Incorporation of Temporal Logic Control into
Plan Operators

Jussi Rintanen

Abstract. Domain-specific control information is often es-
sential in solving difficult planning problems efficiently. Tem-
poral logics are a declarative and expressive way of expressing
such control information for almost any form of planning. In
this paper we investigate the integration of temporal logic
control information into plan operators. For a given control
formula ® and operators O, we produce a new set Os of op-
erators that works like O under the control of ®. We show
that for a subset of temporal formulae the compilation causes
only a low-polynomial increase in the number of operators,
that the size of plans is not affected, and that the control
information speeds up planners in an amount that is com-
petitive with what is achieved with temporal logic control as
formula progression. The translation uses operators with con-
ditional effects. An important benefit of our approach is that
the problem of incorporating control information as temporal
logic formulae is solved once and for all: temporal logic con-
trol information can be implemented as a preprocessing step,
and all kinds of planning algorithms (classical, conditional,
probabilistic, reactive planning, etc.) can avoid the explicit
use of temporal logic.

1 INTRODUCTION

The applicability of automated planners in many applications
is highly dependent on the presence of control information
that reliably guides the planner in choosing which operators
to apply. In the past, the control information has been very
procedural and dependent on the planner being used. Bac-
chus and Kabanza have proposed the use of temporal logics
in expressing the control information and shown that a simple
forward-chaining planner that interprets those formulae can
be very efficient for planning problems that allow strong con-
trol strategies [2]. The declarativeness of temporal logic makes
it possible to separate the semantics of the control informa-
tion from the implementation techniques of a planner, which
is a clear benefit. For example Huang et al. show how to use
Bacchus and Kabanza’s temporal logic control information in
a very different kind of planner [6].

However, there are many different planning algorithms, and
incorporating a temporal logic reasoner to each and every
one may be complicated or otherwise undesirable. Consider-
ing that both plan operators and temporal logic have a high
expressivity, there is a redundancy in the input as both the
plan operators and the control information can be represented

1 Albert-Ludwigs-Universitit Freiburg, Institut fiir Informatik,
Georges-Kohler-Allee, 79110 Freiburg im Breisgau, Germany

1

in either of the formalisms. Therefore there is no compelling
need for algorithms that take input of both types. This idea
suggests two non-hybrid approaches to planning with domain-
specific control information: deductive planning in the frame-
work of temporal logic, and (possibly non-deductive) plan-
ning based on algorithms that operate on plan operators only
with control embedded in the operators. Both approaches are
worth investigating, but in this paper we take the second be-
cause of its direct usefulness for almost any type of planning.
Once the control information expressed as temporal logic for-
mulae is compiled into plan operators (a preprocessing step),
no planning algorithm needs to be aware of temporal logic.

‘We show how temporal logic control can often be effectively
compiled away by implicitly representing the formulae in the
plan operators. More precisely, for arbitrary sets of plan oper-
ators and for formulae from a subclass of linear temporal logic,
we show how to produce sets of plan operators that work like
the original sets under the control of the formulae. We assume
that plan operators can represent conditional effects; that is,
the sets of facts that change their truth-values may depend
on the truth-values of other facts. With conditional effects
we also represent disjunctive preconditions that also appear
to be necessary for encoding any non-trivial control informa-
tion. This approach suggests that rather than addressing the
problem of control knowledge directly in connection with ev-
ery planning algorithm, it may be more productive to find
efficient domain-independent planning algorithms with more
expressive input languages.

To demonstrate the feasibility of the approach we run a
small series of benchmarks on two planners, TLPlan and IPP,
that are respectively based on forward and backward chaining.
For both planners we obtain a speed-up of at least two orders
of magnitude.

2 CONTROL FORMULAE IN
TEMPORAL LOGIC

We consider finite models M = (v1,...,v,) of a linear tempo-
ral logic [5] where v; are valuations v; : A — {T, F'} that map
propositional variables to truth values. The size of a model
|M] is defined as the number n of valuations. We define the
truth of formulae at a point ¢ € {1,...,|M|} of a model re-
cursively as follows.

