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Abstract

Frank’s cardinal direction calculus is one of the most promi-
nent spatial constraint formalisms, which allows one to rep-
resent, and reason with, the relative position of objects in the
Euclidean plane. Typical application fields of this calculus in-
clude geographical information systems (GIS), route finding
and description systems, and navigation of robots that inter-
act with humans. In this paper we investigate a constraint
formalism which temporalizes the cardinal direction calculus
with respect to Allen’s interval algebra. In this constraint lan-
guage it is possible to represent objects in the plane which
change their absolute position in time. Since such changes
entail changes of the relative positions of objects to other ob-
jects as well, we are interested in the question of how continu-
ous change of objects is reflected in changes of the respective
qualitative relations expressing these relative positions. We
will show how continuous changes can be represented as op-
erations to objects in grid-like structures. Based on this repre-
sentation we finally propose a method for encoding temporal-
ized spatial constraint satisfaction problems as deterministic
planning problems.

Introduction
Qualitative Spatial Reasoning (QSR) abstracts from metri-
cal details of the physical world and enables computers as
well as artificial agents to make predictions about spatial re-
lations, even when precise quantitative information is not
available (Cohn 1997). From a practical point of view, QSR
provides an abstraction layer that summarizes similar quan-
titative states into one qualitative description. A comple-
mentary view from the cognitive perspective is that the qual-
itative methodcomparesfeatures within the object domain
rather than bymeasuringthem in terms of some artificial ex-
ternal scale (Freksa 2004). This is the reason why qualitative
descriptions are quite natural for humans.

Frank’s cardinal direction calculus (Frank 1996) is one of
the most prominent constraint formalisms in the domain of
QSR. The cardinal direction calculus allows one to repre-
sent, and reason with the relative position of objects in the
Euclidean plane. Typical application fields of this calculus
include geographical information systems (GIS), route find-
ing and description systems, and navigation of robots that
interact with humans.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper we investigate a constraint formalism, which
temporalizes the cardinal direction calculus with respectto
Allen’s interval algebra. In this constraint language it ispos-
sible to represent objects in the plane, which change their
absolute position in time. Since such changes usually entail
changes of the relative positions of objects to other objects
as well, we are interested in the question of how continuous
change of objects is reflected in changes of the respective
qualitative relations expressing these relative positions.

A temporalized cardinal direction calculus as outlined
here may be applicable in scenarios known from logistics,
planning, robot navigation, and multi-agent systems. For
example, assume that a human in a control center has to
navigate several unmanned aerial vehicles. To control the
behavior of the vehicles, the operator may use constraints
such as: As long as vehicle 1 is south of some fixed land-
mark, vehicle 2 should stay south or south-east of vehicle 1,
but never north of a vehicle 3 which is to stay always south-
east of vehicle 1, etc.

Spatio-temporal constraint languages have been previ-
ously discussed in the literature. For example, Bennettet
al. (2002) investigated a temporalization of the topologi-
cal RCC8 calculus. Their approach was further developed
by Gerevini & Nebel (2002) — many definitions and some
techniques developed by them carry over to the new cal-
culus discussed in this paper. From a more philosophical
perspective, Galton (2000) discussed various facets of con-
tinuous change, in particular, how such changes can be con-
sistently described at different levels of granularity andhow
their qualitative and quantitative descriptions are related to
each other. In particular, his notion of dominance space will
be implicitly used in this paper.

The aim of the paper is to work out the relationship be-
tween constraint satisfaction problems of temporalized cal-
culi on the one hand side and deterministic planning prob-
lems on the other. For this we will first show how continuous
changes can be represented as operations to objects in grid-
like structures. Based on this representation we finally pro-
pose a method for encoding temporalized spatial constraint
satisfaction problems as planning problems. The interest-
ing point here is that the type of planning problem obtained
by this encoding has not yet been discussed in the planning
literature (at least to our knowledge).

The paper is organized as follows: In section 2 we intro-

472



duce the language of the calculusTCD, which temporalizes
the cardinal direction calculusCD with respect to Allen’s
interval algebra. In section 3 we sketch how constraint sat-
isfaction problems (formulated with respect to continuous
time and continuous space) can be reformulated as discrete
transitions in a finite grid. In particular, we will discuss some
simple examples, which show that the constraint satisfaction
problem ofTCD cannot be solved by applying standard pro-
cedures for deciding the satisfiability problems of the com-
ponent calculi from whichTCD is built. Then in section 4,
we investigate how the constraint satisfaction problem of
TCD can be transformed into a planning problem. Finally,
section 5 summarizes the results of the paper and gives a
short overview of some questions that will be topics of fu-
ture research.

Temporalizing Cardinal Directions
To begin with, let us recall the two constraint languages in
which we will be interested in the following, namely Frank’s
cardinal direction calculus (CD) and Allen’s interval algebra
(IA).

