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Abstract

The formal analysis of semantic networks and frame systems led to

the development of nonmonotonic inheritance networks and termi-

nological logics. While nonmonotonic inheritance networks formalize

the notion of default inheritance of typical properties, terminological

logics formalize the notion of de�ning concepts and reasoning about

de�nitions. Although it seems to be desirable to (re-)unify the two
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approaches, such an attempt has not been made until now. In this

paper, we will make a �rst step into this direction by specifying a

nonmonotonic extension of a simple terminological logic.

1 Introduction

The formal analysis of early semantic network and frame formalisms led to

the development of two di�erent families of knowledge representation for-

malisms, namely, nonmonotonic inheritance networks [5] and terminological

logics [12]. Nonmonotonic inheritance networks formalize the idea of default

inheritance of typical properties. Terminological logics aim at formalizing the

idea of de�ning concepts and reasoning with such de�nitions, for instance,

determining subsumption relationships between concepts and instance re-

lationships between objects and concepts|two kinds of inferences we will

collectively refer to as classi�cation.

Although these two forms of representation and reasoning may seem to be

incompatible [2], it would of course be desirable to combine them. From the

point of view of nonmonotonic inheritance networks, it would be interesting

to have a richer description language for specifying classes and properties and

to add the ability of classifying objects as belonging to some class. From the

point of view of terminological logics, it is desirable to add forms of reasoning

that deal with uncertain information. In fact, Doyle and Patil [3] argue that

a representation system without such a facility is useless.

There are proposals to integrate some form of default inheritance in ter-

minological logics since 1981 (see [14, 12]) and some terminological represen-

tation systems support forms of nonmonotonic inheritance, which appear to

combine the two modes of reasoning in a \naive" way (e.g. [12]), however,

leading to problems similar to the infamous \shortest path inference," as we

will see in Section 3.

An attempt to combine classi�catory reasoning and nonmonotonic inheri-

tance that avoids the latter problem has been made by Horty and Thomason

[4]. Although this approach comes closest to our intention of combining

nonmonotonic inheritance and classi�cation, there are some problems, for

instance, the \zombie path" problem [7], the lack of an algorithm, and the

computational intractability of the approach.

More recent approaches combine classi�catory and nonmonotonic reason-
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ing by integrating default logic into terminological logics [1]|without using

speci�city for conict resolution, though|or they employ a form of prefer-

ence semantics [13].

We will base our combination of inheritance reasoning and classi�cation

on the nonmonotonic inheritance reasoning approach by Padgham [10], which

avoids the above mentioned shortcomings. In the following sections we intro-

duce a restricted terminological logic extended by defaults, and discuss how

the inheritance theory in [10] can be extended to include classi�cation.

2 A Common Representational Base

In order to describe our approach, we �rst introduce a representation

formalism that can be conceived as a restricted terminological logic.

We start with a set A of atomic concepts (denoted by A;A

0

; : : :) and a set

F of features (denoted by F;F

0

; : : :) that are intended to denote single-valued

roles. Additionally, we assume a set V of values (denoted by v; v

0

) that are

intended to denote atomic values from some domain. Based on this, complex

concept expressions (denoted by C;C

0

) can be built:

C ! > j ? jA j C u C

0

j F : v:

In order to de�ne new concepts completely or partially, terminological axioms

(denoted by �) are used. Assertions (denoted by �) are employed to specify

properties of objects (x; y; z; : : : 2 O):

� ! A v C jA

:

= C; � ! x:C j F (x)

:

= v:

Knowledge bases are sets of such terminological axioms and assertions.

The semantics of this language is given in the usual set-theoretic way. An

interpretation I is a tuple hD;V; �

I

i, where D and V are arbitrary non-empty

sets that are disjoint, and �

I

is a function such that

�

I:

(A! 2

D

) [ (F! 2

(D�V)

) [ (V ! V) [ (O! D)

where we assume that the relation denoted by a feature is a partial function

and that values and object identi�ers satisfy the unique name assumption.

