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Abstract

Frank’s cardinal direction calculus is one of the most promi-
nent spatial constraint formalisms, which allows one to rep-
resent, and reason with, the relative position of objects in the
Euclidean plane. Typical application fields of this calculus in-
clude geographical information systems (GIS), route finding
and description systems, and navigation of robots that inter-
act with humans. In this paper we investigate a constraint
formalism which temporalizes the cardinal direction calculus
with respect to Allen’s interval algebra. In this constraint lan-
guage it is possible to represent objects in the plane which
change their absolute position in time. Since such changes
entail changes of the relative positions of objects to other ob-
jects as well, we are interested in the question of how continu-
ous change of objects is reflected in changes of the respective
qualitative relations expressing these relative positions. We
will show how continuous changes can be represented as op-
erations to objects in grid-like structures. Based on this repre-
sentation we finally propose a method for encoding temporal-
ized spatial constraint satisfaction problems as deterministic
planning problems.

Introduction

Qualitative Spatial Reasoning (QSR) abstracts from metri-
cal details of the physical world and enables computers as
well as artificial agents to make predictions about spatial r
lations, even when precise quantitative information is not
available (Cohn 1997). From a practical point of view, QSR
provides an abstraction layer that summarizes similar-quan
titative states into one qualitative description. A comple
mentary view from the cognitive perspective is that the gqual
itative methodcomparedeatures within the object domain
rather than byneasuringhem in terms of some artificial ex-
ternal scale (Freksa 2004). This is the reason why quaktati
descriptions are quite natural for humans.

Frank’s cardinal direction calculus (Frank 1996) is one of
the most prominent constraint formalisms in the domain of
QSR. The cardinal direction calculus allows one to repre-
sent, and reason with the relative position of objects in the
Euclidean plane. Typical application fields of this calsulu
include geographical information systems (GIS), route-find
ing and description systems, and navigation of robots that
interact with humans.

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

472

In this paper we investigate a constraint formalism, which
temporalizes the cardinal direction calculus with respect
Allen’s interval algebra. In this constraint language ps-
sible to represent objects in the plane, which change their
absolute position in time. Since such changes usuallylentai
changes of the relative positions of objects to other object
as well, we are interested in the question of how continuous
change of objects is reflected in changes of the respective
qualitative relations expressing these relative position

A temporalized cardinal direction calculus as outlined
here may be applicable in scenarios known from logistics,
planning, robot navigation, and multi-agent systems. For
example, assume that a human in a control center has to
navigate several unmanned aerial vehicles. To control the
behavior of the vehicles, the operator may use constraints
such as: As long as vehicle 1 is south of some fixed land-
mark, vehicle 2 should stay south or south-east of vehicle 1,
but never north of a vehicle 3 which is to stay always south-
east of vehicle 1, etc.

Spatio-temporal constraint languages have been previ-
ously discussed in the literature. For example, Beneett
al. (2002) investigated a temporalization of the topologi-
cal RCC8 calculus. Their approach was further developed
by Gerevini & Nebel (2002) — many definitions and some
techniques developed by them carry over to the new cal-
culus discussed in this paper. From a more philosophical
perspective, Galton (2000) discussed various facets of con
tinuous change, in particular, how such changes can be con-
sistently described at different levels of granularity &g
their qualitative and quantitative descriptions are eglab
each other. In particular, his notion of dominance spack wil
be implicitly used in this paper.

The aim of the paper is to work out the relationship be-
tween constraint satisfaction problems of temporalizdd ca
culi on the one hand side and deterministic planning prob-
lems on the other. For this we will first show how continuous
changes can be represented as operations to objects in grid-
like structures. Based on this representation we finally pro
pose a method for encoding temporalized spatial constraint
satisfaction problems as planning problems. The interest-
ing point here is that the type of planning problem obtained
by this encoding has not yet been discussed in the planning
literature (at least to our knowledge).