In Allen’s interval algebra (Allen 1983), intervals are rep-
resented as pairs of instants〈t1, t2〉 ∈ R

2 such thatt1 < t2.
By comparing start and endpoints of two intervals, one can
identify thirteen (jointly exhaustive and pairwise disjoint) re-
lations known in the literature as the Allen 13 relations (cf.
Fig. 1). To represent imprecise knowledge, we consider dis-
junctions of base relations (usually written as sets of base
relations). The satisfiability problem forIA is defined as
follows: Given a finite (and maybe imprecise) description of
the relations between intervals in terms of Allen relations,
is this description consistent (satisfiable)? This problemis
known to beNP-complete (Vilain, Kautz, & van Beek 1989).
Tractable subclasses of the general problem were identified
by Nebel & Bürckert (1995) and by Ligozat (1996).

Symbol Relation Pictorial Representation

≺ (conv.:≻) I beforeJ I
J

m (mi) I meetsJ I
J

o (oi) I overlapsJ I
J

d (di) I duringJ I
J

s (si) I startsJ I
J

f (fi) I finishesJ I
J

= I equalsJ I
J

Figure 1: The thirteen basic relations of the Interval Algebra

Frank (1996) proposed two different approaches for rep-
resenting cardinal directions: the first one uses cone-shaped
directions such that each direction refers to a region of 45
degrees. The second one interprets the four main direc-
tions (north, east, etc.) as half-lines, while the intermedi-
ate regions (north-east, etc.) refer to quadrants (cf. Fig. 2).
Ligozat (1998) worked out the advantages of the latter,

projection-based approach, which we will follow here.
In what follows, we assume thatspatialobjects are points

in the Euclidean planeR2. Given two point-like objects in
the plane, the relative position between these objects can be
described by one of the cardinal direction relationsnorth,
north-east, east, etc. (cf. Fig. 2). Note that these relative
positions are defined with respect to a fixed reference frame.
We will assume that this reference frame is fixed in time as
well, i. e., a change of the relative spatial position always
stems from an object changing its absolute position (not in a
change of the underlying reference system). Ligozat (1998)
examined the computational complexity of the general sat-
isfiability problem (which isNP-complete) and he identified
tractable subclasses.

N

EW

S

NENW

SW SE

Eq

Figure 2: The nine base relations of the cardinal direction
calculus

To put things a little bit more precise, letVIA andVCD be
(disjoint) sets of variables. AnIA constraint is a formula
of the form I R J, whereI ,J ∈ VIA andR= {r1, . . . , rn} is
a (possibly empty) subset of the set of allIA base relations
{≺,m,o,s, f,d,=,≻,mi,oi,si,fi,di}. Usually we writeI r J
instead ofI {r} J whenr is one of this base relations. ACD
constraintis a formula of the formx S y, wherex,y ∈ VCD

andS= {s1, . . . ,sm} is a (possibly empty) subset of the set
of all CD relations{N,NE,E,SE,S,SW,W,NW,Eq}. An
IA (resp.CD) constraint networkis a finite set ofIA (resp.
CD) constraints. LetV(C) be the set of variables occurring
in a given constraint networkC. An assignmentfor anIA
constraint networkC is a functionτ :V(C)→R

2 that assigns
to each variableI that occurs inC a pair of real numbers
(τ1(I),τ2(I)) such thatτ1(I) < τ2(I). The model relation
w. r. t. an assignmentτ for C is introduced as follows:

τ |= I mJ ⇐⇒ τ2(I) = τ1(J)

τ |= I oJ ⇐⇒ τ1(I) < τ1(J) < τ2(I) < τ2(J)

τ |= I dJ ⇐⇒ τ1(J) < τ1(I) < τ2(I) < τ2(J)

. . . (cf. Fig. 1)

and

τ |= I {r1, . . . , rn} J ⇐⇒ τ |= I r i J for some 1≤ i ≤ n.

Analogously, anassignmentfor a CD constraint networkC
is a functionγ : V(C) → R

2 that assigns to each variablex
occurring inC, a pair of real numbers(γ1(x),γ2(x)). Here
the model relation w. r. t. an assignmentγ for C is defined as
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follows:

γ |= xN y ⇐⇒ γ1(x) = γ1(y) andγ2(x) > γ2(y)

γ |= xNEy ⇐⇒ γ1(x) > γ1(y) andγ2(x) > γ2(y)

γ |= xEy ⇐⇒ γ1(x) > γ1(y) andγ2(x) = γ2(y)

. . . (cf. Fig. 2)

and

γ |= I {s1, . . . ,sm} J ⇐⇒ γ |= I s j J for some 1≤ j ≤ m.

Finally, anIA (resp.CD) constraint network,C, is satisfiable
if there exists anIA (resp.CD) assignment that models all
relations ofC. In this case the assignment is said to be a
solutionof C

The temporalized cardinal direction calculusTCD com-
bines constraint formulae of Allen’s interval calculus with
temporally annotated constraints of the cardinal direction
calculus. More precisely, we defineTCD constraint formu-
lae as follows:

• Each interval constraintI R J is a TCD constraint, i. e.,
I R J is aTCD constraint for each pair of interval variables
I ,J ∈VIA and each setRof Allen relations.

• For each interval variableI , each pair of spatial variables
x andy, and each setSof CD relations,I : x S yis aTCD
constraint.

