and two basic shapes
(compact, elongated) were being taught. After each update
we evaluated the models by trying to recognize the colours
of the objects in all test images. The model performance
was evaluated in terms of recognition rate. We repeated
the experiment three times by randomly splitting the set of
images into training and test sets and averaged the results
across all runs.

Fig. 6. Sample objects.

The experimental results are shown in Fig. 7. It shows the
evolution of the learning performance over time. It is evident
that the recognition rate improves with increasing numbers of
observed images. The growth of the recognition rate is very
rapid at the beginning when new models of newly introduced
concepts are being added, and still remains positive even after
all models are formed due to refinement of the corresponding
representations. The growth is not strictly monotonic; some
updates may also cause a drop in the recognition performance
due to restructuring of the models, or, more problematically,
due to a bad segmentation of the object, which may lead to
poor feature extraction. Eventually, by observing additional
training samples the models get improved and recognition
performance grows again.

At the beginning of the experiment the system knew
nothing about the object properties, while at the end it was
able to successfully recognize almost all of them. The final
recognition rate is 92.40% on average. Most of the misclassi-
fications are due to soft (or even ambiguous) borders between
certain colours (such as orange – yellow, pink – red, dark



blue – black). In fact, we asked 10 people to label the same
database, and their results differ in a very similar way. Their
average recognition rate with respect to the labels that were
used to train the robot system is 93.27%. These experimental
results show that the entire system performs as expected; it
is able to successfully detect the objects, understand the tutor
describing these objects and build reliable models of visual
properties.
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Fig. 7. System evaluation - recognition rate.

B. Evaluation of learning mechanisms

To test the other learning mechanisms we would have to
implement significantly more advanced tutor emulation (in
fact, we would have to implement another Dialogue SA that
would understand the robot’s utterances), therefore we per-
formed the evaluation of the proposed learning mechanisms
in a simulated environment in Matlab.

We used the same set of 1120 pairs of images as in the
previous experiment. We ran the visual subsystem of George,
which was used for detecting and segmenting the objects.
The extracted features were then used for evaluation of the
learning mechanisms.

We tested the performance of all three learning mecha-
nisms presented in §III: tutor-driven (TD), situated tutor-
assisted (TA) and non-situated tutor-assisted (NS) learning.
In the tutor-driven case we also wanted to test the influence of
order of training samples, so we evaluated two variants of the
tutor-driven strategy. In the first case (TDrnd), the training
images were randomly chosen, while in the second case
(TDseq) the models were first initialized with five images
from every class and then the objects were presented in a
sequence by presenting all objects of the first class, then
the second and so on. In both cases the simulated tutor
provided the label for every training image. In the case of
TA learning, the tutor was randomly presenting the objects,
but did not label them. The robot inspected the colour of an
object and if it could partially recognize the colour, it would
ask the tutor if the recognised colour label was correct. The
tutor would answer either ”yes” or ”no”; in the latter case it
would also provide the correct colour label. In the case of

NS learning, the robot dictated the sequence in which the
training samples were presented by inspecting its internal
knowledge and asking the tutor to present an object of a
particular colour.

We evaluated the performance of the learned models in
terms of the recognition rate obtained on the training set.
However, in such interactive learning settings, the success of
recognition is not the only measure that matters. It is also
very important how the learned models were obtained, i.e.,
how much effort the tutor had to invest in order to teach the
robot. Measuring the tutoring cost in such a mixed-initiative
learning framework is quite a challenging problem; in this
experiment we resorted to the following simple criterion:
if the tutor had to provide the description of an object, it
provided 3 bits of information (3 bits encode 8 classes of
colours), while a polar answer was evaluated as a 1 bit
cost. We therefore evaluated the different learning methods
by comparing their recognition rate with respect to the
cumulative tutoring costs. The evolution of the results over
time is shown in Fig. 8.

In all experiments, we used 624 images for learning and
the rest for testing. Each class was initialized by five labelled
images. In the NS approach the first 60 samples were learnt
in a tutor-driven mode to build initial models that were
reliable enough to dictate the sequence of training images.
The recognition performance was tested after every update
on all test images.

All learning strategies reached the final recognition rate of
96%. This result is higher then the recognition rate presented
in the system evaluation experiment, mainly because we used
different parameter settings in the feature selection algorithm.
For reference, we also trained the standard state-of-the-art
SVM classifier using the RBF kernel. It produced inferior
results, since it only reached 92% recognition rate. Therefore,
in terms of the final recognition performance, all learning
strategies were very successful.

