
Efficient Implementation of Pattern Database Heuristics for Classical Planning

Silvan Sievers and Manuela Ortlieb
University of Freiburg, Germany

{sievers,ortlieb}@informatik.uni-freiburg.de

Malte Helmert
University of Basel, Switzerland

malte.helmert@unibas.ch

Abstract

Despite their general success in the heuristic search commu-
nity, pattern database (PDB) heuristics have, until very re-
cently, not been used by the most successful classical plan-
ning systems.
We describe a new efficient implementation of pattern
database heuristics within the Fast Downward planner. A
planning system using this implementation is competitive
with the state of the art in optimal planning, significantly im-
proving over results from the previous best PDB heuristic im-
plementation in planning.

Introduction
Heuristics based on pattern databases (PDBs), originally in-
troduced by Culberson and Schaeffer (1996; 1998), are a sta-
ple of the heuristic search literature. In automated planning,
their use has been pioneered by Edelkamp (e.g., 2001), de-
veloped further by Haslum, Bonet, and Geffner (2005), and
the current state of the art is set by the “incremental PDB”
(iPDB) procedure by Haslum et al. (2007).

However, unlike the situation in other application areas
of heuristic search, PDB heuristics have lagged behind the
state of the art in planning. For example, none of the
planning systems that won the International Planning Com-
petitions (IPCs) have made use of PDBs, and merge-and-
shrink heuristics (Helmert, Haslum, and Hoffmann 2007;
Nissim, Hoffmann, and Helmert 2011a) have been the best-
performing planning heuristics based on (homomorphic) ab-
straction, the class of heuristic approaches into which PDBs
fall (Helmert and Domshlak 2009).

One significant challenge when applying PDB heuristics
to planning, as opposed to classical search problems, is that
PDB construction time must be amortized within a single
planner run: each planning task that a planner is evaluated
on has its own state space, set of actions and goal, which
makes it impossible to compute a PDB once and then reuse
it for multiple inputs. Hence, it is critically important to
compute pattern databases efficiently – even more so when
using PDBs within an overall algorithm like iPDB, which
generates hundreds or even thousands of individual pattern
databases in order to find a good pattern collection.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we describe such an efficient PDB imple-
mentation and show that a planner leveraging this imple-
mentation outperforms previous PDB-based planners and is
competitive with the strongest merge-and-shrink heuristics.

Background
We assume that the reader is familiar with the basics of pat-
tern databases, state spaces and planning tasks, and hence
we only revise the necessary background briefly.

To build a PDB for a planning task Π, we need a descrip-
tion of Π along with the set of state variables that shall define
the pattern. We assume that planning tasks are given in the
SAS+ representation augmented with operator costs, as in
the work of Haslum et al. (2007).

Such a planning task is defined over a set of state vari-
ables V , where each variable v ∈ V has an associated finite
domain Dv . A partial variable assignment consists of a set
of pairs of the form 〈v, d〉 with v ∈ V and d ∈ Dv such
that all variables in the set are different. A state is a par-
tial variable assignment containing such a pair for each state
variable in V . The number of states is thus

∏
v∈V |Dv|. For

state s (or more generally: for partial variable assignment s),
we write s[v] for the value associated with variable v ∈ V .

A planning task has a goal, which is a partial variable
assignment s?, with the semantics that every state s with
s? ⊆ s is a goal state. It also has a set of operatorsO, where
each operator o has a precondition pre(o) and effect eff(o),
which are partial variable assignments that define in which
states an operator can be applied (all s with pre(o) ⊆ s) and
what the resulting state is (the state s′ that agrees with eff(o)
on all variables mentioned in the effect and with s on all
other variables; we write this state as appo(s)). Operators
also have an associated cost cost(o) ∈ N0.

The goal distance h∗(s) of a state s is the cost of a shortest
path from s to any goal state in the state space defined by the
states and operators of the task, where state transitions are
weighted by the cost of the operators that induce them. (If
no goal state is reachable from s, we have h∗(s) =∞.)