The paper is organized as follows: In section 2 we intro-



duce the language of the calculi€D, which temporalizes projection-based approachvhich we will follow here.

the cardinal direction calculuSD with respect to Allen’s In what follows, we assume thapatialobjects are points
interval algebra. In section 3 we sketch how constraint sat- in the Euclidean plan®&2. Given two point-like objects in
isfaction problems (formulated with respect to continuous the plane, the relative position between these objectsean b
time and continuous space) can be reformulated as discretedescribed by one of the cardinal direction relatiomsth,
transitions in a finite grid. In particular, we will discussse north-east east etc. (cf. Fig. 2). Note that these relative
simple examples, which show that the constraint satisfacti  positions are defined with respect to a fixed reference frame.
problem of7CD cannot be solved by applying standard pro- We will assume that this reference frame is fixed in time as
cedures for deciding the satisfiability problems of the com- well, i.e., a change of the relative spatial position always
ponent calculi from whiclfCD is built. Then in section 4, stems from an object changing its absolute position (not in a
we investigate how the constraint satisfaction problem of change of the underlying reference system). Ligozat (1998)
7CD can be transformed into a planning problem. Finally, examined the computational complexity of the general sat-
section 5 summarizes the results of the paper and gives aisfiability problem (which isNP-complete) and he identified
short overview of some questions that will be topics of fu- tractable subclasses.

ture research.

Temporalizing Cardinal Directions NW N NE
To begin with, let us recall the two constraint languages in
which we will be interested in the following, namely Frank’s
cardinal direction calculugD) and Allen’s interval algebra -wW——~Eq E—
(ZA).
In Allen’s interval algebra (Allen 1983), intervals are rep SW SE
resented as pairs of instanfs, t;) € R? such that; < to. S

By comparing start and endpoints of two intervals, one can I

identify thirteen (jointly exhaustive and pairwise disjtire- ) . ) ) o
lations known in the literature as the Allen 13 relations (cf ~ Figure 2: The nine base relations of the cardinal direction
Fig. 1). To represent imprecise knowledge, we consider dis- calculus

junctions of base relations (usually written as sets of base

relations). The satisfiability problem f&A is defined as To put things a little bit more precise, t4 andVep be
follows: Given a finite (and maybe imprecise) description of (disjoint) sets of variables. Af.A constraintis a formula
the relations between intervals in terms of Allen relations of the forml R J, wherel,J € Vz4 andR= {rq,...,ry} is
is this description consistent (satisfiable)? This probiem  a (possibly empty) subset of the set of B4 base relations
known to beNP-complete (Vilain, Kautz, & van Beek 1989).  {<,m,0,s,f,d,=, >, mi,0i,si,fi,di}. Usually we writel r J
Tractable subclasses of the general problem were identified instead ofl {r} J whenr is one of this base relations. @

by Nebel & Blrckert (1995) and by Ligozat (1996). constraintis a formula of the fornx S y wherex,y € Vep
andS= {sy,...,Sn} is a (possibly empty) subset of the set
Symbol Relation Pictorial Representation of all CD relations{N,NE, E,SE S,SW,W ,NW, Eq}. An
< (conv..>) | beforeJ | ZA (resp.CD) constraint networks a finite set ofZA (resp.
J CD) constraints. LeV (C) be the set of variables occurring
m  (mi) | meets] —_— 3 in a given constraint networ. An assignmenfor anZA
. constraint network is a functiont : V(C) — R? that assigns
o (o) loverlaps)  ——1 to each variabld that occurs inC a pair of real numbers
d (di I duringJ L (t1(1),7%(1)) such thatr'(l) < t%(1). The model relation
J w. . t. an assignmentfor C is introduced as follows:
s (si) | startsJ —_— 3
TEIml «— t3(1) =T1(J)
fo(fi | finishesJ I
® J TElod «— 1) < 1) < 12(1) < 12(J)
B | equals) '3 TE1d) — 1) < 1H(1) < T2(1) < T2(J)
(cf. Fig. 1)

Figure 1: The thirteen basic relations of the Interval Aigeb

and
Frank (1996) proposed two different approaches for rep-

resenting cardinal directions: the first one uses coneeshap TEI1{ry,....,r}J < tE=Ir;Jforsome 1I<i <n.
directions such that each direction refers to a region of 45

degrees. The second one interprets the four main direc- Analogously, arassignmenfor a CD constraint networlC
tions (orth, east etc.) as half-lines, while the intermedi- s a functiony : V(C) — R2 that assigns to each variabte
ate regionsrforth-east etc.) refer to quadrants (cf. Fig. 2).  occurring inC, a pair of real number§y*(x), y?(x)). Here
Ligozat (1998) worked out the advantages of the latter, the model relation w.r.t. an assignmerfor C is defined as
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follows:

and
yEl{s,...,sn}J < ykEIsjJforsome 1< j <m.

