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Abstract. This chapter summarizes our ongoing research on topolog-

ical spatial reasoning using the Region Connection Calculus. We are

addressing di�erent questions and problems that arise when using this

calculus. This includes representational issues, e.g., how can regions be

represented and what is the required dimension of the applied space. Fur-

ther, it includes computational issues, e.g., how hard is it to reason with

the calculus and are there e�cient algorithms. Finally, we also address

cognitive issues, i.e., is the calculus cognitively adequate.

1 Introduction

When describing a spatial con�guration or when reasoning about such a con�g-

uration, often it is not possible or desirable to obtain precise, quantitative data.

In these cases, qualitative reasoning about spatial con�gurations may be used.

Di�erent aspects of space can be treated in a qualitative way. Among others

there are approaches considering orientation, distance, shape, topology, and com-

binations of these. A summary of work on these and other aspects of qualitative

spatial reasoning can be found in [Coh97].

One particular approach in this context has been developed by Randell, Cui,

and Cohn [RCC92], the so-called Region Connection Calculus (RCC), which is

based on binary topological relations. One variant of this calculus, RCC-8, uses

eight mutually exhaustive and pairwise disjoint relations, called base relations,

to describe the topological relationship between two spatial regions. A similar

calculus was developed by Egenhofer [Ege91], who de�ned relations by comparing

the intersection of the interior, the exterior, and the boundary of di�erent planar

regions and identi�ed the same base relations.

In this chapter we are addressing di�erent aspects of using RCC-8. Among

these are cognitive aspects of RCC-8, namely, whether a formally de�ned topo-

logical calculus like RCC-8 can also be regarded as cognitively adequate. We will

report about an empirical investigation on that topic [KRR97] that resulted from

a cooperation with the project MEMOSPACE (see their chapter in this volume

[KRSS98]).

One aspect is concerned with representational properties. As spatial regions

used by RCC-8 are arbitrary regular subsets of the topological space, it is unclear

how these regions should be represented. We will present a canonical model that



allows a simple representation where regions are reduced to their important

points and information about the neighborhood of these points [Ren98].

Most applications of spatial reasoning deal with two- or three-dimensional

space and not with arbitrary topological space, where dimension is not consid-

ered. Therefore there might be consistent sets of RCC-8 relations which are not

realizable in the desired dimension. Using the canonical model, we can prove

that any consistent set is always realizable in any dimension d � 1 if arbitrary

regions are used and in any dimension d � 3 if regions must be internally con-

nected [Ren98].

Another aspect is concerned with computational issues of reasoning with

RCC-8. We will prove that reasoning with RCC-8 is NP-hard in general and

identify a large maximal tractable subset of RCC-8 which can be used to make

reasoning much more e�cient even in the general NP-hard case [RN97].

This chapter is organized as follows. In the second section we introduce

RCC-8, Section 3 summarizes our empirical investigation on cognitive validity

of RCC-8. In Section 4 we introduce the modal encoding of RCC-8 and identify

the canonical model. In Section 5 this model will be interpreted topologically,

which allows a simple representation of regions and also predications about the

dimension of regions. Section 6 summarizes our results on computational prop-

erties of RCC-8.

2 Qualitative Spatial Reasoning with RCC

RCC is a topological approach to qualitative spatial representation and reasoning

where spatial regions are regular subsets of a topological space U [RCC92]. U is

called the universe, i.e., the whole space. Relationships between spatial regions

are de�ned in terms of the relation C(r; s) which is true if and only if the closure

of region r is connected to the closure of region s, i.e. if their closures share

a common point. We consider only regular closed regions, i.e., regions that are

equivalent to the closure of their interior. This is no restriction, as with the above

de�nition of C it cannot be distinguished between open, semi-open, and closed

regions. Regions themselves do not have to be internally connected, i.e., a re-

gion may consist of di�erent disconnected parts. The domain of spatial variables

(denoted as X;Y ; Z) is the whole topological space.

In this work we will focus on RCC-8, but most of our results can easily be

applied to RCC-5, a subset of RCC-8 [Ben94]. RCC-8 uses a set of eight pairwise

disjoint and mutually exhaustive binary relations, called base relations, denoted

as DC, EC, PO, EQ, TPP, NTPP, TPP

�1

, and NTPP

�1

, with the meaning Dis-

Connected, Externally Connected, Partial Overlap, EQual, Tangential Proper

Part, Non-Tangential Proper Part, and their converses. Examples for these rela-

tions are shown in Figure 1. In RCC-5 the boundary of a region is not taken into

account, i.e., one does not distinguish between DC and EC and between TPP

and NTPP. These relations are combined to the RCC-5 base relations DR for

DiscRete and PP for Proper Part, respectively.
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Fig. 1. Two-dimensional examples for the eight base relations of RCC-8

Sometimes it is not known which of the eight base relations holds between

two regions, but it is possible to exclude some of them. In order to represent this,

unions of base relations can be used. Since base relations are pairwise disjoint,

this results in 2

8

di�erent relations, including the union of all base relations,

which is called universal relation. In the following we will write sets of base

relations to denote these unions. Using this notation, the RCC-5 base relation

DR = DC [ EC, e.g., is identical to fDC;ECg. Spatial formulas are written as

XRY , where R is a spatial relation. A spatial con�guration can be described by

a set � of spatial formulas.

Apart from union ([), other operations are de�ned, namely, converse (

^

),

intersection (\), and composition (�) of relations. The formal de�nitions of these

operations are:

8X;Y : X(R [ S)Y $ XRY _XSY ,

8X;Y : X(R \ S)Y $ XRY ^XSY ,

8X;Y : XR

^

Y $ Y RX,

8X;Y : X(R � S)Y $ 9Z : (XRZ ^ ZSY ):

The compositions of the eight base relations are shown in Table 1. Every

entry in the composition table speci�es the relation obtained by composing the

base relation of the corresponding row with the base relation of the correspond-

ing column. Composition of two arbitrary RCC-8 relations can be obtained by

computing the union of the composition of the base relations.

