
The More, the Merrier: Combining Heuristic Estimators for Satisficing Planning
(Extended Version)

Gabriele Röger and Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{roeger,helmert}@informatik.uni-freiburg.de

Abstract

The problem of effectively combining multiple heuristic esti-
mators has been studied extensively in the context of optimal
planning, but not in the context of satisficing planning. To
narrow this gap, we empirically examine several ways of ex-
ploiting the information of multiple heuristics in a satisficing
best-first search algorithm, comparing their performance in
terms of coverage, plan quality and runtime. Our empirical
results indicate that using multiple heuristics for satisficing
search is indeed useful and that the best results are not ob-
tained by the most obvious combination methods.

Introduction
Heuristic forward search is one of the most popular ap-
proaches in classical planning. In the last decade, re-
searchers have put a lot of effort into the development of
new heuristics so that a wide range of heuristics are avail-
able these days. None of these heuristics consistently out-
performs all others across all benchmark domains. There-
fore, it appears worthwhile to use the information of several
heuristics during search instead of only one.

In the case of optimal planning, which most commonly
means using A∗ with an admissible heuristic, arbitrary ad-
missible estimates can simply be combined by using their
maximum. The resulting heuristic dominates all individ-
ual ones, which usually translates into a reduction of the
state evaluations required to solve the task. Often, even bet-
ter combinations are possible: using action-cost partition-
ing methods (Haslum, Bonet, and Geffner 2005; Katz and
Domshlak 2008), we can add heuristic estimates in an ad-
missible way, dominating their maximum. The main draw-
back of these techniques is that efficiently finding good cost
partitionings remains a widely open research problem de-
spite significant recent progress (Katz and Domshlak 2008).

In the case of satisficing planning, where greedy best-first
search is the most common approach, the setting for combin-
ing heuristic values is quite different: the heuristics do not
have to estimate the true distance to the goal in any quantita-
tively meaningful way, since greedy search only cares about
their relative values: states further from the goal should re-
ceive larger estimates than states close to the goal. Since
there is no need to respect a criterion like admissibility, we
can combine estimates of several heuristics into a single nu-
meric value in essentially arbitrary ways.

0.1s

1s

10s

100s

1000s

ru
nt

im
e

instances (not in original order)

Alternation
hcea
hCG
hFF

Figure 1: Runtimes in the Assembly domain. (Ordering of
tasks does not correspond to the original benchmark suite.)

Combining several heuristic estimates in a satisficing
planner can potentially lead to large performance and scala-
bility improvements. Figure 1 shows a striking example of
this. The graphs show the runtime, in seconds, for solving
instances of the IPC-2000 Assembly domain using the FF
heuristic hFF (Hoffmann and Nebel 2001), the causal graph
heuristic hCG (Helmert 2004), and the context-enhanced ad-
ditive heuristic hcea (Helmert and Geffner 2008). None
of the individual heuristics solves more than 15 instances.
However, their combination (labeled “Alternation” in the
figure) solves 29 out of 30 instances, including 13 instances
not solved by any of the three heuristics it is based on.

The question, then, is how to combine the individual
heuristic estimates to achieve the best possible performance.
One obvious way to do so, by analogy to optimal planning,
is to take their maximum or sum. However, for the Assem-
bly example this does not turn out to be very useful: none
of the heuristics that can be obtained by taking two or three
of the candidate heuristics and computing their maximum or
sum solves more than 13 of the 30 tasks within usual time
and memory limits (30 minutes, 2 GB), so they are all out-
performed by the FF heuristic used alone.

An alternative idea is to use weighted sums, but this im-
mediately raises the question of how to determine suitable
weights. In the given domain, we experimented with all 33
combinations of the form h(s) = p · h1(s) + (1 − p)h2(s)
where p ∈ {0, 0.1, 0.2, . . . , 1.0} and h1 and h2 are two

open := new open-list
open.insert(sinit)
closed := ∅
while not open.empty():

s = open.remove-best()
if s /∈ closed:

closed := closed ∪ {s}
if is-goal(s):

return extract-solution(s)
for each s′ ∈ successors(s):

if not is-dead-end(s′):
open.insert(s′)

return unsolvable

Figure 2: Greedy best-first search (with duplicate detection).

heuristics from the given set. None of these combinations
improves over the basic FF heuristic. It might be the case
that better results could be obtained by using weighted sums
of all three heuristics, but then the space of possible weights
quickly explodes combinatorially.

So clearly, there are cases where maximization or sum-
mation is not the best way to combine heuristics for satis-
ficing planning. Indeed, in Fig. 1, the Alternation method is
vastly superior. This method is not new: it was introduced
by Helmert (2006) under the name “multi-heuristic best-first
search” (a term which we avoid in this paper because it ap-
plies to any of the methods we discuss), and it is one of the
ingredients underlying the Fast Downward (Helmert 2006)
and LAMA (Richter, Helmert, and Westphal 2008) planners.
However, neither Alternation nor any other method for com-
bining heuristic estimates in satisficing planners has ever
been evaluated in a principled way, and from the literature it
is completely unclear if, to what extent, and why Alternation
or any other method for combining heuristic values leads to
better planner performance than just using a single heuristic.