Finally, anZA (resp.CD) constraint networkC, is satisfiable
if there exists ar¥ A (resp.CD) assignment that models all
relations ofC. In this case the assignment is said to be a
solutionof C

The temporalized cardinal direction calculi€D com-
bines constraint formulae of Allen’s interval calculus hwit
temporally annotated constraints of the cardinal directio
calculus. More precisely, we defifl®®D constraint formu-
lae as follows:

e Each interval constraintR J is a 7CD constraint, i.e.,
I RJis aZCD constraint for each pair of interval variables
I,J € V74 and each seR of Allen relations.

e For each interval variablg each pair of spatial variables
x andy, and each se$ of CD relations,| : x S yis a7CD
constraint.

A 7CD constraint networkis a finite set of7CD con-
straints. A standard interpretation of this constraintrfal
ism is based on the following ingredients: we use the linear
ordering of the reals for interpreting interval variablesla
points of the Euclidean plari? for interpreting spatial vari-
ables. More precisely, we assign to each spatial variable a
continuous path in the Euclidean plane.

A typical example of & CD constraint network is the fol-
lowing:

ImJ, 1:x{NE,;NW}y, | :yEz J:xSWy, J:ySz

This network expresses that during inter¥alpoint x is

north-east or north-west of andy is east ofz Then, in
intervalJ, which immediately succeedsx is south-west of
y, etc.

Definition 1 An interpretationfor a 7CD constraint net-
work C is an ordered pait, y), where

e TisanZA assignment fo¥ (C) NVz4.

e yassignsto each instant R aCD assignmeng : V(C)N
Vep — R? such that for each variable the functiony :
R — R?,t — % (x), is continuous (with respect to the usual
topologies).

The pointik(t) is referred to athe positiorof x at time point

t, andyi(t) andy2(t) refer to thex- and they-coordinate of
this position, respectively.

We then define the model relation as follows:

(,yy EIR) <<= 1EIRJ
(T,y) =1:xSy<= y [=xSyforeachr}(l) <t < t2(1).
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Note that we only require that the spatial constraints hold
in the interior of the interval. This is necessary since &b
spatial constraints need to hold at the starting and endpoin
of the interval as well, then it would not be possible that a
base relation holding between two objects in some intdrval
changes to a different base relation between these objects i
any interval met by.

Definition 2 (a) An interpretation(t,y) for a 7CD con-
straint networlC is said to be anodelof Cif (1,y) = @
for eachg € C.

(b) An interpretation(t, y) is collision-freeif for each pair
of spatial variablesx andy in C, W(t) # ¥(t) for all
teR.

(c) An interpretation(t,y) obeys the"same place, same
thing”-principle if for each pair of spatial variables
andy in C, it holds: if j(t) = % (t) for somet € R, then
%=¥-

In the following, we will focus on collision-free inter-
pretations. The reason for this lies in the idea that no two
distinct physical objects can occupy the same place (“same
place, same thing”). If we apply this principle ®©CD
constraint networks, we can eliminate spatial constraimts
which Eq occurs by propagating the identity relation be-
tween two variables to all other (temporally annotated} spa
tial constraints. In fact, if there isACD constraint network
thatis true in a “same place, same thing’-interpretatibant
the correspondin@CD constraint network in which Eq does
not occur, is true in a collision free interpretation, andevi
versa.

Our definition of a model requires object paths to be con-
tinuous. Continuity constraints, however, cannot be ex-
pressed byZ7CD formulae, but bydeduction rulesonly.

For example, consider network containing the constraint
I :x{N,NE, SE S} y. This constraint is satisfied by a contin-
uous7CD interpretation if and only if eithelr: x {N,NE} y

orl : x{SE S} yis satisfied by that interpretation. To show
this, lett be an instant il such thatx {N,NE} y is false

att. For reductio ad absurdum assume that there is an in-
stantt’ such thatx {SE S} y is true att’. If t' <t (anal-
ogously fort < t’), there must be an instaht< t” < t’ in
which x {Eq,E} y is true —in contradiction to the fact that
x{N,NE, SE, S} y must be true at’.