Given a particular subset S of RCC-8, the closure of S under composition,

intersection, and converse contains all relations that can be obtained by applying

these operations to the relations of S. The closure of S is denoted

b

S. The closure

of the set of RCC-8 base relations B, e.g., contains among other relations all

relations in the composition table, as they can be obtained by composing the

base relations.

One important computational problem is deciding consistency of a set � of

spatial formulas. � is consistent, if it is possible to �nd a realization of �, i.e., an

instantiation of every spatial variable with a spatial region such that all relations
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Table 1. Composition table for the eight base relations of RCC-8, where � speci�es the

universal relation.

hold between the regions. We call this problem RSAT. For example consider

the set � = fXfNTPPgY; Y fTPPgZ; ZfTPP;NTPPgXg. � is inconsistent as it

follows from Table 1 that NTPP composed with TPP is NTPP, so in our example

XfNTPPgZ should be true which contradicts XfTPP

�1

;NTPP

�1

gZ 2 �. This

is easy to see, as it is not possible that a region r is part of a region s which is

part of another region t which is part of r. When only relations of a speci�c set

S are used in �, the corresponding reasoning problem is denoted RSAT(S).

A canonical model of RCC-8 is a model by which every consistent set of RCC-8

formulas can be interpreted. The standard canonical model for RCC-8 is the

topological space, as every region can be interpreted as a subset of the topological

space. A canonical model for Allen's interval calculus [All83], e.g., is the set

of all convex intervals of real numbers. This model allows each interval to be

represented using the two endpoints of the interval. Such a simple representation

is not possible with the topological space as a canonical model for RCC-8.

3 Cognitive Plausibility of RCC-8

Qualitative temporal and spatial calculi are usually justi�ed by application re-

quirements and/or the introspection of the researchers developing the calculi.

The cognitive signi�cance of these calculi is usually not investigated. One excep-

tion is Allen's interval calculus, which has been analyzed from a cognitive point



Fig. 2. Screen dump of the monitor at the beginning of the grouping task

of view by the MEMOSPACE project (see Chapter [KRSS98]). Here the authors

distinguish between conceptual cognitive adequacy and inferential cognitive ade-

quacy [KRS95].

According to Knau� et al [KRR97], a spatial calculus is inferentially cognitive

adequate if \the reasoning mechanism of the calculus is structurally similar to

the way people reason about space" and it is conceptually cognitive adequate

if \empirical evidence supports the assumption that a system of relations is a

model of people's conceptual knowledge of spatial relationships." Our main aim

in assessing the cognitive plausibility of RCC-8 was to �nd out whether the

distinctions made in RCC-8 are conceptually adequate. In particular, we were

interested in �nding out whether sub-calculi such as RCC-5 are more plausible

than RCC-8. In cooperation with the MEMOSPACE project, we investigated

these questions [KRR97] using the grouping task paradigm. 20 subjects (students

of Albert-Ludwigs-Universit�at, Freiburg) were presented 96 items with varying

con�gurations of one red and one blue circle. The task of the subjects was to

group similar con�gurations together, where the number of groups was not given

to the subjects (see Figure 2). After having completed the grouping task, subjects

were (unexpectedly) asked to give natural language descriptions of the groups

they had formed.



Applying a cluster analysis to the data obtained in this investigation revealed

that after some clustering steps items for the RCC-8 relations were clustered to-

gether. After some more clustering steps items for the relations TPP and TPP

�1

as well as items for the relations NTPP and NTPP

�1

were clustered together,

but at no level of the cluster analysis other sub-calculi of RCC-8 were detected.

Clustering of TPP and TPP

�1

as well as NTPP and NTPP

�1

probably hap-

pened because some subjects ignored the distinction between reference object

and to-be-localized object.

In the analysis of the natural language description of the groupings it be-

came evident that in more than 95 % of all cases topological terms were used to

describe the groupings. This and the above described �nding led us to the con-

clusion that there is evidence that the RCC-8 system of relations is conceptually

cognitive adequate, i.e., people use them to conceptualize spatial con�gurations

[KRR97]. However, more investigations are necessary to con�rm this. For in-

stance, one should investigate whether the RCC-8 assumption of regions that

are not internally connected is adequate. Further, it will be interesting to inves-

tigate the inferential cognitive adequacy of RCC-8.

4 Modal Encoding of RCC-8 and a Canonical Model

As RCC is de�ned in �rst-order logic, this does not lead to e�cient decision

procedures. It can even be derived from a result of [Grz51] that RCC is undecid-

able. In order to overcome this, Bennett [Ben94] used an encoding of the RCC-8

relations in propositional intuitionistic logic whereby RCC-8 is proven to be de-

cidable. In this chapter we are using Bennett's encoding of RCC-8 in modal logic

[Ben95]. After making a brief introduction to modal logic, we are describing the

modal encoding and based on this identify a canonical model of RCC-8.

4.1 Propositional Modal Logic and Kripke Semantics

Propositional modal logic [Fit93,Che80] extends classical propositional logic

by additional unary modal operators 2

i

. A common semantic interpretation

of modal formulas is the Kripke semantics which is based on a set W of so-

called worlds and a set R of accessibility relations between these worlds, where

R �W �W for every accessibility relation R 2 R. Worlds are entities in which

modal formulas can be interpreted as either true or false. In di�erent worlds

modal formulas are usually interpreted di�erently. A di�erent accessibility rela-

tion R

2

i

is assigned to every modal operator 2

i

. For example if u; v 2 W are

worlds, R

2

i

2 R, and uR

2

i

v holds, then the world v is accessible from u with

R

2

i

. v is also called R

2

i

-successor of w.

