
Trial-based Heuristic Tree-search for Distributed Multi-Agent Planning

Tim Schulte
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg, Germany

schultet@cs.uni-freiburg.de

Bernhard Nebel
Institut für Informatik

Albert-Ludwigs-Universität
Freiburg, Germany

nebel@cs.uni-freiburg.de

Abstract
We present a novel search scheme for privacy-
preserving multi-agent planning. Inspired by UCT
search, the scheme is based on growing an asyn-
chronous search tree by running repeated trials through
the tree. We describe key differences to classical multi-
agent forward search, discuss theoretical properties of
the presented approach, and evaluate it based on bench-
marks from the CoDMAP competition.

Introduction
In multi-agent planning multiple agents attempt to satisfy a
given objective by interacting appropriately. Many tasks re-
quire collaboration among agents, either because they can-
not solve the problem on their own, or because they can-
not do so in a cost effective way. Planning algorithms gen-
erating solutions to such problems can, in principle, im-
plement one of two different concepts. First, centralized
multi-agent planning algorithms grant a single agent ac-
cess to the full description of the planning task. This agent
then devises plans for the coordinated execution of all
agents. Therefore, centralized multi-agent planning can be
described as single-agent planning for multiple agents. Sec-
ond, distributed multi-agent planning (DMAP) algorithms
implement local planning by each of the agents. In con-
trast to centralized multi-agent planning, no trusted center
is required. Each agent utilizes its own planning system that
needs to exploit only those parts of the search space which
are relevant to it. The agents inform each other about world
states relevant to one another, therefore communication and
coordination during the planning process are essential.

In this work, we consider a form of distributed multi-agent
planning where agents cooperate with one another while
keeping various information private. MA-STRIPS (Braf-
man and Domshlak 2013) is one of the most basic for-
malisms for this type of cooperative multi-agent planning,
and several planning techniques have since been proposed
to solve respective tasks (Nissim and Brafman 2013; 2014;
Torreño, Onaindia, and Sapena 2014). The recent emergence
of a dedicated competition on distributed and multi-agent
planning (CoDMAP) (Štolba, Komenda, and Kovacs 2015)
emphasizes the raising interest in this field.

In this paper, we introduce a novel search technique for
privacy preserving distributed multi-agent planning. The ap-

proach is based on trial-based heuristic tree-search (THTS)
(Keller and Helmert 2013); a general scalable framework for
solving different types of planning tasks. Though originating
from the field of probabilistic planning, THTS has recently
been applied to classical planning (Schulte and Keller 2014).
If we want to integrate THTS in a multi-agent planning con-
text, the challenging part is to incorporate communication
between the agents in such a way that the resulting algorithm
preserves privacy and completeness. To achieve this, we de-
fine a suitable message passing scheme and explain how the
agents can integrate states from other agents into their lo-
cal search tree. Our main contribution is the definition of the
resulting search framework, which we call distributed multi-
agent trial-based heuristic tree-search (DMT). This frame-
work extends the way of how distributed plans can be gen-
erated and so might be useful for portfolio approaches to
multi-agent planning. We exemplify two DMT algorithms.
The first approach resembles best-first search, comparable
to MAFS, the second balances exploitation and exploration
similar to UCT (Kocsis and Szepesvári 2006). We show that
both algorithms are sound and complete, and evaluate them
on a set of benchmark problems from the CoDMAP compe-
tition.

Background
We consider the problem of classical planning for multiple
cooperative agents that maintain private information on their
capabilities and internal states. The following definitions are
based on MA-STRIPS (Brafman and Domshlak 2013) but
use a multi-valued variable representation. Furthermore, pri-
vacy is not implied by the definition of the agents actions as
in MA-STRIPS, but declared explicitly.

Privacy-Preserving Multi-Agent Planning
Definition 1. A multi-agent multi-valued planning task
(MMPT) is a tuple Π = 〈N,V, s0, s?, {Ai}i∈N 〉 where

• N is a finite set of agents ϕi, indexed 1, . . . , |N |,
• V is a finite set of finite-domain state variables. Each
v ∈ V is associated with a domain Dv . A partial vari-
able assignment over V is a function s on some subset of
V such that s(v) ∈ Dv wherever s(v) is defined. A par-
tial variable assignment defined for all variables in V is
called state.