M |=; p if and only if v;(p) = T, where p € A.

M I:l —|¢ if and OIlly if M bél ¢

ME; ¢V ¢ ifand only if M = ¢ or M |=; ¢'.

M i Q¢ if and only if M =41 ¢.

M i ¢U' if and only if M |=; ¢ for all j € {i,...,n}
such that M = ¢' for no k € {i,...,j}.

We say that a model M satisfies a formula ¢ if and only
if M =i ¢ for all 4 € {1,...,|M|}. We define the operator
always by O¢ =def ¢U L. The constants false and true are re-
spectively L and T. Our semantics for until ¢/ is only one of
several possible ones. In this paper a slightly different seman-
tics for until that requires that ¢’ eventually becomes true,
is useful. M |=; ¢UU>¢’ if and only if for some j € {i,...,n}
M= ¢ and M = ¢ for all k € {i,...,j—1}. We define the
operator eventually O¢ =%/ T1/24.

A main difference from the temporal logic used by Bac-
chus and Kabanza [2] is that we do not have a goal modality.
This would be unnecessary because information concerning
the goals can be represented as conventional facts. Another
difference is that we assume that all propositions in the con-
trol formulae occur in the operators; that is, we do not have
defined predicates. It is straightforward to replace the occur-
rences of defined predicates by their definitions. Of course,
this may increase the size of the formula.

3 COMPILATION OF CONTROL INTO
PLAN OPERATORS

It seems that representing complex control information in
conventional plan operators p = e, where p and e are sets
(conjunctions) of literals, is not in general feasible. A more
expressive form of plan operators allows conditional effects
which means that the set of facts changed by the applica-
tion of an operator may depend on the current truth-values
of facts. There are a number of planners that support condi-
tional effects [8, 1, 2] and incorporating them in many others
is easy. There seem to be many transition systems that can
be represented exponentially more concisely with conditional
effects than without and this seems to be the case in encod-
ing control information in plan operators. Notice that we still
assume the original sets of operators to be unconditional, and
the lifted version of the translation needs also universal and
existential quantification over individuals.

An operator p = e with conditional effects may have both
literals and rules ¢ — f in e. When p = e is applied, all literals
in e become true and literals in f for ¢ - f € e become true
if the literals in ¢ were true.

For our translation we consider sets ® of clauses k V (¢ple),
&V (¢pU%€), and k V OO, where ¢, € and 8 are literals and & is
a disjunction of literals.” The modalities 00 and ¢ are reduced
to U and U? like mentioned earlier. For literals ! and sets s of
literals we write { and 5 for the complement of ! and the set
consisting of the complements of literals in s, respectively.

Next we give the translation. It extends each operator so
that it cannot be applied if it violates the control formula. If
we commit to the truth of ¢lfe for KV (plle) € P at the current
time point, we have to guarantee that the future truth-values
of ¢ and € obey the semantics of U. For this we use auxiliary
facts Uy . that become true when respective formulae s be-
come false, and they stay true until £ is true and € is true in
the current or in the preceding time point. The translation of

2 We will often identify disjunctions or conjunctions of literals with
sets so that union, intersection and set membership can be used
on them.

U? is like that of U (the only difference is in the definition of
the new goal), and the translation of () is simple and does
not require auxiliary variables.

We incorporate ® into P = (I, 0, G}, where [is an initial
state, O is a set of operators and G is a goal, as Fs(P) =
(Is,0s,Gs) where Os = {d'lo € 0,0 = 0'} and == is
defined as follows. Let p = e be an operator in O.

1. The operator may make the non-modal literals in a clause
false and therefore require the satisfaction of ¢le (or be
inapplicable if neither ¢ nor € is true.) Let

E: = {F\e » L|gV (¢ple) € ,r =k U {9, €},
eNT#0,enr =0}
By = {R\e— Ub.lnV (dlUe) € &,

eNkE #B,eNk=0}.

