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Abstract

A generalandexpressive modelof sequentialde-
cision making under uncertaintyis provided by
theMarkov decisionprocesses(MDPs)framework.
Complex applicationswith very largestatespaces
are best modelled implicitly (insteadof explic-
itly by enumeratingthe statespace),for example
asprecondition-effectoperators,therepresentation
usedin AI planning. This kind of representations
arevery powerful, andthey make theconstruction
of policies/planscomputationallyverycomplex. In
many applications,averagerewardsover unit time
is the relevant rationality criterion, as opposedto
themorewidely useddiscountedrewardcriterion,
and for providing a solid basis for the develop-
mentof efficient planningalgorithms,the compu-
tational complexity of the decisionproblemsre-
lated to averagerewardshasto be analyzed. We
investigatethe complexity of the policy/planexis-
tenceproblemfor MDPsundertheaveragereward
criterion,with MDPsrepresentedin termsof con-
ditionalprobabilisticprecondition-effectoperators.
Weconsiderpolicieswith andwithoutmemory, and
with differentdegreesof sensing/observability. The
unrestrictedpolicy existenceproblemfor the par-
tially observablecaseswasearlierknown to beun-
decidable. The resultsplacethe remainingcom-
putationalproblemsto thecomplexity classesEXP
andNEXP (deterministicandnondeterministicex-
ponentialtime.)

1 Intr oduction
Markov decisionprocesses(MDPs)formalizedecisionmak-
ing in controllinganondeterministictransitionsystemsothat
givenutility criteriaaresatisfied.An MDP consistsof a set
of states,asetof actions,transitionprobabilitiesbetweenthe
statesfor every action,andrewards/costsassociatedwith the
statesandactions.A policy determinesfor everystatewhich
action is to be taken. Policiesare valuedaccordingto the
rewardsobtainedor costsincurred.

Applicationsfor thekind of planningproblemsaddressed
by this work includeagent-basedsystems,includingInternet

agentsandautonomousrobots,that have to repeatedlyper-
form actionsoveranextendedperiodof time in thepresence
of uncertaintyabouttheenvironment,andtheactionshaveto
– in orderto producethedesiredresults– follow a high-level
strategy, expressedasa plan.

ClassicaldeterministicAI planningis theproblemof find-
ing a path betweenthe initial stateand a goal state. For
explicit representationsof statespacesas graphsthis prob-
lem is solvable in polynomial time, and for implicit rep-
resentationsof statespacesin termsof statevariablesand
precondition-effectoperators,whichsometimesallowsanex-
ponentiallymore conciserepresentationof the problemin-
stances,the path existenceproblem is PSPACE-complete
[Bylander, 1994]. This result is closely related to the
PSPACE-completenessof the existenceof pathsin graphs
representedascircuits[PapadimitriouandYannakakis,1986;
Lozano and Balcázar, 1990]. Similarly, the complexity
of most other graph problemsincreaseswhen a compact
graphrepresentationis used[GalperinandWidgerson,1983;
PapadimitriouandYannakakis,1986;LozanoandBalcázar,
1990;Balcázar, 1996;Feigenbaumetal., 1999].

MDPsandPOMDPscanbeviewedasanextensionof the
graph-baseddeterministicplanningframeworkwith probabil-
ities: anactiondeterminesa successorstateonly with a cer-
tainprobability. Theobjectiveis to visit valuablestateswith a
high probability. A policy (a plan)determineswhich actions
arechosengiventhecurrentstate(or asetof possiblecurrent
states,possiblytogetherwith someinformationon the pos-
sible predecessorstates.) For explicitly representedMDPs,
policy evaluationunderaveragerewardsreducesto thesolu-
tion of setsof linearequations.Setsof linearequationscan
be solved in polynomial time. Similarly, policies for many
typesof explicitly representedMDPs canbe constructedin
polynomialtime by linearprogramming.Papadimitriouand
Tsitsiklis [1987] haveshown thatpolicy existencefor explic-
itly representedMDPs is P-complete.Madaniet al. [1999]
haveshowntheundecidabilityof policy existencefor UMDPs
andPOMDPswith all mainrationalitycriteria.

