
Dependency Calculus:
Reasoning in a General Point Relation Algebra

Marco Ragni and Alexander Scivos

Institut für Informatik, Albert-Ludwigs-Universität Freiburg,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany

{ragni, scivos}@informatik.uni-freiburg.de

Abstract. Reasoning about complex dependencies between events is a crucial
task. However, qualitative reasoning has so far concentrated on spatial and tem-
poral issues. In contrast, we present a new dependency calculus (DC) that is cre-
ated for specific questions of reasoning about causal relations and consequences.
Applications in the field of spatial representation and reasoning are, for instance,
modeling traffic networks, ecological systems, medical diagnostics, and Bayesian
Networks. Several extensions of the fundamental linear point algebra have been
investigated, for instance on trees or on nonlinear structures. DC is an improved
generalization that meets all requirements to describe dependencies on networks.
We investigate this structure with respect to satisfiability problems, construction
problems, tractable subclassses, and embeddings into other relation algebras. Fi-
nally, we analyze the associated interval algebra on network structures.

1 Introduction

Reasoning about complex dependencies between events is a crucial task in many appli-
cations when decisions need to be made. Whenever the required answer is a decision
or classification, Qualitative Reasoning (QR) is best-suited: It abstracts from metrical
details of the physical world and enables computers to make predictions about relations,
even when precise quantitative information is not available or irrelevant [5]. QR is an
abstraction that summarizes similar quantitative states into one qualitative characteriza-
tion. From the cognitive perspective, the qualitative method categorizes features within
the object domain rather than by measuring them in terms of some external scale [7].
This is the reason why qualitative descriptions are quite natural for humans.

The two main directions in QR so far are spatial and temporal reasoning. In terms of
spatial reasoning, topological reasoning about regions [11], positional reasoning about
point configurations [7], and reasoning about directions can be distinguished. For tem-
poral reasoning, either points [14] or intervals [1] are used as basic entities.

In contrast, we present a calculus that is created for a new direction in QR: specific
questions of reasoning about causal relations and consequences. Our approach is purely
qualitative, hence in comparison with Bayesian networks, no time for computing the
probabilities is needed. Nevertheless, dependencies can reliably be derived. We show
how known relation algebras can be refined to achieve this goal.

The linear point algebra PAlin introduced by Vilain [14] is one of the most promi-
nent and fundamental formalisms in the domain of qualitative spatial and temporal rea-

U. Furbach (Ed.): KI 2005, LNAI 3698, pp. 49–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 M. Ragni and A. Scivos

soning. Its basic relations are {≺, =,�}. Many widely used algebras, like Allen’s in-
terval algebra [1] or the Cardinal Directions calculus, can be constructed by PAlin re-
lations. The general satisfiability problem for PAlin is in P [14], but for the asso-
ciated interval algebra IAlin, it is NP-complete. NP-hard problems usually have in-
teresting fragments - so called tractable subclasses. A subclass of a relational algebra
is a subset of relations closed under composition and converse. A subclass is called
tractable if satisfiability can be decided in polynomial time. Normally, for these classes
the path-consistency method decides satisfiability. Nebel et al. [10] identified all maxi-
mal tractable subclasses for IAlin.

However, real-world problems have not necessarily linear structures as underlying
space. Starting in the nineties, there have been extensions of the linear case into treelike
and nonlinear structures [2], [3] to address such problems. The point algebra PAbr for
treelike, often called branching structures, consists of the basic relations {≺, =,�, ‖},
whereby ‖ states that two points are on different branches. Contrary to the point alge-
bra of linear time, satisfiability testing for branching time is NP-hard. Moreover, the
associated satisfiability problem for PAbr is NP-complete. Broxvall [3] identified five
maximal tractable subsets of PAbr. The most general known point algebra, up to now,
consists of the basic relations {≺, =,�, ‖} which is the point algebra on nonlinear
structures PApo. Broxvall showed that the satisfiability problem is in the same class as
for branching structures and identified three maximal tractable fragments.

But, these approaches are still too coarse for some applications. For instance, to
identify dependencies, it is not only important to state that two points are unrelated, but
also to qualify if two points or states have a common ancestor or if there is no such ’de-
cision’ point. For this reason, we define a relation algebra qualifying decision points and
get a proper generalization of Broxvall’s nonlinear relation algebra [3]. This new alge-
bra, called dependency calculus (DC), meets all requirements to describe dependencies
in networks. This is demonstrated by applications in the field of spatial representation
and reasoning. There are two aspects: dependencies of points are described by the point
algebra PAdc, and based on this we define the associated interval algebra IAdc.

Analyzing the composition tables shows that the dependency calculus for point
structures PAdc is a proper generalization of PApo, which leads to a more precise
reasoning. For that reason, it would be also useful to use the new algebra PAdc instead
of using PApo in nonlinear structures, if PAdc is still in the same complexity class.
This shows the need to analyze the complexity of the depencency calculus.