2. The operator may not be applied if it falsifies an active ¢lle
by making both ¢ and e false. The conditions k Ne = () are
needed for the case in which x becomes true and e is true
in the current or in the preceding case: then the new values
of ¢ and € do not matter. Let

By = {Ujeé— LIV (gUde) € @,

E€e,pde,rNe={}
E; = {Uj.,e—> L|kV (¢gUe) € P, Eeede}
Es = {Uj.—» LV (¢lUe) € @,

{$,8} Ce,knNe=0}

3. The operator may deactivate Ug . by reaching a state in

which k is true and ¢ is true in the current or in the pre-
ceding state. Let

Es = {-Uj |6V (¢lUe) € D,e €e,kNe # 0}
E; = {l—»-Uj |cV(¢Ue) €@, 1€k, I¢ee€e}
Eg = {e—»-Uj |cV (¢Ue) € D, 6Ne # 0}

4. For the translation of formulae x V (Of € @, an operator

may not be applied if it makes 0 false and k was true at the
preceding time point, or if it does not make 6 true when it
was false before and x was true.

EY
E;

{R—> Lkv (b€ d,0€e}
{R,0 > Llskv (b € ®,0 &e}

A problem with O is that for every k V (8 € @, every
operator — even when they do not affect any of the literals
in k or 6 — potentially violates this formula by not making 6
true when it was false before. However, often 8 € x and the
antecedent of the effect from ES is therefore inconsistent
and the effect can be eliminated.

Above, L represents a fact that is false in the initial and
goal states and is not made false by any operator: L may not
be an (unconditional) effect of an operator and c for effects
¢ —» 1 must be false.

Now (p=e) = (p = (eUUL, Bi U, E?)).

An initial state I is extended with a valuation for auxiliary
variables to obtain Is: for all k V (¢lUe) € @, Is |= Ug . iff
I |= -k. Of course, the control information contradicts the

initial state if I = —(k V ¢ V €) for some k V (¢plde) € @, and
then there are no plans that satisfy ®. For the modal operator
U® the goal G = GU {-Uj |k V (¢UU’€) € ®} requires that
e for every ¢lUe eventually becomes true.

In the following theorem we identify an obvious quadratic
upper bound on the size of the translation. In practise the
sizes of sets of operators increase much less.

Theorem 1 The size of Oo s quadratic in the sum of the
sizes of O and ®.

For a given plan s there is a temporal logic model
(v1,...,Y4+1) where v1 |= I and v;41 is obtained from v; by
executing the ith operator in s. By |s| we denote the length
of the plan. We say that a plan s satisfies a formula ® if the
corresponding temporal logic model satisfies ®.

Theorem 2 P = (I,0,G) has a plan that satisfies the for-
mula ® if and only if Ps = {ls,0s,Gs) has a plan.

Proof: We have a detailed proof but it is 2 pages long and
relatively straightforward. The following are the facts we es-
tablish by induction. The first two are used in showing that
plans for Ps satisfy ® and hence there is a plan for P that
satisfies ®, and the third for showing that if a plan for P
satisfies & then there is a corresponding plan for Ps.

1. Given model Mg of a plan for Py, for all ¢ € {1,...,|Ms|}
and K V (¢Ue) € @, Mo |=; Uj . or Mo |=i k.
2. Given model Mg of a plan for Ps, for all i € {1,...,|Ms|}

and K V (d)l/[ﬁ) € P, if Mo |=¢ Ug,s then Mo 'Zl PUe.

3. Given a sequence of operators from Ps that was obtained
from a plan for P that satisfies ®, for all ¢ € {1,..., |Ms|}
and k V (¢Ue) € @, Mo |=; Uj . if and only if Ms [~; & or
there is j € {1,...,4 — 1} such that My [~; x and for all
ke {j,...,i} Ms [~ e. The antecedents of rules ¢ - L in
the effect of the operator at step 17 is false.

The correctness of the translation for Q) is easy and for U? it
follows easily from the correctness of U. a

4 LIFTING THE TRANSLATION

The discussion of the translation so far addresses ground oper-
ators only. In many applications operators can be represented
more concisely as schemata that correspond to sets of ground
operators. Our translation can easily be lifted to schematic
operators. In the next section we show how this is done by
means of an example.