Like in classical AI planning, MDPs/POMDPs can
be concisely representedin terms of state variablesand
precondition-effectoperators.Theimportantquestionin this
settingis, what is the impactof conciserepresentationson
the complexity of theseproblems. In relatedwork [Mund-
henket al., 2000;Littman, 1997;Littman et al., 1998], this



questionhasbeeninvestigatedin the context of finite hori-
zons.Not surprisingly, thereis in generalanexponentialin-
creasein problemcomplexity, for examplefrom determinis-
tic polynomial time to deterministicexponentialtime. The
undecidabilityresultsfor explicitly representedUMDPsand
POMDPsdirectly impliestheundecidabilityof therespective
decisionproblemswith conciserepresentations.

In the presentwork we investigatethe complexity of the
policy existenceproblemsfor MDPsandPOMDPsunderex-
pectedaveragerewardsover an infinite horizon. For many
practically interestingproblemsfrom AI – for exampleau-
tonomousrobots, Internet agents,and so on – the num-
ber of actionstaken is high over a period time and lengths
of sequencesof actionsareunbounded.Thereforethereis
typically no reasonableinterpretationfor discountsnor rea-
sonableupper boundson the horizon length, and average
reward is the most relevant criterion. A main reasonfor
the restrictionto boundedhorizonsanddiscountedrewards
in earlier work is that the structureof the algorithms in
thesecasesis considerablysimpler, becauseconsiderations
onMDP structuralproperties,likerecurrenceandperiodicity,
canbe avoided. Also, for many applicationsof MDPs that
representphenomenaover extendedperiodsof times(years
anddecades),for examplein economics,the discountssim-
ply representtheunimportanceof eventsin thedistantfuture,
for exampletranscendingthe lifetimesof the decisionmak-
ers.Boutilier andPuterman[1995] haveadvocatedtheuseof
average-rewardcriteriain AI.

Thestructureof thepaperis asfollows.Section2 describes
the planningproblemsaddressedby the paper, andSection
3 introducesthe requiredcomplexity-theoreticconcepts.In
Section4 we presentthe resultson the complexity of test-
ing theexistenceof policiesfor MDPsunderaveragereward
criteria,andSection5 concludesthepaper.

2 Probabilistic Planning with Average
Rewards

The computationalproblemwe consideris the existenceof
policiesfor MDPs(fully observable),UMDPs(unobservable)
andPOMDPs(partiallyobservable,generalizingbothMDPs
and UMDPs) that are representedconcisely; that is, states
arerepresentedasvaluationsonstatevariablesandtransition
probabilitiesaregivenasoperatorsthataffect thestatevari-
ables. The policieswe considermay have an arbitrarysize,
but we alsobriefly discusscomplexity reductionobtainedby
restrictingto polynomialsizepolicies.

As pointedout in Example2.1, the averagereward of a
policy sometimescannotunambiguouslybestatedasasingle
realnumber. Thecomputationalproblemthatwe consideris
thefollowing. Is theexpectedaveragerewardgreaterthan(or
equalto) someconstant� . This amountsto identifying the
recurrentclassesdeterminedby thepolicy, andthentakinga
weightedaverageof therewardsaccordingto theprobabilities
with which theclassesarereached.

2.1 Definition of MDPs
MDPs canbe representedexplicitly asa setof statesanda
transitionrelationthatassignsa probabilityto transitionsbe-

r=1 r=1 r=2 r=2 r=3 r=3

Figure1: A multichainMDP

tweenstatesunderall actions.We restrictto finite MDPsand
formally definethemasfollows.

Definition 1 A (partially observable)Markov decisionpro-
cessis a tuple
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�
is a setof states,

�
is a setof actions,
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givesthetransition

probabilitybetweenstates(thetransitionprobabilitiesfroma
givenstatemustsumto 1.0)for everyaction,

��� �
is theini-
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associatesa reward for applying
an actionin a givenstate, and
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is a partition of

�
to

classesof statesthatcannotbedistinguished.