A TCD constraint networkis a finite set ofTCD con-
straints. A standard interpretation of this constraint formal-
ism is based on the following ingredients: we use the linear
ordering of the reals for interpreting interval variables and
points of the Euclidean planeR2 for interpreting spatial vari-
ables. More precisely, we assign to each spatial variable a
continuous path in the Euclidean plane.

A typical example of aTCD constraint network is the fol-
lowing:

I mJ, I : x {NE,NW} y, I : yEz, J : xSWy, J : ySz.

This network expresses that during intervalI , point x is
north-east or north-west ofy and y is east ofz. Then, in
intervalJ, which immediately succeedsI , x is south-west of
y, etc.

Definition 1 An interpretation for a TCD constraint net-
work C is an ordered pair〈τ,γ〉, where

• τ is anIA assignment forV(C)∩VIA.
• γ assigns to each instantt ∈R aCD assignmentγt :V(C)∩

VCD → R
2 such that for each variablex, the functionγ̂x :

R→R
2, t 7→ γt(x), is continuous (with respect to the usual

topologies).

The pointγ̂x(t) is referred to asthe positionof x at time point
t, andγ̂1

x (t) andγ̂2
x (t) refer to thex- and they-coordinate of

this position, respectively.

We then define the model relation as follows:

〈τ,γ〉 |= I R J ⇐⇒ τ |= I R J

〈τ,γ〉 |= I : x S y⇐⇒ γt |= x S yfor eachτ1(I) < t < τ2(I).

Note that we only require that the spatial constraints hold
in the interior of the interval. This is necessary since if these
spatial constraints need to hold at the starting and endpoint
of the interval as well, then it would not be possible that a
base relation holding between two objects in some intervalI
changes to a different base relation between these objects in
any interval met byI .

Definition 2 (a) An interpretation〈τ,γ〉 for a TCD con-
straint networkC is said to be amodelof C if 〈τ,γ〉 |= φ
for eachφ ∈C.

(b) An interpretation〈τ,γ〉 is collision-freeif for each pair
of spatial variablesx and y in C, γ̂x(t) 6= γ̂y(t) for all
t ∈ R.

(c) An interpretation〈τ,γ〉 obeys the“same place, same
thing”-principle if for each pair of spatial variablesx
andy in C, it holds: if γ̂x(t) = γ̂y(t) for somet ∈ R, then
γ̂x = γ̂y.

In the following, we will focus on collision-free inter-
pretations. The reason for this lies in the idea that no two
distinct physical objects can occupy the same place (“same
place, same thing”). If we apply this principle toTCD
constraint networks, we can eliminate spatial constraintsin
which Eq occurs by propagating the identity relation be-
tween two variables to all other (temporally annotated) spa-
tial constraints. In fact, if there is aTCD constraint network
that is true in a “same place, same thing”-interpretation, then
the correspondingTCD constraint network in which Eq does
not occur, is true in a collision free interpretation, and vice
versa.

Our definition of a model requires object paths to be con-
tinuous. Continuity constraints, however, cannot be ex-
pressed byTCD formulae, but bydeduction rulesonly.
For example, consider network containing the constraint
I : x{N,NE,SE,S} y. This constraint is satisfied by a contin-
uousTCD interpretation if and only if eitherI : x {N,NE} y
or I : x {SE,S} y is satisfied by that interpretation. To show
this, let t be an instant inI such thatx {N,NE} y is false
at t. For reductio ad absurdum assume that there is an in-
stantt ′ such thatx {SE,S} y is true att ′. If t ′ < t (anal-
ogously fort < t ′), there must be an instantt < t ′′ < t ′ in
which x {Eq,E} y is true — in contradiction to the fact that
x {N,NE,SE,S} y must be true att ′′.

Using some simple facts from linear algebra, one can eas-
ily verify the following lemma — note that linear functions
(as considered in the lemma) are continuous, sinceR

2 is a
topologicalR-vector space:

Lemma 3 Let p1, p2,v1,v2 ∈R
2, let q1 := p1+v1 and q2 :=

p2+v2, and let f1, f2 : [0,1]→R2 be linear functions defined
by f1(t) := p1 + tv1 and f2(t) := p2 + tv2.

(a) If p1 N p2 and q1 N q2, then f1(t) N f2(t), for each0 ≤
t ≤ 1.

(b) If p1 N p2 and q1 NEq2, then f1(t) NE f2(t) for each
0 < t ≤ 1 (analogously forNW instead ofNE).

(c) If p1 N p2 and q1 Eq2, then f1(t)NE f2(t) for each0 <
t < 1 (analogously forW instead ofE).
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(d) Analogous claims hold for the otherCD base relations.
�

Lemma 4 Let f,g : I → R
2 be continuous functions, where

I := [t0, t1] is a fixed closed interval inR.

(a) If f and g do not collide in I and if the set{ t ∈ I : f (t)N
g(t)} is not empty, then it has a maximum (minimum).
Analogous claims hold for the relationsE, S, andW.