In this paper, we attempt to rectify this situation by giv-
ing detailed descriptions of several methods for combining
heuristic estimates, providing a thorough experimental study
on common planning benchmarks, and conducting targetted
experiments in artificial search spaces to illustrate the bene-
fits of using more than one heuristic for satisficing search.

Greedy Search with Multiple Heuristics
All search methods presented in this paper are variations
of greedy best-first search (Pearl 1984), differing only in
the choice of which state to expand next. Greedy best-
first search is a well-known algorithm, so we only present
it briefly to introduce some terminology (Fig. 2).

Starting from the initial state, the algorithm expands states
until it has found a path to a goal state or until it has
completely explored the state space. Expanding a state
means generating its successors and adding them to the open
list. The open list plays a very important role because its
remove-best operation determines the order in which states
are expanded. In single-heuristic search, it is usually simply
a min-heap ordered by s 7→ h(s), where s is a search state
and h : s → N0 ∪ {∞} estimates the length of the shortest

h2

h1 1

1

2

2

3

3

4

4

5

5

6

6

T1, P,
A

A

M, S,
P

M

S, T2,
P, A

Figure 3: Buckets of an open list with heuristics h1 and h2.
The symbols within some of the buckets are explained later.

path from s to any goal state. Hence, states with a low es-
timate are expanded first. If states share the same estimate,
they are usually ordered according to the FIFO principle.

This paper deals with the question of how to use the es-
timates of multiple heuristics h1, . . . , hn within this algo-
rithm. In principle, the methods we present only differ in
which states are selected by the remove-best operation.

We can see the open list as a collection of buckets (Fig. 3),
each associated with an estimation vector (e1, . . . , en) and
containing all open states s with (h1(s), . . . , hn(s)) =
(e1, . . . , en). (We assume that is-dead-end(s) evaluates to
true iff any of the heuristic estimators regards s as a dead end
by mapping it to∞, so estimates ei of states in the open list
are always finite.) All combination approaches we present
can be understood as first selecting a bucket to expand a state
from, and then picking a state from this bucket according to
the FIFO principle. Hence, an approach can be largely char-
acterized in terms of its candidate buckets, i. e., the buckets
that are possible candidates for expansion at each step.

For example, the candidate buckets for the maximum
method are exactly those where max {e1, . . . , en} is min-
imized. In Fig. 3, this means that either the bucket with
estimation vector (4, 2) or the bucket with estimation vec-
tor (4, 4) is chosen. Which of these buckets is actually se-
lected again depends on FIFO tie-breaking: the bucket with
the “oldest” state is given preference. Of course, an actual
implementation of the method should not maintain separate
buckets for each estimation vector, but rather use a one-
dimensional vector of buckets indexed by max {e1, . . . , en}.

Maximum and Sum
The first combination methods we discuss are the already
mentioned maximum and sum approaches. The candidate
buckets for the maximum approach are those which mini-
mize max {e1, . . . , en}, and the candidate buckets for the
sum approach are those which minimize e1+· · ·+en. In the
example of Fig. 3, these buckets are marked with an M for
the maximum approach and S for the sum approach. Among
all states in these buckets, the oldest one is expanded first.

The maximum and sum methods are very easy to imple-
ment: since they reduce each estimation vector to a single
numeric value, a standard single-heuristic open list can be

used. However, we will later see that maximum and sum
are among the weakest methods for combining heuristic es-
timates and rarely offer a compelling advantage over using
one of the component heuristics individually. One explana-
tion for this is that they are easily misled by bad informa-
tion. If one of the component heuristic provides very in-
accurate values, then these inaccuracies affect every single
search decision of the sum method, because each heuristic
directly contributes to the final estimation. For the maxi-
mum method, large inaccurate values from one heuristic can
completely cancel the information from all other heuristics.

Of course, one can try to balance a disproportionate in-
fluence of a single heuristic by applying weights to the dif-
ferent estimates, but it is not clear how reasonable weight
values can be determined automatically, or if weighting can
help overcome the fundamental problems of these methods
at all. One approach we experimented with is to calculate
weighted sums with weights determined from the estimates
of the initial state, trying to “balance” the contribution of
each heuristic. However, this approach did not show any
positive effect on planning benchmarks. One possible ex-
planation for this is that such a normalization not just levels
the influence of bad estimates, but also of good estimates.

Because initial experiments were discouraging and it is
not clear how to assign reasonable weights, our empiri-
cal evaluation does not include the case of weighted sums.
However, we do report experiments with the unweighted
sum and maximum methods, which serve as baselines for
the other approaches, to be introduced next.

