
E�cient Methods for Qualitative Spatial

Reasoning

Jochen Renz and Bernhard Nebel

1

Abstract. The theoretical properties of qualitative spatial

reasoning in the RCC-8 framework have been analyzed exten-

sively. However, no empirical investigation has been made yet.

Our experiments show that the adaption of the algorithms

used for qualitative temporal reasoning can solve large RCC-8

instances, even if they are in the phase transition region {

provided that one uses the maximal tractable subset of RCC-8

that has been identi�ed by us. In particular, we demonstrate

that the orthogonal combination of heuristic methods is suc-

cessful in solving almost all apparently hard instances in the

phase transition region up to a certain size in reasonable time.

1 Introduction

Representing qualitative spatial information and reasoning

with such information is an important subproblem in many

applications, such as natural language understanding, docu-

ment interpretation, and geographical information systems.

The RCC-8 calculus [15] is well suited for representing topo-

logical relationships between spatial regions. Inference in the

full calculus is, however, NP-hard [5, 16]. While this means

that it is unlikely that very large instances can be solved in

reasonable time, this result does not rule out the possibility

that we can solve instances up to a certain size in reasonable

time.

One result of our experiments is that almost all instances

with up to 80 regions can be solved in a few seconds, and this

holds even for the very hard instances in the phase transition

[3] region when only \di�cult relations" are used. Another

interesting result of our experiments is that the orthogonal

combination of heuristics [13] is e�ective even on instances in

the phase transition region.

The algorithmic techniques we use are borrowed from sim-

ilar work on qualitative temporal reasoning [13, 18, 7]. Addi-

tionally, we make use of a fragment of RCC-8, named

b

H

8

, that

permits polynomial-time inferences [16]. In the backtracking

algorithm, which is used to solve the reasoning problem for

full RCC-8, branching is done according to this tractable sub-

set instead of decomposing every disjunctive relation into its

base relations, which reduces the average branching factor

from 4.0 to 1.4375. Although these theoretical savings cannot

be observed in our experiments, using

b

H

8

instead of the base

relations leads to signi�cant performance improvements.

The rest of the paper is structured as follows. In Section 2,

we give a brief sketch of the RCC-8 calculus and describe the
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Figure 1. Two-dimensional examples for the eight base

relations of RCC-8

algorithmic techniques for solving the reasoning problems in

RCC-8. In Section 3 we describe our experimental setting and

in Section 4 we evaluate the di�erent path-consistency meth-

ods on randomly generated instances. In Section 5, we deter-

mine the phase transition region and in Section 6 we evalu-

ate di�erent heuristics for the backtracking algorithm on in-

stances from the phase transition region. Finally, in Section 7,

we evaluate the performance of combining di�erent heuristics.

2

2 The Region Connection Calculus RCC-8

RCC is a topological approach to qualitative spatial represen-

tation and reasoning where spatial regions are regular subsets

of a topological space [15]. Regions themselves do not have to

be internally connected, i.e., a region may consist of di�erent

disconnected parts. The domain of spatial variables (denoted

as X;Y ; Z) is the whole topological space.

RCC-8 uses a set of eight pairwise disjoint and mutually ex-

haustive relations, called base relations, denoted as DC, EC,

PO, EQ, TPP, NTPP, TPP

�1

, and NTPP

�1

, with the mean-

ing of DisConnected, Externally Connected, Partial Overlap,

EQual, Tangential Proper Part, Non-Tangential Proper Part,

and their converses. Examples for these relations are shown

in Figure 1.

Sometimes it is not known which of the eight base relations

holds between two regions, but it is possible to restrict to some

of them. In order to represent this, unions of base relations can

be used. Since base relations are pairwise disjoint, this results

in 2

8

di�erent relations. Spatial formulas are written as XRY ,

where R is a spatial relation. Apart from union ([), other
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operations on our relations are de�ned, namely, converse (

^

),

intersection (\), and composition (�). The formal de�nitions

of these operations are:

8X;Y : X(R [ S)Y $ XRY _XSY ,

8X;Y : X(R \ S)Y $ XRY ^XSY ,

8X;Y : XR

^

Y $ Y RX,

8X;Y : X(R � S)Y $ 9Z : (XRZ ^ ZSY ):

The composition of base relations can be computed from the

semantics of the relations and is usually provided as a com-

position table [14, 2]. Based on this table, compositions of

disjunctive relations can be easily computed. In the follow-

ing

b

S denotes the closure of a set of RCC-8 relations S under

composition, intersection, and converse.