(b) The set{ t ∈ I : f (t) NEg(t)} has no maximum (mini-
mum) distinct from t1 (t0), even if it is not empty. Analo-
gous claims hold for the relationsSE, SW, andNW.

(c) The set{ t ∈ I : f (t)Eqg(t)} has a maximum if it is not
empty.

Proof. We only sketch the proof for claim (a) ((b) and
(c) can be proven in a similar manner). Consider the set
N̂ := { t ∈ I : f (t)N g(t)}. By assumption this set is upper-
bounded and not empty, hence supN̂ exists. We show
that t∗ := supN̂ is in N̂. For reductio ad absurdum sup-
pose thatt∗ /∈ N̂. Since f andg are continuous, so is the
function f − g, t 7→ f (t)− g(t), as well as its projections
f 1 − g1 and f 2 − g2. Now if f 1(t∗) = g1(t∗), it follows
f 2(t∗) < g2(t∗) (sincet∗ /∈ N̂ and f andg do not collide) and
thus( f 2−g2)(t∗) < 0. On the other hand, for eacht ∈ N̂,
( f 2−g2)(t) > 0. Since( f 2−g2) is continuous, there must
be at ′ with N̂ ≤ t ′ < t∗ such that( f 2−g2)(t ′) = 0—in con-
tradiction to the assumption thatt∗ is the supremum of̂N. In
the cases thatf 1(t∗) < g1(t∗) or that f 1(t∗) > g1(t∗), con-
sider the continuous functionf 1 − g1 in order to obtain a
contradiction. �

By applying this lemma we can immediately prove the
following propositions:

Corollary 5 Let I = (t1, t2) be an open interval. Let f,g :
(t1, t2] → R

2 be continuous functions that do not collide in
(t1, t2]. Let s and s′ beCD base relations such that f(t) s g(t),
for each t∈ I, and f(t2) s′ g(t2).

(a) If s = N, then s′ ∈ {N}. Conversely, if s′ = N, then s∈
{NW,N,NE}.

(b) If s = NE, then s′ ∈ {N,NE,E}. Conversely, if s′ = NE,
then s∈ {NE}.

(c) If s = E, then s′ ∈ {E}. Conversely, if s′ = E, then s∈
{NE,E,SE}.

(d) If s = SE, then s′ ∈ {E,SE,S}. Conversely, if s′ = SE,
then s∈ {SE}.

(e) Analogous claims hold for the otherCD base relations.

Proof. (a) Choose an instantt with t1 < t < t2 and consider
the closed interval[t, t2]. Then the set̂N defined in the proof
of Lemma 4 (a) has a maximum. This maximum cannot be
contained in the open interval(t, t2). Thus max̂N must bet2,
and hences′ = N. The second claim follows from general
continuity considerations.

(b) The crucial claim is the second one: Suppose that
s′ = NE. Fix an arbitraryt with t1 < t < t2 and consider
the interval[t, t2]. Then the setN̂E does not take a minimum
distinct fromt. If s 6= NE, t2 would be such a minimum.

N

NW NE

W Eq E

SW SE

S

Figure 3: The neighborhood graph of the cardinal direc-
tion calculus in the case that the “same-place, same thing”-
principle is enforced. Dotted arrows represent continuous
transitions from a point scenario into an interval scenario.
Dashed lines represent transitions from intervals to points.

The other claims can be proven in a similar manner.�

It is clear that claims analogous to those in the corollary
hold for transitions from points to intervals (i. e., if we con-
sider possible qualitative transitions fromt1 into the interval
(t1, t2)). Furthermore, if we iterate the possible transitions
described in this corollary, we obtain the following claim:

Corollary 6 Let I = (t1, t2) and I′ = (t2, t3) be open inter-
vals. Let f,g : (t1, t3) → R

2 be continuous functions that do
not meet in(t1, t3). Let s and s′ beCD base relations such
that f(t) s g(t), for each t∈ I, and f(t) s′ g(t), for each t∈ I ′.

(a) If s = N, then s′ ∈ {NW,N,NE}.
(b) If s = E, then s′ ∈ {NE,E,SE}.
(c) If s = S, then s′ ∈ {SE,S,SW}.
(d) If s = W, then s′ ∈ {SW,W,NW}.
(e) If s = NE, then s′ ∈ {NW,N,NE,E,SE}.
(f) If s = SE, then s′ ∈ {NE,E,SE,S,SW}.
(g) If s = SW, then s′ ∈ {SE,S,SW,W,NW}.
(h) If s = NW, then s′ ∈ {SW,W,NW,N,NE}. �

The neighborhood graph of the cardinal direction calculus
(depicted in Fig. 3) is essential for solvingTCD constraint
networks. In fact, we will try to construct a solution of such
a network by defining a transition function between spatial
scenarios that obeys the constraints expressed in the neigh-
borhood graph. The correctness of this graph, which is cru-
cial for this method, follows from Cor. 5.

Definition 7 Let C be aTCD constraint network.

• C is said to bereducedif for each pair of interval variables
I andJ, there is an Allen base relationr such thatI r J ∈C.