Policiesmapthecurrentandpastobservationsto actions.

Definition 2 A policy ) �+*�%,'�-�./�0�
is a mappingfrom

a sequenceof observationsto an action. A stationarypolicy) �,%('1�2� is a mappingfromthecurrentobservationto an
action.

For UMDPs the observation is always the same(
�

), for
MDPs the observationsaresingletonsetsof states(they de-
terminethecurrentstateuniquely),andfor POMDPstheob-
servationsaremembersof apartitionof

�
to setsof statesthat

areindistinguishablefromeachother(thelimiting casesare
�

andsingletons3547698 for 476 �:� : POMDPsareageneralization
of bothUMDPsandMDPs.)

Theexpectedaveragerewardof apolicy is thelimit
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whereT M7P R is therewardof takingaction X in state4 andVYM7P R�P
H

is the probability of taking action X at time point Z in state4 . Therearepoliciesfor which the limit doesnot exist [Put-
erman,1994,Example8.1.1], but whenthepolicy execution
hasonlyafinitenumberof internalstates(likestationarypoli-
cieshave),thelimit alwaysexists.

Therecurrentclassesof aPOMDPunderagivenpolicy are
setsof statesthatwill alwaysstayreachablefrom eachother
with probability1.

Example2.1 Considera policy that inducesthe structure
shown in Figure1 on a POMDP. Thethreerecurrentclasses
eachconsistof two states.The initial statedoesnot belong
to any of therecurrentclasses.Thestatereachedby thefirst
transitiondeterminestheaveragereward,which will be1, 2
or 3, dependingon therecurrentclass. [



2.2 ConciseRepresentationof MDPs
An exponentiallymore conciserepresentationof MDPs is
basedonstatevariables.Eachstateis anassignmentof truth-
valuesto the statevariables,and transitionsbetweenstates
areexpressedaschangesin thevaluesof thestatevariables.

In AI planning, problemsare representedby so-called
STRIPSoperatorsthat arepairsof setsof literals, the pre-
conditionandtheeffects. For probabilisticplanning,this can
be extendedto probabilisticSTRIPSoperators(PSOs)(see
[Boutilier et al., 1999] for referencesand a discussionof
PSOsandotherconciserepresentationsof transitionsystems
with probabilities.)In this paper, we furtherextendPSOsto
what we call extendedPSOs(EPSOs). An EPSOcanrep-
resentanexponentialnumberof PSOs,andwe usethembe-
causethey arecloselyrelatedtooperatorswith conditionalef-
fectscommonlyusedin AI planning.Apart from generating
thestatespaceof a POMDP, the operatorscanconveniently
betakento betheactionsof thePOMDP.

Definition 3 (Extendedprobabilistic STRIPSoperators)
An extendedprobabilisticSTRIPSoperatoris a pair

�W\]��^D�
,

where
\

is a Booleancircuit and
^

consistsof pairs
� � ��_`� ,

where � is a Booleancircuit and
_

is a set of pairs
� V ��ab� ,

where V �Yced�f=f E c is a real numberand
a

is a set of literals
such that for every

_
thesumof theprobabilitiesV is 1.0.

For all
� �hg ��_ g �i�&^ and

� �kj ��_ j �l�m^ , if
a g contradictsa j for some

� V g ��a g �l�n_ g and
� V j ��a j �:�o_ j , then �hg must

contradict � j .
This definitiongeneralizesPSOsby not requiringthat the� s of members

� � ��p�� of
^

are logically disjoint and their
disjunctionis a tautology. Hencein EPSOsthe effectsmay
takeplaceindependentlyof eachother. Someof thehardness
proofsgivenlaterwouldbemorecomplicated–assumingthat
they arepossible– if wehadto restrictto PSOs.