5 REPRESENTING CONTROL
INFORMATION

We show how control information can be encoded and how
the translation of &/ works with the logistics domain and the
control rules given by Bacchus and Kabanza [2]. The goals
are introduced in the initial state as normal facts with the
prefix G. We also use facts Gatcity(p,) that say that the goal
location of package p is in the same city as location [. The
variables below are typed as follows: t is a truck, p a package,
a an airplane, and [a location. In the following formulae these
variables are universally quantified unless indicated otherwise.

The axioms below respectively state the following. A pack-
age must be loaded in a truck if it is in a wrong city and not
at an airport. A package must be loaded in a truck if it is in
a wrong location of the right city. A package must be loaded
in an airplane if it is in a wrong city (the rule is formalized
the way it is because there may be two airplanes at the city
and loading into a truck is prevented by C11.)

C1 at(t,l) Aat(p,l) A =Gatcity(p,1) A —airport(l)
—at(t, H)Uin(p, t)
C2 at(t,l) Aat(p,l) A Gatcity(p,1) A =Gat(p,1)
—at(t,)Uin(p, t)
C3 at(a,l) A at(p,l) A ~Gatcity(p,l) = at(a, |)U—at(p,1)

A package at the goal location may not be moved anywhere.
A package may not be loaded in a truck at the airport of a
wrong city. A package may not be loaded in an airplane if it
is in the right city.

C10 at(p,l) A Gat(p,l) —Oat(p,1)
C11 at(p,l) A =Gatcity(p, 1) A airport(!)

—at(p,)UTain(p, a)
C12 at(p,l) A Gatcity(p, 1) = O-in(p, a)

We have similar formulae that say when packages must be
unloaded and must not be unloaded and that prevent un-
necessary vehicle movement. They express the same rules as
Bacchus and Kabanza's formulae [2]. There is no space to
give them here. The formulae that prevent vehicle movement
are more complicated than the ones given above. The same
formulae were found problematic by Huang et al. [6].

All the logistics control rules can be formalized with the
operator (). The consequents of the implications in C1-C3
and C10-C12 are respectively replaced by Qat(t, 1), Qat(t, 1),
Qat(a,1), Qat(p,1), O-in(p,t), and O-in(p, a).

Next we show how formulae C1-3 and C10-12 are incorpo-
rated into the operator for loading a package into a truck.

(:action load-truck

:parameters (7o - obj 7truck - truck 7loc - location)
:precondition (and (at 7o ?loc) (at ?truck 7?loc))
reffect (and (in 7o 7truck) (not (at 7o 7loc))))

Many of the effects are redundant and can be eliminated by
using general-purpose simplification rules: e.g. rules ¢ — e in
operators with preconditions p can be removed if pUcU I
is inconsistent (I is a set of invariants [10]). In the logistics
example this happens to all effects from E;.

1. From Eg and C1, C2 and C3 we obtain the following.

(not (untilC1 ?o0 ?truck ?loc))
(not (untilC2 7o ?truck 7loc))
(forall (7p - airplane) (not (untilC3 7o 7p 7loc)))

The first two effects allow the movement of trucks after
packages have been loaded. The third effect is unnecessary.
2. The effects from E7 handle the situation in which & be-
comes again true before € becomes true. Many of these ef-
fects can be eliminated. For example, if k contains a static
fact ! (that is not affected by any operator), x’s becom-
ing true cannot be caused by [, and the respective rule
I - —Ug . is therefore unnecessary. Similarly, if b EK
cannot become true before € because this would violate ¢lfe
and ¢ —» -Ug,. can be removed.
From E7 and C1, C2 and C3 we obtain the following.