• s0 is the initial state.
• s? is a partial variable assignment over V called the goal.
• Ai is a finite set of actions available to agent ϕi. Each

action a = 〈pre(a), eff(a), c(a)〉 ∈ Ai consists of two
partial variable assignments over V called precondition
and effect; and a cost c(a) ∈ R+

0 .
An action a is applicable in state s if its precondition

holds in that state, i.e. s is identical to pre(a) wherever
pre(a) is defined. Application of action a in state s, denoted
by a(s), yields successor state s′ which is identical to eff(a)
where eff(a) is defined, and identical to s, elsewhere. The so-
lution to a MMPT is a sequence of actions π = (a1, . . . , ak)
such that a1 is applicable in s0, every subsequent action is
applicable in the state generated by its preceding action, and
the goal holds in ak(. . . (a1(s0)) . . .). Such a sequence is
called plan. A plan is optimal if its incurred cost

∑k
i=1 c(ai)

is minimal among all plans.
In privacy preserving domains, the set of variables V is

partitioned into sets of private variables V inti containing
those variables proprietary to agent ϕi, and a set of public
variables V pub containing the remaining variables which are
common to all agents. Private variables can only be observed
and be affected by actions of the agent to which the variables
are private. The agents are mutually unaware of variables
private to another agent. In principle, it is possible to define
goals on public and private variables. For a simpler exposi-
tion of the algorithms presented below, we assume that goals
are only defined for public variables v ∈ V pub. In the same
manner as the set of variables is partitioned into sets of pri-
vate and public variables, each agents’ set of actions is par-
titioned into a set of private actions Ainti and a set of public
actions Apubi . Private actions are only known to the agent to
which they are private and only depend on and affect its pri-
vate variables. Public actions can affect or depend on both
public and private variables of the agent. During planning,
the agents use both their private and public variables and ac-
tions, but restrict information exchange to the set of public
variables and actions. To hide private preconditions or ef-
fects of public actions, the agents create and solely exchange
public projections of their actions.
Definition 2. A public projection a|pub of an action a of
agent ϕi consists of the actions’ precondition and effect re-
stricted to the set of public variables V pubi :

a|pub = 〈pre(a)|pub, eff(a)|pub, c(a)〉
where pre(a)|pub and eff(a)|pub are partial variable as-
signments over V pub, such that pre(a)|pub = pre(a) for
all variables v ∈ V pub for which pre(a) is defined and
eff(a)|pub = eff(a) for all variables v ∈ V pub for which
eff(a) is defined.

The set of public projections of ϕi’s public actions is
Ai|pub, the set of all agents public projections is A|pub =⋃
i∈N Ai|pub. Note that an MMPT planning task is a MA-

STRIPS task when (1) the domain of each state variable is
binary, (2) variables only affected or required by agent ϕi’s
actions are private to ϕi, and (3) actions that solely affect
or depend on variables private ϕi are private to ϕi. In other
words, MMPT is a generalization of MA-STRIPS.

Selection Initialization Backpropagation

Figure 1: Phases of THTS.

Multi-Agent Forward Search

Multi-Agent Forward Search (MAFS) (Nissim and Braf-
man 2014) is a general search scheme for privacy preserv-
ing multi-agent planning. Each agent conducts a best-first
search, maintaining its own open and closed list. Succes-
sors of expanded states are generated by using the agents
own actions only. Whenever a state is generated for which
another agent has an applicable public action, a message
is sent to that agent. The message contains the full state,
heuristic score and g-value of the sending agent. Private flu-
ents of the state are encrypted such that only the relevant
agents can decrypt it. When agent ϕi receives a message
m = 〈s, hj(s), gj(s)〉 of some other agent ϕj , it checks
whether s is already in its open or closed list. If this is not
the case, ϕi puts s on its open list. If ϕi generated state s
previously with higher cost, it puts s on its open list again
and assigns new costs gj(s) to it. When an agent generates a
goal state, it initiates a distributed plan extraction procedure
by broadcasting the goal state in a message to all agents.