A Kripke model M = hW;R; �i uses an additional valuation � that assigns

each propositional atom in each world a truth value ftrue; falseg. Using a Kripke

model, a modal formula can be interpreted with respect to the set of worlds, the

accessibility relations, and the valuation. For example, a propositional atom a

is true in a world w of the Kripke modelM (written asM; w j̀ a) if and only



Relation Model Constraints Entailment Constraints

DC(X; Y ) :(X ^ Y ) :X;:Y

EC(X;Y ) :(IX ^ IY ) :(X ^ Y );:X;:Y

PO(X;Y ) | :(IX ^ IY ); X ! Y ; Y ! X;:X;:Y

TPP(X;Y ) X ! Y X ! IY ; Y ! X;:X;:Y

TPP

�1

(X;Y ) Y ! X Y ! IX;X ! Y ;:X;:Y

NTPP(X;Y ) X ! IY Y ! X;:X;:Y

NTPP

�1

(X; Y ) Y ! IX X ! Y ;:X;:Y

EQ(X;Y ) X ! Y ; Y ! X :X;:Y

Table 2. Modal encoding of the eight base relations [Ben95].

if �(w; a) = true. An arbitrary modal formula is interpreted according to its

inductive structure. A modal formula 2

i

', e.g., is true in a world w of the Kripke

modelM, i.e.,M; w j̀ 2

i

', if and only if ' is true in all worlds accessible from

w with R

2

i

.M; w j̀ :2

i

' if and only if there is a world accessible from w with

R

2

i

where ' is false. The operators :;^ and _ are interpreted in the same way

as in classical propositional logic.

Di�erent modal operators can be distinguished according to their di�erent

accessibility relations. In this chapter we are using so-called S4-operators and

S5-operators. The accessibility relation of an S4-operator must be reexive and

transitive, the accessibility relation of an S5-operator must be reexive, tran-

sitive, and euclidean. With the accessibility relation R of a strong S5-operator

all worlds are accessible from each other, i.e., R = W �W . The use of Kripke

models should become more clear in Section 4.3 and Section 5, where worlds and

accessibility relations are displayed (see Figure 3 and Figure 4) .

4.2 Modal Encoding of RCC-8

The modal encoding of RCC-8 was introduced by Bennett [Ben95] and extended

in [RN97]. In both cases the encoding is restricted to regular closed regions,

i.e., regions which are equivalent to the closure of their interior. The modal

encoding is based on a set of model and entailment constraints for each base

relation, where model constraints must be true and entailment constraints must

not be true. Bennett encoded these constraints in modal logic by introducing

an S4-operator I which he interpreted as an interior operator [Ben95]. Table 2

displays these constraints for the eight base relations. Every spatial variable

corresponds to a propositional atom, so the modal formula X ^ Y corresponds

to the intersection of the spatial regions X and Y , X _Y to the union of X and

Y , :X to the complement of X , and IX to the interior of X . If a modal formula

' must be true in all worlds, then the spatial region corresponding to ' is equal

to the universe. The model constraint for the relation EC(X;Y ), e.g., states that

the complement of the intersection of the interior of region X with the interior of

region Y is equal to the universe. This constraint guarantees that regions X and

Y have no common interior. The entailment constraints of EC(X;Y ) state that

the complement of the intersection of region X and region Y is not equal to the



universe. Also the complements of both X and Y are not equal to the universe.

These constraints guarantee that regions X and Y have points in common and

that both regions are not empty.

In order to combine the model and entailment constraints to a single modal

formula, Bennett introduced a strong S5-operator 2, where 2' is written for

every model constraint ' and :2 for every entailment constraint  [Ben95].

2' can be interpreted as the spatial region ' is equal to the universe and :2' as

the spatial region ' is not equal to the universe. All constraints of a single base

relation are then combined conjunctively to a single modal formula. In order to

represent unions of base relations, the modal formulas of the corresponding base

relations are combined disjunctively. In this way every spatial formula XRY

can be transformed to a modal formula m

1

(XRY ). Two additional constraints

m

2

(X) are necessary to guarantee that only regular closed regions X are used

[RN97]: every region X must be equivalent to the closure of its interior and the

complement of a region must be an open region.

1

m

2

(X) = 2(X $ :I:IX) ^ 2(:X $ I:X):

So any set of spatial formulas � can be written as a single modal formula m(�)

where Reg(�) is the set of spatial variables of �:

m(�) =

 

^

XRY 2�

m

1

(XRY )

!

^

0

@

^

X2Reg(�)

m

2

(X)

1

A

:

As follows from the work by Bennett [Ben95], � is consistent if and only if m(�)

is satis�able.

4.3 A Canonical Model of RCC-8

A canonical model of a calculus is a structure that allows to model any consistent

formula of the calculus. An obvious canonical model of RCC-8 is the topological

space, as every spatial region can be modeled by a subset of the topological

space. As described above, the modal encoding of RCC-8 can be interpreted by

Kripke models. As the modal encoding of RCC-8 is equivalent to a set of RCC-8

formulas, a canonical model of RCC-8 is a structure that allows a Kripke model

for any modal formula obtained by the modal encoding of RCC-8. In order to

obtain a canonical model we distinguish di�erent levels of worlds. A world of

level 0 is a world which cannot be accessed from any other world with R

I

, the

accessibility relation corresponding to the I-operator. A world of level l is a world

which can be accessed with R

I

from a world of level l � 1 but not from other

worlds with a higher level than l � 1.

De�nition 1. An RCC-8-structure S

RCC8

= hW; fR

2

; R

I

g; �i has the following

properties (see Figure 3):

1

It can be easily veri�ed that :I:' corresponds to the closure of '.
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w

level 1

level 0

2n

Fig. 3. A world w of level 0 together with its 2n R

I

-successors as used in an RCC-8-

structure. Worlds are drawn as circles, the arrows indicate the accessibility of worlds

with the relation R

I

1. There are only worlds of level 0 and 1.

2. For every world u of level 0 there are exactly 2n worlds v of level 1 with

uR

I

v.

3. For every world u of level 1 there is exactly one world w of level 0 with wR

I

u.

4. For all worlds w; v 2W : wR

I

w and wR

2

v.

S

RCC8

contains worlds with all possible instantiations with respect to R

2

and

R

I

. An RCC-8-model M of m(�) is a �nite subset of S

RCC8

. In a polynomial

RCC-8-model the number of worlds is polynomially bounded by the number of

regions.