Theapplicationof anEPSOis definediff theprecondition\
is truein thecurrentstate.Thenthefollowing takesplace

for every
� � ��_`�l�n^ . If � is true, oneof the

� V ��a5�i�n_ is
chosen,eachwith probability V , andliterals

a
arechangedto

true.

Example2.2 Letq�r �Ws�� 3 � V g � 3 � E f d�� 3bt V g 8 � 8 �u�� t V g � 3 � E f d�� 3 V g 8 � 8 �u�fhfvfk�� V�w � 3 � E f dx� 35t V�w 8 � 8 �u�� t V�w � 3 � E f dx� 3 V�w 8 � 8 � 8 �uf
Now q is an EPSObut not a PSObecausethe antecedentsV g � t V g � V j � t V j �hfvfhf arenot logically disjoint. A setof PSOs
correspondingto q hascardinalityexponentialon y . [

Rewardsareassociatedwith actionsandstates.Whenan
actionis taken in an appropriatestate,a reward is obtained.
For everyaction,thesetof statesthatyieldsagivenrewardis
representedby a Booleancircuit.

Definition 4 (ConcisePOMDP) A concisePOMDPover a
set ) of statevariablesis a tuple

�z����{�� T ����� where
�

is an

initial state(assignment) � 3 s��S| 8 ), { is a setof EPSOs
representingthe actions,and T �}{~��\�� �

associatesa
Booleancircuit anda real-valuedreward with everyaction,
and
��# ) is thesetof observablestatevariables.

Having a setof variablesobservable– insteadof arbitrary
circuits/formulae– is notarestriction.Assumethatthevalues
of a circuit areobservable(but the individual input gatesare
not.) We couldmake every EPSOevaluatethevalueof this
circuitandsetthevalueof anobservablevariableaccordingly.

Definition 5 (ConciseMDP) A conciseMDP is a concise
POMDPwith

� r ) .

Definition 6 (ConciseUMDP) A conciseUMDP is a con-
cisePOMDPwith

� rm� .
2.3 ConciseRepresentationof Policies
We considerhistory/time-dependentandstationarypolicies,
and do not make a distinction betweenhistory and time-
dependentones. Traditionally explicit (or flat) represen-
tations of policies have been consideredin researchon
MDPs/POMDPs:eachstateor belief stateis explicitly as-
sociatedwith anaction. In our setting,in which thenumber
of statescanbeveryhigh,alsopolicieshaveto berepresented
concisely. Like with conciserepresentationsof POMDPs,
thereis no directconnectionbetweenthesizeof a concisely
representedpolicy andthenumberof statesof thePOMDP.

A concisepolicy could,in themostgeneralcase,bea pro-
gram in a Turing-equivalent programminglanguage. This
would, however, make many questionsconcerningpolicies
undecidable.Thereforelesspowerful representationsof poli-
cieshaveto beused.A concisepolicy determinesthecurrent
actionbasedon thecurrentobservationandthepasthistory.
We divide this to two subtasks:keepingtrackof thehistory
(maintainingtheinternalstateof theexecutionof thepolicy),
andmappingthecurrentobservationandtheinternalstateof
the executionof the policy to an action. The computation
neededin applyingoneoperatoris essentiallya statetransi-
tion of aconciselyrepresentedfinite automaton.

A sensiblerestrictionwouldbethatcomputationof theac-
tion to be taken andthe new internalstateof the policy ex-
ecution is polynomial time. An obvious choice is the use
of Booleancircuits, becausethe circuit valueproblemis P-
complete(oneof the hardestproblemsin P.) Work on algo-
rithms for concisePOMDPsandAI planninghave not used
this generala policy representation,but for our purposesthis
seemslike a well-foundedchoice. Relateddefinitions of
policiesasfinite-statecontrollershave beenproposedearlier
[Hansen,1998;Meuleauetal., 1999;Lusenaetal., 1999].