One main concept is that it is not only important to analyze questions concerning
satisfiability problems, but also to show the correspondence between DC and other
relation algebras. To be more precise: Is there a relation algebra which is so similar to
this dependency calculus that there is an isomorphism between these two algebras? An
isomorphism with the property to preserve the tractability of subclasses? The method
of identifying isomorphisms, or at least homomorphisms between calculi seems to be a
promising idea to structure the field of relation algebras by the mathematical concept of
homomorphism. Such mappings transfer algebraic aspects and complexity results from
one algebra to another.

This paper is organized as follows: In Section 2, we present application areas and
pose some important questions. In Section 3, we review the theory of partial orders and

Dependency Calculus: Reasoning in a General Point Relation Algebra 51

sketch known results concerning the point algebra on different structures. We present
the set PAdc of extensions of basic relations in our general framework. Then, the con-
cept of correspondence of relation algebras is outlined. In a next step, we investigate
the computational complexity of constraint satisfaction problems of PAdc. In particu-
lar, we show that the satisfiability problem is NP-complete and all maximal tractable
subclasses of PAdc are presented by an algebraic correspondence to RCC-5. In Sec-
tion 4, we introduce the associated interval algebra IAdc on directed acyclic graphs,
which allows to distinguish more constellations than classical interval algebras (even
on nonlinear structures). We identify tractable subclasses and prove NP-completeness
of the satisfiability problem for IAdc. Finally, Section 5 summarizes our results and
raises questions that are left open.

2 Application Areas

Various tasks in management and science require a good understanding of complex de-
pendencies, for instance monitoring the distribution of pollution in ecological networks,
identifying delivery bottlenecks in a supply chain network, inhibiting the spreading of
deseases, or minimizing delays in a railway system.

For instance, if we observe pollution in an ecosystem of flowing water, we can draw
conclusions about pollution at other points. Regard the flow network shown in Fig. 1. In

B

C E

D
F

A
→

→
→

→

Fig. 1. A pipe network. Flow occurs along the ”pipes” from left to right. Is there a difference
between the pairs (A, B) and (D, E)?

this example, if pollution is found at point D, point F will be polluted as well. It might
be caused from a source at point A. Points B, C, and E could not cause the pollution
at point D. Nevertheless, there is a connection between C and D: Knowing that C is
polluted, it is likely that D is polluted by the same substance (and vice versa). Does the
same hold true for B and D? It does not because they have no common point upstream.
We present a calculus that directly represents such differences. Therefore, it is vital to
have a new relation � which we call ”fork” for pairs like (C, D) or (D, E) that share
a common ancestor. The set of basic relations ”fork” (�), ”before” (≺), ”equal” (=),
and ”after” (�), we call ”dependent”. The only other case, like (A, B), we call ”in-
dependent” (�). If not all dependencies are known, some relations are not completely
specified. Such imprecise knowledge is described by unions of these basic relations.

Dependencies of probabilities (when observations depend on each other, like in the
water flow example) are often described by a Bayesian network. The answer whether
two random variables are independent is based on the structure of the network. Can we

52 M. Ragni and A. Scivos

A

B C

A

B C

D

Fig. 2. A virus transmittance scheme. Arrows indicate assured, dashed ones unassured donorship,
dotted lines mean that both persons carry the same virus. No lines means that we do not have
prior knowledge. The situation on the left must be incomplete. The existence of a fourth person
D accounts for this. PAdc concludes that indeed there was indirect transmittance from D to A.

automatically deduce from a given set of direct dependencies, which pairs are ”inde-
pendent” and which are ”dependent”? For instance, in Fig. 1, observations at A and B
are independent, but E and D are not.

Another important type of task is network design, that is finding a feasible partial
order for a given system of nodes under certain order contstraints. For example, in a
supply network, constraints could be that a warehouse has (indirectly) to be delivered
from a specific production site, and that two warehouses do not have a common ”bot-
tleneck” site delivering both. Other examples are train scheduling (which connecting
trains should wait for a delayed train, which not, to avoid critical dependencies?), au-
tomated planning, project organization and program verification. The task is to find a
cycle-free order of the procedures such that one procedure delivers its result before the
next routine is started. How time-consuming is the task of finding such an order?

In all these cases, the order may remain partly unspecified between elements for
which the order does not matter. In other cases, the specific order (dependency) is vital,
and it is necessary to deduce the hidden truth. For example, when tracking the spreading
of a contagious disease, it is not always clear who was the donor, or if there was contact
at all. Often, reasoning based on the known dependencies restricts the possibilities in
cases of uncertainty or helps to detect formerly unknown causes (as in the example
given in Fig. 2). These examples show that reasoning about dependencies, even with
uncertainty, is highly important. In all these problems it matters if two nodes in the
dependency graph have a common ancestor or not. In order to do automated reasoning,
a calculus is needed that expresses this relation between a pair of nodes. This helps to
distinguish between possibly affected spots and those that are unaffected. In which cases
do efficient algorithms exist to detect causes and implications, to discover dependencies,
and to find an order compliant with a given specification?

We present and investigate a calculus that suits to represent and deduce knowl-
edge about dependencies by extending the language of partial ordering. This calculus
is useful in various applications dealing with reasoning about spatial, temporal, spatio-
temporal, topological, competitive, or causal relations.