Every world of level 0 together with its 2n R

I

-successors forms an independent

cluster (see Figure 3). From the de�nition of \level" and De�nition 1 it follows

that R

I

is reexive and transitive, so it is guaranteed that I is an S4-operator. As

the number of regions is countable, the number of worlds ofW is also countable.

Lemma 1. If m(�) is satis�able, then there is a polynomial RCC-8-model M

withM; w j̀ m(�) with at most 3n

2

worlds of level 0.

Therefore the RCC-8-structure is a canonical model of the modal encoding of any

set of spatial formulas. The number of required worlds of level 0 results from the

number of di�erent entailment constraints.

5 Representational Properties of RCC-8

It was shown in the previous section that the RCC-8-structure is a canonical

model of RCC-8. This model was obtained from the modal encoding of topolog-

ical relations, so the model depends mainly on the modal encoding but not on

topology. In order to use this model for representational purposes, we have to

�nd a way to interpret it topologically. Then the model can also be used for deal-

ing with other properties of regions, e.g., dimension. A more detailed description

of representational issues of RCC-8 can be found in [Ren98].



5.1 Topological Interpretation of the RCC-8 Model

The modal encoding of RCC-8 was obtained by introducing a modal operator I

corresponding to the topological interior operator and transferring the topologi-

cal properties and axioms to modal logic. Using the intended interpretation of I

as an interior operator, it is unclear how the RCC-8-model, especially the acces-

sibility relations R

2

and R

I

, can be topologically interpreted. In this section we

present a way of topologically interpreting the RCC-8-model such that all parts

of the model can be interpreted consistently. The I-operator will not be inter-

preted as an interior operator, but we will prove that it satis�es the intended

interpretation of an interior operator.

Because I is an S4-operator and because of the additional constraints m

2

,

exactly one of the following formulas is true for every world w ofM and every

region X .

1. M; w j̀ IX

2. M; w j̀ I:X

3. M; w j̀ X ^ :IX

Consider a particular world w. Then the set of all spatial variables can be divided

into three disjoint sets according to which of the three possible formulas is true

in w. Let X

w

be the set of spatial variables where the �rst formula is true in w,

Y

w

be the set where the second formula is true in w, and Z

w

be the set where

the third formula is true in w, i.e., M; w j̀ IX

i

^ I:Y

j

^ (Z

k

^ :IZ

k

) for all

X

i

2 X

w

, Y

j

2 Y

w

, and Z

k

2 Z

w

.

Some relations between these spatial variables cannot hold as they contradict

the modal and entailment constraints of these relations. In the following table the

excluded relations and their topological consequences are shown for two regions

X and Y . i(:) denotes the interior, e(:) the exterior, and b(:) the boundary of a

region.

Set of X Set of Y Impossible relations Consequences

X

w

X

w

DC;EC i(X) \ i(Y ) 6= ;

X

w

Y

w

TPP;NTPP;EQ i(X) \ e(Y ) 6= ;

X

w

Z

w

DC;EC;TPP;NTPP;EQ i(X) \ b(Y ) 6= ;

Y

w

Y

w

{ {

Y

w

Z

w

TPP

�1

;NTPP

�1

;EQ e(X) \ b(Y ) 6= ;

Z

w

Z

w

DC;NTPP;NTPP

�1

b(X) \ b(Y ) 6= ;

2

It can be seen, e.g., that when IX and IY is true for a world w then the two

regions X and Y have a common interior.

Considering points in the topological space, we can distinguish three di�erent

ways how a point p can be related to a region X :

2

Actually this is not necessarily the case for PO(X;Y ) if X or Y are not internally

connected, but assuming this does not contradict any constraint since RCC-8 is not

expressive enough to distinguish di�erent kinds of partial overlap.



X

:X

:X

:X

:X

X

X

X

:X

:X

:X

:X

:X

:X

X

X

X

X

X

:X

X

X

w

w

w

boundary point

(M; w j̀ X ^ :IX)

exterior point

(M; w j̀ I:X)

interior point

(M; w j̀ IX)

Fig. 4. Three di�erent topological interpretations of a world w. The solid line is the

boundary of X where the hatched region indicates the interior of X.

1. p interior point of X : there is a neighborhood N of p such that all points of

N are contained in X

2. p is exterior point of X : there is a neighborhood N of p such that no point

of N is contained in X

3. p is boundary point of X : every neighborhood N of p contains points inside

of X and points outside of X

Comparing this to the three modal formulas described above, it can be seen

that there is a connection between the modal formula which is true in a world

w and the topological properties of a point p. It can be proven that there are

functions p :W 7! U and N : W 7! 2

U

that map every world w to a point p(w)

in the topological space and to a neighborhood N(w) of p(w) such that

p(w) 2 X if �(w;X) = true;

p(w) 62 X if �(w;X) = false;

p(u) 2 N(w) if wR

I

u:

For this proof we assume that p(w) is in the interior of all regions X

i

, in the

exterior of all regions Y

j

, and on the boundary of all regions Z

k

simultaneously.

As there is no contradiction to this neither from the topological constraints nor

from the modal constraints, it can be safely assumed. With this assumption the

proof is immediate. Figure 4 shows the three di�erent kinds of interpretations

of worlds as points.

Modal formulas can now be transformed stepwise to topological formulas as

follows:

M; w j̀ 2' 7! 8u : p(u) 2 U :M; u j̀ '



M; w j6`2' 7! 9u : p(u) 2 U :M; u j6`'

M; w j̀ I' 7! 8u : p(u) 2 N(w):M; u j̀ '

M; w j6` I' 7! 9u : p(u) 2 N(w):M; u j6`'

M; w j̀ X 7! p(w) 2 X

M; w j6`X 7! p(w) 62 X

Therefore M; w j̀ IX can be interpreted as \there is a neighborhood N(w) of

p(w) such that all points of N(w) are in X". This satis�es the intended inter-

pretation of I as an interior operator, asM; w j̀ X means that p(w) is in X and

M; w j̀ IX means that p(w) is in the interior of X .