Trial-based Heuristic Tree-search

In the same way as MAFS is locally based on best-first
search, DMT is based on trial-based heuristic tree-search.
Trial-based Heuristic Tree-Search (Keller and Helmert
2013) is a generic search framework for probabilistic plan-
ning that was recently applied to classical planning (Schulte
and Keller 2014). THTS algorithms repeatedly execute three
phases. Each of these phases corresponds to a search com-
ponent that must be specified in order to derive a concrete
algorithm. In contrast to best-first search (BFS) approaches
which expand nodes from an open list that is sorted by prior-
ity, THTS algorithms maintain a tree of nodes and select one
of its leaf nodes for expansion in each search step. We will
briefly sketch the three phases of THTS using the examples
displayed in Figure 1.
1. Selection is the first phase of the algorithm with the ob-

jective to select one of the leaf nodes for expansion. Be-
ginning from the root, a selection strategy recursively se-
lects a child, until a leaf node is reached.

2. In the initialization phase, the previously selected leaf
node is initialized. Successor Nodes are generated and in-
tegrated into the tree.

3. During backpropagation (or backup) phase new informa-
tion, like value estimates or the number of times a node
has been visited during selection, is propagated through
the tree.

After the backpropagation phase, the algorithm starts
again with the first phase. This process is repeated until a
goal state is generated, or some limit is reached.

Distributed Multi-Agent THTS
We now present a complete and privacy preserving scheme
for the distributed application of trial-based heuristic tree-
search. The concept is similar to MAFS, where forward-
search is concurrently executed while state information is
exchanged between the planning agents according to a spe-
cific message passing scheme. Each agent performs THTS
locally, using its own actions only. Whenever agent ϕi ex-
pands a state s in which a public projection of an action of
ϕj is applicable, ϕi will send a message to ϕj containing
s. ϕj then integrates s into its search tree, such that it can
prospectively select s for expansion. To accomplish this, ϕj
identifies a suitable parent and adds s as a child to it. In prin-
ciple, any node can be used as a parent without soundness or
completeness being compromised. However, since the tree
structure is crucial to the success of THTS algorithms, it is
important where new states are integrated. Let s be the re-
sult of applying the sequence of actions (a1, . . . , ak) in the
initial state, i.e. ak(...(a1(s0))...) = s, and let aj be the last
action of ϕj in that sequence. If aj exists, ϕj adds s as a
child to s′ = aj(...(a1(s0))...). Otherwise, ϕj adds s as a
child to the root. Note that ϕj is not aware of all actions in
the sequence leading to s and hence cannot compute s′. We
enable ϕj to identify s′ by using a special message type.

Definition 3 (State message). A state message from ϕi to ϕj
for state s is a tuple m = 〈s, hi, gi, T 〉, where
• s is a state; private components are encrypted, such that

each agent can only decrypt its own private components.
• hi is a value estimate of ϕi for state s,
• gi is the cost of ϕi to establish state s,
• T is a set of state tokens.

Each state token belongs to an agent ϕk and contains a
state identification number. This number references a node
in the local search space of ϕk and is meaningless to all
other agents. Figure 2 illustrates how tokens are used to in-
tegrate states. Here, two agents ϕi and ϕj are planning con-
currently. Numbers next to nodes depict state IDs that cor-
respond to the local state represented by the node. Nodes
associated with states for which the other agent has an ap-
plicable public projection are rendered in bold. When ϕj
initializes the node with state ID 3, it transmits message
m1 = 〈s, 7, 2, {ϕj 7→ 3}〉 to ϕi. m1 contains a token that
enables ϕj to identify the node labelled with 3. When ϕi
receives m1, it creates a new search node for s. Because
m1 contains no token for ϕi, the new node is attached as a
child to the root. Later on, ϕi initializes the node with state
ID 5, for which ϕj has an applicable public projection. The
message m2 = 〈s′, 5, 2, {ϕj 7→ 3, ϕi 7→ 5}〉 is sent back,
from ϕi to ϕj . Because state 5 was generated in a branch to
which ϕj contributed an ancestor state, the token ϕj 7→ 3 is
attached to the message, along with the new token ϕi 7→ 5
of ϕi. The latter token enables ϕi to identify the state corre-
sponding to state ID 5. When ϕj receives m2 it looks up its

0

2

5

0

3

4

m1 = 〈s, 7, 2, {ϕj 7→ 3}〉

m2 = 〈s′, 5, 2, {ϕj 7→ 3, ϕi 7→ 5}〉
ϕi ϕj

Figure 2: State integration.