Pattern databases are defined by a subset of variables
P ⊆ V called the pattern. They are based on an abstrac-
tion of the state space of Π where states which agree on
all variables in P are considered equivalent. In the case
of SAS+ tasks, the abstract state space induced by a pat-
tern database heuristic is identical to the state space of the

planning task obtained by syntactically removing all refer-
ences to state variables that are not part of the pattern from
all parts of the task description. Therefore, the abstract state
space for a given pattern is itself the state space of a plan-
ning task. (Note that this “syntactic abstraction” property
does not hold for some more general planning formalisms,
such as ones supporting axioms or preconditions using arbi-
trary propositional logic formulae.)

Pattern Databases for Planning
Since the abstract state spaces that define PDB heuristics
are themselves described by planning tasks, the first step in
computing a PDB is to compute a representation of this ab-
stract planning task, which is a straightforward operation.
Since the resulting abstract planning task is just a regular
planning task and we will not need to refer to the concrete
planning task from which the abstract planning task is de-
rived, we use the notations introduced earlier (V , O, s?,
etc.) to refer to the components of this abstract task in the
following. We assume that the variables are numbered as
V = {v1, . . . , vk} and write Di as an abbreviation for Dvi .

A pattern database is a look-up table which contains the
value h∗(s) for every state of the (abstract) task. It is usu-
ally implemented as a one-dimensional, zero-indexed array
of size N :=

∏k
i=1 |Di|. To look up the value for state s in

this table, we use a perfect hash function from states to in-
dices in {0, . . . , N − 1}. Such indices are called ranks, the
process of computing ranks from states is called ranking,
and the inverse process is called unranking. For simplicity,
we assume that the domains of the variables are 0-indexed
integers (i.e., Di = {0, 1, . . . , |Di| − 1} for all variables vi),
in which case a ranking function is given by

rank(s) =

k∑
i=1

Nis[vi],

where the coefficients Ni :=
∏i−1

j=0 |Dj | can be precom-
puted. The corresponding unranking function is given by

unrank(r)[vi] =

⌊
r

Ni

⌋
mod |Di|.

Ranking and unranking can be performed in time O(k), and
the value of a given state variable in a ranked state can be
computed in O(1) (i.e., it is not necessary to unrank a state
if we only want to access the value of one or a few variables).

In the following, we describe two algorithms for comput-
ing pattern database heuristics in planning. The first algo-
rithm, the “basic” one, is straightforward and serves as a ba-
sis for the second one, the “efficient” one. Both algorithms
compute the same pattern database, but differ in runtime and
memory requirements.

Basic PDB Construction Algorithm
Efficient procedures for computing pattern databases per-
form a search of the state space in the backward direction,
starting from the goal states of the task and searching to-
wards all other states. This allows computing the goal dis-
tances of every state in a single sweep, for example using

Input: v1, . . . , vk: state variables (Di: domain of vi)
s?: goal
O: operators

N :=
∏k

i=1 |Di|1
PDB := array of size N filled with∞2
heap := make-heap()3
graph := make-array-of-vectors()4

/* phase 1: create graph of backward transitions and
identify goal states */

for r ∈ {0, . . . , N − 1} do5
s := unrank(r)6
if s? ⊆ s then7

PDB[r] := 08
heap.push(0, r)9

end10
for o ∈ O do11

if pre(o) ⊆ s then12
s′ := appo(s)13
r′ := rank(s′)14
graph[r′].append(〈r, cost(o)〉)15

end16

end17

end18

/* phase 2: perform Dijkstra search with graph and
heap to complete the entries in PDB */

. . . (Dijkstra pseudo-code omitted)19

Algorithm 1: Basic PDB construction algorithm. In
our implementation, in line 6 we do not actually un-
rank r from scratch, but use an incremental algorithm
to create s based on the state from the previous it-
eration, which takes amortized O(1) time instead of
O(k).