• C is said tostrongly reducedif C is reduced and contains
exactly one constraint of the formI : x S yfor each interval
variableI and each pair of point variablesx andy.

Lemma 8 Each reducedTCD constraint network C can be
transformed in polynomial time into a logically equivalent
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constraint network C′ such that C′ is strongly reduced and
contains only the Allen relationsm and≺.

Proof. Adapt a proof in (Gerevini & Nebel 2002).
�

In the following, letV be a finite subset ofVCD. A sce-
nario for V is aCD constraint networkC such that for each
pair of variablesx,y ∈ V, there is a base relations with
x s y∈C.

Definition 9 Let I = (Ii)1≤i≤n be a sequence of interval
variables. Achronicle for V w. r. t. I is a sequence ofCD
constraint networks(Cj)0≤ j≤2n such that

(i) EachCj is a consistent scenario forV (note that w. r. t.
CD scenarios path-consistency decides satisfiability).

(ii) For each 1≤ i ≤ n and each pair of variablesx,y∈V,
if x r y ∈ C2i−2 andx r′ y ∈ C2i−1, thenr = r ′ or r ′ is
a relation that is a dotted arrow neighbor ofr in the
neighborhood graph depicted in Fig. 3 (C2 j represents
a “point scenario”).

(iii) For each 1≤ i ≤ n and each pair of variablesx,y ∈
V, if x r y ∈ C2i−1 and x r′ y ∈ C2i , then r = r ′ or r ′

is a relation that is a dashed arrow neighbor ofr in
the neighborhood graph depicted in Fig. 3 (in this case
C2i−1 represents an “interval scenario”).

Proposition 10 Let V = {v1, . . . ,vm} be a set ofCD vari-
ables,I = (Ii)1≤i≤n be a sequence of interval variables, and
let (Cj)0≤ j≤2n be a chronicle for V andI. Then there exists a
collision-free and continuousTCD interpretation〈τ,γ〉 such
that

(a) 〈τ,γ〉 |= Ii m Ii+1, for each1≤ i ≤ n−1.
(b) 〈τ,γ〉 |= Ii : C2i−1, for each1≤ i ≤ n.

Proof. The idea of the proof is as follows: Since eachCj
is satisfiable, choose for each 0≤ j ≤ 2n a CD assignment
γ j satisfyingCj . Then construct for each variable step-by-
step a continuous path by a piece-wise linear function, where
each piece describes the transition from the scenarioCj to
the scenarioCj+1. More precisely, we first setτ(i) := (2i −
2,2i). Then define

γ̂x(t) :=



























γ0(x) if t < 0
γ2n(x) if t > 2n
γ2i−2(x)+(t −2i −2)·

(γ2i−1(x)− γ2i−2(x))
if 2i −2≤ t ≤ 2i −1

γ2i−1(x)+(t −2i −1)·
(γ2i(x)− γ2i−1(x))

if 2i −1≤ t ≤ 2i

It is clear that these settings define a continuous interpre-
tation. By applying Lemma 3 it is easy to verify that this
interpretation is collision-free as well and that claim (b)is
satisfied. �

TCD Constraint Satisfaction Problems
The general constraint satisfaction problem TCDSAT is de-
fined as the problem to decide whether aTCD constraint
network is satisfiable. However, usually we are not only

interested in finding an interpretation that models the con-
straint network, but in the probably harder problem of find-
ing a continuous interpretation of the network. For applica-
tion scenarios, interpretations that avoid collisions of objects
may be even more interesting. Hence in this paper we are in-
terested in the following version of the general satisfiability
problem (referred to as TCDSAT-CCF):

Instance: A TCD constraint networkC.

Question: Is there acontinuousandcollision-freeinterpre-
tation that modelsC?

It is an easy exercise to verify that TCDSAT and hence
TCDSAT-CCF as well areNP-hard:

Theorem 11 TCDSAT and TCDSAT-CCF areNP-hard.

Proof. We can reformulate a proof given by Gerevini &
Nebel (2002). For this we “model” the properties of the
RCC8 relations DC and EC used there by theCD relations E
and NE. Hence consider theTCD CSP{I : xEy,J : xNEy}.
This implies thatI {<,m,mi,>} J. But the smallest set of
interval relations that contains this relation as well as each
of the base relations ofIA and that is closed under inter-
sections, converse formations, and compositions is the set
of all interval relations (Nebel & Bürckert 1995). TheNP-
hardness of the satisfiability problem forIA thus implies
that TCDSAT isNP-hard as well. �

We now know the lower bound complexity, but the in-
teresting part is to determine upper bounds. At least for
very simpleTCD constraint networks, namely such net-
works in which only base relations occur, we can decide
satisfiability as follows: First transform such a network into
a strongly reduced one. In a second step consider the sub-
networks defined by maximal m-chains of interval variables
(I1 m . . .m In) in the strongly reduced network. If each such
sub-network can be extended to a chronicle, then each sub-
network is satisfiable (cf. Proposition 10) and hence the orig-
inal network is satisfiable as well.