Definition 7 (Concisepolicy) A concisepolicy for a concise
POMDP � r �z����{�� T ����� is a tuple

��	
�S\]�����
where

	
is a

Booleancircuit with � � � . V input gatesand V outputgates,\
is a Booleancircuit with � � � . V inputgatesand � ;?�,� j � { � �

outputgates,and
�

is a mappingfrom 3 E �hfvfhfu� V 8 to 3 |��us 8 .
The circuit

	
encodesthe changein execution statein

termsof theprecedingstateandtheobservablestatevariables



stationary history-dependent
UMDP� PSPACE-hard,in EXP(L8,9) undecidable
MDP EXP(T11) EXP(C12)
POMDP NEXP(T13) undecidable

Table1: Complexity of policy existence,with referencesto
thelemmata,theorems,andcorollaries.

�
. Thecircuit

\
encodestheactionto betaken,and

�
gives

the initial stateof the execution. The integer V is the num-
ber of bits for the representationof the internalstateof the
execution.WhenV r d wehaveastationarypolicy.

Thecomplexity resultsdonotdeeplyrely on theexactfor-
mal definitionof policies. An importantpropertyof thedef-
inition is thatonestepof policy executioncanbeperformed
in polynomialtime.

3 Complexity Classes
Thecomplexity classPconsistsof decisionproblemsthatare
solvable in polynomial time by a deterministicTuring ma-
chine. NP is theclassof decisionproblemsthataresolvable
in polynomial time by a nondeterministicTuring machine.\��L�g denotesthe classof problemsthat is definedlike the
class

\ g except that Turing machineswith an oraclefor a
problemin

\ j areusedinsteadof ordinaryTuring machines.
Turingmachineswith anoraclefor aproblem

�
mayperform

testsfor membershipin
�

for free. A problem � is C-hard
if all problemsin theclassC arepolynomialtime many-one
reducibleto it; that is, for all problems��� �!\ thereis a
function

_5�x�
computablein polynomialtimeonthesizeof its

input and
_ ��� *��L-i� � if andonly if

��� ��� . A problemis
C-completeif it belongsto theclassC andis C-hard.

PSPACEis theclassof decisionproblemssolvablein deter-
ministicpolynomialspace.EXPis theclassof decisionprob-
lems solvable in deterministicexponential time (

{�*W%7�5� w�� -
whereV * y - is a polynomial.) NEXP is theclassof decision
problemssolvable in nondeterministicexponentialtime. A
more detaileddescriptionof the complexity classescan be
foundin standardtextbookson complexity theory, for exam-
pleby Balcaźaretal. [1995].

4 Complexity Results
Table 1 summarizesthe complexity of determining the
existenceof stationaryand history-dependentpolicies for
UMDPs,MDPs andPOMDPs. In the averagerewardscase
theexistenceof history-dependentandstationarypoliciesfor
MDPscoincide. Theundecidabilityof UMDP andPOMDP
policy existencewith history-dependentpolicies of unre-
strictedsizewasshown by Madaniet al. [1999]. Theresult
is basedon theemptinessproblemof probabilisticfinite au-
tomata[Paz,1971;CondonandLipton, 1989] that is closely
relatedto theunobservableplanexistenceproblem.

Theresultsdonotcompletelydeterminethecomplexity of
theUMDPstationarypolicy existenceproblem,butasthesta-
tionaryUMDP policiesrepeatedlyapplyonesingleoperator,
the problemdoesnot seemto have the power of EXP. It is
alsonot trivial to show membershipin PSPACE.

Therestof thepaperformallystatestheresultssummarized
in Table1 andgivestheirproofoutlines.

Lemma 8 Existenceof a policy with average reward To�� for UMDPs,MDPs and POMDPswith only oneaction is
PSPACE-hard.

Proof: It is straightforward to reduceany decisionproblem
in PSPACE to theproblem.This is by constructinga concise
UMDP/MDP/POMDPwith only oneactionthatsimulatesa
polynomial-spacedeterministicTuringmachinefor theprob-
lemin question.