A set of spatial formulas � describing the topological rela-

tionship of n di�erent regions can be represented by an n�n

matrix M , where each entry M

ij

represents the RCC-8 rela-

tion holding between region i and region j. Without loss of

generality,M

ii

= fEQg andM

ji

=M

^

ij

can be assumed. The

fundamental reasoning problem (named RSAT) in this frame-

work is deciding consistency of a set of spatial formulas �, i.e.,

whether there is a spatial con�guration where the relations

between the regions can be described by �. All other inter-

esting reasoning problem can be reduced to it in polynomial

time [4]. Unfortunately, RSAT is NP-complete [5, 16], i.e., it is

unlikely that there is any polynomial algorithm for deciding

consistency. However, it was shown in [12] that there are sub-

sets S of RCC-8 for which the consistency problem (written

RSAT(S)) can be decided in polynomial time. In particular

the set of eight base relations B was shown to be tractable.

From that it follows immediately that

b

B consisting of 32 re-

lations is also tractable. An even larger tractable subset con-

taining all base relations is

b

H

8

[16], which contains 148 out

of the 256 RCC-8 relations. This set was also shown to be

maximal wrt. tractability, i.e., if any other RCC-8 relation is

added, the consistency problem becomes NP-complete.

2.1 The Path-Consistency Algorithm

As in the area of qualitative temporal reasoning based on

Allen's interval calculus [1], the path-consistency algorithm

(PCA) [11, 9, 10] can be used to approximate consistency and

to realize forward-checking [6] in a backtracking algorithm.

The algorithm checks the consistency of all triples of re-

lations and eliminates relations that are impossible. This is

done by iteratively performing the following operation

M

ij

 M

ij

\M

ik

�M

kj

for all triples of regions i; j; k until a �xed pointM is reached.

IfM

ij

= ; for a pair i; j, then we know thatM is inconsistent,

otherwise M is called path-consistent. Computing M can be

done in O(n

3

) time. This is achieved by using a queue of triples

of regions for which the relations should be recomputed.

Path-consistency does not imply consistency. For instance,

the following set of spatial constraints is path-consistent but

not consistent:

l l

l l

-

-

? ?

H

H

H
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If only relations in

b

H

8

are used, however, the path-consistency

algorithm is su�cient for deciding consistency, i.e., PCA de-

cides RSAT(

b

H

8

) [16].

In previous empirical investigations [18] of reasoning with

Allen's interval relations [1], di�erent methods for comput-

ing the composition of two relations were evaluated. In our

setting, we simply use a composition table that speci�es the

compositions of all RCC-8 relations, which is a 256 � 256 ta-

ble consuming approximately 128kB of main memory. This

means that the composition of two arbitrary relations is done

by a simple table lookup.

Van Beek and Manchak [18] also studied the e�ect of weight-

ing the relations in the queue according to their restrictive-

ness and process the most restricting relation �rst. The reason

for doing so is that this relation restricts the other relations

on average most and therefore decreases the probability that

they have to be processed again. Restrictiveness of a relation

was approximated by summing up the restrictiveness of the

involved base relations which is determined by counting the

number of base relations contained in the corresponding en-

tries in the basic composition table.

Van Beek and Manchak [18] found that this method is much

more e�cient than the usual path-consistency algorithm. Be-

cause of the small number of RCC-8 relations, we computed

the exact restrictiveness by counting the base relations in the

corresponding entries of the full composition table.

2.2 The Backtracking Algorithm

In order to solve arbitrary instances of RSAT, we have to

search the corresponding search space using some sort of back-

tracking. In our experiments, we used a backtracking algo-

rithm employed for solving qualitative temporal reasoning

problems [13], which is based on the algorithm proposed by

Ladkin and Reinefeld [7]. This algorithm uses PCA for for-

ward checking and backtracks on decompositions of the spec-

i�ed relations into sub-relations that permit the PCA to de-

cide the consistency problem. The set of sub-relations that is

allowed in the decompositions is called split-set.