Tie-breaking
Our experience with the addition and sum methods suggests
that aggregating heuristic estimates into one value tends to
dilute the quality and characteristics of the individual heuris-
tics. Therefore, in the following we concentrate on methods
that preserve the individual estimates. One obvious idea is to
rank the heuristics and use the less important ones only for
breaking ties. With this approach, search is mainly directed
by one good heuristic and only if there are several states with
the same minimum estimate, the other heuristics are succes-
sively consulted to identify the most promising state. If two
states have exactly the same estimation vector, they are again
expanded according to the FIFO principle.

Tie-breaking always selects a single candidate bucket. In
the example of Fig. 3, this bucket is labeled as T1 for the
case where h1 is the main heuristic and h2 is used to break
ties, and it is labeled as T2 for the opposite case.

We considered two implementations of the tie-breaking
method. One natural approach is to calculate only the main
heuristic and to order the open list according to these esti-
mates. Upon each remove-best operation, we check if sev-
eral states share the same minimum estimate. Only then do
we successively calculate the tie-breaking heuristics, until
we have identified a single state to expand. The advantage
of this approach is that a heuristic estimate for a tie-breaking
heuristic is never computed if it is never needed.

However, in typical planning tasks the range of encoun-
tered heuristic values is much smaller than the size of the
search frontier, and there are usually many states with the

same estimate of the main heuristic. Therefore, the disad-
vantage of this approach is that we must perform the same
tie-breaking calculations again and again, which is costly
even if heuristic values are cached after their first computa-
tion. While additional data structures may reduce the effort
of these recomputations, this causes overhead, and it is not
clear if it is worth the additional implementation complexity.

For this reason, we use a different implementation of tie-
breaking: for each state inserted into the open list, we calcu-
late the estimates of all heuristics and directly sort it to the
appropriate position. With this approach, we can again im-
plement the open list as a min-heap, ordering states lexico-
graphically by their estimate vector. Our experimental data
suggests that the cost of always computing all heuristics is
not problematic at least in the cases we consider. (One im-
portant mitigating factor is that in our case, the main heuris-
tic is more computationally intensive than the tie-breaking
heuristics and hence tends to dominate overall runtime.)

Note that both implementations differ only in the time that
is needed for inserting and removing states from the open list
and in the space requirements for the open list data structure,
but behave equivalently in all other aspects. In particular,
there is no difference in the number of expanded states.

A major drawback of tie-breaking is that we have to define
a ranking of the heuristics. For our experiments, we decided
to order the heuristics according to their (empirical) qual-
ity in single-heuristic search. It is apparent that combining
multiple heuristics via tie-breaking does not fully exploit the
available information: we only use the additional estimates
if the main heuristic does not distinguish two states. If it
does, even if it performs very badly, we ignore the estimates
of the additional heuristics. Hence, the approach is clearly
not robust against bad estimates of the main heuristic.

Finally, we note that unlike the maximum and sum ap-
proaches, tie-breaking is unaffected by changing the “scale”
of the component heuristics. Increasing estimates by an
additive or multiplicative constant or applying any other
strictly increasing transformation to a heuristic function does
not affect the choices of the tie-breaking method. We see this
as a strength rather than a weakness because it offers some
resilience against systematic errors in heuristic estimates.

Selecting from the Pareto Set
We now present a method that, like tie-breaking, is robust to
transformations of heuristic estimates, but does not require
us to arbitrarily favour one heuristic over another. Such a
method can be derived from the concept of Pareto optimality
that is well-known in economics and game theory. Pareto
optimality has been successfully applied in multi-objective
search (Stewart and White 1991), where the goal is finding
a state that is good in terms of multiple objectives whose
measures cannot be meaningfully compared.

In order to introduce this method, we need to define the
notion of dominance. We say that a state s dominates a state
s′ if all heuristics consider s at least as promising as s′ and
there is at least one heuristic that strictly prefers s over s′.

Definition 1. A state s dominates a state s′, written s < s′,
with respect to heuristics h1, . . . , hn if hi(s) ≤ hi(s′) for all

i ∈ {1, . . . , n} and hi(s) < hi(s′) for at least one heuristic.

It appears reasonable to require that if state s dominates
s′, then s should be expanded before s′. Hence, we are in-
terested in the Pareto set of nondominated states, defined as

nondom def= {s ∈ open | @s′ ∈ open with s′ < s}.

In the Pareto approach, the candidate buckets are exactly
those buckets whose states belong to nondom. In the exam-
ple in Fig. 3, these buckets are labeled with P. We see that
the set includes many of the candidate buckets of the pre-
vious approaches, but not all of them. In particular, bucket
(4, 4) which is a candidate for the maximization approach is
not Pareto-optimal because it is dominated by (4, 2).

We experimented with two variants of the Pareto ap-
proach. Both variants first randomly select one of the candi-
date buckets and then expand the oldest state in that bucket.
The two variants differ in how the random choice of buck-
ets is performed: in the uniform approach, each candi-
date bucket is chosen with equal probability, while in the
weighted approach each candidate bucket is chosen with
probability proportional to the number of states it contains.