Dijkstra’s algorithm (Dijkstra 1959). For the combinatorial
puzzles which are typically studied in the heuristic search
literature (e.g., Yang et al. 2008), such a backward search is
a straightforward operation since operators are invertible. In
planning, however, this is in general not the case, as oper-
ators need not be injective. For example, an operator with
pre(o) = {v1 7→ 3} and eff(o) = {v2 7→ 1, v3 7→ 0} can
reach the state {v1 7→ 3, v2 7→ 1, v3 7→ 0} from many dif-
ferent states, namely all states s where s[v1] = 3, indepen-
dently of s[v2] and s[v3].

In the basic PDB construction algorithm, we work around
this issue by performing the PDB computation in two
phases: in the first phase we explicitly construct a directed
graph representing the state space of Π by iterating over all
states s and operators o, testing whether o is applicable in
s, and if so, inserting a (backward) edge from appo(s) to
s with cost cost(o). In the second phase, after the graph is
constructed, it is searched with Dijkstra’s algorithm. The ad-
vantage of this approach is that it is one of the fastest ways
(in terms of big-O notation) to compute the pattern database,
since (potentially complicated) reasoning about backward

reachability is avoided. The disadvantage is that a represen-
tation of all transitions needs to be kept in memory. To keep
this representation small, we store the ranks of states rather
than the states themselves in all data structures. In a straight-
forward implementation, this requires 8 bytes per transition
(4 for the rank of the state reached by the transition, plus
4 for the cost of the inducing operator). Complete pseudo-
code for the basic PDB construction algorithm is given in
Algorithm 1.

Efficient PDB Construction Algorithm
The basic PDB construction algorithm has three major inef-
ficiencies:

1. Creating the complete transition graph a priori has a sig-
nificant space cost.

2. Testing each operator for applicability in each state (i.e.,
the nested loops over r and o in Algorithm 1) is expensive.
In most planning tasks only a small fraction of operators
is applicable in each state.

3. The algorithm must compute and rank many states in
lines 13 and 14. A complexity analysis shows that these
computations can form the main bottleneck of the over-
all algorithm in terms of big-O performance. A suit-
able implementation of Dijkstra’s algorithm runs in time
O(N logN + T) where N is the number of states and
T the number of state transitions.1 Transition systems in
planning are often very dense, so that T is much larger
than N logN . In this case, the combined cost of all the
state generations and ranking in lines 13 and 14, which is
O(T · k), dominates overall runtime.

In the remaining three subsections, we discuss how our
efficient PDB implementation addresses these inefficiencies.

Avoiding Constructing the Transition Graph
To avoid constructing transition graphs a priori, we must be
able to efficiently regress over states, i.e., given a state s′,
find all state/operator pairs 〈s, o〉 such that appo(s) = s′.
Given such a regression operation, we can generate the nec-
essary predecessor edges and their edge costs on the fly
whenever we expand a state in Dijkstra’s algorithm.

The problem with regression, as hinted before, is that
planning operators are not generally injective, and hence s′

and o do not uniquely define the predecessor state s. For-
tunately, there is a well-known compilation that addresses
this issue: whenever an operator o mentions variable v in its
effect but not in its precondition, o is noninjective. How-
ever, it can be transformed into a set of injective operators
by generating one copy of the operator for each possible

1Our implementation uses delayed duplicate elimination and
has an inferior worst-case performance of O(N logN +T logN).
Despite the big-O disadvantage, we believe our implementation
to be preferable for most planning benchmarks since the hidden
constants are lower and the worst case can only arise if operators
have wildly varying cost. In particular, our algorithm also runs in
O(N logN + T) if operator costs are bounded by a constant.

value of v (repeating the process if there are further vari-
ables mentioned in the effect but not precondition). For ex-
ample, if pre(o) = {v2 7→ 3}, eff(o) = {v1 7→ 1, v2 7→ 1}
and D1 = {0, 1, 2}, then we create three versions o0, o1, o2
of the operator, where eff(oi) = eff(o) and pre(oi) =
pre(o) ∪ {v1 7→ i}.