5.2 Dimension of Spatial Regions

The topological space we have been using so far does not have any particular

dimension. This means that a consistent set of spatial relations is realizable in

some dimension, but not necessarily in the dimension an application requires,

e.g., two- or three-dimensional space. In the following we examine what dimen-

sion a space requires in order to realize the canonical model. Suppose that all

R

I

successors of a world w are mapped to points on the boundary of an n-

dimensional sphere with p(w) in the center. Then the neighborhoods of Figure

4, e.g., can as shown in the �gure be mapped to a two-dimensional plane where

all regions are also two-dimensional. This is possible because the mappings of

the R

I

-successors of the rightmost level 0 world can be separated by two line-

segments belonging to the boundary of X . If the worlds cannot be separated

by two line-segments for a region, we have to �nd a permutation of the R

I

-

successors such that a separation is possible. A separation is necessary only for

those neighborhoods that contain boundary points of a region, as for the other

neighborhoods all points are the same. By analyzing which points are boundary

points of which regions and the relationship between those regions, it turns out

that a permutation can always be found such that the worlds can be separated by

at most two line-segments for any region. In fact only two distinct R

I

-successors

are necessary for each world of level 0. Therefore we obtain another canonical

model for RCC-8 which allows models which are much more compact than the

RCC-8-model as introduced in the previous section. The new canonical model is

denoted reduced RCC-8-structure and the corresponding Kripke models reduced

RCC-8-models. One world of level 0 of the reduced RCC-8-structure together with

its R

I

-successors is shown in Figure 5a.

In order to obtain regions from the neighborhoods we have to close every

neighborhood, i.e., for every neighborhood N(w) �nd the closure of the part of

every region which is a�liated with N(w). Both sides of every neighborhood (see

Figure 6a) can be treated almost independently. All regions which are a�liated

with the same side of a neighborhood are either overlapping or one is part of

the other, i.e., TPP or NTPP. For the closure of the neighborhoods all \part of"

relations must be ful�lled, the partial overlap relation is not important.



X :X

(b)(a)

1 w 2

Fig. 5. (a) shows a world w of level 0 of the reduced RCC-8-structure together with

its two R

I

-successors. In (b) it is shown how the neighborhoods can be placed in

one-dimensional space. The two brackets indicate a possible one-dimensional region X

where the neighborhood de�nes a boundary point of X.
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Fig. 6. (a) shows the two-dimensional neighborhood of a boundary point which is

divided by the boundary. In (b) the neighborhood is closed with respect to the hierarchy

H

�

of the a�liated regions.

In order to ful�ll the \part of" relations, we have to �nd a hierarchy H

�

of

the regions such that such that a \part of" b if and only if H

�

(a) < H

�

(b).

The parts of all regions a�liated with a neighborhood can then be closed as

rectangles according to the hierarchy H

�

, i.e., regions of the same level are

equal (for a particular neighborhood) and are part of all regions of a higher level

(see Figure 6b). A neighborhood can be closed in any higher dimension d. The

hierarchy of regions is then measured along the diagonal of the d-dimensional

hypercube. In Figure 5b it can be seen that using the reduced RCC-8-model it is

also possible to place the neighborhood in a one-dimensional space where regions

are disconnected intervals.

Theorem 1. If a set of spatial formulas � is consistent, the RCC-8-model can

be realized in any dimension d � 1.

Starting from a two-dimensional model of possibly non connected regions, it is

possible to construct a three-dimensional model of connected regions.



Theorem 2. If a set of spatial formulas � is consistent, the RCC-8-model can

be realized in any dimension d � 3 using only connected regions.

The new canonical model is much better suited for representational purposes

than the RCC-8-model, but, as we will see in Section 6, it has some computational

drawbacks.

5.3 Representing Regions with the Canonical Model

The RCC-8-models give us a possibility to represent topological regions. With

the topological interpretation of the model it becomes clear that regions can be

reduced to points and information about their neighborhood. The points that

are needed within the model represent the important features of the regions with

respect to a set of relations.

Using the canonical model we can give algorithms to generate a realization

of � in the desired dimension. This can be done by simply placing the level

0 worlds together with their neighborhoods in the desired space and close the

neighborhoods according to the hierarchy H

�

. In this realization every region

consists of many disconnected parts (at most 3n

2

pieces, as there are at most

that many distinct worlds of level 0, i.e., neighborhoods). A realization using

only internally connected regions can be generated in any dimension d � 3 by

connecting all parts of a region of the d� 1 dimensional realization in a speci�c

way [Ren98].

6 Computational Properties of RCC-8

In order to get a deeper insight into a problem and to �nd e�cient algorithms, an

analysis of the computational properties is helpful. First results on computational

properties of RCC-8 were obtained by Nebel, who considered sets of base relations

[Neb95]. It was shown that the consistency problem RSAT(B) (where B is the

set of RCC-8 base relations) is polynomial and that the path-consistency method

(see also Section 6.3), a popular O(n

3

) approximation algorithm, is su�cient for

deciding consistency. Based on these results we are interested in the complexity

of the general consistency problem of RCC-8, where all 256 relations are allowed.

In this section we will show that RSAT is NP-hard, i.e., that every algorithm

is expected to take time super-polynomial in the number of spatial regions,

provided P 6= NP. As we now have intractability of the general consistency

problem of RCC-8 and tractability of a subset of RCC-8, we are interested in

the boundary between tractability and intractability. Therefore we identify a

maximal tractable subset of RCC-8 and prove that the path-consistency method

is su�cient for deciding consistency of this set. A more detailed description of

the computational properties of RCC-8 can be found in [RN97]

6.1 Complexity of RCC-8

All of the following NP-hardness proofs use a reduction of a propositional satis�-

ability problem to RSAT(S) by constructing a set of spatial formulas � for every



instance I of some propositional problem, such that � is consistent if and only

if I is a positive instance. These satis�ability problems include 3SAT where all

clauses have exactly 3 literals, NOT-ALL-EQUAL-3SAT where every clause has

at least one true and one false literal, and ONE-IN-THREE-3SAT where exactly

one literal in every clause must be true [GJ79].