The learning strategy TA was the most successful in
terms of reaching top performance with minimal information
provided. The strategies TDrnd, TDseq and NS were equal
in amount of information provided by the tutor, but there is
a striking difference in the learning rate. We can see that
the order in which the images were presented, played a very
important role. When the images were presented in sequen-
tial order (TDseq), the learning progress was very slow
(since most of the training samples for some of the colours
were presented towards the end of the learning sequence),
while learning with the random sequence (TDrnd) lead to
significantly better performance. The tutor, would therefore
have to pay a lot of attention to which of the objects to
present. The NS approach achieved very similar results to
the best TD approach; in this case, however, the sequence
of learning was dictated by the system, which would relieve
the tutor. We can expect that by combining these learning
strategies we could achieve even better results.
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Fig. 8. Evaluation of different learning strategies.

V. CONCLUSION

In this paper we presented representations and mechanisms
that facilitate continuous learning of visual concepts in
dialogue with a tutor and showed the implemented robot
system. Due to lack of space we presented the capabilities
of the developed system very briefly. We presented how the
beliefs about the world are created by processing visual and
linguistic information and how they are used for planning the
system behaviour with the aim of satisfying its internal drive
– to extend its knowledge. We focused on three different
types of learning mechanisms that are supported by the
system. We demonstrated these principles in the case of
learning about object colours and basic shapes.

During our research, we have made several contributions at
the level of individual components, as well as at the system
level. In this paper we wanted to show how an integrated
approach comprising incremental visual learning, selection
of learning goals, continual planning to select actions for
learning behaviour, and a dialogue subsystem, can lead to
a coherent and efficient system capable of mixed-initiative
learning. Such an integrated robotic implementation enables
system-wide research and development and testing on the
system and sub-system level.

The robotic implementation is based on a distributed asyn-
chronous architecture, which facilitates inclusion of other
components that will bring additional functionalities into the
system in a coherent and systematic way. Currently, we are
making use of the robot’s mobile platform and the pan-tilt
unit to enable the robot to move and look around. This will
increase the possibilities of interaction with the environment
and enable the robot to acquire novel information in a
more active and autonomous way. Here, the detection of
knowledge gaps and planning for actions that would help
to fill these gaps will play an even more important role and
will enable more autonomous and efficient robot behaviour.

The presented system, therefore, forms a firm basis for

further development. Building on this system, our final
goal is to produce an autonomous robot that will be able
to efficiently learn and adapt to an ever-changing world
by capturing and processing cross-modal information in an
interaction with the environment and other cognitive agents.

REFERENCES

[1] D. K. Roy and A. P. Pentland, “Learning words from sights and
sounds: a computational model,” Cognitive Science, vol. 26, no. 1,
pp. 113–146, 2002.

[2] L. Steels and F. Kaplan, “AIBO’s first words, the social learning of
language and meaning,” Evolution of Communication, vol. 4, no. 1,
pp. 3–32, 2000.

[3] C. Bauckhage, G. Fink, J. Fritsch, F. Kummmert, F. Lomker,
G. Sagerer, and S. Wachsmuth, “An integrated system for cooperative
man-machine interaction,” in In: IEEE International Symposium on
Computational Intelligence in Robotics and Automation, 2001, pp.
320–325.

[4] B. Bolder, H. Brandl, M. Heracles, H. Janssen, I. Mikhailova,
J. Schmudderich, and C. Goerick, “Expectation-driven autonomous
learning and interaction system,” in Humanoids 2008. 8th IEEE-RAS
International Conference on, Daejeon, South Korea, Dec. 2008, pp.
553–560.

[5] A. L. Thomaz and C. Breazeal, “Experiments in socially guided
exploration: lessons learned in building robots that learn with and
without human teachers,” Connection Science, vol. 20, no. 2 3, pp.
91–110, June 2008.

[6] S. Kirstein, A. Denecke, S. Hasler, H. Wersing, H.-M. Gross, and
E. Körner, “A vision architecture for unconstrained and incremental
learning of multiple categories,” Memetic Computing, vol. 1, pp. 291–
304, 2009.

[7] J. de Greeff, F. Delaunay, and T. Belpaeme, “Human-robot interaction
in concept acquisition: a computational model,” in Development and
Learning, 2009. ICDL 2009. IEEE 8th International Conference on,
June 2009, pp. 1–6.

[8] K. Zhou, M. Zillich, M. Vincze, A. Vrečko, and D. Skočaj, “Multi-
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