For general planning, this problem transformation is
somewhat dangerous because it can exponentially blow up
the representation size: consider an operator o with empty
precondition which sets n variables to 0 in its effect. If all
variables have the domain {0, 1} the compilation gives rise
to 2n versions of the operator, which is unacceptable in gen-
eral. However, in the context of pattern databases, this in-
crease is not an issue since we perform a complete explicit
search on the state space of the (abstract) problem anyway,
and hence the 2n edges in the state space induced by o would
be considered in any case. The transformation only affects
the number of operators in the problem, but not the num-
ber of edges in the transition graph, and hence it does not
increase the asymptotic cost of PDB generation.

Therefore, in our efficient PDB generation algorithm we
“multiply out” all noninjective operators in this fashion be-
fore starting PDB construction. This allows us to regress op-
erators easily: in state s′ we can regress over o iff eff(o) ⊆ s′

and s′[v] = pre(o)[v] for all variables v mentioned in pre(o)
but not eff(o). The resulting state s of regressing s′ over o is
the state that agrees with pre(o) on all variables mentioned
in pre(o) and with s′ on all other variables. This is equiv-
alent to a regular progression (forward application) in s′ of
an operator õ defined as

pre(õ) := eff(o) ∪
{〈v, d〉 ∈ pre(o) | v does not occur in eff(o)}

eff(õ) := pre(o), and
cost(õ) := cost(o).

Avoiding Checking All Operators Individually
In the previous step, we have transformed the problem of
regressing state s′ over all operators O into the problem of
progressing s′ over all operators {õ | o ∈ O}. Hence, to
address the second inefficiency we need to efficiently deter-
mine all operators õ applicable in s′ without checking each
of them individually.

Fortunately, a suitable data structure for this purpose al-
ready exists in the form of successor generators used in the
Fast Downward planner (Helmert 2006, Section 5.3.1). The
technical details of successor generators are somewhat in-
volved and need not be repeated here. For our purposes,
it is sufficient to know that they can be constructed in time
linear in the total representation size of all operators (i.e.,
O(
∑

o∈O(|pre(õ)|+ |eff(õ)|))) and, once constructed, allow
computing all applicable operators in a state s′ much more
efficiently than by testing each operator individually (usu-
ally in sublinear time in |O|, and linear in the number of
operators applicable in s in the best case).

Therefore, our improved PDB construction algorithm
uses successor generators for the operators õ for an efficient
on-the-fly computation of the predecessor states of any state
s′ expanded during Dijkstra’s algorithm.

Avoiding State Generation and Ranking
The final change we make to the basic algorithm in order to
make it more efficient is to avoid ranking and unranking of
states while running Dijkstra’s algorithm. Instead, all com-
putations are directly performed on the ranks r′ that form
the indices into the PDB.

Our first observation is that we can easily modify the suc-
cessor generator introduced in the previous step to not re-
quire an unranked state. Instead, whenever the successor
generator needs the value of a state variable vi in the state
represented by r′, we can compute unrank(r′)[vi] on the fly
in time O(1), as discussed earlier when we introduced the
rank and unrank functions. This allows us to directly com-
pute the set of operators õ which are applicable in the state
represented by r′.

The remaining piece of the puzzle is to find a way to
apply õ to the state with rank r′ without performing any
ranking or unranking. Given r′ and õ, we are interested in
the rank of the state r that is reached when applying õ in
the state represented by r′. That is, we want to compute
r := rank(appõ(unrank(r′))), and we want to do this with-
out explicitly ranking or unranking.

This is easy to do in the case where pre(õ) and eff(õ) men-
tion exactly the same set of variables: in this case it is possi-
ble to precompute a number ∆(o) such that for all ranks r′,
rank(appõ(unrank(r′))) = r′ + ∆(õ). In the general case
where the precondition and effect refer to different variables,
however, such a number ∆(õ) does not exist: if applying õ in
r′1 results in a state with rank r1 and applying õ in r′2 results
in a state with rank r2, then there is no general guarantee
that r1− r′1 = r2− r′2. However, we can avoid this issue by
making sure that in each operator the variables mentioned in
the precondition and in the effect are always the same, using
the same kind of transformation as in our first optimization
(but this time applied to state variables mentioned in pre(o)
but not eff(o), rather than vice versa).