The reductions have in common that every literal as well as every literal

occurrence L is reduced to two spatial variables X

L

and Y

L

and a relation

R = R

t

[ R

f

, where R

t

\ R

f

= ; and X

L

RY

L

holds. L is true if and only if

X

L

R

t

Y

L

holds and false if and only if X

L

R

f

Y

L

holds. Additional \polarity"

constraints have to be introduced to assure that for the spatial variables X

:L

and Y

:L

, corresponding to the negation of L, X

:L

R

t

Y

:L

holds if and only if

X

L

R

f

Y

L

holds, and vice versa. Using these polarity constraints, spatial vari-

ables of negative literal occurrences are connected to the spatial variables of the

corresponding positive literal, and likewise for positive literal occurrences and

negative literals. Further, \clause" constraints have to be added to assure that

the clause requirements of the speci�c propositional problem are satis�ed in the

reduction. We will �rst prove that the consistency problem for RCC-5 is NP-hard.

Theorem 3. RSAT(RCC-5) is NP-hard.

Proof Sketch. Transformation of NOT-ALL-EQUAL-3SAT to RSAT(RCC-5) (see

also [GPP95]). R

t

= fPPg and R

f

= fPP

�1

g. Polarity constraints:

X

L

fPP;PP

�1

gX

:L

; Y

L

fPP;PP

�1

gY

:L

,

X

L

fPOgY

:L

; Y

L

fPOgX

:L

.

Clause constraints for every clause c = fi; j; kg:

X

i

fPP;PP

�1

gX

j

; X

j

fPP;PP

�1

gX

k

; X

k

fPP;PP

�1

gX

i

,

X

i

fPOgY

k

; X

j

fPOgY

i

; X

k

fPOgY

j

.

Since RCC-5 is a subset of RCC-8, this result can be easily applied to RCC-8.

Corollary 1. RSAT(RCC-8) is NP-hard.

In the above NP-hardness proof only the relations fPOg, fPP;PP

�1

g, and

the universal relation were used, so this set of three relations is already NP-hard.

The same or similar proofs can be carried out when we use one of the RCC-8 re-

lations fTPP;NTPP

�1

g, fTPP;TPP

�1

g, fNTPP;NTPP

�1

g, fNTPP;TPP

�1

g or

fTPP;NTPP;TPP

�1

;NTPP

�1

g instead of fPP;PP

�1

g, so these sets are also NP-

hard. The number of intractable subsets can be increased by using an additional

property [NB95].

Theorem 4. RSAT(

b

S) can be polynomially reduced to RSAT(S)

Corollary 2. Let S be a subset of RCC-8.

1. RSAT(

b

S) 2 P if and only if RSAT(S) 2 P.

2. RSAT(S) is NP-hard if and only if RSAT(

b

S) is NP-hard.



With this property, all sets of RCC-8 relations whose closure contains one of the

�ve relations mentioned above are also intractable. By computing the closure of

all sets containing all base relations plus one additional relation, it turned out

that for 72 relations deciding consistency is NP-hard when one of them is added

to the base relations.

Lemma 2. RSAT(S) is NP-hard for any subset S of RCC-8 containing all base

relations together with one of the 72 relations of the following sets:

N

1

= fR j fPOg 6� R and (fTPP;TPP

�1

g � R or fNTPP;NTPP

�1

g � R)g;

N

2

= fR j fPOg 6� R and (fTPP;NTPP

�1

g � R or fTPP

�1

;NTPPg � R)g:

6.2 Tractable Subsets

In order to identify a set of RCC-8 relations as tractable, one either has to

specify a particular algorithm for deciding consistency of this set, or �nd another

tractable decision problem to which the consistency problem of the particular set

can be reduced. We have chosen HORNSAT, the tractable satis�ability problem

of propositional Horn formulas, i.e., those propositional formulas where each

clause contains at most one positive literal. For this reduction we �rst reduce

RSAT to SAT, the propositional satis�ability problem, and then identify the

relations which are reduced to Horn formulas.

For reducing RSAT to SAT, we specify a transformation by which every in-

stance of RSAT, i.e., every set of spatial formulas �, is transformed to a propo-

sitional formula. For this we will start from the modal encoding m(�) and the

corresponding RCC-8-model M. Every world w of level 0 of M together with

every spatial region X results in a propositional atom X

w

. In order to preserve

the structure of the RCC-8-model in the propositional formula, the 2n worlds of

level 1 of every level 0 world w are transformed to propositional atoms X

i

w

for

i = 1; ::; 2n. Using these atoms, every model and every entailment constraint can

be transformed to a propositional formula. Additionally, the properties of the

I-operator, i.e., reexivity and transitivity and the m

2

-formulas, also have to be

transformed to a propositional formula. It turns out that all these formulas can

be written as Horn formulas. As some of the model constraints can be trans-

formed to inde�nite Horn formulas, i.e., formulas where all clauses contain only

negative literals, disjunctions of these constraints with any other constraint can

also be transformed to Horn formulas. Thus every relation that can be written as

a conjunction of constraints and Horn transformable disjunctions of constraints

can be transformed to a Horn formula. For the set of these relations deciding

consistency is thereby tractable. This set consists of 64 di�erent relations and is

denoted H

8

. Because of Corollary 2, the closure

b

H

8

of H

8

is also tractable.

Lemma 3. RSAT(

b

H

8

) can be polynomially reduced to HORNSAT.

The reduction to HORNSAT is not possible for the reduced RCC-8-model, as the

transformation of the �rst part of m

2

does not result in a Horn formula.



Theorem 5.

b

H

8

contains the following 148 relations:

b

H

8

= RCC-8 n (N

1

[ N

2

[ N

3

)

with N

1

and N

2

as de�ned in Lemma 2 and

N

3

=fRjfEQg � R and ((fNTPPg � R; fTPPg 6� R)

or (fNTPP

�1

g � R; fTPP

�1

g 6� R))g:

For proving that

b

H

8

is a maximal tractable subset of RCC-8, we have to show

that no relation of N

3

can be added to

b

H

8

without making RSAT intractable.