There are statevariablesfor representingthe input, the
workingtape,andthestateof theTuringmachine.TheEPSO
that representsthe only action is constructedto follow the
statetransitionsof theTuringmachine.Thesizeof theEPSO
is polynomialon thesizeof theinput. Whenthemachineac-
cepts,it is restarted.A reward T�� � is obtainedaslong as
themachinehasnotrejected.If themachinerejects,all future
rewardswill be0. Therefore,if theTuring machineaccepts
theaveragerewardis T , andotherwiseit is 0.  

Therearetwo straightforwardcomplexity upperboundsre-
spectively for polynomialsizeandstationarypolicies. Poly-
nomial size policies can maintain at most an exponential
numberof different representationsof the pasthistory, and
henceanexplicit representationof theproductof thePOMDP
andthepossiblehistorieshasonly exponentialsize,just like
the POMDP statespacealone. Stationarypolicies, on the
otherhand,donotmaintainahistoryatall, andthey therefore
encodeat mostan exponentialnumberof differentdecision
situations,onefor each(observable)stateof a (PO)MDP. For
theunrestrictedsizepartially observablenon-stationarycase
thereis nosimilarexponentialupperbound,andtheproblem
is notdecidable.

Lemma 9 Let � bea real number. Testingtheexistenceof a
poly-sizeMDP/UMDP/POMDPpolicy with average rewardT�� � is in EXP.

Proof: Thiscomputationhascomplexity NPEXP r EXP, that
correspondsto guessinga polynomialsizepolicy (NP) fol-
lowedby theevaluationof thepolicy by anEXP oracle.Pol-
icy evaluationproceedsasfollows. Producetheexplicit rep-
resentationof theproductof thePOMDPandthestatespace
of thepolicy. They respectively have sizes

%7�7¡��=¢ �
and
%7� � �?¢ �

for somepolynomialsV g *z�L- andV j *��Y- . Theproduct,whichis
aMarkov chainandrepresentsthestatesthePOMDPandthe
policy executioncanbein, is of exponentialsize

%7� ¡ �?¢ �z£ � � �?¢ �
.

Fromtheexplicit representationof thestatespaceonecan
identify the recurrentclassesin polynomialtime, for exam-
pleby Tarjan'salgorithmfor stronglyconnectedcomponents.
The probabilitiesof reachingthe recurrentclassescan be
computedin polynomialtime on thesizeof theexplicit rep-
resentationof thestatespace.Thesteadystateprobabilities
associatedwith thestatesin therecurrentclassescanbedeter-
minedin polynomialtimeby solvingasetof linearequations
[Nelson,1995]. Theaveragerewardscanbeobtainedin poly-
nomial time by summingtheproductsof theprobabilityand
rewardassociatedwith eachstate.Henceall thecomputation



is polynomialtimeon theexplicit representationof theprob-
lem,andthereforeexponentialtimeonthesizeof theconcise
POMDPrepresentation,andtheproblemis in EXP.  
Lemma 10 Let � bea realnumber. Testingtheexistenceof a
stationaryMDP/UMDP/POMDPpolicywith averagerewardT�� � is in NEXP. Thepolicyevaluationproblemin thiscase
is in EXP.

Proof: First a stationarypolicy (potentially of exponential
size as every statemay be assigneda different action) is
guessed,which is NEXPcomputation.

The restof the proof is like in Lemma9: the numberof
statesthathave to beconsideredis exponential,andevaluat-
ing the valueof the policy is EXP computation.Hencethe
wholecomputationis in NEXP.  
Theorem11 Let � bea realnumber. Testingtheexistenceof
an arbitrary stationarypolicywith averagereward T�� � for
a MDP is EXP-complete.