Algorithm 1: DMT for ϕi
Data: 〈N,V inti , V pub, s0, s?, A

int
i , Apubi , A|pub〉

Result: plan π = 〈ak ∈ Ai〉Kk=1
1 root← new tree from s0

2 while within computational budget do
3 σ ← root
4 if ¬l(σ) then
5 while children(σ) 6= ∅ do
6 σ ← select(children(σ))
7 initialize(σ) // memorizes plans
8 send-messages(σ, N) // distribution
9 mark σ for backup

10 process-messages() // integration
11 backup()
12 return best memorized plan

token ϕj 7→ 3, creates a new node for state s′, and attaches
it as a child to the node with state ID 3.

An overview of the resulting search scheme is depicted in
Figure 3. The algorithms main routine is defined in Algo-
rithm 1. Methods process-messages, select, initialize, send-
messages and backup correspond to integration-, selection-,
initialization-, distribution- and backup-phase respectively.
These components are described in detail below. For ease of
exposition we define the following functions to access infor-
mation stored with each search node σ:
• state(σ): associated search state
• par(σ): parent of σ
• children(σ): set of children of σ
• action(σ): action leading from state(par(σ)) to state(σ)
• h(σ): value estimate for σ
We refer to a search node σ and its associated state s =
state(σ) interchangeably where convenient.

Selection A selection strategy is a function that maps from
a set of search nodes Σ to a single node σ ∈ Σ. To ensure
that the node selected last in the selection phase is an unini-
tialized leaf node, a special locking mechanism is used. The
idea is to mark initialized nodes from which no uninitialized
leaf node is reachable as locked and to ignore such nodes
in the selection phase. Each initialized node σ∗ without any
non-locked children is locked in the backup phase by set-
ting l(σ∗) = true. New nodes created in the initialization
phase are non-locked by default. We use the following two

out: in:

Selection Initialization BackpropagationDistribution Integration

Figure 3: Phases of DMT.

selection strategies.

gbfs(Σ) = arg min
σ∈Σ,¬l(σ)

h(σ)

ucb(Σ) = arg min
σ∈Σ,¬l(σ)

h(σ)− c ·

√
ln v(par(σ))

v(σ)

gbfs constitutes a greedy best-first search variant, select-
ing the successor node σ with the best (minimum) value es-
timate h(σ).

ucb aims to balance exploration and exploitation by using
a selection formula similar to UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002) found in UCT algorithms (Kocsis and
Szepesvári 2006). Here, h(σ) ∈ [0, 1] is the normalized
value estimate of σ, such that h(σ?) = 0 for the node
σ? with the best (minimum) value estimate from Σ and
h(σ−) = 1 for the node σ− with the worst (maximum)
value estimate from Σ. All other nodes σ′ ∈ Σ are inter-
polated accordingly. The number of times a node has been
selected during selection phase is denoted by v(σ) (visits).
ucb selection favours nodes with fewer visits. Coefficient c
is a weight bias to increase or decrease the desired amount
of exploration. The higher c the higher the bias towards ex-
ploration. gbfs and ucb are just two examples of selection
strategies that can be used in line 6 of Algorithm 1.