After this transformation, we can apply operators directly
to ranked states by simply adding ∆(õ) to the rank in time
O(1), improving over the O(k) successor generation in the
basic PDB generation algorithm.

Experimental Results
To evaluate our PDB construction algorithm, we imple-
mented it within Fast Downward, a state-of-the-art planning
system (Helmert 2006). We performed two sets of experi-
ments. The first set of experiments is a comparison “in the
small” that evaluates the PDB construction algorithm itself
as an isolated component. The main question we want to
answer with this set of experiments is:

1. Do the modifications to the basic PDB construction algo-
rithm discussed in the previous section lead to improved
performance in terms of runtime and memory usage? If
so, to what extent?

The second experiment is a comparison “in the large” that
evaluates the new PDB construction algorithms within the
context of an overall PDB-based planning system. The main
question we want to answer with this set of experiments is:

2. Is a PDB-based planning system using our PDB construc-
tion algorithm competitive with other abstraction-based
approaches to optimal planning? If yes, to what extent
can planner performance be attributed to efficient imple-
mentation techniques rather than general properties of
PDB-based heuristics?

All experiments were conducted on dual-CPU Opteron
2384 machines, on which we ran eight experiments simul-
taneously in order to fully utilize the eight available cores.
Each individual experiment ran on a single core with a time
limit of 30 minutes and a memory limit of 2 GB. As a bench-
mark set, we used the planning tasks from the sequential
optimization track of the last International Planning Compe-
tition (IPC 2011). This benchmark set comprises a total of
280 planning tasks from 14 different planning domains.

Comparison of PDB Construction Algorithms
In the first set of experiments, each experiment consisted in
the construction of a single PDB with a prespecified size
limit (in terms of number of abstract states), using either the
basic PDB construction algorithm or efficient PDB construc-
tion algorithm. No search was performed after constructing
the PDB, as we were only interested in the PDB construction
algorithm itself here.2

We first show the general coverage of both implementa-
tions, as the basic implementation often fails to construct
a PDB within the given time and memory limits. Table 1
shows the number of planning tasks in each IPC 2011 bench-
mark domain for which a PDB could be computed for four
different PDB size limits.

The experiment shows that the efficient implementa-
tion is able to complete PDB construction in significantly
more cases, especially for the PDB size limit settings of
10,000,000 and 100,000,000. For the latter limit, the effi-
cient algorithm managed to compute a PDB in 262 out of
280 cases, while the basic algorithm only succeeded in 30
cases. When the basic implementation failed to construct
a PDB, this was most often because it exhausted the 2 GB
memory limit.

To give a more fine-grained picture of the performance of
the two construction algorithms, Table 2 presents detailed
experiments for 2 of the 14 domains, comparing time and
memory needed to generate a PDB. We restrict the compari-
son to the smallest size limit of 100,000, as the basic imple-
mentation often fails to construct a PDB for larger values.

The results show that the efficient implementation is
much faster and requires much less memory to construct
PDBs. Consequently, the efficient implementation succeeds

2Note that a size limit of N means that the PDB has at most
N entries, but the actual number can be significantly lower. For
example, for N = 100000 and variables which all have a domain
with 12 elements, the pattern can only consist of 4 variables be-
cause 124 = 20736 ≤ 100000, but 125 > 100000. The procedure
we used to define the pattern in this experiment adds the variables
to the pattern in the order used by the original merge-and-shrink
heuristic (Helmert, Haslum, and Hoffmann 2007), stopping when
the next variable in the sequence would increase the PDB size be-
yond N .

basic algorithm efficient algorithm
Domain 100k 1m 10m 100m 100k 1m 10m 100m
Barman (20) 20 20 0 0 20 20 20 20