Using some simple facts from linear algebra, one can eas-
ily verify the following lemma—note that linear functions
(as considered in the lemma) are continuous, siktés a
topologicalR-vector space:

Lemma 3 Let pr, p2,v1,V2 € R?, letqp := p1+Vvi and ¢ :=

p2+Vo, and let §, f, : [0, 1] — R? be linear functions defined

by fi(t) := p1+tvy and b(t) := p2+tve.

(@) If p1N p2 and g N gy, then fi(t) N fo(t), for each0 <
t<1

(b) If p2 N p2 and g NE, then fi(t) NE fa(t) for each
0 <t <1 (analogously foNW instead ofNE).

(c) If p1Npz and g Eqp, then fi(t) NE fa(t) for eachO <
t < 1 (analogously folV instead ofE).



(d) Analogous claims hold for the oth€éD base relations.
]

Lemma 4 Let f,g: | — R? be continuous functions, where
| :=[to,t1] is a fixed closed interval iRk.

(a) If f and g do notcollideinl andifthesét <1 : f(t)N
g(t)} is not empty, then it has a maximum (minimum).
Analogous claims hold for the relatiofis S, andW.

(b) The set{t €1 : f(t)NEg(t)} has no maximum (mini-
mum) distinct fromit (tp), even if it is not empty. Analo-
gous claims hold for the relatior8E, SW, andNW.

(c) Thesef{t el : f(t)Eqg(t)} has a maximum if it is not
empty.

Proof. We only sketch the proof for claim (a) ((b) and
(c) can be proven in a similar manner). Consider the set
N:={tel: f(t)Ng(t)}. By assumption this set is upper-
bounded and not empty, hence suexists. We show
thatt* := supN is in N. For reductio ad absurdum sup-
pose that* ¢ N. Sincef andg are continuous, so is the
function f — g, t — f(t) —g(t), as well as its projections
f1 — g and f2— g% Now if f1(t*) = g*(t*), it follows
f2(t*) < g?(t*) (sincet* ¢ N and f andg do not collide) and
thus (f2— g?)(t*) < 0. On the other hand, for eacte N,
(f2—g?)(t) > 0. Since(f? —g?) is continuous, there must
be at’ with N < t’ < t* such that f2 — g?)(t') = 0—in con-
tradiction to the assumption thigtis the supremum dfl. In
the cases that!(t*) < gl(t*) or that f1(t*) > g*(t*), con-
sider the continuous functioh® — g in order to obtain a
contradiction. O

By applying this lemma we can immediately prove the
following propositions:

Corollary 5 Let | = (t1,t2) be an open interval. Let,§:
(t1,t2] — R? be continuous functions that do not collide in
(t1,t2]. Lets and SbeCD base relations such thaf() s g(t),
foreach te |, and f(t2) s g(t2).

(@) If s=N, then $< {N}. Conversely, if's= N, then sc
{NW,N,NE}.

(b) If s=NE, then $€ {N,NE, E}. Conversely, if's= NE,
then se {NE}.

(c) If s=E, then $c {E}. Conversely, if's=E, then sc
{NE,E, SE}.

(d) If s= SE then $€ {E,SE S}. Conversely, if's= SE
then se {SE}.

(e) Analogous claims hold for the othéD base relations.

Proof. (a) Choose an instahtvith t; <t <t, and consider
the closed intervdl,t;]. Then the selN defined in the proof
of Lemma 4 (a) has a maximum. This maximum cannot be
contained in the open intervétl ty). Thus madN must bet,,
and hences = N. The second claim follows from general
continuity considerations.