Initialization Algorithm 2 specifies how a node σ is ini-
tialized by an agent ϕi. First, a heuristic value for state(σ)
is computed and h(σ) is set to that value. Then, all succes-
sor states s′ are generated. For each successor state s′ that
is not already in the tree a new node σ′ is created and added
to children(σ); its values are set accordingly (Algorithm 2,
line 9-11). If a successor state s′ is already in the tree, the re-
spective search node σ′ with state(σ′) = s′ is determined. If
the new path to s′ induces lower costs than the existing path,
the subtree rooted at σ′ is moved to children(σ) by adapting
parent and child pointers of the involved nodes (Algorithm
2, line 16-18). Since the former parent of σ′ lost a child,
the value estimates of all nodes along the path from the for-
mer parent to the root are deprecated. Therefore, before σ′ is
moved to its new parent σ, par(σ′) is marked to get updated
in the next backup phase (line 15).

Distribution Let σ be the node ϕi initialized last. In
the distribution phase ϕi creates a state message m =
〈state(σ), g(σ), h(σ), T 〉, such that T contains a token of ϕi
to identify σ. For each other agent the first token traceable

Algorithm 2: Initialization for ϕi
Data: σ,Ai = Ainti ∪A

pub
i

Result: modified tree node σ
1 s← state(σ)
2 h(σ)← evaluate heuristic function for s
3 foreach action a ∈ Ai applicable in s do
4 s′ ← a(s)
5 if s′ is a goal state then
6 extract and memorize plan
7 if s′ is not in the tree then
8 σ′ ← new node
9 par(σ′), action(σ′), h(σ′)← σ, a, h(σ)

10 state(σ′), v(σ′), l(σ′)← s′, 0, false
11 children(σ)← children(σ) ∪ {σ′}
12 else
13 lookup σ′ where state(σ′) = s′

14 if g(σ) + c(a) < g(σ′) and ¬l(σ′) then
15 mark par(σ′) for backup
16 remove σ′ from children(par(σ′))
17 par(σ′), action(σ′), h(σ′)← σ, a, h(σ)
18 children(σ)← children(σ) ∪ {σ′}

on the path from σ to the root is attached to T . Then, ϕi
sends m to all agents that have a public action projection
applicable in s.

Integration Following the distribution phase ϕi integrates
each state s received in a messagem = 〈s, hj , gj , T 〉 into its
local search tree. First, ϕi identifies the new parent σ∗ for s
by looking up its token from T . If T contains no token for
ϕi, then σ∗ is set to the tree’s root node. If s is new to ϕi,
a new search node σ is created and added to children(σ∗).
If some node σ′ representing s is already in the tree, it is
moved to children(σ∗) in case s is reachable with lower cost
that way. As in the initialization phase, when σ′ is moved,
its old parent is marked for backup.

Backpropagation The backup function starts at the node
σ that was initialized last and updates its values. The nodes
visits are increased by one, its value estimate is set to the
minimum among its non-locked children, and the locked flag

is set if the node itself has no non-locked child:

v(σ) = v(σ) + 1

h(σ) = minσ′∈children(σ),¬l(σ) h(σ′)

l(σ) =
∧
σ′∈children(σ) l(σ

′)

Then backup continues with the nodes parent par(σ) and
updates it accordingly. This process is repeated until the
root node is reached. In case other nodes have been marked
for backup, during initialization or integration, the process
is repeated for each marked node. This may lead to the
same node getting updated multiple times, but can easily be
avoided by using a backup queue.

Trial Length When a node σ is initialized, all its succes-
sors are generated and associated state messages are sent.
Before the agent continues with the integration phase, it
can select one of the newly generated nodes and initialize it
as well. By alternatingly executing selection-, initialization-
and distribution phase, multiple nodes can be initialized in
each search step. The number of nodes to get initialized in
a single search step is denoted as trial length. For simplicity
we did not include it in Algorithm 1. It can easily be imple-
mented by looping around lines 5-10.

Plan Extraction
If an agent ϕi generates a state that satisfies the goal a valid
plan can be extracted. ϕi informs all other agents about the
goal state and initiates a distributed plan extraction process.
First, it traces back all states of its local plan, until a state
s∗ is reached that was received in a state message from an-
other agent ϕj . Then, ϕi sends a plan extraction request to
ϕj , including s∗. ϕj then continues to trace back its local
plan, beginning from the state received in the state message.
This process is repeated until some agent reaches the initial
state, at which point plan extraction ends. The solution plan
is sequential but can often be parallelized.