3 The Dependency Calculus and Partial Orders

3.1 Formal Definition of PAdc

To begin with the formalization of these concepts, let us recall the definition of a partial
order: A partial order is a relation ≤⊂ A×A that satisfies the following three properties
for any a, b, c ∈ A:

Dependency Calculus: Reasoning in a General Point Relation Algebra 53

i. Reflexivity: a ≤ a.
ii. Antisymmetry: If a ≤ b and b ≤ a, then a = b.

iii. Transitivity: If a ≤ b and b ≤ c, then a ≤ c.

A total order is a partial order that satisfies a fourth property:

iv. Comparability: For any a, b ∈ A, either a ≤ b or b ≤ a.

PAdc is based on the notion of relations between pairs of variables interpreted
as elements of a partial order. We consider five basic relations, which we denote by
≺, =,�, �,�. If x, y are points in a partial order 〈T,≤〉, then we define these relations
in terms of the partial order as follows:

x ≺ y iff x ≤ y and not y ≤ x.
x = y iff x ≤ y and y ≤ x.
x � y iff y ≤ x and not x ≤ y.
x � y iff ∃z z ≤ y ∧ z ≤ x and neither x ≤ y nor y ≤ x.
x � y iff neither ∃z z ≤ y ∧ z ≤ x nor x ≤ y nor y ≤ x .

Semantically, a constraint v1 R v2 holds in a partial order (T,≤) that complies with
this definition. All relations between nodes in Fig. 1 can be described by these five basic
relations. For describing trees, the four relations {≺, =,�, �} are sufficient. Therefore,
whenever the relation � occurs, the graph cannot be a tree.

A boolean algebra contains all unions ∪, intersections ∩, and complements − of a
set of basic relations. If a boolean algebra is closed under additional operations compo-
sition ◦ and inverse −1, it is called relation algebra, whereby

x R−1 y holds iff y R x,
x (R1 ◦ R2) y holds iff ∃z x R1 z and z R2 y.

PAdc is the concrete binary finite relation algebra [8] generated by {≺, =,�, �,�}.
Furthermore, given an atomic relation algebra A with finite atom set B(A) (i.e. B(A) is
the set of all basic relations), each relation r ∈ A can be written in a unique manner as a
union of basic relations b1, . . . , bn. Algebraic functions such as composition, converse,
intersection, union, and complement, can be computed from basic relations:

(b1 ∪ · · · ∪ bt) ◦ (b′1 ∪ · · · ∪ b′l) =
⋃

1≤i≤t,1≤j≤l

(bi ◦ b′j) (1)

(b1 ∪ · · · ∪ bl)−1 = (b−1
1 ∪ · · · ∪ b−1

l) (2)

Hence, it is sufficient to analyze the basic relations. For B(PAdc), the composition
operator is defined in Table 1. Composition tables are important for constraint based
reasoning. For instance, the path-consistency algorithm [9], which can be used to iden-
tify some inconsistent networks, uses the composition table. PAdc is the relation alge-
bra generated by the 5 basic relations ≺, =,�, �,� and the associated composition as
shown by Table 1. The universal relation {≺, =,�,�, �} is denoted by �.

54 M. Ragni and A. Scivos

Table 1. The composition table of PAdc

◦ ≺ = � � �
≺ ≺ ≺ � � ≺, �,�
= ≺ = � � �
� ≺, =,�, � � � �,�, � �, �
� ≺,�,� � � � ≺,�, �
� ≺, � � �,�, � �,�, � �

3.2 Computational Complexity

Assume that a set of constraints between some points is given. One question might
be whether this set is consistent: Is it possible to construct a network in which all the
constraints are satisfied? And, what is the computational effort for constructing it?

Definition 1. Let R ⊆ PAdc be a set of point relations and C a class of partial orders.
A constraint system is a directed multigraph Π = (V, E), where the nodes in V are
point variables and E ⊆ V ×R×V denotes the constraints imposed on the variables.
A tuple (f, (T,≤)) where f : V → T is a total function and (T,≤) ∈ C is called an
interpretation of Π . It is satisfiable iff there exists an interpretation M = (f, (T,≤))
such that f(u) R f(v) holds for every (u, R, v) ∈ E. M is called a model of Π . There
are two types of problems for such a given constraint system:

i. The satisfiability problem SATC(R): Is Π satisfiable?
ii. The network design problem NDPC(R): Find a model of Π .

The size of a problem instance (V, E) is |V | + |E|.
In an interpretation, a partial order is chosen such that each variable V is assigned to an
element of the partial order. But this assignment is not required to be surjective: Not all
elements of the partial order must correspond to a variable.

This definition of a satisfiability problem is a generalization of the classical defini-
tion of a Constraint Satisfaction Problem (CSP): Given a description consisting of

– a set V of n variables {v1, ..., vn},
– the possible values Di of variables vi,
– constraints (sets of relations) over subsets of variables,

Is it possible to find an assignment vi �→ Di satisfying all constraints?
In our case, the possible values Di are not fixed. We only know that the possible

values Di are part of a member in the class of partial orders P . A CSP is a satisfiability
problem with a class that consists just of one given partial order (T,≤).