For relations of the sets N

1

and N

2

this is already known (see Lemma 2). The

following Lemma can be proven by a computer assisted case-analysis.

Lemma 4. The closure of every set containing

b

H

8

and one relation of N

3

con-

tains the relation fEQ;NTPPg.

Therefore it is su�cient to prove NP-hardness of RSAT(

b

H

8

[ fEQ;NTPPg) for

showing that

b

H

8

is a maximal tractable subset of RCC-8.

Lemma 5. RSAT(

b

H

8

[ fEQ;NTPPg) is NP-hard.

Proof Sketch. Transformation of 3SAT to RSAT(

b

H

8

[ fEQ;NTPPg). R

t

=

fNTPPg and R

f

= fEQg. Polarity constraints:

X

L

fEC;NTPPgX

:L

; Y

L

fTPPgY

:L

;

X

L

fTPP;NTPPgY

:L

; Y

L

fEC;TPPgX

:L

;

Clause constraints for each clause c = fi; j; kg:

Y

i

fNTPP

�1

gX

j

; Y

j

fNTPP

�1

gX

k

; Y

k

fNTPP

�1

gX

i

:

Theorem 6.

b

H

8

is a maximal tractable subset of RCC-8.

It has to be noted that there might be other maximal tractable subsets of

RCC-8 that contain all base relations, since, e.g., RSAT(fEQ;NTPPg [ B) has

not been shown to be NP-hard so far.

6.3 Applicability of Path-Consistency

The path-consistency method is a very popular approximation algorithm for

deciding consistency of a Constraint Satisfaction Problem (CSP). It can be ap-

plied since RSAT is a CSP where variables are nodes and relations are arcs of

the constraint graph and the domain of the variables is the topological space.

The path-consistency method imposes path-consistency of a CSP by successively

removing relations from all edges with the following operation until a �xed point

is reached:

8k : R

ij

 R

ij

\ (R

ik

�R

kj

)



where i; j; k are nodes and R

ij

is the relation between i and j. The resulting

CSP is equivalent to the original CSP with respect to consistency. If the empty

relation occurs while performing this operation, the CSP is inconsistent, oth-

erwise the resulting CSP is path-consistent. More advanced algorithms impose

path-consistency in time O(n

3

) where n is the total number of nodes in the

graph [MF85].

It has already been mentioned that the path-consistency method is su�-

cient for deciding consistency of sets of base relations. It can be shown that it

is also su�cient for deciding consistency of sets of

b

H

8

relations. This is done

by showing that the path-consistency method �nds an inconsistency whenever

positive unit resolution (PUR) resolves the empty clause from the correspond-

ing propositional formula. The only way to get the empty clause is resolving a

positive and a negative unit clause of the same variable. Since the Horn formulas

that are used contain only a few types of di�erent clauses, there are only a few

ways to resolve unit clauses using PUR which were covered by a case-analysis.

As PUR is refutation-complete for Horn formulas [HW74], it follows that the

path-consistency method decides RSAT(H

8

). Using the proof of Theorem 4, it is

possible to express every relation of

b

H

8

as a Horn formula. Then the following

theorem can be proven.

Theorem 7. The path-consistency method decides RSAT(

b

H

8

).

6.4 Applicability of the Maximal Tractable Subset

One obvious advantage of the maximal tractable subset

b

H

8

is that the path-

consistency method can now be used to decide RSAT when only relations of

b

H

8

are used and not only when base relations are used.

As in the case of temporal reasoning, where the usage of the maximal tractable

subset ORD-HORN has been extensively studied [Neb97],

b

H

8

can also be used to

speed up backtracking algorithms for the general NP-complete RSAT problem.

Previously, every spatial formula had to be re�ned to a base relation before the

path-consistency method could be applied to decide consistency. In the worst

case this has to be done for all possible re�nements. Supposing that the rela-

tions are uniformly distributed, the average branching factor, i.e. the average

number of di�erent re�nements of a single relation to relations of B is 4:0.

Using our results it is su�cient to make re�nements of all relations to rela-

tions of

b

H

8

. Except for four relations, every relation not contained in

b

H

8

can

be expressed as a union of two relations of

b

H

8

, the four relations can only be

expressed as a union of three

b

H

8

relations. This reduces the average branch-

ing factor to 1:4375. Both branching factors are of course worst-case measures

because the search space can be considerably reduced when path-consistency is

used as a forward checking method [LR97].

The following table shows the worst-case running time for the average branch-

ing factors given above. All running times are computed as b

(n

2

�n)=2

where b

is the average branching factor and n the number of spatial variables contained

in �. We assumed that 100:000 path-consistency checks can be performed per

second.



#spatial variables B (4:0)

b

B (2:5)

b

H

8

(1:4375)

5 10sec 95msec 3msec

7 500days 38min 20msec

10 10

14

years 10

6

years 2min

Recent experiments have shown that consistency can be decided much faster than

these numbers indicate. Almost all instances up to a problem size of 100 spatial

variables can be solved in less than a second. Using

b

H

8

for the backtracking

search turns out to be about twice as fast in average than using

b

B. Also a

signi�cantly larger number of di�cult instances can be solved in reasonable time

when

b

H

8

is used.

7 Summary

In this chapter we reported about our ongoing work on the cognitive, repre-

sentational, and computational aspects of the Region Connection Calculus. We

made an empirical investigation of whether or not people use similar topological

information as in RCC-8 when conceptualizing spatial arrangements and found

that RCC-8 is a good candidate for a cognitively adequate spatial relation system

and that RCC-5 and other sub calculi of RCC-8 are not cognitively adequate. We

introduced a new canonical model of RCC-8 that resulted from the encoding of

RCC-8 in modal logic. This model was topologically interpreted which allows a

more simple representation of regions than it is possible with the topological

space as a canonical model. It could also be shown that a consistent set of rela-

tions always has a realization in any dimension d � 3 when regions are internally

connected and d � 1 otherwise. The consistency problem of RCC-8 was shown

to be intractable in general, but a maximal tractable subset of RCC-8 was iden-

ti�ed. For this set the path-consistency method was proven to be su�cient for

deciding consistency.