(forall (?loc2 - location)
(when (not (at 7o 7loc2))
(not (untilC1 7o ?truck 7?loc2))))
(forall (?loc2 - location)
(when (not (at 7o 7loc2))
(not (untilC2 7o ?truck ?7loc2))))
(forall (7loc2 - location 7p - airplane)
(when (not (at %o ?loc2))
(not (untilC3 7o ?p 7loc2))))

Also these effects are unnecessary, but we do not have a
general-purpose rule for eliminating them.
3. From Eg and C1-3 and C10-12 we obtain the following.

(forall (?truck2 - truck)
(when (in 70 7truck)
(not (untilC1 7o ?truck ?loc))))
(forall (?truck2 - truck)
(when (in 7o 7truck)
(not (untilC2 7o ?truck ?loc))))
(forall (7p - airplane)
(when (not (at 7o 7loc))
(not (untilC3 7o ?p 7loc))))
(when (false) (not (untilC10 7o 7loc)))
(when (exists (?p - airplamne) (in 7o 7p))
(not (untilCi11 7o 7loc)))
(when (false) (mot (untilC12 7o 7loc)))

4. From E4 and C10 and C11 we obtain the following.

(when (and (untilC10 7o 7loc) (not (false))) (false))
(when (and (untilC11l 70 ?loc) (not (false))) (false))

These effects prevent loading if the package is in the goal
location or is waiting for an airplane.

In the lifted version of the translation many control for-
mulae require universal quantification in the operators. For
example, the operator that moves a truck potentially affects
C1 and C2 for every package. Sometimes quantification can
be removed the same way some conditional effects can com-
pletely be removed, because of an invariant [10]. For example,
load-truck makes the antecedent of the control formula that
prevents unloading the package true. However, this formula
prevents unloading in all locations that are not airports or
destination locations. An invariant guarantees that the truck
is at the current location only, and quantification over other
locations is unnecessary.

6 EXPERIMENTS AND DISCUSSION

We have solved a number of logistics problems with TLPlan
[2] and IPP [8] and both versions of the control formulae,
with the operator &/ and with (O only. These planners were
chosen because their input languages can express disjunctive
preconditions and conditional effects, and they do search in
opposite directions. The logistics problems seemed interesting
because implementations of the Graphplan algorithm have
not fared very well in solving them, and estimating the effect
of control information would be relatively straightforward.
The control formulae were discussed in Section 5. We re-
placed effects l1,...,l, — L by preconditions I; V --- V I,,
to allow IPP to use them in planning graph construction,

and simplified the operators as discussed in Section 5. These
transformations can easily be performed mechanically.

Table 1 gives runtimes of IPP and TLPlan and the for-
malization with the operator () on a Sun Ultra with a 360
MHz sparcv9 processor. We used two or three versions of each
problem instance: without control information, with control
formulae embedded in operators (/E), and interpreted with
formula progression (/P). IPP does not interpret temporal
logic formulae, so we made a comparison between formula
progression /regression and embedded control on TLPlan only.
The /P runtimes are for the formalization of the problems in
the TLPlan software distribution.

Table 1. Runtimes of two planners in seconds.
planner | log-a log-b log-c log-d
TLPlan >1h >1h >1h >1h
TLPla,n/E 0.17 0.13 0.17 0.52
TLPlan/P 0.45 0.33 0.54 1.94
PP 1547.51 649.69 >3h >10h
IPP/E 15.04 5.63 1010.55 30638.03

Without control TLPlan searches blindly and the chances
of quickly reaching a goal state in a search tree with a depth of
dozens of nodes are extremely small. TLPlan with embedded
control is almost three times faster than TLPlan with control
formulae interpreted with formula progression. An explana-
tion for this difference is that Bacchus and Kabanza’s formula
progression and use of defined predicates causes an overhead
on top of the underlying forward-chaining planning algorithm.
With embedded control this overhead disappears.