Choosing the right split-set inuences the search noticeably

as it inuences the average branching factor of the search tree

(B : 4:0;

b

B : 2:50;

b

H

8

: 1:4375), which is, of course, a worst

case measure because the interleaved path-consistency com-

putations reduce the branching factor considerably [8].

Apart from the choice of the split-set there are other heuris-

tics which inuence the e�ciency of the search. In general it is

the best search strategy to proceed with the most constrain-

ing relation and the least constraining choice. We investigated

two di�erent strategies for choosing the next relation to be

processed.

static/dynamic: Constraints are processed according to a

heuristic evaluation of their constrainedness which is de-

termined statically before the backtracking starts or dy-

namically during the search.

local/global: The evaluation of the constrainedness is based

on a local heuristic weight criterion or on a global heuristic

criterion [18].
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3 Test Instances and Measurement

There is no previous work on empirical evaluation of algo-

rithms for reasoning with RCC-8 and no benchmark prob-

lems are known. Therefore we randomly generated our test

instances with a given number of regions n, an average label-

size l, and an average degree d of the constraint graph. Fur-

ther, we used two di�erent sets of relations for generating the

instances, the set of all RCC-8 relations and the set of hard

RCC-8 relations, i.e., those relations which are not contained

in

b

H

8

. Based on these sets of relations, we used two mod-

els to generate instances, denoted by A(n; d; l) and H(n; d; l).

The former model uses all relations to generate instances, the

latter only the relations in RCC-8 �

b

H

8

. The instances are

generated as follows:

1. A graph with n nodes and an average degree of d for each

node is generated. This is accomplished by selecting nd=2

out of the n(n� 1)=2 possible edges using a uniform distri-

bution.

2. If there is no edge between the ith and jth node, we set

M

ij

=M

ji

to the universal relation.

3. Otherwise a non-universal constraint is selected according

to the parameter l such that the average size of constraints

for selected edges is l. This is accomplished by selecting

one of the base relations with uniform distribution and out

of the remaining 7 relations each one with probability (l�

1)=7.

3

If this results in an allowed relation (i.e., RCC-8 or

RCC-8�

b

H

8

), we assign this relation to the edge. Otherwise

we repeat the process.

The reason for also generating instances using only rela-

tions not contained in

b

H

8

is that we assume that these in-

stances are di�cult to solve since every relation has to be

split during the backtracking search, even if we use

b

H

8

as the

split-set. We generated only instances of average label size

l = 4:0.

The experiments were performed on a Sun Ultra 1 with

64MB of main memory.

4 Evaluation of the Path-Consistency

Algorithm

Since the e�ciency of the backtracking algorithm depends on

the e�ciency of the underlying path-consistency algorithm,

we will �rst compare three di�erent implementations of the

path-consistency algorithm. In order to do so, we randomly

generated instances with 50 to 1,000 regions. For each value

of the average degree ranging from 8.0 stepping with 0.5 to

11.0 we generated 10 di�erent instances. Figure 2 displays

the average CPU time of the di�erent methods for applying

PCA to the generated instances. It can be seen that the ef-

fect of using a weighted queue is much higher for our problem

than for the temporal problem (10� faster than using an ordi-

nary queue without weights compared to only 2� faster [18]).

Determining the weights of every relation using their exact

restrictiveness does not have much advantage over approxi-

mating their restrictiveness using the approach by van Beek

3

This method could result in the assignment of a universal con-

straint to a selected link, thereby changing the degree of the node.

However, since the probability of getting the universal relation is

very low, we ignore this in the following.
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Figure 2. Comparing the performance of the path-consistency

algorithm using di�erent methods for weighting the queue (70

instances/data point, d = 8:0� 11:0)

and Manchak [18], however. For our further experiments we

always used the \exact weights" method because determining

the restrictiveness amounts to just one table lookup.