Elevators (20) 20 20 18 0 20 20 20 20

Floortile (20) 20 20 2 0 20 20 20 20

Nomystery (20) 20 20 18 10 20 20 20 20

Openstacks (20) 20 20 3 0 20 20 20 20

Parcprinter (20) 20 20 4 0 20 20 20 20

Parking (20) 20 20 10 0 20 20 20 20

Pegsol (20) 20 20 0 0 20 20 20 20

Scanalyzer (20) 17 12 3 3 20 20 19 18

Sokoban (20) 20 20 20 7 20 20 20 20

Tidybot (20) 13 0 0 0 20 20 20 4

Transport (20) 20 20 18 2 20 20 20 20

Visitall (20) 20 20 8 8 20 20 20 20

Woodworking (20) 20 20 2 0 20 20 20 20

Total (280) 270 252 106 30 280 280 279 262

Table 1: Comparison of number of instances where a PDB
could be constructed within the given limits by the basic and
efficient construction algorithm. Number of tasks in each
domain is shown in parentheses. The PDB size limits are
abbreviated as 100k for 100,000; 1m for 1,000,000; 10m
for 10,000,000; and 100m for 100,000,000. Best results for
each size limit are highlighted in bold.

in building a PDB for many problem instances where the
slow implementation fails.

Comparison of Full Planners
In the second set of experiments, we investigated if the ef-
ficient PDB construction algorithm can help build a PDB-
based planning system that is competitive with the state
of the art in optimal planning. In particular, we are inter-
ested in comparisons to the previous best PDB-based plan-
ning systems and to merge-and-shrink heuristics (Helmert,
Haslum, and Hoffmann 2007; Nissim, Hoffmann, and
Helmert 2011a). Merge-and-shrink heuristics are a related
approach to pattern database heuristics and were among the
most successful approaches at IPC 2011. (The only planners
that outperformed the merge-and-shrink planner by Nissim,
Hoffmann and Helmert at IPC 2011 were portfolio planners
that used merge-and-shrink as a component.)

Before our work, the state of the art for PDB-based plan-
ning systems was set by the implementation of the iPDB
procedure (Haslum et al. 2007) within Haslum’s HSPf plan-
ner. Previous experiments (Helmert, Haslum, and Hoff-
mann 2007) have shown a planning system using merge-
and-shrink heuristics to clearly outperform this iPDB im-
plementation. However, this result is difficult to interpret
since the merge-and-shrink and iPDB approaches were im-
plemented within completely different planning systems,
and implementation details can be very important for per-
formance.

The iPDB approach is based on a local search in the space
of PDB collections and constructs a large number of (typi-
cally small to medium-sized) pattern databases before start-
ing the actual search. We hoped that an iPDB implementa-
tion using our efficient PDB construction could outperform

basic (100k) eff. (100k) basic (100k) eff. (100k)
I Mem. Time Mem. Time I Mem. Time Mem. Time

Scanalyzer Scanalyzer

01 5 0.02 5 0.01 11 862 21.86 24 0.41

02 43 0.97 6 0.15 12 18 0.25 6 0.06

03 43 0.66 6 0.11 13 50 2.71 19 0.05

04 66 1.31 6 0.05 14 62 4.52 21 0.05

05 125 2.53 7 0.07 15 32 0.63 6 0.03

06 28 0.45 6 0.04 16 217 2.78 8 0.17

07 — — 27 4.74 17 126 2.78 10 0.07

08 1156 31.60 10 0.76 18 727 20.15 14 0.46

09 834 19.63 13 0.48 19 930 24.13 18 0.50

10 — — 18 3.03 20 — — 236 30.45

Tidybot Tidybot

01 437 8.49 11 0.42 11 1574 28.87 34 1.27

02 562 11.16 16 0.51 12 1573 29.03 34 1.36

03 562 13.28 16 0.51 13 1573 28.49 34 1.14

04 562 11.75 16 0.53 14 — — 52 1.57

05 1184 20.87 23 0.87 15 — — 52 1.40

06 1184 22.49 23 0.87 16 — — 53 1.46

07 1184 24.38 23 0.88 17 — — 53 1.43

08 1184 20.74 23 0.88 18 — — 52 1.86

09 1576 29.04 34 1.10 19 — — 53 1.42

10 1573 27.95 34 1.11 20 — — 53 1.47

Table 2: Comparison of peak memory usage (in MB) and
construction time (in seconds) for the basic and efficient
construction algorithm with a PDB size limit of 100,000.
The first column indicates the instance of the domain. Best
results are highlighted in bold.

the implementation in HSPf and possibly approach the per-
formance of merge-and-shrink-based planners.