Note that all previous combination methods define a total
preorder on the states. This is somewhat restricting because
estimate vectors where neither dominates the other cannot
always be reasonably compared. However, algorithmically
it is very useful because it allows implementing the open list
as a min-heap. This is not possible in the Pareto approach
because the preorder is not total. For example, in a given sit-
uation the nondominated buckets might have associated esti-
mate vectors of (2, 4, 4) and (4, 4, 2), so that the oldest states
with these heuristic profiles, say s1 and s2, are candidates
for expansion. Now assume that we insert a new state with
heuristic profile (2, 4, 3). This new states dominates s1 but
not s2, so one of the previously “best” states remains a can-
didate for expansions, while another does not. Such effects
complicate the open list implementation for the Pareto ap-
proach, and therefore this approach can carry a much larger
search overhead than the others. Moreover, this overhead
quickly increases with the number of heuristic estimators.

On the positive side, the Pareto method has none of the
disadvantages of the previous approaches: we neither have
to aggregate estimates in an unrobust way, nor do we have to
fix a magic order of the heuristics. Instead, we use all avail-
able ordering information, and whenever we prefer a state
over another one, we can theoretically justify this decision.

Alternation
The last approach we want to discuss is the alternation
method. Like the Pareto method, it avoids aggregating the
individual heuristic estimates and makes equal use of all
heuristics. The method gets its name because it alternates
between heuristics across search iterations. The first time a
state is expanded, it selects the oldest state minimizing h1.
On the next iteration, it selects the oldest state minimizing
h2, and so on, until all heuristics have been used. At this
point, the process repeats from h1. The candidate buckets
for the alternation method are those whose estimate vectors
minimize at least one component (labeled with A in Fig. 3).

As mentioned in the introduction, the alternation method
was originally proposed by Helmert (2004; 2006) under the
name multi-heuristic best-first search. It is built on the as-
sumption that different heuristics might be useful in different
parts of the search space, so each heuristic gets a fair chance
to expand the state it considers most promising. One heuris-
tic might provide good guidance in one part of the search
space, but be weak in another. A second heuristic might
have its strong and weak regions distributed differently in
the search space. By alternating between the heuristics, it is
always possible to escape a plateau as long as at least one
heuristic can give good guidance. There are two important
differences between alternation and the Pareto approach:

• Alternation only expands states that are considered most
promising by some heuristic. The Pareto approach can
also expand states which offer a good trade-off between
the different heuristics, such as bucket (4, 2) in Fig. 3.

• For states that are most promising to the currently used
heuristic, the alternation method completely ignores all
other heuristic estimates. The Pareto approach also at-
tempts to optimize the other heuristics in such situations.
For example, it would not consider bucket (2, 6) in Fig. 3
because it is dominated by bucket (2, 5).

Alternation can be efficiently implemented by maintain-
ing a set of min-heaps, one ordered by each heuristic. The
approach has been used by several successful planners, in-
cluding Fast Downward (Helmert 2006), using the causal
graph and FF heuristics, and LAMA (Richter, Helmert, and
Westphal 2008), using the FF and landmark heuristics.

Combining Alternation and Tie-breaking

Before we move to the experimental evaluation, we observe
that with the approaches we presented, the design space for
heuristic combination methods is far from exhaustively cov-
ered. Indeed, one natural idea is to combine several of the
methods we have introduced.

One particularly interesting case is the combination of
the alternation and tie-breaking methods: one of the major
drawbacks of tie-breaking is that we must define a ranking
of the heuristics. We can try to escape this problem by alter-
nating between all possible rankings. Combining alternation
and tie-breaking in this fashion can be seen as a compro-
mise between the pure alternation method and the Pareto ap-
proach: the combined approach only expands states deemed
most promising by some heuristic, a property that it shares
with alternation and that distinguishes it from the Pareto ap-
proach. However, like the Pareto method and unlike alterna-
tion, it does not base its decision on one heuristic alone, as
states considered by tie-breaking are always Pareto-optimal.

By restricting itself to Pareto-optimal states, this com-
bination method retains many of the characteristics of the
Pareto approach. However, unlike that method, it can be im-
plemented quite efficiently if the number of heuristics is not
too large – for any fixed number of heuristics, the overhead
compared to single-heuristic search is constant.

Experiments
We now turn to the central questions of this paper: is the use
of multiple heuristics for satisficing best-first search actu-
ally beneficial? And if so, which combination method per-
forms best? To answer these questions, we conducted two
experiments. In the first experiment, we integrated the dif-
ferent combination methods into a state-of-the-art planning
system, to investigate their effect on typical planning bench-
marks. In the second experiment, we studied the behaviour
of the different methods on artificial search spaces, to get a
cleanroom perspective of how factors like heuristic quality
impact their relative performance.

All experiments were conducted on computers with 2.3
GHz AMD Opteron CPUs, setting a timeout of 30 minutes
and a memory limit of 2 GB.