In the general case, however, we only have m-chains of
intervals that annotateCD formulae containing disjunctions
of CD relations. For this reason it is crucial to find a suitable
sequence ofCD scenarios that are consistent with the dis-
junctive descriptions in the constraint network. This prob-
lem can be restated as follows: Assume that we have aTCD
constraintI : C, a spatial scenarioCs, which holds at the be-
ginning ofI , and a spatial scenarioCf , which holds at the end
of I . How can we transform (continuously and in a collision
free manner) the start scenario into the final scenario such
that the constraints holding inI , i. e., those ofC, are never
violated? Hence the task is to find a sequenceI = (Ii)1≤i≤n
of interval variables and then a chronicle(Cj)0≤ j≤2n such
that C0 = Cs, C2n = Cf , and each of the constraints inCj
(1≤ j ≤ 2n−1) is consistent withC.

To sum up, the problem we will be concerned with in the
rest of the paper is defined as the followingtransformation
problem:

Instance: An initial CD scenarioCs, a finalCD scenarioCf ,
and aCD constraint networkCs/f .
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Question: Is there a chronicle fromCs to Cf that does not
violate the constraints inCs/f?

The idea for analyzing this problem is to consider possi-
ble transformations in grid structures, which in turn can be
encoded as planning problems. Agrid is a set of the form
G = {(i, j) ∈ N

2 : 1 ≤ i, j ≤ n} for some natural number
n≥ 1. n is referred to as thesizeof G.

Obviously, the problem of testing satisfiability ofCD con-
straint networks with respect to the plane is equivalent to the
corresponding problem of finding a satisfying assignment
in a (sufficiently large) grid. More precisely, if aCD con-
straint network withn variables is satisfiable, then it is satis-
fiable in a grid of sizen— this can be proven by induction in
the number of variables. For this reason, the transformation
problem presented above can be equivalently restated as a
transformation problem ofgrid scenes, that is, instantiations
of scenarios in a grid. A solution of such a transformation
problem in grids is agrid chronicle, i. e., a sequence of grid
scenes(σi)0≤ j≤2n such that each transition fromσi to σi+1
obeys the continuity constraints expressed in the neighbor-
hood graph (cf. Fig. 3).

For a given assignment to the variables occurring in a
given CD constraint network, one can compute in polyno-
mial time (in the number of the variables) whether the as-
signment models the constraint network. Moreover, an easy
combinatorial argument shows that only a finite number of
transformations between two scenarios is possible:

Lemma 12 (a) There are only8n distinctCD scenarios in
n variables.

(b) Let C and C′ beCD scenarios for the same set of vari-
ables. If there is a chronicle transforming C into C′, then
this chronicle passes through at most8n distinct scenar-
ios. �

This gives us only an imprecise upper bound of the com-
plexity, i. e., so far the problem is only inEXPTIME. But
we aim at showing that the upper bound complexity of the
transformation problem is inPSPACE.

When does there exist a solution for an instance of the
transformation problem〈Cs,Cf ,Cs/f〉? To answer this ques-
tion, let us consider a typical example (presented in Fig. 4),
in which such a problem has no solution. We say, that an
object is ahiker if it changes its qualitative position w. r. t.
another object during its movement. Aguard for a hikery
is an objectx such that there is a relationRdistinct from the
universal relation withx R y∈ Cs/f . A gate for a hikerx is
a pair of guards(y,z), whichx cannot pass according to the
constraints inCs/f (cf. Fig. 4).

Hence, aTCD constraint network is inconsistent, when-
ever its corresponding transformation problem contains (at
least) one impassable gate. This result can be used to check
whether someTCD problem instances are unsatisfiable, but
the existence of impassable gates is not a sufficient criterion,
because there can exist cycles in the solution path. For in-
stance, suppose that a hikera cannot pass the gate(g1,g2),
beforeg1 passes a gate(g′1,g

′
2) and so on. For this reason,

b

c

a

Cs = {cN b,aNEb,aSEc}

Cf = {cN b,aSWc,aNWb}

Cs/f = {a {SE,E,NE,N,NW,W,SW} c,

a {NE,E,SE,S,SW,W,NW} b,

b {N,NW,W,SW,S} c}.

Figure 4: A gate. Objecta cannot pass the guardsb andc,
as stated in the constraint networkCs/f . It has to move south
of b and north ofc. By changing the positions ofb andc
(sometimes this is not possible)a can pass firstc and thenb.

we can not prima facie exclude the possibility that a transi-
tion chain from some initial to an end scenario consists of 8n

different scenarios.

A Planning Encoding

In the following we present a method that can be used to
encode transformation problems (described in the previous
section) as (non-standard) deterministic planning problems.
A side-effect of this encoding will be that the upper bound
of the complexity of TCDSAT-CCF isPSPACE.1

First recall the basic notion of a deterministic planning
problem:

Definition 13 An instance of adeterministic planning prob-
lem is a 4-tuple〈P, I ,O,G〉 consisting of a set of state vari-
ablesP, an (initial) stateI , a setO of operators overP, and
a propositional formulaG overP (describing the set ofgoal
states).