The first solution found is not necessarily the optimal so-
lution. Therefore, if more planning time is available, DMT
search can easily be extended to progressively search for bet-
ter solutions. When a plan is extracted, its cost is computed
and the plan with the best cost found so far is memorized
as π. From then on each agent marks search nodes with a
higher g-value than π as locked. Each time a new goal state
is reached, its g-value is computed, and, if it is an improve-
ment, π is updated. Once each agents root is locked, π is the
optimal solution. If the time limit is exceeded earlier, π is
returned.

Soundness and Completeness
Lemma 1. Each state s in the search tree of an agent ϕi is
reachable.

Proof sketch. The first state generated by DMT is the initial
state. Each subsequently generated state is reached by an ac-
tion applied in a previously generated state. Therefore, every
state s in the search tree represents a valid sequence of ac-
tions that is applicable starting with the initial state, and that
results in state s. Hence, if a state satisfies the goal, a valid
plan can be extracted.

Lemma 2. If a goal is reachable by some sequence of ac-
tions then some agent will generate a goal.

Proof sketch. We will only consider sequences in which a
private action of an agent is followed by another action of
that agent. In (Nissim and Brafman 2014) it was shown that
it suffices to consider such sequences for any goal that in-
volves public variables only. Completeness must be decided
individually for each concrete DMT algorithm, because it
depends on the components used. In the following we argue
that the presented two selection functions (gbfs and ucb),
in combination with the other components presented, yield
complete algorithms.

In every search step, each agent initializes a new leaf node
and generates all its successors. Nodes without children are
locked, either because they are dead-ends or because all of
their successor states can be reached on shorter paths and
have been moved to other states in the tree. Therefore, all
paths that do not lead to a solution will eventually be locked.
Both selection functions solely select non-locked nodes and
will eventually, for the lack of an alternative, select a node
along a path that leads to a goal. Given sufficient time, all
nodes along such a path will be selected until the goal is
reached. If no such path exists in an agents local search
space, the agent exhaustively generates all possible states,
until its root node is locked.

We now regard sequences that involve actions of different
agents and that lead to a goal state. It is easy to see that each
agent transmits the last state s, established by a subsequence
of its own actions, to the agent owning the next action in
the sequence. If the next action is private, it is always fol-
lowed by another action of the same agent, until one action
is public. This actions public projection is applicable in state
s, and hence sent to the agent in a state message.

Relation to MAFS
MAFS and DMT are both schemes for distributing search al-
gorithms, such that completeness and privacy is preserved.
They differ in the types of algorithms that they support.
MAFS supports forward search algorithms where nodes are
expanded from an open list, while DMT supports THTS al-
gorithms that use a search tree instead. In MAFS, states are
inserted into an open list together with a static value esti-
mate computed prior insertion. The value estimates of states
in the open list never changes, hence, their relative order
remains unchanged. DMT algorithms, by way of contrast,
insert states into a tree together with value estimates that
are continuously subject to change. Therefore, algorithms
that depend on a dynamic node ordering, like UCT (Kocsis
and Szepesvári 2006), can easily be expressed as DMT al-
gorithms by defining appropriate selection, backup and ini-
tialization functions. It is not possible to implement these al-
gorithms competitively with an open list, especially when a
large number of nodes change their relative position in each
search step.

Another major difference between the two approaches
concerns the reopening of closed states. In MAFS, a newly

t = 1 t = 100

Domain mafs dmt-bfs dmt-gus mafs dmt-bfs dmt-gus

blocksworld - - - 3 - 2
depot 1 1 - 2 - 4
driverlog 16 16 15 17 16 16
elevators - - - 1 - -
logistics 8 5 1 9 5 2
rovers 10 6 1 19 19 18
satellites 3 2 3 6 11 9
sokoban 4 8 8 3 9 8
taxi 17 14 11 10 14 6
wireless 2 2 - 1 1 -
woodworking 6 3 1 5 4 6
zenotravel 13 12 12 13 13 13

Total (240) 80 69 52 89 92 84

Table 1: Coverage

generated state s is put on the open list, only, if it is not al-
ready on the closed list or if its new g-value is smaller than
the registered g-value. In the latter case, states previously
generated as successors to s will potentially be reopened in
future search steps as well. In DMT, if s is already in the
tree and its new g-value is smaller than the current g-value,
the subtree of the existing node is moved to the node that is
currently initialized. This is achieved by adapting parent and
child pointers of the involved nodes (Algorithm 2, line 15-
18). Successor states must not be generated all over again.