Lemma 1. For a class C of partial orders and set of relations R,
a. if SATC(R) is in P, the same holds for NDPC(R), and vice versa.
b. if SATC(R) is NP-complete, NDPC(R) is NP-complete, too.

Proof. Obviously, NDPC(R) is at least as difficult as SATC(R).
For a., assume that SATC(R) is in P. A PTIME algorithm for NDPC(R) is given by:

Dependency Calculus: Reasoning in a General Point Relation Algebra 55

for c = (x1, R, x2) ∈ E: \\ choose a constraint
set possible [c]← false;
for b ∈ R: \\ choose a basic relation

set c← (x1, {b}, x2); \\ fix basic relation b
if satisfiable (new constraint system): \\ test is in PTIME, by assumption

set possible [c]← true; exit inner loop;
endfor; \\ try next basic relation
if possible [c] = false:

return NOT SATISFIABLE; \\ no feasible basic relation found
endfor; \\ take next constraint
return SATISFIABLE. \\ as all constraints are possible

For b., a scenario can be guessed, i.e. a jointly satisfiable set of basic relations. There-
fore, by assumption, a model can be guessed and verified in polynomial time.

It is easy to transform a directed acyclic graph into a partial order by taking the
transitive and reflexive closure. Let DAG be the class of partial orders obtained by such
transformations. What can we expect in terms of complexity for SATDAG(PAdc)? We
call this the ”general” case and write SAT (PAdc).

An interesting question is whether the relation � in PAdc provides additional com-
plexity in comparison with PApo. Or is the general satisfiability problem still NP-
complete (cf. [14])? Assume that we have two relation algebras given. One of these
relation algebras has been perfectly analyzed in terms of complexity questions and
tractable fragments. Can we find a mapping from one algebra to the other, preserving all
relevant properties, to transfer all results? By the following definitions, we introduce the
concept of homomorphisms and isomorphisms between relation algebras, and we will
extend this to a certain kind of reduction - a reduction which preserves the tractability.

Definition 2. For relation algebras Γ , Γ ′ a homomorphism is a function γ from Γ to
Γ ′ such that γ preserves all operations of the boolean algebra and for relations R, S:

1. γ (R−1) = γ (R)−1

2. γ (R ◦ S) = γ (R) ◦ γ (S)

A homomorphism γ : Γ → Γ ′ is called a monomorphism if γ (R) = γ (S) implies
R = S for all relations R, S and an isomorphism if γ (R) = γ (S) ⇐⇒ R = S.

Definition 3. For two relation algebras Γ, Γ ′ a tractability-preserving-homomorphism
(tph) is a homomorphism γ from Γ to Γ ′ such that each subset β ⊆ Γ is tractable iff
γ (β) ⊆ Γ ′ is tractable. An isomorphic tph is called tpi.

Of course, tph and tpi are reflexive and transitive. In the literature there can be
implicitly found a tph on PApo [4] and another one for directed intervals [13].

Definition 4. A coarsening of a relation algebra is a monomorphism on its set of rela-
tions which is not an isomorphism.

An example of a coarsening of RCC-8 is RCC-5 (cf. Fig. 3). The tph and tpi are
important for problems like the following: Given are two relation algebras Γ and Γ ′. If
we have a tph γ : Γ

γ→ Γ ′ and know that β ⊆ Γ is (in)tractable, then we know that

56 M. Ragni and A. Scivos

X Y X Y
Y

X Y
X

X
Y

X DR Y X PO Y X EQ Y X PP Y X PP−1 Y

Fig. 3. The RCC-5 Relations

the image γ(β) is (in)tractable in Γ ′. But, how do we know if a subset β′ of Γ ′ is the
image of a tractable subset β of Γ ? The advantage of a tpi compared to a tph is that
for a tpi there exists an inverse function, so that it is possible to transfer the tractable
classes in both directions. If we know a maximal tractable subclass β′ ⊆ Γ ′, the tph
does not allow to say anything about the maximal tractable subclasses of Γ . But with a
tpi, we could identify the maximal tractable subclasses of Γ .

In order to identify maximal tractable subclasses of PAdc, the tph given in [4] is
here not sufficient. Instead, we use the following tpi γ:

Lemma 2. A tpi γ from PAdc to RCC-5 (cf. Fig. 3) is given by:

γ : ≺ �→ PP = �→ EQ � �→ PP−1

� �→ PO � �→ DR

Proof. The claim that γ is a homomorphism follows from a comparision of the compo-
sition table of PAdc with RCC-5 and the observation that for the only non-symmetric
relation ≺ holds: γ(≺)−1 = (PP)−1 = PP−1 = γ(�). Therefore, it is sufficient to
prove that γ is tractability-preserving and isomorphic. The reduction is an one-to-one
identification of the basic relations in linear time. As any relation of a relation algebra
consists of a union of basic relations, we can identify each relation of PAdc with a re-
lation of RCC-5 in linear time. Therefore, the reduction is isomorphic and tractability-
preserving if it preserves satisfiability.