Let 〈Cs,Cf ,Cs/f〉 be a transformation problem forn ob-
jects. Consider a fixed grid of sizen. Our planning encoding
usesn3 Boolean (position) variablespx,i, j , which are true if
and only if objectx is at position(i, j) in the given grid. In
Cor. 5, we saw that it is necessary to make it explicit whether
a state represents a point scenario or an interval scenario.For
this reason, we introduce a further state variableint which is
true in states associated to interval scenarios, and else false.

The initial stateI is an assignment of these position vari-
ables that is consistent with the scenarioCs. The goal
state is a propositional formula expressing the final sce-
narioCf . For example,xN y can be encoded as the formula
∨

1≤i, j≤n(px,i, j ∧
∨

k> j py,i,k). To define the operators as one-
step movements in the grid, we first define a “neighborhood

1A straight-forward encoding, namely by usingCD constraints
as state variables, leads to a non-deterministic planning problem,
which in general isEXPTIME-hard.
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relation”N:

N(px,i, j , px,k,l ) =















⊤ if k ∈ {i −1, i, i +1},
l ∈ { j − 1, j, j + 1},
and(k, l) 6= (i, j)

⊥ else.

Then we define an operator,MoveO(X,(i, j),(k, l)) that
moves an objectx from one position to a neighboring po-
sition:

Prec: px,i, j ∧N(px,i, j , px,k,l )
Effec: ¬px,i, j ∧ px,k,l

Following, we describe under which condition a transition
from one state (of a plan) to another state is possible. For
this let 〈c1,e1〉 . . .〈cl ,el 〉 be a set of operators overP. Let s
be an arbitrary state. An operator〈c,e〉 is applicablein s if
s |= c. A (possibly empty) setO′ of operatorso1, . . . ,on is
applicablein s if

(a) O′ contains at most one operator for each objectx;

(b) each operator inO′ is applicable ins;

(c) after the application of the operators, no two objects
share the same position;

(d) the resulting scenario is consistent with the conditions
of Cor. 5 (depending on whether the variableint is true
or not).

After any application of a set of operators, the value interval
variableint is changed. Asuccessor state s′ of s is a state
obtained by applying an (applicable) set of operators (multi-
operator application). A (multi-operator) planis a sequence
of multi-operator applications on the initial state to a state
satisfying the goal condition. Finally, a planrespectsa CD
constraint networkC if each of the states in the plan (distinct
from the initial and goal state) satisfies the formula obtained
by the encoding ofC.

This definition of a plan extends the classical definition
of a plan as used in AI planning domain (Rintanen 2005).
Obviously, a multi-operator plan exists if a plan in the usual
sense exists, but not vice versa.

Let us round out this section by discussion some exam-
ples, which illustrate the concepts introduced here. Firstwe
present a transformation problem that is only solvable by a
multi-operator plan, but not by a classical plan.

Cs = {dSEa,dNEb,dNc,cEb,aNb,aNWc}

Cf = {dSWa,dNWb,dNc,cW b,aN b,aNEc}

Cs/f = {d {SE,S,SW} a, b {NE,N,NW} a, aNb,

dNc, c {E,SE,S,SW,W} b}

The multi-operator plan solving this CSP can be outlined
as follows (cp. Fig. 5): Objectd, which always has to stay
north of objectc, has to transform its position fromd SE
a to d SWa, while respecting the transformation constraint
d {SE,S,SW} a. Sincec cannot pass north of objectb it has
to move south ofb. So objectc changes its position from
bEc tobSEc. Then a multi-operator application is necessary
(since otherwise the constraintcN b is violated), that is, we

move concurrently both objectsc andd to the left. In the
next step, this simultaneous movement is repeated. Finally
objectc moves one step north, and we have reached the goal
position.

b c

a

d

(a) Point scenario

b

c

a

d

(b) Interval scenario

c

b

a

d

(c) Point scenario

c

d

b

a

(d) Interval scenario

bc

a

d

(e) Point scenario

Figure 5: A multi-operator plan defining a chronicle

In the situation of the example, an immediate transition
from the first to the third scenario (cf. Fig. 6) would not be
possible, since this transition contradicts the continuity con-
straints expressed in the neighborhood graph (cf. Fig. 3): the
relationbWc changes (in one step) intobNc. However, the
same movements of the objectsc and d, respectively, are
possible if the initial scenario is slightly changed (cf. Fig. 7)

b c

a

d

(a) Point scenario

c

b

a

d

(b) Interval scenario

Figure 6: An example of an impossible transition if continu-
ity constraints are enforced
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b c

a

d

(a) Point scenario

b

c

a

d

(b) Interval scenario

Figure 7: A possible transition if the initial scenario in Fig. 6
is slightly changed

Using these definitions, one can prove the following
claim:

Lemma 14 An instance of the transformation problem
〈

Cs,Cf ,Cs/f
〉

has a solution if and only if there exists a multi-
operator plan from the initial scenario Cs to the goal sce-
nario Cf that respects Cs/f . �

To sum up, we may outline the idea how the satisfiability
problem ofTCD can be solved by an encoding as a deter-
ministic planning problem:

1. Each instance of the TCDSAT-CCF problem can be trans-
formed into a satisfiability equivalent instance of the
transformation problem.