5 The Phase-Transition Region

Similar to the empirical analysis of qualitative temporal rea-

soning problems [13], we wanted to determine the phase tran-

sition region [3] depending on the average degree of the nodes

in the \constraint graph" in order to get an idea where the

hard instances are. If all relations are allowed, the phase tran-

sition is around d = 8 { 10, depending on the instance size

(see Figure 3).
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Figure 3. Probability of satis�ability and median CPU time for

A(n; d; 4:0) (500 instances/data point)

When using only \hard" relations, i.e., relations in RCC-8�

b

H

8

, the phase transition appears at higher values for d (see

Figure 4), but the median runtime appears to be similar to

the former case.
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Figure 4. Probability of satis�ability and median CPU time for

H(n; d; 4:0) (500 instances/data point)

Nevertheless, these two sets of instances have quite dif-

ferent properties. This becomes obvious when counting the

number of instances that are inconsistent, but path-consistent

(see Figure 5). First of all, one notes that all such instances

are close to the phase transition region. Secondly, there are
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many more inconsistent but path-consistent instances in the

H(n; d; 4:0) case.
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Figure 5. Percentage points of incorrect answers of the

path-consistency algorithm for A(n; d; 4:0) and H(n; d; 4:0)

Nevertheless, the path-consistency algorithm is still a very

good approximation to consistency. As can be seen in Fig-

ure 5 this is particularly true for instances not in the phase

transition region or when all relations are used.

6 Empirical Evaluation of the Heuristics

We ran all eight di�erent heuristics (static/dynamic, local/

global, hornsplit(

b

H

8

)/closebasesplit(

b

B)) on the same randomly

generated instances. For the hard relations we restricted our-

selves to instances with 80 regions because larger ones ap-

peared to be too di�cult.

In �rst experiments we found that most of the instances

were solved very fast with less than 1,000 visited nodes in

the search space when using

b

H

8

for splitting. However, some

problems turned out to be extremely hard, they could not

be solved within our limit of 2 million visited nodes, which

is about 1.5 hours of CPU time. Therefore we ran all our

programs to a maximal number of 10,000 visited nodes and

stored all instances that used more than 10,000 visited nodes

for further experiments (see next section). The distribution of

those hard instances is shown in Figure 6. It can be seen that

almost all of them are in the phase transition region.
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Figure 6. Number of instances using more than 10,000 visited

nodes for any heuristic for A(n; d; 4:0) and H(n; d; 4:0)

In Figure 7 we compare the 50% and 99% percentiles of the

dynamic/local heuristic for the two split-sets on A(n; d; 4:0),

where each data point is the average of the values for d = 8

to 10. We took the average of the di�erent degrees in order to

cover the whole phase transition which is about 8 for instances

of size n = 10 and 10 for instances of size n = 100.

The CPU times of the other heuristics static/local and

static/global were almost the same. Only the dynamic/global

heuristic was about 3 times slower when using

b

B and about

1.5 times slower when using

b

H

8

. It can be seen that using

b

H

8

is double as fast as using

b

B as the split-set. Even the per-

centile 99% CPU time of using

b

H

8

is faster than the median

CPU time of using

b

B in many cases.
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b

H

8

and

b

B for

solving A(n; d; 4:0) (d = 8:0� 10:0, 2,500 instances/data point)

Repeating the same experiments for H(n; d; 4:0), we no-

ticed that there are very many hard instances for n > 45 (see

Figure 6). For this reason, we show the results only up to a

size of n = 44. Similarly to the A(n; d; 4:0) instances, one sees

that using

b

H

8

is much faster than using

b

B (Figure 8). Also dy-

namic/global was much slower than the other heuristics which

have about the same CPU times.
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8

and
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solving H(n; d; 4:0) (d = 10:0� 15:0, 5,500 instances/data point)

It can be seen that although the median CPU times are

about the same as for A(n; d; 4:0) the percentile 99% CPU

times are much slower. As it was already shown in Figure 6

and Figure 5 this is a further evidence that there are very

hard instances in the phase transition region of H(n; d; 4:0).

7 Evaluation of Orthogonally Combined

Strategies for the Hard Instances

Nebel [13] observed that running di�erent heuristics in paral-

lel can solve more instances of a particular hard set of tempo-

ral reasoning instances proposed by van Beek and Manchak

[18] in reasonable time than any single heuristic alone can

solve.