In order to show that for each model of PAdc there is a model in RCC-5, let a set
of constraints of PAdc with model M be given. For each element y in M , we introduce
a point Py . We define for each element x in M a set Sx = {Py | y ≺ x} so that:

Sx � Sy ⇐⇒ x ≺ y
Sx � Sy ⇐⇒ x � y
Sx = Sy ⇐⇒ x = y
Sx ∩ Sy = ∅ ⇐⇒ ¬ ∃a : a ∈ Sx ∪ Sy ⇐⇒ x � y
Sx ∪ Sy /∈ {Sx, Sy}

∧ Sx ∩ Sy �= ∅ ⇐⇒ ∃a : a ∈ Sx ∩ Sy ⇐⇒ x � y.

So, the reduction from PAdc to RCC-5 preserves the satisfiability. Finally, it has to
be shown that a model of RCC-5 is a model of PAdc. We interprete the PAdc relations
as derived from the partial order ⊆= {PP, EQ}.

X PP Y ⇐⇒ X {PP, EQ} Y ∧ ¬(X EQ Y) =⇒ X ≺ Y
X EQ Y ⇐⇒ X = Y
X PP−1 Y ⇐⇒ X {PP, EQ}−1 Y ∧ ¬(X EQ Y) =⇒ X � Y

X PO Y implies ∃Z Z ⊆ X ∧ Z ⊆ Y . From this, it follows that there is a Z with
Z ≺ X and Z ≺ Y , and this is the definition of �. Similarly, from X DRY follows
¬ ∃Z Z ⊆ X ∧ Z ⊆ Y , hence X � Y .

Dependency Calculus: Reasoning in a General Point Relation Algebra 57

The tpi is not only an isomorphism between RCC-5 and PAdc, but also a poly-
nomial reduction in both directions. For that reason, the following theorem is an easy
implication:

Theorem 1. SAT(PAdc) is NP-complete.

With Lemma 1, we get the next consequence.

Corollary 1. NDP(PAdc) is NP-complete.

The tpi provides us not only with the results about the NP-completeness of the general
satisfiability problem, but also allows to identify all maximal tractable subclasses by a
reduction to the classes presented in [12]. The results are depicted in Table 2.

Table 2. The tractable subclasses of PAdc

τ28 τ20 τ17 τ14

⊥ • • • •
{�} • •
{�} • •

{�, �} • •
{≺} • •

{�,≺} • •
{�,≺} •

{�, �,≺} • •
{�} • •

{�,�} • •
{�,�} •

{�, �,�} • •
{≺,�} •

{�,≺,�} • •
{�,≺,�} • •

{�, �,≺,�} • • •

τ28 τ20 τ17 τ14

{=} • • • •
{=,�} • • •
{=, �} • • •

{=, �,�} • • •
{=,≺} • • •

{=,≺,�} • • •
{=,≺, �} • •

{=,≺, �,�} • • •
{=,�} • • •

{=,�,�} • • •
{=,�, �} • •

{=,�, �,�} • • •
{=,≺,�} • •

{=,≺,�,�} • • •
{=,≺,�, �} • • •

� • • • •

In fact, the relations including {=} are contained in τ28, τ20, τ14 if and only if R \ {=} is
contained in τ28 (τ20,τ14). τ17 contains all relations including {=} and the empty relation ⊥.

Theorem 2. The four classes τ28, τ20, τ17, τ14 (cf. Tab. 2) are the only maximal tractable
subclasses of PAdc.

Such correspondence functions have clear advantages: Not only do we have the
answers for all questions concerning the complexity investigations, and we know that
RCC-5 and PAdc are satisfiability equivalent up to isomorphism, but we have also
found a connection between the field of reasoning on directed graphs and on topological
constraint problems. Since there are many techniques known for handling graphs, some
benefits for the RCC-5 algebra by such a translation should be possible.

58 M. Ragni and A. Scivos

4 The Associated Interval Algebra

4.1 Definition of the Interval Algebra IAdc

There are applications in which it is not sufficient to compare single points in a network.
For instance, pollution in a pipe network is not restricted to single points but extends to
whole sections, and automated planning and project management deal with tasks that
span over time intervals. This shows the need for a calculus with intervals as its basic
elements. The basic relations are the relations between intervals that are definable by
PAdc relations of its endpoints (cf. Fig. 4).

Definition 5. An interval I = [sI , eI] is a pair of points satisfying sI ≺ eI . The interval
algebra IAdc is the relation algebra generated by quadruples of relations as basic
relations

B =
{(

Rss Rse

Res Ree

)
|Rss, Rse, Res, Ree ∈ {≺, =,�,�, �}

}

closed under ∩,∪,− , ◦,−1. For I = [s, e] and I ′ = [s′, e′], being in relation I R I ′

means s Rss s′, s Rse e′, e Res s′, and e Ree e′.

In an identical way, the associated interval algebra IApo for partial order PApo can be
introduced based on the set {≺, =,�, ‖}. The concepts and results for IAdc are also
applicable to IApo as for IApo, the two relations {�,�} collapse into one relation {‖}.
Some examples for IAdc relations are given in Fig. 5. In IApo, the three relations in the
upper row collapse to the relation fa =

(‖ ‖
� �

)
and in the lower row to fa−1.