2. Each instance of the transformation problem can be
equivalently restated as a transformation problem of grid
scenes.

3. Each transformation problem in a grid is satisfiable iff
there exists a deterministic plan.

Since the encoding of transformation problems presented
here only uses deterministic effects and since the number
of possible multi-operator applications is limited, it canbe
shown that we have a deterministic planning problem. From
this it follows (Bylander 1994) that the satisfiability problem
TCDSAT-CCF is inPSPACE.

Summary and Outlook
In this paper we have outlined semantical concepts of the
temporalized spatial constraint formalismTCD. We showed
that simple instances of constraint networks can be solved
by constructing chronicles of spatial scenarios, which reflect
semantically well-defined continuous movements of objects.
For harder instances, we proposed to encode constraint net-
works as deterministic planning problems. A side-effect
of this encoding is that the satisfiability problem forTCD
constraint networks can be shown to be inPSPACE. But
the more interesting point is that we provide a constructive
method that connects constraint satisfaction problems and
planning problems with multi-operator applications.

Acknowledgments
This work was partially supported by the Deutsche
Forschungsgemeinschaft (DFG) as part of the Transregional

Collaborative Research Center SFB/TR 8 Spatial Cognition.
We would like to thank Bernhard Nebel for helpful discus-
sions. We also gratefully acknowledge the suggestions of
three anonymous reviewers, who helped improving the pa-
per.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals.Communications of the ACM26(11):832–843.
Bennett, B.; Cohn, A. G.; Wolter, F.; and Zakharyaschev,
M. 2002. Multi-dimensional modal logic as a frame-
work for spatio-temporal reasoning.Applied Intelligence
17(3):239–251.
Bennett, B. 2001. Space, time, matter and things. InFOIS
’01: Proceedings of the international conference on For-
mal Ontology in Information Systems, 105–116.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Cohn, A. G. 1997. Qualitative spatial representation
and reasoning techniques. In Brewka, G.; Habel, C.; and
Nebel, B., eds.,KI-97: Advances in Artificial Intelligence.
Springer.
Egenhofer, M. J., and Al-Taha, K. K. 1992. Reason-
ing about gradual changes of topological relationships. In
Frank, A. U.; Campari, I.; and Formentini, U., eds.,Spatio-
Temporal Reasoning, Lecture Notes in Computer Science
639, 196–219. Springer.
Frank, A. U. 1996. Qualitative spatial reasoning: Cardinal
directions as an example.International Journal of Geo-
graphical Information Science10(3):269–290.
Freksa, C. 1991. Conceptual neighborhood and its role in
temporal and spatial reasoning. InDecision Support Sys-
tems and Qualitative Reasoning. North-Holland. 181–187.
Freksa, C. 2004. Spatial cognition: An AI perspective. In
ECAI 2004, 1122–1128.
Gabelaia, D.; Kontchakov, R.; Kurucz, A.; Wolter, F.; and
Zakharyaschev, M. 2005. Combining spatial and temporal
logics: Expressiveness vs. complexity. Journal of Artificial
Intelligence Research(JAIR).
Galton, A. 2000. Qualitative Spatial Change. Oxford
University Press.
Galton, A. 2003. A generalized topological view of motion
in discrete space.Theoretical Compututer Science305(1-
3):111–134.
Gerevini, A., and Nebel, B. 2002. Qualitative spatio-
temporal reasoning with RCC-8 and Allen’s interval calcu-
lus: Computational complexity. InProceedings of the 15th
European Conference on Artificial Intelligence (ECAI-02),
312–316. IOS Press.
Ligozat, G. 1996. A new proof of tractability for ORD-
Horn relations. InProceedings of the National Conference
on Artificial Intelligence (AAAI-96).
Ligozat, G. 1998. Reasoning about cardinal directions.
Journal of Visual Languages and Computing9:23–44.

479



Nebel, B., and Bürckert, H.-J. 1995. Reasoning about tem-
poral relations: A maximal tractable subclass of Allen’s
interval algebra.JACM42(1):43–66.
Rintanen, J. 2005. Planning: algorithms and complexity.
Habilitation thesis, Albert-Ludwigs-Universität Freiburg.
Skiadopoulos, S., and Koubarakis, M. 2004. Com-
posing cardinal direction relations.Artificial Intelligence
152(2):143–171.
Vilain, M. B.; Kautz, H. A.; and van Beek, P. G. 1989. Con-
traint propagation algorithms for temporal reasoning: A re-
vised report. In Weld, D. S., and de Kleer, J., eds.,Readings
in Qualitative Reasoning about Physical Systems. Morgan
Kaufmann. 373–381.
Wolter, F., and Zakharyaschev, M. 2000. Spatio-temporal
representation and reasoning based on RCC-8. In Cohn,
A.; Giunchiglia, F.; and Selman, B., eds.,Principles of
Knowledge Representation and Reasoning: Proceedings of
the 7th International Conference (KR2000). Morgan Kauf-
mann.

480