Experiment on IPC Benchmarks
In our first experiment, the benchmark suite consisted of all
planning tasks from the first five international planning com-
petitions (IPC 1–5). We report results on coverage (number
of solved instances), solution quality, speed, and heuristic
guidance (number of state expansions). We consider three
different heuristic estimators:
• hFF: the FF heuristic (Hoffmann and Nebel 2001),
• hCG: the causal graph heuristic (Helmert 2006), and
• hcea: the context-enhanced additive heuristic (Helmert

and Geffner 2008).
We evaluate each approach on all two- and three-element

subsets of these heuristics. For the tie-breaking approach we
fixed the ranking of the heuristics as hcea � hFF � hCG (so
hcea is given the highest priority) based on the coverage these
heuristics achieve on the benchmark set in single-heuristic
search. For the Pareto method we only report results for
the weighted approach, because it performs slightly better
than the uniform approach and the difference between these
variants is low compared to the difference to other methods.

Our implementation is based on the Fast Downward plan-
ning system (Helmert 2006), which we extended with im-
plementations of the different combination approaches. As
we are interested in measuring the impact of heuristic com-
binations, not other search enhancements, we did not use
the preferred operator information provided by the heuris-
tics. We have run experiments both with Fast Downward’s
deferred variant of greedy best-first search and with the text-
book (“eager”) algorithm (Richter and Helmert 2009), with
virtually identical results. Here, we report on the more stan-
dard eager algorithm. Results for lazy search are reported in
an earlier workshop paper (Röger and Helmert 2009).

We first present the overall results, shown in Table 1. The
table reports scores according to four metrics: coverage, (so-
lution) quality, speed, and (heuristic) guidance. All scores
are in the range 0–100, where larger values indicate better
performance. For each metric, the score is computed by as-
signing a value between 0 and 100 to each task, then aver-
aging the scores for the tasks of each domain to compute
a domain score, and finally averaging the domain scores to
compute an overall score. Unsolved tasks are always scored
as 0, while the score for solved tasks depends on the metric:

Coverage Quality Speed Guidance
hcea 74.62 68.67 65.27 65.65
hFF 73.85 70.55 66.81 64.07
hCG 72.66 65.36 64.16 60.43
hcea, hFF

Maximum 72.69 67.26 62.15 64.02
Sum 73.75 68.42 63.75 *65.67
Tie-breaking 72.44 67.14 62.90 64.67
Pareto *76.20 *70.71 66.32 *68.90
Alternation *77.95 *73.70 *67.84 *70.14
Alternation-TB *75.42 70.21 66.23 *68.48

hFF, hCG

Maximum *74.76 68.76 65.29 *65.08
Sum *75.01 67.99 65.41 *65.35
Tie-breaking 72.59 66.13 64.66 *64.41
Pareto *74.93 67.84 65.87 *66.19
Alternation *78.73 *73.28 *69.22 *69.28
Alternation-TB *74.75 67.45 66.06 *66.18

hcea, hCG

Maximum 74.06 67.95 63.63 65.51
Sum *74.76 67.70 64.12 *65.67
Tie-breaking 73.78 67.41 63.36 64.99
Pareto 74.52 67.70 64.48 *66.52
Alternation *75.20 *69.18 64.42 *66.39
Alternation-TB 74.58 67.79 64.59 *66.59

hcea, hFF, hCG

Maximum 72.21 66.54 61.13 63.71
Sum 73.47 67.52 62.98 65.24
Tie-breaking 72.49 66.95 61.90 64.34
Pareto *76.29 70.16 66.01 *69.18
Alternation *79.80 *74.62 *68.56 *71.91
Alternation-TB *76.05 70.15 65.83 *69.16

Table 1: Overall result summary. The best combination
method for a given set of heuristics and metric is highlighted
in bold. Entries marked with a star indicate results that are
better than all respective single-heuristic approaches.

• Coverage: Solved tasks receive a score of 100. This met-
ric corresponds to the probability (in percent) that the ap-
proach solves a “typical” benchmark task.

• Quality: Solved tasks receive a score of 100 · l∗/l, where
l is the length of the generated solution and l∗ is the length
of the best solution generated by any of the approaches.

• Speed: Tasks solved within one second receive a score
of 100, and tasks that require the full 1800 seconds re-
ceive a score of 0. Between these extremes, scores are
interpolated logarithmically, so that doubling the runtime
decreases the score by about 9.25.

• Guidance: Tasks solved within 100 state expansions re-
ceive a score of 100, and tasks solved with more than
1,000,000 expansions receive a score of 0. Between these
extremes, scores are interpolated logarithmically, so that
doubling expansions decreases the score by about 7.53.

We now turn to the interpretation of the results of Table 1.

Comparison between combination approaches. There
is a clear classification of the different combination methods
into three groups.