Open problems and further work on the topics of this chapter includes a more

detailed analysis of the canonical model with respect to models of internally con-

nected two-dimensional regions. Another open problem is whether the maximal

tractable subclass we found is the only one containing all base relations. We

are planning to make further empirical investigations on the cognitive validity

of RCC-8. This includes studying the inferential cognitive adequacy of RCC-8 as

well as examining whether the complexity results have any cognitive meaning.

Acknowledgments

We would like to thank Markus Knau� and Reinhold Rauh for their collab-

oration concerning the investigation of the cognitive aspects of RCC-8, Ronny

Fehling and Thilo Weigel for their assistance in developing the software, and

Markus Knau� and Fritz Wysotzki for their helpful comments on earlier ver-

sions of this chapter.

This research has been supported by DFG as part of the project fast-

qual-space, which is part of the DFG special research e�ort on \Spatial

Cognition."



References

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Communi-

cations of the ACM, 26(11):832{843, November 1983.

[Ben94] Brandon Bennett. Spatial reasoning with propositional logic. In J. Doyle,

E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representation and

Reasoning: Proceedings of the 4th International Conference, pages 51{62, Bonn, Ger-

many, May 1994. Morgan Kaufmann.

[Ben95] Brandon Bennett. Modal logics for qualitative spatial reasoning. Bulletin of

the IGPL, 4(1), 1995.

[Che80] Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press,

Cambridge, UK, 1980.

[Coh97] Anthony G. Cohn. Qualitative spatial representation and reasoning tech-

niques. In G. Brewka, C. Habel, and B. Nebel, editors, KI-97: Advances in Arti�cial

Intelligence, volume 1303 of Lecture Notes in Computer Science, pages 1{30, Freiburg,

Germany, 1997. Springer-Verlag.

[Ege91] Max J. Egenhofer. Reasoning about binary topological relations. In

O. G�unther and H.-J. Schek, editors, Proceedings of the Second Symposium on Large

Spatial Databases, SSD'91, volume 525 of Lecture Notes in Computer Science, pages

143{160. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

[Fit93] Melvin C. Fitting. Basic modal logic. In D. M. Gabbay, C. J. Hogger, and J. A.

Robinson, editors, Handbook of Logic in Arti�cial Intelligence and Logic Programming

{ Vol. 1: Logical Foundations, pages 365{448. Oxford, Clarendon Press, 1993.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability|A

Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

[GPP95] Michelangelo Grigni, Dimitris Papadias, and Christos Papadimitriou. Topo-

logical inference. In Proceedings of the 14th International Joint Conference on Arti-

�cial Intelligence, pages 901{906, Montreal, Canada, August 1995.

[Grz51] Andrzej Grzegorczyk. Undecidability of some topological theories. Funda-

menta Mathematicae, 38:137{152, 1951.

[HW74] L. Henschen and L. Wos. Unit refutations and Horn sets. Journal of the

Association for Computing Machinery, 21:590{605, 1974.

[KRR97] Markus Knau�, Reinhold Rauh, and Jochen Renz. A cognitive assessment

of topological spatial relations: Results from an empirical investigation. In Proceed-

ings of the 3rd International Conference on Spatial Information Theory (COSIT'97),

volume 1329 of Lecture Notes in Computer Science, pages 193{206, 1997.

[KRS95] Markus Knau�, Reinhold Rauh, and Christoph Schlieder. Preferred mental

models in qualitative spatial reasoning: A cognitive assessment of Allen's calculus. In

Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society,

pages 200{205, Mahwah, NJ, 1995. Lawrence Erlbaum Associates.

[KRSS98] Markus Knau�, Reinhold Rauh, Christoph Schlieder, and Gerhard Strube.

Mental models in spatial reasoning. In this volume, 1998.

[LR97] Peter Ladkin and Alexander Reinefeld. Fast algebraic methods for interval

constraint problems. Annals of Mathematics and Arti�cial Intelligence, 19(3,4), 1997.

[MF85] Alan K. Mackworth and Eugene C. Freuder. The complexity of some polyno-

mial network consistency algorithms for constraint satisfaction problems. Arti�cial

Intelligence, 25:65{73, 1985.

[NB95] Bernhard Nebel and Hans-J�urgen B�urckert. Reasoning about temporal re-

lations: A maximal tractable subclass of Allen's interval algebra. Journal of the

Association for Computing Machinery, 42(1):43{66, January 1995.



[Neb95] Bernhard Nebel. Computational properties of qualitative spatial reasoning:

First results. In I. Wachsmuth, C.-R. Rollinger, and W. Brauer, editors, KI-95:

Advances in Arti�cial Intelligence, volume 981 of Lecture Notes in Computer Science,

pages 233{244, Bielefeld, Germany, 1995. Springer-Verlag.

[Neb97] Bernhard Nebel. Solving hard qualitative temporal reasoning problems: Eval-

uating the e�ciency of using the ORD-Horn class. CONSTRAINTS, 3(1):175{190,

1997.

[RCC92] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on

regions and connection. In B. Nebel, W. Swartout, and C. Rich, editors, Principles

of Knowledge Representation and Reasoning: Proceedings of the 3rd International

Conference, pages 165{176, Cambridge, MA, October 1992. Morgan Kaufmann.

[Ren98] Jochen Renz. A canonical model of the Region Connection Calculus. In

Principles of Knowledge Representation and Reasoning: Proceedings of the 6th Inter-

national Conference, Trento, Italy, June 1998.

[RN97] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial

reasoning: A maximal tractable fragment of the Region Connection Calculus. In Pro-

ceedings of the 15th International Joint Conference on Arti�cial Intelligence, pages

522{527, Nagoya, Japan, August 1997. Technical Report with full proofs available

at www.informatik.uni-freiburg.de/~sppraum.