Interpretations are extended to complex concept expressions in the usual

way, e.g., (C u C

0

)

I

= C

I

\ C

0I

and (F : v)

I

= fd 2 Dj (d; v

I

) 2 F

I

g.
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An interpretation is called a model of a knowledge base, if all terminolog-

ical axioms and assertions are satis�ed by the interpretation in the obvious

way, e.g., A

I

= C

I

for � = (A

:

= C). The specialization relationship between

concepts (also called subsumption) and the instance relationship between ob-

ject identi�ers and concepts are de�ned in the obvious way. A concept C

is subsumed by C

0

, written C � C

0

i� C

I

� C

0I

for all models I of the

knowledge base. An object x is an instance of a concept C, written x:C, i�

for all models I it holds that x

I

2 C

I

.

In order to express that an instance of a concept C typically has some

additional properties, the syntax of terminological axioms is extended as

follows:

�! A v C=D

1

; : : : ;D

n

j A

:

= C=D

1

; : : : ;D

n

;

where the D

i

's are again concept expressions. These \default properties" do

not inuence the set-theoretic interpretation of concepts, but are intended

to denote that an instance of A typically has the additional properties D

i

.

In terms of Padgham's [10] type model, given an axiom A v C=D

1

; : : : ;D

n

,

C represents the core of a type, while C uD

1

u : : : uD

n

is the default of a

type.

Using our simple representation formalism, we could classify concepts in

the TBox, compute instance relationships between objects and concepts, and

separately apply default inheritance in order to derive typical information

about objects. In fact, this loose combination of classi�cation and default

inheritance was used pro�tably in a medical diagnosis application [15].

The network language we will use contains strict inheritance links \)",

strict negative links 6,", and default inheritance links \!". In addition

to the usual kind of nodes, depicted by a letter, we also allow for de�ned

nodes, depicted by an encircled letter. The latter nodes are assumed to be

de�ned by the conjunction of all nodes that are reachable by a single strict

positive link. As an example let us consider the following small knowledge

base (inspired by [2]):

Elephant v Mammal=legs: 4; color: grey

Hepatitis-Elephant

:

= Elephantu infected-by: Hepatitis=color: yellow

Yellow-Elephant

:

= Elephantu color: yellow

x: Elephant

infected-by(x)

:

= Hepatitis
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Using the abbreviations M , E, H, and Y for Mammal, Elephant,

Hepatitis-Elephant, and Yellow-Elephant, respectively, and g, h, l, y

for color: grey, infected-by: Hepatitis, legs: 4, and color: yellow, re-

spectively, the network diagram corresponding to our small knowledge base

would look like as in Figure 1.

Y

x

H

E h

y

l

g
M

Figure 1: Shortest Path Problems

x

E

a b
A

B

d

e

C

c

Figure 2: Example Network

3 Some Problems Combining Defaults with

Classi�cation

Using concept speci�city for resolving conicts among contradicting typ-

ical properties seems to be natural and desirable. Indeed, most proposals or

already implemented systems seem to prefer this kind of conict resolution.

MacGregor, for instance, integrated a facility for \speci�city-based defaults"

[6, p. 393] into LOOM. The proposal by Pfahringer [12] is also an e�ort in

this direction, employing a form of skeptical inheritance as de�ned in the

area of nonmonotonic inheritance reasoning. From the limited descriptions

of such approaches in the literature they appear to combine the two modes

of reasoning in what we will call a \naive" way, which can be described as

follows. Given an object x and a description D

0

of x, we �rst determine the

set of most specialized concepts S such that x is an instance of all of the

concepts in S. Based on this we determine additional typical properties of

x using some inheritance strategy, which gives us a new (more specialized)

description D

1

, and we start the cycle again. We stop when a �xpoint is

reached, i.e., D

i

is equivalent to D

i�1

.

The main problem with the \naive" approach is that it leads to results
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resembling the infamous shortest path inference. This can be illustrated by

considering �gure 2. If we begin by classifying x we get B. Default reasoning

then gives b; c; d::a and a further round of classi�cation gives C. we would

now want by default to believe a, but this is blocked because we believe

b and :a. However we observe that the default belief in a comes from a

more speci�c type (C), than the default belief in b (which comes from E).

We would therefore prefer to believe a than b. However we have previously

commited to b because we reached it �rst.

4 A Default Inheritance Reasoning

Framework

In this section we develop a formal framework for default inheritance

reasoning. We will then generalize this in the following section so that it

becomes a framework for combined classi�cation and default reasoning. The

framework that we develop is based on that presented in [10, 11]. The theory

is very close to the skeptical inheritance theory of Horty et al [5] in terms

of the conclusions reached

1

, but instead of working with constructible, pre-

empted and conicted paths, we work with notions of default assumptions,

conicting assumptions and modi�cation of assumptions in order to resolve

conicts.