We tried to evaluate the power of \orthogonally combin-

ing" our heuristics by running all of them on the set of hard

instances (using more than 10,000 visited nodes) identi�ed in

the experiments described in the previous section. This led to

a very surprising result for the A(n; d; 4:0) instances, namely,

that all of the 384 hard instances except for a single one were

solved by at least one of the heuristics using less than 10,000

visited nodes. When comparing the minimal response time of

all the heuristics for all the hard instances, we found that only
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six of them used more than 300 visited nodes. This is in par-

ticular remarkable as all these instances are from the phase-

transition region of an NP-hard problem, i.e., instances which

are usually considered to be the most di�cult ones. Further

note that about 20% of the 384 instances were inconsistent.

Interestingly, most of those inconsistent instances were solved

faster than the consistent instances. At this point, it should be

noted that combining heuristics orthogonally is very similar

to randomized search techniques with restarts [17]. However,

in contrast to randomized search, our method can also deter-

mine whether an instance is inconsistent.

We tried to solve the most di�cult instance (n = 64; d =

10:5) with all of the eight heuristics spending 20,000,000 of

nodes for each of it but did not succeed in solving it. In Table 1

we listed the percentage of hard instances that could be solved

by the di�erent heuristics, and the percentage of �rst response

by each of them when running the heuristics in parallel.

A(n; d; 4:0) H(n; d; 4:0)

Heuristics Solved 1. Response Solved 1. Response

b

H

8

/sta/loc 79:4% 17:6% 80:5% 13:9%

b

H

8

/sta/glo 90:0% 25:3% 86:4% 20:6%

b

H

8

/dyn/loc 81:8% 28:7% 90:7% 32:4%

b

H

8

/dyn/glo 78:4% 21:9% 72:1% 22:1%

b

B/sta/loc 80:0% 1:6% 74:5% 2:8%

b

B/sta/glo 84:4% 2:1% 70:8% 2:7%

b

B/dyn/loc 81:3% 1:8% 60:6% 3:4%

b

B/dyn/glo 64:8% 0:8% { {

combined 99:8% 99:3%

Table 1. Percentage of solved hard instances for each heuristic

We did the same examination for the set of hard instances

of the hard relations. However, we did not include the hard

instances for the dynamic/global/

b

B heuristic as it was very

slow and generated so many hard instances which were easily

solved by other heuristics that including them does not seem

to be informative. The minimal response time for 92% of the

18,427 hard instances of H(n; d; 4:0) was less than 300 visited

nodes. 18:5% of the hard instances were inconsistent. Also the

minimal response time for most of the inconsistent instances

was faster than for the consistent instances.

It can be seen in Table 1 that although the number of

solved instances was about the same for the

b

H

8

and the

b

B

heuristics, using

b

H

8

as the split-set is much more e�cient

in giving the fastest response. Nevertheless, the

b

B-heuristics

were sometimes the fastest.

8 Discussion & Summary

The main motivation of our paper was to explore the space

of methods for solving qualitative spatial reasoning instances

and to get an idea of the critical instance size when reasoning

becomes infeasible. It seems to be the case that up to 40

regions spatial reasoning in the RCC-8 framework can be done

without any performance problems and that hard instances up

to a size of 80 regions can almost always been solved in a few

seconds, provided the orthogonal combination of heuristics as

proposed by Nebel [13] is used.

One surprising result of our experiments was that the or-

thogonal combination of heuristics works quite well on the

hard instances in the phase transition region. Additionally, we

were surprised by the fact that this method is also quite use-

ful in detecting inconsistent instances. This fact distinguishes

our approach from randomized search methods with restarts

(such as GSAT), which are only aimed at �nding a \satisfy-

ing assignment" and which cannot prove that something is

not satis�able.

Finally, since we could show that almost any instance up to

a certain size can be solved in a few seconds, RCC-8 seems to

be also very suitable for e�cient preprocessing even if RCC-8

is not expressive enough for a particular application and is

only a sub-formalism of a more expressive formalism.
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