Alternation generally performs best: it gives the best re-
sults in terms of coverage and quality on all four heuristic
sets, and is best in terms of speed and guidance in all cases
except for one where its combination with tie-breaking and
the Pareto approach are slightly better.

Alternation combined with tie-breaking and the Pareto
method perform similarly to each other and always outper-
form the remaining approaches in terms of speed and guid-
ance. In terms of coverage and quality, the maximum and
sum approaches sometimes obtain comparable results.

The remaining three techniques, maximum, sum and tie-
breaking, perform quite similarly to each other and are
clearly worst overall. In terms of coverage, speed and guid-
ance, the sum method appears to slightly outperform the
other two approaches; for quality, sum and maximum are
too close to each other to pick a winner. The tie-breaking
method appears to be weakest overall. In particular, it is
always the worst method in terms of coverage.

Comparison to single-heuristic methods. Another clear
outcome of the experiment is that using multiple heuristics
can give considerable benefits, especially with the alterna-
tion method. For any set of heuristics and any of the four
metrics, the alternation method improves the performance
over the best single heuristic from the set, with only one
small exception (speed for the combination of hCG and hcea).

Indeed, adding more heuristics is almost universally a
good idea for the alternation method in our experiment.
There are nine ways to choose a single heuristic or two-
heuristic set and a new heuristic to add, and there are four
metrics to measure. In 34 of these 36 cases, the marginal
contribution of adding the new heuristic is positive.

For the Pareto method and the combination of alternation
and tie-breaking, the comparison to single-heuristic search
gives somewhat mixed results. While both approaches lead
to better results in terms of coverage (except for the combi-
nation of hcea and hCG where they perform slightly worse)
and guidance, their results in terms of quality and speed are
worse than those of the best individual heuristics.

For the maximum and sum methods, it is hard to ar-
gue that they offer any compelling advantage over single-
heuristic search, and the tie-breaking method is clearly not
worth using in this setting. It consistently performs worse
on all metrics than just using the main heuristic on its own,
with only one exception.

Coverage details. We have established that we obtain the
best results when using the alternation method applied to all
three heuristics. Hence, we conclude our discussion of the
planning experiment with some detailed data for this partic-
ular approach, in order to see whether its benefits are limited
to a few benchmark domains or distributed more evenly.

Firstly, we remark that using the same nonparametric test
that Hoffmann and Nebel (2001) employ in their compari-
son of FF and HSP, the improvement of coverage of the al-
ternation method compared to any of the other combination
methods or individual heuristics is statistically significant at
a level of p ≤ 0.001. (The same is true for the use of al-
ternation with two heuristics, except for the combination of
hcea and hCG, where the significance is lower.)

Domain hcea hFF hCG Max. Sum Tie-br. Pareto
Airport –3 +7 +18 +2/–1 +3/–2 +7 +6
Assembly +20 +15 +24 +20 +20 +20 +14
Depot +2 –1 +3/–1 +2 +3/–1 –2
Driverlog +1 +1 +1 +2 +1 +2 +2
FreeCell +1/–1 +3/–2 +10/–1 +4/–1 +3/–1 +5 –1
Grid +1 +1 +1 +1 +1
Logistics-1998 –4 +4 –4 –1
Miconic-FullADL –1 +4/–1 +2 –1 +1/–1 –1 +1
MPrime +8 –1 +6 –1
Mystery +1 +3/–1 +1 –1
Openstacks +5 +4 +5 +5 +5
OpticalTelegraphs +3 +2
Pathways +5 +7 +4 +5 +6 +5 +5
Pipesw.-NoTankage +13 +7 +15/–1 +14 +12 +12 +9/–1
Pipesw.-Tankage +4/–1 +4/–3 +7/–3 +4 +4/–1 +5/–2 +2/–2
PSR-Large –2 +1/–1 –2 +1 +3 +3 +2
PSR-Middle +1 +1 +1
Rovers +7 +5 +7 +7 +8 +8 +7
Satellite –3 +1 –9
Schedule +9 +3/–12 +9 +9 +9 +9 +9
Storage +2 –1 +1 +2 +2
TPP +3/–4 +3 +1 +3 +3 +5 +2/–4
Trucks +2 +4/–1 +2 +1/–1
Total +74/–19 +79/–22 +114/–23 +88/–3 +84/–6 +90/–4 +63/–13

Table 2: Tasks solved by Alternation compared to single
heuristics and other combination approaches. Entry +x/−y
means that Alternation solves x tasks not solved by the other
approach and fails to solve y tasks solved by the other ap-
proach. Domains where all methods solve the same set are
omitted. All combination methods use all three heuristics.

Secondly, to provide some more detail Table 2 reports, for
all IPC 1–5 benchmark domains, in which ways the set of
tasks solved by the alternation method differs from other ap-
proaches. We compare to all single heuristics and to all pure
combination methods that use the same (full) set of heuris-
tics. We omit the comparison to the combination of alterna-
tion and tie-breaking, for which the results are very similar
to the Pareto approach. The table shows that the improve-
ments are spread over many domains. Moreover, there are
very few cases where the alternation method fails to solve
a substantial number of tasks solved by one of the single
heuristics, indicating that it is indeed very robust.