With TLPlan and the formalization with the operator U/
the runtimes are slightly higher (0.21, 0.14, 0.21, and 0.62
seconds) because of a higher number of preconditions and ef-
fects. Surprisingly, the corresponding IPP runtimes are much
higher than with no control at all (we terminated the runs
after 2 hours.) Also on the formalization with O IPP run-
times are high and it performs a lot of search (10° operator
applications for logistics-b, down from 107 without control)
even though the formulae almost uniquely tell what actions
to take. Some search is unavoidable because an airplane may
arrive to a goal city from several locations (the rules allow
flights A-B-C and B-A-C if both A and B contain packages
to be transported to C.) However, as TLPlan traverses search
trees with only 50-80 nodes, the difference still seems big.

A further explanation for IPP’s performance would be the
handling of disjunctive subgoals that are obtained from ef-
fects l1,...,l, — L. IPP reduces disjunctive subgoals to non-
disjunctive subgoals: first all minimal non-disjunctive sub-
goals that have at least one literal from each disjunction
are produced, and then separately for each minimal non-
disjunctive subgoal all sets of operators that produce it are
tried out. There are examples in which the number of possi-
ble sets of operators is small (constant) but the number of al-
ternative non-disjunctive subgoals is very high (exponential),
and removing disjunctivity before operator selection — which
is not necessary — therefore increases the number of branches
exponentially.® It would be interesting to test a more direct
implementation of disjunctive subgoals.

3 With (a1 V b1) A--- A (an V by) and two operators respectively
with effects a1,...,an and b1,...,by, the increase is from 3 to 2".

7 RELATED WORK

Bacchus and Kabanza [2] pointed out the possibility of effi-
ciently interpreting temporal logic formulae for pruning the
search tree in a forward-chaining planner. The formulae are
interpreted starting from the initial state. Assuming that the
formulae are true at the current time point, the truth and fal-
sity of several other formulae can be inferred for the next time
point. These formulae restrict the possible choices of the next
operators. This process of formula progression is not theorem-
proving but a form of model-checking, and is computationally
inexpensive. Our encoding of temporal logic formulae can be
seen as an implicit way of doing progression. An important
difference is that our encoding works in connection with all
planning algorithms, also ones that are not based on forward-
chaining. The encoding can be done fully automatically and
very efficiently, so it does not incur further costs.

Huang et al. [6] extend a planning algorithm with temporal
logic control. Many formulae can be handled during a prepro-
cessing phase by not producing some of the ground instances
of the operators. Other formulae require adding new clauses
in the encoding of the problem in the propositional logic.

Baioletti et al. [3] consider a generalized notion of goals
that are expressed as formulae with modal operators O and
eventually ¢. The formulae are encoded into plan operators.
Bailetti et al. do not use operators next () or until &/ that
seem to be necessary for formalizing control information.

Temporal logic has been used in specifying and synthesizing
programs and controllers for dynamic systems [9], and those
techniques are applicable to planning because the underlying
problems are the same. Another related topic is specialization
of functional and logic programs by folding/unfolding [4, 11].

8 CONCLUSIONS

We have shown how to encode a class of temporal logic con-
trol formulae into plan operators so that explicit handling of
formulae in planning algorithms is avoided. The class of for-
mulae and the translation are interesting: control rules can
easily be represented, plan size is not affected, and the sizes
of operators increase relatively little.

Our experiments show that this translational approach
speeds up a backward-chaining planner substantially and can
be very competitive with formula progression in a forward-
chaining planning algorithm as proposed by Bacchus and Ka-
banza [2]. Our current translation has syntactic restrictions,
but they are not violated for example by any of the formulae
proposed by Bacchus and Kabanza (assuming a transforma-
tion to CNF.) A difference that may affect the formalization
of control rules is the lack of defined predicates. Extending
the translation to defined predicates is possible, but we have
not pursued this question further in this work. Because of the
complete independence of our approach of any planning algo-
rithm, it is directly applicable to many kinds of algorithms.

It may be possible and desirable to extend the translation to
cover more general classes of formulae. It is not clear in what
extent this is possible without sacrificing the good properties
the current translation has. By inspecting the translation, it
would seem possible to allow disjunctions of literals in the
subformulae of U, U? and (. Furthermore, now there is an
asymmetry between the source and target languages of our

translation as the source operators may not have conditional
effects. Removing this asymmetry would be desirable.