In the following, we write (R) for
(

R R
R R

)
(R ∈ PAdc) and eq for

(
= ≺
� =

)
. Further,

({R1, R2} Rse
Res Ree

)
abbreviates

(
R1 Rse

Res Ree

) ∪ (
R2 Rse

Res Ree

)
, etc.

Rse
Res Ree

��
��
��
��

�� ����

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�����������

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

ssR

s e

 s’ e’

Fig. 4. A basic IAdc relation is a combination of the basic PAdc relations Rss, Rse, Res, Ree

Fig. 5 and Fig. 6 show advantages of the new, finer interval calculus: More situations
can be distinguished and more conclusions are possible. Fig. 6 shows a situation in a
railway network. An obstruction B blocks the way from A to C. Can A reach its aim C?
The situation is formally described by: A (≺) A1, A1 (≺) C, A2 (≺) C, B (≺) C,

B
({≺, =, �} ≺
{≺, =, �} ≺

)
A1, B

({�, �} ≺
{�, �} ≺

)
A2, A1

({�, �} ≺
� =

)
A2

By specifying the latter relation, e.g. to A1
(� ≺
≺ =

)
A2 , new conclusions can be drawn, in

this case, A (≺) A2 becomes impossible. This means, if B is an obstacle on the path
from A to C via A1, then there is no alternative route via A2.

Dependency Calculus: Reasoning in a General Point Relation Algebra 59

��
��
��
��

�� �
�
�
�

��

����

�� �
�
�
�

����

����

�� �
�
�
�

����

�����
�
�
�

s’

e’
s e

s’

e’
s e

�� ����
��
��
��

��
��
��
��

�� ����
��
��
��

��
��
��
��

�
�
�
�

s

e

s’ e’

s

e

s’ e’

��
��
��
��

�� ���
�
�
�

��
��
��
��

pp

fa fa fa−1 −1−1
s’

e’
s e

pp

fa fa fas

e

s’ e’

es’ss’

ss’ se’

Fig. 5. Six examples for IAdc relations. Refinements of the “finally after” relation and its inverse.

2A

A1

A C
B

A2

A1

A C
BA1

A2

A

C
B

Fig. 6. Reasoning with uncertainty. The dashed line indicates that it is unknown if there is a
path from A to A2. In contrast to IApo, IAdc concludes such knowledge: Depending on the
IAdc relation between A1 and A2, the interval B can or cannot be bypassed using direction A2.

Remark 1. IAdc is a finite relation algebra consisting of 45 basic relations.

For each ‖ occurring as a point relation in an IApo relation, specifiying it to either �
or �, leads to different IAdc relations. Omitting impossible cases like

(� �
∗ ∗

)
,

(� ∗
� ∗

)
,

(� ∗
∗ �

)
,

(∗ �
∗ �

)
,

(∗ ∗
� �

)
leaves 45 possible cases, where ∗ can be any basic relation.

For IAdc, the set U of unions of basic relations with ∪,∩, and − forms a boolean
algebra. For basic relations, the operators ◦ and −1 lead to the following relations of U :

(
Rss Rse

Res Ree

)−1

=
(

Rss
−1 Res

−1

Rse
−1 Ree

−1

)
(3)

R ◦ R′ =
(

Rss ◦ R′
ss ∧ Rse ◦ R′

es Rss ◦ R′
se ∧ Rse ◦ R′

ee

Res ◦ R′
ss ∧ Ree ◦ R′

es Res ◦ R′
se ∧ Ree ◦ R′

ee

)
(4)

Because of equations (1) and (2), U contains the result of operations ◦,−1 on arbitrary
relations. Fig. 7 gives examples for such compositions.

AA A A

C B C B C B C B

Fig. 7. In contrast to IApo, IAdc discerns these specifications of A({�,�})B ◦ B(�)C

60 M. Ragni and A. Scivos

4.2 The Complexity of the Interval Algebra IAdc

For a given set of IAdc constraints, how hard is it to decide the satisfiability?

Theorem 3. The satisfiability problem of IAdc is NP-hard.

Proof. (Sketch) We give a tpi from PAdc to a subset of IAdc. We set γ(=) = eq and
γ(R) =

(
R R
R R

)
for all other basic relations, and extend it by γ(R∪R′) = γ(R)∪γ(R′).

By applying the rules (3) and (4) above, it is possible to show that ◦,−1 are preserved.
For any solution of the interval case, a solution of the point case is found by picking
an arbitrary point from the interval. Vice versa, for every solution of the point algebra,
a solution of the interval case can be constructed by ”inflating” the points, i.e. for each
point x, we introduce an interval x̄ = [x−, x+]. As satisfiability is preserved and the
translation can be done in linear time, the reduction is tractability-preserving.

Thus, for specific subclasses of IAdc we know if they are tractable, namely for the ones
containing only unions of relations of the type (R) or eq. But, are there larger tractable
subclasses? We define special subclasses of unions of basic relations: pointizable rela-
tions P and gadgetable relations G. The class of pointizable relations has been for the
first time introduced for IAlin, and shown to be a tractable subclass [10]. However, we
will show that the general class is not tractable for IAdc and neither for IApo.