Evaluation
The presented DMAP algorithms were implemented in a
distributed multi-agent planning system written in Go. Ex-
periments were run on a PC with an Intel 3.2 Ghz quad-
core CPU and 4 GB of RAM. The four cores were shared
among all agents; assignment of processor time was left to
the Linux process scheduler. For communication between
processes a TCP connection was used. We experimented
with the set of benchmarks from the CoDMAP competition
(Štolba, Komenda, and Kovacs 2015) consisting of 12 do-
mains with 20 problem instances each. Planning time was
limited to two minutes per planning task. Table 1 shows cov-
erage results for the tested configurations: Multi-agent for-
ward search (mafs), DMT with greedy selection (dmt-bfs)
and DMT with ucb selection (dmt-ucb). The configurations
were tested with a trial length of either 1 or 100. In all cases
FF heuristic (Hoffmann and Nebel 2001) was used to com-
pute state value estimates. The heuristic function was ap-
plied to the agents local problem projection, containing the
agents private and public variables and actions together with
the other agents public actions projections.

Regarding configurations with a trial length of 1 (t = 1),
the numbers reflect that mafs performs best, solving 11 in-
stances more than dmt-bfs, and 28 instances more than dmt-
gus. The only domain in which dmt-bfs and dmt-gus solve
more instances than mafs is sokoban. We expected dmt-bfs to
perform slightly worse than mafs, because both approaches

search the state space in a greedy manner, but the DMT ap-
proach is computationally more expensive. Due to the brief
time limit of 2 minutes, this also affects coverage. When the
trial length is set to 100 (t = 100) all configurations im-
prove in coverage. dmt-gus records the biggest gain solv-
ing 32 additional instances, followed by dmt-bfs with 23
and mafs with 9 additional instances solved. The increase
in coverage is most noticable in the rovers domain where
mafs, dmt-bfs and dmt-gus increase their coverage by factor
1.9, 3.17 and 18.0 respectively. Increasing the trial length
causes regular search to perform additional exploration and
encourages faster escape from local minima. This is most
beneficial in domains where many solution paths exist but
search is misguided into local minima by inaccurate heuris-
tic values. When combining the solutions solved between
configurations, we find that the two MAFS configurations
solve 102 problems combined, while the DMT configura-
tions solve 110 problems combined. A portfolio planner run-
ning dmt-gus, dmt-bfs and mafs with t = 100 for 2 min-
utes each solves 117 instances, which shows that MAFS and
DMT complement each other well.

Conclusion

In this paper we presented DMT, a novel and privacy pre-
serving scheme for distributing THTS algorithms. Based on
DMT, we derived two concrete algorithms and showed them
to be sound and complete. The algorithms were evaluated
on a set of benchmark instances from the CoDMAP compe-
tition and compared to classical multi-agent forward search.
Overall, DMT and MAFS approaches performed equally
well, complementing each other in a promising way. In fu-
ture work we will create and analyze new DMT algorithms
to further exploit such complementary strengths. Addition-
ally, we would like to use DMT in settings where goals are
also defined for private variables.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR 2001) 14:253–302.
Keller, T., and Helmert, M. 2013. Trial-based heuristic
tree search for finite horizon MDPs. In Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013).
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the Seventeenth European
Conference on Machine Learning (ECML 2006), 282–293.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal plan-
ning by self-interested agents. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence (AAAI
2013).
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR 2014) 51:293–332.
Schulte, T., and Keller, T. 2014. Balancing exploration
and exploitation in classical planning. In Proceedings of the
Seventh Annual Symposium on Combinatorial Search (SoCS
2014).
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (CoDMAP). In
The International Planning Competition (WIPC 2015), 24–
28.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.