(b) The crucial claim is the second one: Suppose that
s = NE. Fix an arbitraryt with t; <t <ty and consider
the intervallt,tz]. Then the selE does not take a minimum
distinct fromt. If s NE, t, would be such a minimum.
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Eq E

Figure 3: The neighborhood graph of the cardinal direc-
tion calculus in the case that the “same-place, same thing"-
principle is enforced. Dotted arrows represent continuous
transitions from a point scenario into an interval scenario

Dashed lines represent transitions from intervals to goint

The other claims can be proven in a similar mannet]

It is clear that claims analogous to those in the corollary
hold for transitions from points to intervals (i. e., if werco
sider possible qualitative transitions frdirinto the interval
(t1,t2)). Furthermore, if we iterate the possible transitions
described in this corollary, we obtain the following claim:

Corollary 6 Let | = (t3,t2) and I' = (t2,t3) be open inter-
vals. Let £g: (t1,t3) — R? be continuous functions that do
not meet in(t1,t3). Let s and sbe CD base relations such
that f(t) sg(t), foreachte I, and f(t) S g(t), foreachte I'.
(@) Ifs=N, then $& {NW,N,NE}.

(b) If s=E, then $§€ {NE,E, SE}.

(c) If s=S, then $€ {SE S,SW}.

(d) If s=W, then §€ {SW,W,NW}.

(e) If s=NE, then $c {NW,N,NE,E, SE}.

(f) If s=SE then $< {NE,E,SE S SW}.

(9) If s=SW, then $€ {SE S,SW,W,NW}.

(h) If s=NW, then $€ {SW,W,NW, N, NE}. 0

The neighborhood graph of the cardinal direction calculus
(depicted in Fig. 3) is essential for solvirlgD constraint
networks. In fact, we will try to construct a solution of such
a network by defining a transition function between spatial
scenarios that obeys the constraints expressed in the-neigh
borhood graph. The correctness of this graph, which is cru-
cial for this method, follows from Cor. 5.

Definition 7 LetC be aZ7CD constraint network.

e Cis said to beeducedf for each pair of interval variables
| andJ, there is an Allen base relatiorsuch that r J € C.

e Cis said tostrongly reducedf C is reduced and contains
exactly one constraint of the form x S yfor each interval
variablel and each pair of point variablesandy.

Lemma 8 Each reduced’CD constraint network C can be
transformed in polynomial time into a logically equivalent



constraint network Csuch that Cis strongly reduced and
contains only the Allen relations and <.

Proof. Adapt a proof in (Gerevini & Nebel 2002).
O

In the following, letV be a finite subset ofp. A sce-
nario for V is aCD constraint networlC such that for each
pair of variablesx,y € V, there is a base relatios with
xsyeC.

Definition 9 Let Z = (l;)1<i<n be a sequence of interval
variables. Achroniclefor V w.r.t. Z is a sequence atD
constraint network$C;j)o<j<2n such that

(i) EachC; is a consistent scenario fur(note that w.r. t.
CD scenarios path-consistency decides satisfiability).
For each 1<i < nand each pair of variablesy € V,
if xryeCy_2andxr'yeCy_q, thenr =r"orr’is
a relation that is a dotted arrow neighborroin the
neighborhood graph depicted in Fig.G( represents
a “point scenario”).
(iii) For each 1< i < n and each pair of variablesy €
V, if xrye Cy_1 andxr’' ye Cy, thenr =1" orr’
is a relation that is a dashed arrow neighbor oh
the neighborhood graph depicted in Fig. 3 (in this case
Cyi_1 represents an “interval scenario”).

(ii)

Proposition 10 Let V = {v1,...,vn} be a set of’D vari-
ables,Z = (li)1<i<n be a sequence of interval variables, and
let (Cj)o<j<2n be achronicle for V and. Then there exists a
collision-free and continuousCD interpretation(t, y) such
that

(@) (1,y) =limli, 1, foreachl <i<n—1.
(b) (1,y) =i : Cyi_1, foreachl <i <n.

Proof. The idea of the proof is as follows: Since e&gh
is satisfiable, choose for each<0j < 2n a CD assignment
y;j satisfyingCj. Then construct for each variable step-by-
step a continuous path by a piece-wise linear function, asher
each piece describes the transition from the scer@yrim
the scenari€;, 1. More precisely, we first sat(i) := (2i —
2,2i). Then define

Yo(X) ift<0
Yon(X) if t>2n
(t) == (()()(t‘z' ())) f2i-2<t<2i—1
a0 >>) F2i-1st<2

It is clear that these settings define a continuous interpre-
tation. By applying Lemma 3 it is easy to verify that this
interpretation is collision-free as well and that claim {®)
satisfied. O

TCD Constraint Satisfaction Problems

The general constraint satisfaction problem TCDSAT is de-
fined as the problem to decide whetheZ&D constraint
network is satisfiable. However, usually we are not only
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interested in finding an interpretation that models the con-
straint network, but in the probably harder problem of find-
ing a continuous interpretation of the network. For applica
tion scenarios, interpretations that avoid collisionslgéots
may be even more interesting. Hence in this paper we are in-
terested in the following version of the general satisfigpbil
problem (referred to as TCDSAT-CCF):

Instance: A 7CD constraint networlC.