We reimplemented the iPDB approach within the Fast
Downward planner, which is also the basis of the merge-
and-shrink heuristic results reported in the literature. Our
reimplementation performs the same local search in pattern
space as described in the original iPDB paper (Haslum et
al. 2007), with very few conceptual differences.3 The most
important such differences are the following:
• The iPDB pattern construction process requires heuristic

estimates for a set of sample states and a large number
of candidate patterns. These candidate patterns are of the
form P ∪ {v} where P is a pattern for which a PDB has
previously been constructed and v /∈ P is an additional
variable considered for adding.
Our implementation computes a complete PDB for P ∪
{v} to obtain these heuristic values. The HSPf implemen-
tation uses a more sophisticated strategy where hP∪{v}(s)
is computed using A∗ search with hP as a heuristic. We
avoided this additional complexity because we hoped that
3Some differences are hard to avoid since the two underlying

planning systems are very different and the iPDB procedure is
complex. To give some indication of this complexity, the PDB-
related code within HSPf comprises around 7000 lines, and the
PDB-related code within Fast Downward comprises around 2000
lines. The complete planning systems comprise more than 100000
lines of code in the case of HSPf and more than 30000 in the case
of Fast Downward, although in both cases not of all this code is
relevant to the experiments here.

our PDB construction process was sufficiently fast for
computation of hP∪{v} not to be a major bottleneck.

• The HSPf implementation of iPDB uses a statistical prun-
ing technique for reducing the amount of samples re-
quired for finding the next pattern to add to the pattern
collection. To reduce code complexity, we did not imple-
ment this pruning criterion, as we hoped it would not be
necessary for good performance in our implementation.

• The PDBs used by HSPf are constrained pattern
databases (Haslum, Bonet, and Geffner 2005), which
can offer better heuristic estimates than regular pattern
databases. To reduce code complexity, we did not im-
plement constrained PDBs.
Besides these conceptual differences, which should favor

HSPf, there are significant engineering differences between
the two implementations, mostly related to the choice of data
structures that admit efficient algorithms. Our aim was to
provide an iPDB implementation that is optimized to a sim-
ilar degree as the other heuristics within Fast Downward.

Of course, one such engineering difference is that our im-
plementation uses the efficient PDB construction algorithm
described in this paper.4 Apart from the addition of pattern
database heuristics and the iPDB procedure, which are de-
scribed in detail by Haslum et al. (2007), we did not make
any changes to the basic Fast Downward planner, so we refer
to the literature for more details on the planner, such as the
method it uses to convert a PDDL task into a finite-domain
representation (Helmert 2006; 2009).

We evaluated our implementation of iPDB by comparing
it to the original iPDB implementation in Haslum’s HSPf
planner (in its current version) and to M&S-2011, the merge-
and-shrink based planning system that participated in IPC
2011 (Nissim, Hoffmann, and Helmert 2011a; 2011b).

We performed some initial parameter tuning for the two
iPDB approaches, resulting in the following settings, which
were used for all benchmark instances:
• max. pattern size 2 · 106: no PDBs with more than 2

million entries are considered in the pattern construction
phase

• max. pattern collection size 2 · 107: the sum of PDB sizes
for the final pattern collection may not exceed 20 million

• sample size 100: each step of the local search in pattern
space samples 100 states to determine the next pattern to
add to the collection

• min. improvement 10: if fewer than 10 of the sampled
states lead to an improvement of heuristic estimates, the
pattern generation process stops and the actual search for
a solution of the planning task commences
Table 3 shows the outcome of this experiment. It reports

the number of problem instances solved by each planner in
each domain within the time and memory limits. Our new
iPDB implementation clearly outperforms the earlier iPDB

4The PDB construction algorithm in HSPf is somewhere be-
tween our basic and efficient algorithms. Like our efficient algo-
rithm it avoids constructing an explicit graph. However, it does not
attempt to minimize ranking and unranking operations.