Given some initial information and an inheritance net, we �rst assemble

all the default assumptions that may be possible, given this start point. We

then �nd all the pairwise conicting assumptions, and resolve the conicts|

starting with most speci�c nodes|by modifying one or both of the assump-

tions. Finally we add all our modi�ed (and now consistent) assumptions

together to obtain our set of conclusions.

Our formalization is based on an inheritance network, �, which is deriv-

able directly from terminological axioms and assertions as de�ned in Sec-

tion 2, and labellings which are mappings from the nodes in the network

(the set N

�

) to values in the set f0; 1;�1; kg. The intuitive interpretation of

such a labelling L is an information state concerning a hypothetical object

where L(X) = 1 means that the object is an instance of the concept X,

L(X) = �1 means that the object is not an instance, L(X) = 0 means there

1

It does not however have the \zombie path" behavior criticized by Makinson and

Schlechta [7].
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is no information concerning the instance relationship and L(X) = k means

there is contradictory information. The set f0; 1;�1; kg forms a lattice w.r.t.

information content such that 0 � 1 � k, and 0 � �1 � k. Similarly, the

set of all labellings forms a lattice based on this ordering. In particular the

join of two labellings, written L

1

tL

2

, corresponds to the combination of the

information content. The special labelling 0 is the labelling with all labels

0.

A labelling L is said to be consistent if it does not contain any node

with a value of k. A pair of labellings is said to be compatible if their join

is consistent, and weakly compatible if their join does not introduce any new

inconsistency not present in one of the individual labellings.

De�nition 1 There is a strict positive path from X to Y in �, written

X ) � ) Y, i� existsW,Z: (X=W _ [X ) � ) W] 2 �) ^ [Z 6, W] 2 �

^ (Y=Z _ [Y ) � ) W] 2 �)

De�nition 2 There is a strict negative path from X to Y in �, written

X 6) �( Y, i� [X 6, Y] 2 � _ (9W: [X 6, W] 2 � ^ [Y ) � ) W] 2 �).

We de�ne two particular kinds of labellings|core labellings (written X

c

)

and default labellings (written X

d

) for a node X. A core labelling represents

the necessary information for a node, while a default labelling for a node X

represents the information typically associated with X.

De�nition 3 A core labelling for X (w.r.t. �), written X

c

, is the minimal

labelling which ful�lls the following:

X

c

(X) � 1; and for all Y

([X ) � ) Y] 2 �) ! (X

c

(Y) � 1) ^ ([X 6) � ( Y] 2 �) ! (X

c

(Y)

� �1)

De�nition 4 A default labelling for X (w.r.t. �), written X

d

, is the

minimal

2

labelling which ful�lls the following:

X

d

� X

c

; and for all Y ([X ! Y] 2 �) ! (X

d

� Y

c

)

Referring back to Figure 1, the core labelling for Hepatitis-Elephant

would have values of fH = 1, h = 1, E = 1, M = 1 all else = 0g. Its default

2

The ordering over labellings is the obvious one, given the ordering over node values.
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labelling would contain fH = 1, h = 1, E = 1, M = 1, y = 1, g = -1, all

else = 0g.

Referring again to Figure 1, we may wish to block that part of E

d

(de-

fault elephant assumption) which concludes g (grey), but allow a modi�ed

assumption which concludes l (four legs). On the basis of default labellings

we introduce the notion of modi�ed assumption (written X

d

0

).

We de�ne a correct modi�ed assumption which intuitively allows removal

only of entire branches from the full default assumption. Correctness ensures

both consistency w.r.t. the network and also that (potentially) dependent

properties are treated together.

Figure 3 gives some examples of correct and incorrect modi�ed assumptions.

3
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1
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1

0

0
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1

1

0

1

1

1

A

B
D

E

C

F

H

G

1

1

1
1

0

1

-1

0

A

B
D

E

C

F

H

G

1

0

0
1

1

0

0

0

1
1

1

1

1

-1

-1

1

full default some correct modified assumptions

some incorrect modified assumptions

Figure 3: Correct and Incorrect Assumption Modi�cations

De�nition 5 A modi�ed assumption, X

d

0

, is correct i� the following con-

ditions hold for all Y in �:

1. ([X ! Y] 2 �) ! ((X

d

0

(Y) = 1) ! X

d

0

� Y

c

3

The concept of correctness is further motivated and explained in [10, p. 188{189],

where it is dealt with as two separate concepts - groundedness and consistency.
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2. X

d

0
(Y) = 1 ! (9Z: [X ! Z] 2 � ^ Z

c

(Y) = 1) X

c

(Y) = 1

3. X

d

0

(Y) = �1 ! (9Z: [X ! Z] 2 � ^ X

d

0

(Z) = 1 ^ Z

c

(Y) = �1) _

X

c

(Y) = �1.