There are only five domains in which any of the single
heuristics outperforms the alternation technique by more
than one instance, and all of these are (perhaps not co-
incidentally) among the IPC domains with the largest in-
stances. There are only two domains where the approach
performs worse than the average of the three heuristics it
combines, Logistics-1998 and Satellite. These are domains
where heuristic guidance is generally near-perfect, but raw
search speed matters a lot due to the size of the tasks. On the
largest Satellite instances, even a perfect heuristic must eval-
uate several hundred thousand states because optimal plan
length is in the range of 300–500 steps and the branching
factor exceeds 1000.

102

103

104

105

106

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ex
pa

ns
io

ns
 (

m
ed

ia
n)

heuristic deviation factor

h0
hdev
Sum(h0,hdev)
Maximum(h0,hdev)
Tie-breaking(h0,hdev)
Tie-breaking(hdev,h0)
Pareto(h0,hdev)
Alternation(h0,hdev)

(a) near-perfect fixed heuristic (deviation 0)

102

103

104

105

106

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ex
pa

ns
io

ns
 (

m
ed

ia
n)

heuristic deviation factor

h0.25
hdev
Sum(h0.25,hdev)
Maximum(h0.25,hdev)
Tie-breaking(h0.25,hdev)
Tie-breaking(hdev,h0.25)
Pareto(h0.25,hdev)
Alternation(h0.25,hdev)

(b) mediocre fixed heuristic (deviation 0.25)

102

103

104

105

106

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ex
pa

ns
io

ns
 (

m
ed

ia
n)

heuristic deviation factor

h0.5
hdev
Sum(h0.5,hdev)
Maximum(h0.5,hdev)
Tie-breaking(h0.5,hdev)
Tie-breaking(hdev,h0.5)
Pareto(h0.5,hdev)
Alternation(h0.5,hdev)

(c) bad fixed heuristic (deviation 0.5)

102

103

104

105

106

 50 100 150 200 250 300 350 400 450 500

ex
pa

ns
io

ns
 (

m
ed

ia
n)

approximate goal distance

h0.25
h0.5

Sum(h0.25,h0.5)
Maximum(h0.25,h0.5)

Pareto(h0.25,h0.5)
Alternation(h0.25,h0.5)

(d) instances of scaling size

Figure 4: Experiments in an artificial search space. In panels (a)–(c), the quality of one heuristic is fixed while the quality of
the second heuristic varies. Panel (d) shows how the approaches scale with the size of the search space.

Controlled Experiments

In the second set of experiments, we investigate the be-
haviour of the combination approaches in a manually de-
signed search space. The aim of the experiments is to study
some aspects of the algorithms in a controlled way. In par-
ticular, we are interested in how heuristic quality affects the
performance of the algorithms and how the algorithms be-
have on instances of scaling size. We use a tree-shaped in-
finite search space with uniform branching, following the
controlled experiments in the evaluation of preferred opera-
tors and deferred evaluation by Richter and Helmert (2009).

Every state is characterized by a single value, its approxi-
mate goal distance (agd), which defines the typical distance
to the goal. States with an agd of 0 are goal states. In the
first set of experiments, all initial states have an approximate
goal distance of 75; in the second set, we vary the agd of ini-
tial states in the range 50–500. All states with agd n > 0
have 15 successors, whose agd is chosen independently at
random in such a way that on average, every state has one
successor closer to the goal (agd n − 1), ten successors at

the same distance to the goal (agd n), and four successors
further away from the goal (agd n + 1).

Preliminary tests showed that greedy best-first search per-
forms very poorly on the artificial problems (and indeed, that
algorithm is not complete for infinite search spaces of this
kind). Therefore, all experiments on artificial search spaces
used the weighted A∗ algorithm with a weight of 10 for the
heuristics, which is still quite greedy, but complete.

To control the quality of the heuristic, we use a family of
heuristics hdev that deviate by a factor 0 ≤ dev < 1 from
the approximate goal distance. More precisely, the estimate
for a state with agd n is chosen uniformly from the range
[n(1−dev), n(1+dev)], rounding down to a natural number.

In addition to the runtime and memory limits, we aborted
all runs that generated more than 107 states.

Influence of heuristic quality. In the first experiment we
examine the impact of heuristic quality on the performance
of the different combination approaches. Figures 4(a)–(c)
show the results for combinations of two heuristics, where
we fix the deviation of one heuristic and vary the deviation

of the other heuristic in the range 0.1–0.9. The graphs report
the median number of expansions based on 100 runs. (Other
order statistics, such as the 25th or 75th percentiles, produce
very similar graphs.)