Domain HSPf-iPDB FD-iPDB M&S-2011
Barman (20) 4 4 4

Elevators (20) 19 15 10

Floortile (20) 6 2 7

Nomystery (20) 18 16 18

Openstacks (20) 6 14 13

Parcprinter (20) 13 11 13

Parking (20) 5 5 5

Pegsol (20) 5 18 19

Scanalyzer (20) 7 10 9

Sokoban (20) 15 20 19

Tidybot (20) 14 14 7

Transport (20) 7 6 7

Visitall (20) 16 16 16

Woodworking (20) 6 5 9

Total (280) 141 156 156

Table 3: Comparison of solved tasks for the original iPDB
implementation in HSPf (HSPf-iPDB), our new implemen-
tation of iPDB in Fast Downward (FD-iPDB) and the IPC
2011 merge-and-shrink planner (M&S-2011). Number of
tasks in each domain is shown in parentheses. Best results
are highlighted in bold.

implementation and achieves the same overall coverage as
M&S-2011. We point out that M&S-2011 is a portfolio of
two different planners, each of which is run for part of the
30 minute timeout with no communication between them.
The new iPDB implementation beats each of the two com-
ponent planners that form this portfolio handily when these
are considered in isolation (they achieve a coverage of 84
and 131), and a portfolio including both FD-iPDB and the
components of M&S-2011 would result in better coverage
than any of the planners reported here.

This clearly shows that PDB-based planners can be com-
petitive with the state of the art in optimal planning, but also
that an efficient implementation is necessary to achieve this.

Conclusion
We have described and experimentally evaluated an efficient
implementation of pattern database heuristics for optimal
planning. Our experiments show significant efficiency im-
provements over a basic PDB generation algorithm and es-
tablish that a planning algorithm based on the efficient PDB
generation algorithm is competitive with the state of the art
in optimal planning.

Somewhat surprisingly for us, the resulting planning sys-
tem not just outperforms previous PDB-based planning sys-
tems, but also reaches the performance of a state-of-the-art
portfolio planner based on merge-and-shrink heuristic. This
does not imply that PDB heuristics are stronger than merge-
and-shrink heuristics in general: while the merge-and-shrink
planners in the portfolio use A∗ with a single heuristic, the
iPDB procedure uses a sophisticated strategy to select and
combine a large number of pattern databases. We see this re-
sult as further evidence that intelligently combining heuris-
tics is an important issue in optimal planning that requires
further research and promises significant performance im-
provements in the future.

Acknowledgments
We would like to thank Patrik Haslum for patiently answer-
ing our numerous questions about the iPDB implementation
in HSPf and for his help in conducting the experiments for
this paper.

This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Com-
plex Systems” (SFB/TR 14 AVACS) and by the Swiss Na-
tional Science Foundation (SNSF) as part of the project “Ab-
straction Heuristics for Planning and Combinatorial Search”
(AHPACS).

References
Culberson, J. C., and Schaeffer, J. 1996. Searching with pat-
tern databases. In Proceedings of the Eleventh Biennial Con-
ference of the Canadian Society for Computational Studies
of Intelligence (CSCSI-96), volume 1081 of Lecture Notes
in Artificial Intelligence, 402–416. Springer-Verlag.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Pre-proceedings of the Sixth
European Conference on Planning (ECP 2001), 13–24.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005), 1163–1168. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011a. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011b. The
Merge-and-Shrink planner: Bisimulation-based abstraction
for optimal planning. In IPC 2011 planner abstracts, 106–
107.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research 32:631–662.