Question: Is there acontinuousandcollision-freeinterpre-
tation that model€?

It is an easy exercise to verify that TCDSAT and hence
TCDSAT-CCF as well arélP-hard:

Theorem 11 TCDSAT and TCDSAT-CCF anP-hard.

Proof. We can reformulate a proof given by Gerevini &
Nebel (2002). For this we “model” the properties of the
RCC8 relations DC and EC used there by tt2 relations E
and NE. Hence consider tlfeCD CSP{l : xEy,J : XxNEy}.
This implies thatl {<,m,mi, >} J. But the smallest set of
interval relations that contains this relation as well ashea
of the base relations df A and that is closed under inter-
sections, converse formations, and compositions is the set
of all interval relations (Nebel & Birckert 1995). Th-
hardness of the satisfiability problem f@/ thus implies
that TCDSAT isNP-hard as well. |

We now know the lower bound complexity, but the in-
teresting part is to determine upper bounds. At least for
very simple7CD constraint networks, namely such net-
works in which only base relations occur, we can decide
satisfiability as follows: First transform such a networtoin
a strongly reduced one. In a second step consider the sub-
networks defined by maximal m-chains of interval variables
(Iym...mly,) in the strongly reduced network. If each such
sub-network can be extended to a chronicle, then each sub-
network is satisfiable (cf. Proposition 10) and hence the-ori
inal network is satisfiable as well.

In the general case, however, we only have m-chains of
intervals that annotatéD formulae containing disjunctions
of CD relations. For this reason it is crucial to find a suitable
sequence ofD scenarios that are consistent with the dis-
junctive descriptions in the constraint network. This prob
lem can be restated as follows: Assume that we haliéa
constraint : C, a spatial scenariGs, which holds at the be-
ginning ofl, and a spatial scenar@, which holds at the end
of I. How can we transform (continuously and in a collision
free manner) the start scenario into the final scenario such
that the constraints holding in i. e., those ofC, are never
violated? Hence the task is to find a sequebee (1;)1<i<n
of interval variables and then a chronid@;)o<j<2on such
that Co = Cs, Con = Ct, and each of the constraints @)

(1< j<2n-1)is consistent witltC.

To sum up, the problem we will be concerned with in the
rest of the paper is defined as the followingnsformation
problem

Instance: An initial CD scenaridCs, a finalCD scenaridZ;,
and aCD constraint networkCs s



Question: Is there a chronicle fron@s to C; that does not
violate the constraints iGs/s?

The idea for analyzing this problem is to consider possi-
ble transformations in grid structures, which in turn can be
encoded as planning problems. ghid is a set of the form
G={(i,j) € N2 : 1<i,j < n} for some natural number
n> 1. nis referred to as thsizeof G.

Obviously, the problem of testing satisfiability@® con-
straint networks with respect to the plane is equivalerti¢o t
corresponding problem of finding a satisfying assignment
in a (sufficiently large) grid. More precisely, if @D con-
straint network witm variables is satisfiable, then it is satis-
fiable in a grid of sizen— this can be proven by induction in
the number of variables. For this reason, the transformatio

e

Cs = {cNb,aNEb,aSEc}
Ci = {cNb,aSWc,aNW b}
Cyf = {a{SEE,NE,N,NW,W,SW} c,
a{NE,E,SE S, SW,W,NW} b,
b {N,NW,W,SW, S} c}.

Figure 4: A gate. Objec cannot pass the guarsandc,
as stated in the constraint netw@;. It has to move south

problem presented above can be equivalently restated as aof b and north ofc. By changing the positions df andc

transformation problem afrid scenesthat is, instantiations

of scenarios in a grid. A solution of such a transformation
problem in grids is arid chronicle i. e., a sequence of grid
scenes(ai)ogjgn such that each transition from to o; 1
obeys the continuity constraints expressed in the neighbor
hood graph (cf. Fig. 3).