4. X

d

0
� X

c

.

When an assumption is modi�ed it is always modi�ed with respect to

some other information with which it is in conict. We thus introduce the

notion of a modi�ed assumption as a pair of labellings consisting of the

default assumption labelling for the node and a preference labelling for the

node (written P ). The preference labelling captures all of the information

which is to be preferred over the default assumption at that type. While

it can in principal be an arbitrary labelling the preference labelling will for

all interesting theories depend on both the type network and the initially

given information. There is no constraint on the preference labelling to be

consistent.

The value of the preference labelling for a node determines the modi�ed

assumption for that node. If the preference labelling for a node X is not

weakly compatible with X

c

(indicating preferred disbelief in the concept),

then the modi�ed assumption will be empty. Otherwise the modi�ed as-

sumption is a labelling between the core and the default, w.r.t. information

content.

De�nition 6 A modi�ed assumption X

d

0

= (X

d

; P ) is 0 i� X

c

is not

weakly-compatible with P ; otherwise X

d

0

is the maximal labelling that is

weakly-compatible with P , is a correct modi�cation ofX

d

and X

c

� X

d

0

� X

d

.

By joining a set of modi�ed assumption labellings for a given network

we can obtain a conclusion labelling for that network. We want to ensure

that the preference labellings modify the default assumptions su�ciently to

remove all conicts so that we can obtain a consistent conclusion labelling.

Preference labellings will be determined by the structure of the taxonomy

together with the initial information, using principles such as speci�city.

Each node in the network has its own preference labelling. We call this

collection of preference labellings a preference map, written �. For a given

network �, and a given initial labelling  , the preference map provides a

preference labelling �

X

for each node X inN

�

. Di�erent inheritance theories
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can be compared with respect to the characteristics of their preference map.

We will �rst characterize what we call a well-formed preference map, which

can then be used as a base for de�ning a preference map for di�erent kinds

of theories, e.g. skeptical and credulous preference maps.

The characteristics that we capture in the de�nition of a well-formed

preference map are that initial information is always preferred over default

assumptions, more speci�c information is always preferred over less speci�c,

unless the more speci�c information is unsupported, and that only supported

(or reachable) modi�ed assumptions are non-empty.

De�nition 7 A preference map � is well-formed for a network � and an

initial labelling  , i� the following conditions are satis�ed:

1. �

X

(X) < k, for all X 2 N

�

,

2. �

X

�  , for all X 2 N

�

,

3. there exists a strict partial ordering � such that for all X 2 N

�

: if

�

X

(X) � 1, then  (X) = 1 or there is a Y 2 N

�

s.t. Y � X and

Y

d

0

(X) = 1,

4. if X is more speci�c

4

than Y , then X

d

0

� �

Y

.

�

0

denotes the minimal well-formed preference map.

5

To characterize a skeptical preference map we require in addition to well-

formedness that each pair of modi�ed assumptions are either compatible un-

der well-formed preference, or that the preference labelling for each includes

the other (forcing modi�cation of each w.r.t. the other).

De�nition 8 A preference map � is skeptical for a network � and an

initial labelling  , i� it is well-formed and for all X;Y 2 N

�

: (X

d

;�

0

X

) t

(Y

d

;�

0

Y

) is consistent or (�

X

� Y

d

and �

Y

� X

d

).

4

For an exact de�nition of the notion of speci�city used see [10, p. 142].

5

Proof of the existence of a unique minimal well-formed preference map is due to Ralph

R�onnquist, and can be found in [10] (where it is called a revision function).
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5 Integrating Classi�cation into the

Framework

As we saw in section 3 we should not simply interleave correct classi�ca-

tion and correct default reasoning as this will lead to a certain arbitrariness

in the results, and will give problems analogous to \shortest path" problems

found in early approaches to default inheritance reasoning. We therefore

take the approach of de�ning a single theory which includes both classi�ca-

tory reasoning and default reasoning.