Proof: EXP-hardnessis by reductionfrom testingthe exis-
tenceof winning strategiesof the perfect-information(fully
observable)game¤�¥ [StockmeyerandChandra,1979]. This
gamewas usedby Littman [1997] for showing that finite-
horizonplanningwith sequentialeffect treesis EXP-hard.¤�¥ is a gamein which two playerstake turns in chang-
ing thetruth-valuesof variablesoccurringin a DNF formula.
Eachplayer can changehis own variablesonly. Who first
makesthe formulatruehaswon. For

% y variablesthegame
is formalizedby y EPSOs,eachof which reversesthe truth-
valueof onevariable(if it is theturn of player1) or reverses
thetruth-valueof a randomlychosenvariable(if it is theturn
of player2.) Reward1 is normallyobtained,but if theDNF
formulaevaluatesto trueafterplayer2 hasmadehismove,all
subsequentrewardswill be0. Thiswill eventuallytake place
if thepolicy doesnot representa winning strategy for player
1, andtheaveragerewardwill hencebe0. Therefore,theex-
istenceof a winning strategy for player1 coincideswith the
existenceof a policy with averagereward1.

EXP membershipis by producingtheexplicit exponential
sizerepresentationof the MDP, andthenusingstandardso-
lution techniquesbasedon linear programming[Puterman,
1994]. Linearprogrammingis polynomialtime.  
Corollary 12 Let � be a real number. Testingthe existence
of anarbitrary history-dependentpolicywith averagerewardT�� � for a MDP is EXP-complete.

Proof: For fully observable MDPs and policies of unre-
strictedsize,theexistenceof arbitrarypolicieswith a certain
valuecoincideswith theexistenceof stationarypolicieswith
thesamevalue.  
Theorem13 Let � bea realnumber. Testingtheexistenceof
an arbitrary stationarypolicywith averagereward T�� � for
a POMDPis NEXP-complete.

Proof: Membershipin NEXP is by Lemma10. For NEXP-
hardnesswe reducetheNEXP-completesuccinct3SAT [Pa-
padimitriouandYannakakis,1986] to concisePOMDPs.The
reductionis similar to the reductionfrom the NP-complete
3SAT in [Mundhenketal., 2000,Theorem4.13]. TheirThe-
orem4.25claimsa reductionof succinct3SAT to stationary
policiesof POMDPsrepresentedascircuits.

The reductionworks as follows. The POMDPrandomly
choosesoneof the clausesandmakesthe propositionof its
first literal observable (the statevariablesrepresentingthe
propositiontogetherwith two auxiliaryvariablesaretheonly
observablestatevariables). The stationarypolicy observes
thepropositionandassignsit a truth-value. If the literal be-
cametrue,evaluationproceedswith anotherclause,andoth-
erwisewith thenext literal in theclause.Becausethepolicy is
stationary, thesametruth-valuewill beselectedfor thevari-
ableirrespective of the polarity of the literal andthe clause.
If noneof the literals in theclauseis true, the rewardwhich
hadbeen1 sofarwill onall subsequenttimepointsbe0.

The succinct3SAT problemis representedas circuits ¦
that mapa clausenumberanda literal location(0, 1, 2) to
the literal occurringin the clausein the givenposition. The
POMDPusesthe following EPSOsthe applicationorderof
which hasbeenforcedto the given orderby meansof aux-
iliary statevariables.Thefirst EPSOselectsa clauseby as-
signingtruth-valuesto statevariablesrepresentingtheclause
number. ThesecondEPSOcopiesthenumberof thepropo-
sition in thecurrentliteral (first, secondor third literal of the
clause)toobservablevariables,ThethirdandfourthEPSOre-
spectively selectthetruth-valuetrueandfalse(this is theonly
placewherethepolicy hasa choice.)Thefifth EPSOchecks
whetherthetruth-valuematches,andif it doesnotandthelit-
eralwasthelastone,therewardis turnedto 0. If it does,the
executioncontinuesfrom thefirst EPSO,andotherwise,the
literal wasnot the lastoneandexecutioncontinuesfrom the
secondEPSOandthenext literal.  
5 Conclusions
We have analyzedthe complexity of probabilisticplanning
with averagerewards,andplacedthe mostimportantdecid-
able decisionproblemsin the complexity classesEXP and
NEXP. Earlierit hadbeenshown thatwithout full observabil-
ity themostgeneralpolicy existenceproblemsarenot decid-
able. Theseresultsarenot very surprisingbecausetheprob-
lems generalizecomputationalproblemsthat were already
known to be very complex (PSPACE-hard),like plan exis-
tencein classicaldeterministicAI planning.Also, theseprob-
lems are closely relatedto several finite-horizonproblems
thatwereearliershown EXP-completeandNEXP-complete
[Mundhenket al., 2000]. Theresultsarehelpful in devising
algorithmsfor average-rewardplanningaswell asin identi-
fying further restrictionsthat allow moreefficient planning.
As shown by Lemma9, polynomial policy size brings the
complexity down to EXP, alsoin the otherwiseundecidable
cases.Therearelikely to beusefulstructuralrestrictionson
POMDPsthatcouldbring down thecomplexity further. Re-
strictedbut usefulproblemsin PSPACE wouldbeof high in-
terest.
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Balcázar. Thecomplexity of graphproblemsfor succinctly
representedgraphs. In Manfred Nagl, editor, Graph-
Theoretic Conceptsin ComputerScience, 15th Interna-
tional Workshop,WG'89, number411 in LectureNotes
in ComputerScience,pages277–286,CastleRolduc,The
Netherlands,1990.Springer-Verlag.