The alternation method provides the best guidance in
wide parts of the realistic settings where every involved
heuristic has some deviation from the real goal distance.
As long as at least one heuristic is reasonably good, the
approach provides a clear advantage over single-heuristic
search, as its graph runs below both graphs of the involved
heuristics. The only exception to this is when one of
the heuristics is really good, but even then the alternation
method demonstrates its robustness against bad estimates of
the second heuristic.

The Pareto method shows similarly good robustness prop-
erties, but its guidance is slightly worse than for alternation.
Nevertheless, it still can have some advantage over single-
heuristic search. However, since we only measure the num-
ber of expansions here, the graphs do not take into account
the relatively high per-state overhead of the approach.

Tie-breaking leads to almost identical results to the re-
spective main heuristic. One reason for this is that in the ex-
periment setting the estimates deviate symmetrically from
the approximate goal distance. But even if we use the
real approximate goal distance for tie-breaking (Fig. 4(a):
tie-breaking(hdev, h0)), we can observe only a very low pos-
itive impact on the number of expansions.

The sum method can easily be misled by bad estimates of
one heuristic, even if the other heuristic provides almost ac-
curate estimates. If both heuristics have a similar quality, the
sum method has some advantage in this experimental set-
ting: for each state, the two heuristics select randomly from
the same range around the (approximately) perfect estimate,
so errors tend to cancel out. The maximum method tends to
do well when one heuristic is near-perfect, but is among the
worst methods in the more challenging settings (Fig. 4(b,c)).

Scaling behaviour. Figure 4(d) explores the scaling be-
haviour of the different approaches. We use two heuristics
with deviation factors 0.25 and 0.5 and vary the approximate
goal distance of the initial state between 50 and 500. To keep
the graph legible, we omit the values for the tie-breaking ap-
proaches, which are again almost identical to those of the
respective main heuristics.

Alternation emerges as the clear winner of the compar-
ison. Not only does it solve almost all instances (for agd
500 it solves 97 of the 100 instances, and for lower values
it solves all of them), it also requires the lowest number of
expansions. It also offers consistent improvements over the
results of the better heuristic h0.25, unlike the other combi-
nation approaches.

The Pareto approach performs quite competitively in
terms of expansions, but times out on the harder instances:
due to the wide spread of heuristic values on these tasks and
the weak correlation of the two component heuristics, the
number of estimate buckets to keep track of is very large,
and the overhead for maintaining the set of nondominated
buckets grows with the square of the agd.

The sum and maximum methods provide much worse
guidance and exceed the node limit on the harder instances.

Conclusion
We have argued that the problem of combining heuristic es-
timates for satisficing planning calls for different approaches
than the problem of combining heuristic estimates for opti-
mal planning. We have presented five different basic combi-
nation methods and compared them experimentally.

The alternation method, which performs best in our ex-
periments, is not new: under the name multi-heuristic best-
first search, it has been used in the Fast Downward and
LAMA planners. However, prior to our experiments, the
alternation method has never been systematically evaluated,
and it was not clear to what extent it contributes to the per-
formance of these planners. Moreover, it has never been
compared to other approaches for combining heuristic esti-
mates.

Our results show that aggregating different heuristic esti-
mates into a single numeric value through arithmetic oper-
ations like taking the maximum or sum is not a good idea,
even though it is the common approach for optimal planning.
Our explanation for this is that such aggregation methods are
easily led astray even if only one heuristic generates bad dis-
tance estimates. The Pareto and alternation approaches are
much more robust to such misleading estimates.

In future work, it would be interesting to see if even bet-
ter results can be obtained by including yet more estimators
such as the additive (Bonet and Geffner 2001) or landmark
heuristic (Richter, Helmert, and Westphal 2008), or if perfor-
mance begins to degrade when four or more estimators are
used. Another interesting question is whether adaptive tech-
niques that acquire information about the heuristic during
search can improve over the performance of the alternation
approach.

Acknowledgments
We thank Silvia Richter for making the code for the con-
trolled experiments available to us.

This work was supported by the German Research Coun-
cil (DFG) by DFG grant NE 623/10-2 and as part of the
Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS). See http://www.avacs.org/ for more information.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
AIJ 129(1):5–33.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. AAAI 2005,
1163–1168.

Helmert, M., and Geffner, H. 2008. Unifying the causal graph
and additive heuristics. In Proc. ICAPS 2008, 140–147.

Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In Proc. ICAPS 2004, 161–170.

Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.

Katz, M., and Domshlak, C. 2008. Optimal additive composition
of abstraction-based admissible heuristics. In Proc. ICAPS 2008,
174–181.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.
Richter, S., and Helmert, M. 2009. Preferred operators and de-
ferred evaluation in satisficing planning. In Proc. ICAPS 2009,
273–280.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. AAAI 2008, 975–982.
Röger, G., and Helmert, M. 2009. Combining heuristic estimators
for satisficing planning. In ICAPS 2009 Workshop on Heuristics
for Domain-Independent Planning, 43–48.
Stewart, B. S., and White, III, C. C. 1991. Multiobjective A∗.
JACM 38(4):775–814.