For a given assignment to the variables occurring in a
given CD constraint network, one can compute in polyno-
mial time (in the number of the variables) whether the as-

(sometimes this is not possibleyan pass first and therb.

we can not prima facie exclude the possibility that a transi-
tion chain from some initial to an end scenario consists'of 8
different scenarios.

A Planning Encoding

signment models the constraint network. Moreover, an easy |n the following we present a method that can be used to

combinatorial argument shows that only a finite number of
transformations between two scenarios is possible:

Lemma 12 (a) There are onh8" distinctCD scenarios in
n variables.

(b) Let C and CbeCD scenarios for the same set of vari-
ables. If there is a chronicle transforming C int6, @hen
this chronicle passes through at m@8tdistinct scenar-
i0s. O

This gives us only an imprecise upper bound of the com-
plexity, i.e., so far the problem is only iBXPTIME. But
we aim at showing that the upper bound complexity of the
transformation problem is iRSPACE.

When does there exist a solution for an instance of the
transformation problen(Cs,C,Cg/r)? To answer this ques-
tion, let us consider a typical example (presented in Fig. 4)
in which such a problem has no solution. We say, that an
object is ahiker if it changes its qualitative position w.r.t.
another object during its movement. guard for a hikery
is an objeck such that there is a relatidddistinct from the
universal relation withk R ye Cys. A gatefor a hikerx is
a pair of guardsy, z), whichx cannot pass according to the
constraints irCg/s (cf. Fig. 4).

Hence, a7CD constraint network is inconsistent, when-
ever its corresponding transformation problem contains (a

encode transformation problems (described in the previous
section) as (non-standard) deterministic planning prable

A side-effect of this encoding will be that the upper bound
of the complexity of TCDSAT-CCF i®SPACE.!

First recall the basic notion of a deterministic planning
problem:

Definition 13 An instance of aleterministic planning prob-
lemis a 4-tuple(P,1,0,G) consisting of a set of state vari-
ablesP, an (initial) statd, a setO of operators oveP, and
a propositional formul& overP (describing the set gjoal
states.

Let (Cs,Gt,Csr) be a transformation problem far ob-
jects. Consider a fixed grid of sire Our planning encoding
usesn® Boolean (position) variablegyj j, which are true if
and only if objectx is at position(i, j) in the given grid. In
Cor. 5, we saw that it is necessary to make it explicit whether
a state represents a point scenario or an interval sceifaio.
this reason, we introduce a further state variattievhich is
true in states associated to interval scenarios, and étze fa

The initial statd is an assignment of these position vari-
ables that is consistent with the scenaig The goal
state is a propositional formula expressing the final sce-
narioC;. For examplexNy can be encoded as the formula

least) one impassable gate. This result can be used to checkV1<i j<n(Pxi.j A Vi Pyik)- To define the operators as one-

whether som&CD problem instances are unsatisfiable, but
the existence of impassable gates is not a sufficient aiteri

because there can exist cycles in the solution path. For in-

stance, suppose that a hilecannot pass the gates, g2),
beforeg; passes a gat@;,d,) and so on. For this reason,
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step movements in the grid, we first define a “neighborhood

1A straight-forward encoding, namely by usif constraints
as state variables, leads to a non-deterministic planning problem,
which in general iIEXPTIME-hard.



relation” N:

T ifke{i—1,i,i+1},
. _ IG{J_laJuJ+1}'
N(Pxij- k) =9 and(k.1) # . J)
1 else.

Then we define an operatoMovey(X, (i, j), (k1)) that
moves an objeck from one position to a neighboring po-
sition:

Prec:  pi,j AN(Pxij, Pxki)

Effec:  —pxi,j A Pkl

Following, we describe under which condition a transition

from one state (of a plan) to another state is possible. For
this let(c1,e1)...{(c/,q) be a set of operators over Lets
be an arbitrary state. An operat(r,e) is applicablein s if
sk=c. A (possibly empty) se® of operators;,...,0, is
applicablein sif

(a) O contains at most one operator for each object
(b) each operator i is applicable irs;

(c) after the application of the operators, no two objects
share the same position;

(d) the resulting scenario is consistent with the condgion
of Cor. 5 (depending on whether the varialbiieis true
or not).