Condition 1 of Def. 7 for a well-formed preference map simply states that

a preference labelling should not be inconsistent regarding the preference

of the node for which it is a preference labelling. This is not a�ected by

classi�cation.

Condition 2 of Def. 7 captures that initial information should be preferred

over all default assumptions. This is also a criteria which is clearly applicable

to combined classi�catory/default reasoning.

Condition 4 of Def. 7 says that we prefer assumptions associated with

more speci�c, rather than less speci�c assumptions and also seems appropri-

ate to retain unchanged.

The �nal condition of well-formedness, (condition 3) has to do with en-

suring that a default assumption is empty unless we independently from

it (and its results) believe in the base concept. Looking at Figure 4, and

starting with information F , we clearly would not want to make any default

assumptions regarding, for example, C or X.

In the default inheritance reasoning the support in the ordering of con-

dition 3 of well-formedness, is shown by a labelling of 1 on a node in some

\earlier" modi�ed assumption. However if we include classi�cation as a valid

means of reaching a conclusion then support may come from not only single

assumption(s) but from a set of assumptions, which, taken together provide

the \evidence" for believing that type. In order to capture this formally, we

de�ne the notion of support.

De�nition 9 A set of labellings � supports a node X i� for some labelling

L 2 �: L(X) = 1 or for all Z 2 N

�

: ((X

c

(Z) = 1 implies � supports Z) and

(X

c

(Z) = �1 implies that for all L 2 �: L(Z) � �1)).

Note that the support required for default reasoning is simply a special

case of this de�nition of support. We can now rewrite the third condition of
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well-formedness as follows:

3. there is a strict partial ordering � on the nodes in N

�

such that 8X 2

N

�

: if �

X

(X) � 1, then f g supports X or there exists � s.t. �

supports X and for all L 2 � there exists a node Y 2 N

�

s.t. L = Y

d

0

and Y � X.

The additional criterion for a skeptical preference map ensures that any

ambiguous conicts which remain following application of speci�city for con-

ict resolution will result in bilateral modi�cation of the conicting assump-

tions. This appears to be equally applicable to combined classi�cation/default

reasoning as it is to pure default inheritance reasoning. To illustrate the

principle captured here we observe Figure 5. In the left-hand network, the

default assumptions at E and B are both modi�ed to avoid concluding G;:F

or F;:G respectively.

G

D E

F

Thing
X

YZA

B
C

Figure 4: Support

A

D

F

E

G

J H

C B

x

E

C

D

B

A

GF

x

Figure 5: Ambiguous Conicts

In the right hand network, the default assumptions at C and B are modi-

�ed leading to no conclusion regarding D, and consequently no classi�cation

of F . However, because fB;Cg is an ambiguous conict, the classi�cation

F would be made in some credulous extension, and we therefore allow it to

cause modi�cation to the assumption at E regarding H. Thus the conclusion

for this �gure will be A;B;C;G;E. We note that this is di�erent than the

extension given by Horty's method which will also include H and :J . H and

:J are not in the intersection of credulous extensions, and thus we would

argue that they should not be in the skeptical extension. This di�erence is

a result of the di�erent treatment of ambiguous conict in the two methods,

where our approach is what has been referred to as \ambiguity propagating"

in order to avoid the oddities of \zombie paths" [7].
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6 Discussion

We have shown how a minor change to a theory for default inheritance gives a

theory of combined classi�cation and default inheritance for a very restricted

terminological logic. Whilst this language may be too restricted for real

applications it allows us to obtain a clearer understanding of the complex in-

teraction between default inheritance and classi�cation. This provides a �rm

basis on which we can begin to experiment with the addition of some greater

expressivity. It may well be necessary to limit the expressivity of termino-

logical languages with defaults, not so much because of tractability problems

as most terminological languages are already intractable [8], but because of

problems with \conceptual complexity". However there are certainly some

applications which require defaults but whose other requirements on expres-

sivity are limited [15]. The approach described in this paper provides a start

for investigating languages and associated reasoning mechanisms for such

applications.

The theory developed here is based on a skeptical inheritance theory

with a ploynomial algorithm. Considering the minor nature of the change

required to incorporate classi�cation into this theory, the algorithm should

also be directly modi�able to include classi�cation.
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