Definition 6. For a subset S ⊆ PAdc, a relation R is called S-pointizable if it belongs
to the class

PS =
{

(
Rss Rse
Res Ree

)|Res, Rse, Res, Ree ∈ S
}

PS consists of those IAdc relations that can exactly be expressed by a set S of PAdc re-
lations between its endpoints. What if we generalize this concepts to IAdc relations that
can exactly be expressed by a set of PAdc relations between a larger set of points? A
superset of the endpoints with such relations is called a gadget.

Definition 7. A gadget (Vm, Em) for an IAdc relation R is a set of point variables
Vm = {p1, . . . , pm} (m ≥ 4) with PAdc relations between them so that:

1. In each satisfying assignment of (Vm, Em), [p1, p2]R[p3, p4] is satisfied.
2. For each assignment of p1, . . . , p4 holds: It can be extended to p1, . . . , pm in a way

satisfying all relations of (Vm, Em) iff [p1, p2]R[p3, p4] is satisfied.

For S ⊆ PAdc, an IAdc relation R is called S-gadgetable (R ∈ GS) if all the PAdc re-
lations of a gadget for R are relations of S. We write G for GPAdc

and P for PPAdc
.

Example. With I = [p1, p2] and I ′ = [p3, p4], the points p1, .., p6 with the relations
indicated in Figure 8 form a gadget for the IAdc relation I

(� ≺
� {≺, �}

)
I ′.

Consider the first property: p1 � p3 is directly a relation of the gadget. The point
p5 with its relations enforces that p1 ≺ p4, p2 � p3, and p2 �� p4. As p6 with its
relations enforces that p2 �= p4, p2 �� p4, only p2{≺, �}p4 remains satisfiable. The
second property holds since any model of I

(� ≺
� {≺, �}

)
I ′ can be extended to include

p5, p6 in a way satisfying all these PAdc relations.

Dependency Calculus: Reasoning in a General Point Relation Algebra 61

p2p1

p4p3
�
�
�
�

��
��
��
����������

p5
p6

�� ��
��
��
��

Fig. 8. A gadget with 6 points (with PAdc relations as indicated at the dotted edges)

A
C
B

A
C
B

C

C

B

A

B

A A’

B’

Fig. 9. The left part shows the two only cases satisfying the gadget for A (≺) ∪ (�)B, and the
right part shows the two possibilities (A, B) and (A′, B′) satisfying the gadget for (�) ∪ (�)

All basic IAdc relations and relations (R) are pointizable, and pointizability is
closed under ∩ and −1, but not under ∪. For instance, the relation (≺) ∪ (�) 1 is not
pointizable. But all relations are subsets of a pointizable relation because

⎛

⎝Rss Rse

Res Ree

⎞

⎠ ∪
(

R′
ss R′

se

R′
es R′

ee

)
⊆

(
Rss ∪ R′

ss Rse ∪ R′
se

Res ∪ R′
es Ree ∪ R′

ee

)
.

Theorem 4. G,P are intractable subclasses of IAdc.

Proof. By definition, PS ⊆ GS . Consider the set R := {({�, �}), ({≺,�}), (� ≺
� =

)}.
We show that R � P is intractable. Due to Table 2, {{�, �}, {≺,�}} is not contained
in a tractable subclass of PAdc. Applying γ from Theorem 3 shows that the satisfiability
problem over I := {(�)∪(�), (≺)∪(�)} � IAdc is intractable. A satisfiability prob-
lem over I can be reduced to R because A(≺)∪ (�)B is satisfiable iff the correspond-
ing gadget A({≺,�})B, A({≺,�})C, B({�, �})C is satisfiable, and A(�) ∪ (�)B
is satisfiable iff A({�, �})B, A(≺) ∪ (�)CA, B(≺) ∪ (�)CB , CA

(� ≺
� =

)
CB is sat-

isfiable (cf. Fig. 9). Hence, intractability is inherited from I via R to P and G.

Not all gadgetable relations are pointizable. For instance, (≺) ∪ (�) is gadgetable, but
not pointizable: Hence B � P � G � IAdc.

If S is tractable in PAdc , PS is tractable in IAdc. How about the larger class GS?

Theorem 5. If R is a class of S-gadgetable IAdc relations and the satisfiability prob-
lem over S is tractable, then the satisfiability problem over R is tractable.

Proof. For a given set of constraints for n intervals, we need to find a polynomial algo-
rithm that decides if it is satisfiable. The idea is to translate the S-gadgetable IAdc con-
straints into corresponding PAdc constraints over S. Since S is a tractable subclass of
PAdc, there is a polynomial procedure to decide consistency. We have to show that only
a polynomial number of PAdc relations is needed, and that the translation is possible in
polynomial time. For each of the finitely many interval relations, a gadget is fixed. The

1 This relation may describe that two projects need to be done by the same person in any order.

62 M. Ragni and A. Scivos

largest one defines an upper bound M for the used gadget’s size (number of points in
it). Hence, replacing the S-gadgetable IAdc constraints by the associated S constraints
can be done in O((M ·n2)2) = O(n4).

Corollary 2. B,Gτ28 ,Gτ20 ,Gτ17 ,Gτ14 are tractable subclasses of IAdc.

B is tractable since B ⊆ G{{≺},{=},{�},{�},{�}} ⊆ Gτ28 .