After any application of a set of operators, the value irgerv
variableint is changed. Asuccessor stat€ sf sis a state
obtained by applying an (applicable) set of operatorsl{j-
operator applicatiof. A (multi-operator) plaris a sequence
of multi-operator applications on the initial state to atesta
satisfying the goal condition. Finally, a plaespectsa CD
constraint network if each of the states in the plan (distinct
from the initial and goal state) satisfies the formula oldin
by the encoding of.

This definition of a plan extends the classical definition
of a plan as used in Al planning domain (Rintanen 2005).
Obviously, a multi-operator plan exists if a plan in the dsua
sense exists, but not vice versa.

Let us round out this section by discussion some exam-
ples, which illustrate the concepts introduced here. Miest
present a transformation problem that is only solvable by a
multi-operator plan, but not by a classical plan.

Cs= {dSEa,dNEb,dNc,cEb,aNb,aNWc}
Ci = {dSWa,dNWh,dNc,cWh,aNb,aNEc}
Cyr = {d {SE'S,SW} a, b {NE,N,NW} a, aNb,
dNc, c{E,SE S SW,W} b}

The multi-operator plan solving this CSP can be outlined
as follows (cp. Fig. 5): Objedl, which always has to stay
north of objectc, has to transform its position from SE

a to d SWa, while respecting the transformation constraint
d {SE S,SW} a. Sincec cannot pass north of objelsit has

to move south ob. So objectc changes its position from
bEctobSEc. Then a multi-operator application is necessary
(since otherwise the constraioN b is violated), that is, we
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move concurrently both objectsandd to the left. In the
next step, this simultaneous movement is repeated. Finally
objectc moves one step north, and we have reached the goal
position.

@ @
@ @
®|© ®
©
(a) Point scenario (b) Interval scenario
@ @
@ @
® ®
© ©

(c) Point scenario (d) Interval scenario

®@

@
O®

(e) Point scenario
Figure 5: A multi-operator plan defining a chronicle

In the situation of the example, an immediate transition
from the first to the third scenario (cf. Fig. 6) would not be
possible, since this transition contradicts the contincdn-
straints expressed in the neighborhood graph (cf. Figh®): t
relationbW c changes (in one step) inbdN c. However, the
same movements of the objeatsand d, respectively, are
possible if the initial scenario is slightly changed (cfg Fr)

@

@
®| O

Q0o

(a) Point scenario (b) Interval scenario

Figure 6: An example of an impossible transition if continu-
ity constraints are enforced
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©

(b) Interval scenario

(a) Point scenario

Figure 7: A possible transition if the initial scenario irgF6
is slightly changed

Using these definitions, one can prove the following
claim:

Lemma 14 An instance of the transformation problem
(Cs,Ct,Cyys) has a solution if and only if there exists a multi-
operator plan from the initial scenarioZo the goal sce-
nario G that respects C. O

To sum up, we may outline the idea how the satisfiability
problem of 7CD can be solved by an encoding as a deter-
ministic planning problem:

1. Eachinstance of the TCDSAT-CCF problem can be trans-
formed into a satisfiability equivalent instance of the
transformation problem.

Each instance of the transformation problem can be
equivalently restated as a transformation problem of grid
scenes.

Each transformation problem in a grid is satisfiable iff
there exists a deterministic plan.

Since the encoding of transformation problems presented

3.

here only uses deterministic effects and since the number

of possible multi-operator applications is limited, it caa
shown that we have a deterministic planning problem. From
this it follows (Bylander 1994) that the satisfiability ptein
TCDSAT-CCF is inPSPACE.

Summary and Outlook

In this paper we have outlined semantical concepts of the
temporalized spatial constraint formalishdD. We showed
that simple instances of constraint networks can be solved
by constructing chronicles of spatial scenarios, whicleotfl
semantically well-defined continuous movements of objects

For harder instances, we proposed to encode constraint net-

works as deterministic planning problems. A side-effect
of this encoding is that the satisfiability problem f6€D
constraint networks can be shown to beR8PACE. But
the more interesting point is that we provide a constructive

method that connects constraint satisfaction problems and

planning problems with multi-operator applications.
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