In addition to the problem of using temporal logic control
formulae, there is also the problem of automatically verify-
ing that a control formula preserves the existence of (short-
est) plans, and more generally, the problem of synthesizing
control formulae automatically. A restricted but widely ap-
plicable type of control formulae is obtained by recognizing
symmetries in planning problems [7]. For control formulae
in general, already the problem of verifying whether a con-
trol formula preserves existence of plans is computationally
very complex, PSPACE-hard in the propositional case, but
it is likely that there are useful incomplete polynomial time
algorithms, like for invariant synthesis [10], another PSPACE-
hard problem, that may increase the efficiency and applica-
bility of automated planning substantially.

REFERENCES

[1] C. Anderson, D. Smith, and D. Weld, ‘Conditional effects in
Graphplan’, in Proceedings of the Fourth International Con-
ference on Artificial Intelligence Planning Systems, eds., Reid
Simmons, Manuela Veloso, and Stephen Smith, pp. 44-53.
The AAAI Press, (1998).

[2] Fahiem Bacchus and Froduald Kabanza, ‘Using temporal log-
ics to express search control knowledge for planning’, Artifi-
cial Intelligence, 116(1-2), 123-191, (2000).

[3] Marco Baioletti, Stefano Marcugini, and Alfredo Milani, ‘En-
coding planning constraints into partial order planning do-
mains’, in Principles of Knowledge Representation and Rea-
soning: Proceedings of the Sizth International Conference
(KR ’98), eds., A. G. Cohn, L. K. Schubert, and S. C. Shapiro,
pp- 608-616, Trento, Italy, (1998). Morgan Kaufmann Pub-
lishers.

[4] R. M. Burstall and John Darlington, ‘A transformation sys-
tem for developing recursive programs’, Journal of the ACM,
24(1), 44-67, (January 1977).

[5] E. Allen Emerson, ‘Temporal and modal logic’, in Handbook
of Theoretical Computer Science, ed., J. Van Leeuwen, vol-
ume B, 995-1072, Elsevier Science Publishers, (1990).

[6] Yi-Chen Huang, Bart Selman, and Henry Kautz, ‘Control
knowledge in planning: benefits and tradeoffs’, in Proceed-
ings of the Sizteenth National Conference on Artificial In-
telligence (AAAI-99) and the Eleventh Conference on Inno-
vative Applications of Artificial Intelligence (IAAI-99), pp.
511-517, Orlando, Florida, (1999). The AAAI Press.

[7] David Joslin and Amitabha Roy, ‘Exploiting symmetry in
lifted CSPs’, in Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI-97) and 9th Innovative Ap-
plications of Artificial Intelligence Conference (IAAI-97), pp.
197-202, Menlo Park, (July 1997). The AAAI Press.

[8] Jana Koehler, Bernhard Nebel, Jorg Hoffmann, and Yannis
Dimopoulos, ‘Extending planning graphs to an ADL subset’,
in Proceedings of the Fourth European Conference on Plan-
ning (ECP’97), pp. 273-285. Springer-Verlag, (1997).

[9] Amir Pnueli and Roni Rosner, ‘On the synthesis of an
asynchronous reactive module’, in Automata, Languages and
Programming, 16th International Colloquium, eds., Gior-
gio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, volume 372 of Lecture Notes in Com-
puter Science, pp. 652-671, Stresa, Italy, (July 1989).
Springer-Verlag.

[10] Jussi Rintanen, ‘An iterative algorithm for synthesizing in-
variants’, in Proceedings of the Seventeenth National Confer-
ence on Artificial Intelligence (AAAI-2000) and the Twelfth
Conference on Innovative Applications of Artificial Intelli-
gence (IAAI-2000). The AAAI Press, (2000).

[11] H. Tamaki and T. Sato, ‘Unfold/fold transformation of logic
programs’, in Proceedings of the Second International Con-
ference on Logic Programming, ed., Sten-Ake T#rnlund, pp.
127-138, Uppsala, (1984).