From this, the NP-completeness of IAdc can be concluded. The NP-hardness fol-
lows directly from Theorem 3. The membership in NP follows from the tractability of
constraints of basic relations. For an arbitrary set of constraints of IAdc, we guess a
scenario (i.e. all constraints are basic relations), and because of Corollary 2, we can test
if it is satisfiable. With Lemma 1, we get the complexity class of the IAdc problems.

Corollary 3. SAT(IAdc) and NDP(IAdc) are NP-complete.

5 Outlook and Summary

Starting from the question how a relation algebra useful for reasoning about dependen-
cies in general networks should be designed, we have identified a calculus that qualifies
points in such a network. This calculus consists of five basic relations.

Traditional reasoning for points in networks uses only four relations: before, equal,
after, and unrelated. This language has been used so far for modelling networks usually
thought of as models for relational systems in space, time or space-time. We showed
that an algebra for reasoning about dependencies needs a new ’fork’ relation. This re-
lation, which states that two points have a common ancestor, proved useful in various
application areas from ecological systems, over transportation networks, to planning
and medical diagnosis. Also dependencies in a Bayesian network can be expressed.

In a formal analysis of this calculus, we proved that the complexity of the general
satisfiability problem is NP-complete as well as the satisfiability problem of the corre-
sponding interval algebra IAdc. This means, in general, the problem of finding out if
there is a network satisfying certain conditions, is rather difficult. But in many cases,
there is a polynomial algorithm. We have identified all tractable subclasses of PAdc,
via a tractability preserving isomorphism into the RCC-5 calculus. Classes of the new
type of S-gadgetable relations were identified as tractable subclasses of IAdc. We have
shown how these results for IAdc can also be applied to the proper subclass IApo.

This work opens the field in many directions: By the tph and tpi techniques pre-
sented here, the satisfiability equivalence of different relation algebras can be shown,
and the expressibility and complexity of these algebras can be transfered and com-
pared. Further investigations should reveal that the class of S-gadgetables are maximal
tractable subclasses for IApo and IAdc. Variations of the presented calculi are possi-
ble. Making the similar distinction for common consequences like for common causes
could easily be expressed by our calculus with a direction-reversed interpretation. The
combination of both provides a framework to satisfy the suggested extension of the lin-
ear directed intervals on networks [13]. Another promising idea is the temporalization
of the dependency calculus for modeling dependencies that vary over time.

Dependency Calculus: Reasoning in a General Point Relation Algebra 63

Acknowledgments

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) as
part of the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition.
We like to thank Bernhard Nebel for various helpful discussions.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM, 26(11): 832–843,
1983.

2. F. Anger, P. Ladkin, and R. Rodriguez. Atomic temporal interval relations in branching time:
Calculation and application. In Actes 9th SPIE Conference on Applications of AI, Orlando,
FL, USA, 1991.

3. M. Broxvall and P. Jonsson. Towards a complete classification of tractability in point algebras
for nonlinear time. In Proc. of CP-99: 129–143, 1999.

4. M. Broxvall, P. Jonsson, and J. Renz. Refinements and Independence: A Simple Method for
Identifying Tractable Disjunctive Constraints. In CP: 114–127, 2000.

5. A.G. Cohn. Qualitative spatial representation and reasoning techniques. In KI-97: Advances
in AI, Brewka, G. and Habel, C. and Nebel, B (eds), LNAI, 1–30, 1997.

6. T. Drakengren and P. Jonsson. A complete classification of tractability in Allen’s algebra
relative to subsets of basic relations. Artificial Intelligence, 106(2): 205–219, 1998.

7. C. Freksa. Using Orientation Information for Qualitative Spatial Reasoning. In Theories and
Methods of Spatial-Temporal in Geographic Space. Reasoning. Frank, A. U. and Campari, I.
and Formentini, U. (eds.), 162–178, 1992.

8. P. B. Ladkin and R. D. Maddux. On binary constraint problems. J. ACM, 1994.
9. U. Montanari. Networks of constraints: Fundamental properties and applications to picture

processing. Inform. Sci., 7:95-132,1974.
10. B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal tractable sub-

class of Allen’s interval algebra.J.ACM, 42(1):43–66, 1995.
11. Randell, D. and Cui, Z. and Cohn, A. A Spatial Logic Based on Regions and Connection.

Proceedings KR-92, 165–176, 1992.
12. J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal tractable

fragment of the Region Connection Calculus. AIJ, 108(1-2):69–123, 1999.
13. J. Renz. A Spatial Odyssey of the Interval Algebra: 1. Directed Intervals. In Proc. of IJ-

CAI’01, 2001.
14. M. B. Vilain, H. A. Kautz, and P. G. van Beek. Contraint propagation algorithms for temporal

reasoning: A revised report. Reasoning about Physical Systems: 373–381, 1989.

	Introduction
	Application Areas
	The Dependency Calculus and Partial Orders
	Formal Definition of \PA_dc
	Computational Complexity

	The Associated Interval Algebra
	Definition of the Interval Algebra \IA_dc
	The Complexity of the Interval Algebra \IA_dc

	Outlook and Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