[Lozano,1988] Antonio Lozano. NP-hardnessof succinct
representationsof graphs. Bulletin of the EuropeanAs-
sociationfor Theoretical ComputerScience, 35:158–163,
June1988.

[Lusenaetal., 1999] ChristopherLusena,Tong Li, Shelia
Sittinger, Chris Wells, andJudyGoldsmith. My brain is
full: Whenmore memoryhelps. In Kathryn B. Laskey
andHenri Prade,editors,Uncertaintyin Artificial Intelli-
gence, Proceedingsof theFifteenthConference(UAI-99),
pages374–381.MorganKaufmannPublishers,1999.

[Madanietal., 1999] OmidMadani,SteveHanks,andAnne
Condon. On the decidability of probabilistic planning
and infinite-horizon partially observable Markov deci-
sion problems. In Proceedingsof the SixteenthNational
Conferenceon Artificial Intelligence(AAAI-99) and the
EleventhConferenceon InnovativeApplicationsof Arti-
ficial Intelligence(IAAI-99), pages541–548.AAAI Press,
1999.

[Meuleauetal., 1999] Nicolas Meuleau, Kee-Eung Kim,
LesliePackKaelbling,andAnthony R. Cassandra.Solv-
ing POMDPsby searchingthespaceof finite policies. In
KathrynB. Laskey andHenri Prade,editors,Uncertainty
in Artificial Intelligence, Proceedingsof theFifteenthCon-
ference(UAI-99), pages417–426.MorganKaufmannPub-
lishers,1999.

[Mundhenketal., 2000] Martin Mundhenk, Judy Gold-
smith,ChristopherLusena,andEric Allender. Complexity
of finite-horizonMarkov decisionprocessproblems.Jour-
nal of theACM, 47(4):681–720,July 2000.

[Nelson,1995] RandolphNelson. Probability, stochastic
processes,andqueueingtheory: themathematicsof com-
puterperformancemodeling. Springer-Verlag,1995.

[PapadimitriouandTsitsiklis,1987] Christos H. Papadim-
itriou andJohnN. Tsitsiklis. The complexity of Markov
decisionprocesses.Mathematicsof OperationsResearch,
12(3):441–450,August1987.

[PapadimitriouandYannakakis,1986] ChristosH. Papadim-
itriou andMihalis Yannakakis.A noteon succinctrepre-
sentationsof graphs. Informationand Control, 71:181–
185,1986.

[Paz,1971] Azaria Paz. Introduction to Probabilistic Au-
tomata. AcademicPress,1971.

[Puterman,1994] M. L. Puterman. Markov decisionpro-
cesses:discretestochasticdynamicprogramming. John
Wiley & Sons,1994.

[StockmeyerandChandra,1979] Larry J. Stockmeyer and
Ashok K. Chandra. Provably difficult combinatorial
games.SIAMJournalonComputing, 8(2):151–174,1979.


