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Abstract

In the previous two decades, a number of qualitative constraint calculi
have been developed, which are used to represent and reason about spatial
configurations. A common property of almost all of these calculi is that rea-
soning in them can be understood as solving a binary constraint satisfaction
problem over infinite domains. The main algorithmic method that is used
is constraint propagation in the form of the path-consistency method. This
approach can be applied to a wide range of different aspects of spatial rea-
soning. We describe how to make use of this representation and reasoning
technique and point out the possible problems one might encounter.

1 Qualitative Spatial Representation and Reasoning

Representing spatial information and reasoning about this information is an im-
portant subproblem in many applications, such as geographical information sys-
tems (GIS), natural language understanding, robot navigation, and document in-
terpretation. Often this information is only available qualitatively, for instance
when a GIS query or integrity condition has to be specified (Sharma et al., 1994).
Similarly, in document interpretation, the precise size and location of layout ob-
jects is not of interest, but the relative position of these objects matters (Wali-
schewski, 1999).

A number of approaches to representing qualitative spatial information and
reasoning about it are possible. A very early attempt at qualitative spatial rep-
resentation and reasoning is Kuipers’ (1978) TOUR model, which addresses the
navigation problem using qualitative descriptions. Other approaches aim, for in-
stance, to capture spatial notions using first-order logic (Randell and Cohn, 1989;
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Eschenbach and Kulik, 1997), or even address representation and reasoning over
spatio-temporal configurations (Muller, 1998).

All the mentioned approaches rely on quite expressive languages to talk about
space. In contrast to them, there are approaches based on constraint satisfaction,
which have a very limited expressiveness and usually reasonably good computa-
tional properties. The characteristic of these methods is that one has a system of
(usually binary) relations, which is used to relate the objects of interest. For exam-
ple, one can specify the relative position of layout objects using the relationsleft
andright as well asaboveandbelow. Using this vocabulary, we can, for instance,
state that an objectA is left & aboveof an objectB, which in turn isright & above
of an objectC. Having given these descriptions, it is obvious that the additional
statementA belowC is incompatible with what has been stated above.

Meanwhile there exist a large number of reasoning systems of this type. The
first calculus in this family is Allen’s (1983)interval calculus, which has orig-
inally been used for reasoning about qualitative temporal information. How-
ever, this one-dimensional calculus can also be interpreted spatially (Knauff et al.,
1995). Furthermore, it can be generalized to two and more dimensions by project-
ing the objects of interest onto the axis of the coordinate system and describe the
relationship between objects by the relationships between the projections (Gues-
gen, 1989; Balbiani et al., 1998). For example, the qualitative description of the
relative position of layout objects sketched above can be done using the 2D ver-
sion of Allen’s interval calculus.

Other qualitative spatial reasoning systems are, for example, a calculus for
reasoning abouttopological relations(Egenhofer, 1991; Randell et al., 1992b)
often calledRCC8, a calculus for reasoning aboutcardinal directions(Frank,
1991; Ligozat, 1998), and a calculus for reasoning aboutorientations(Freksa,
1992; Freksa and Zimmermann, 1992; Zimmermann and Freksa, 1993). Some
more recent approaches are thedipole calculus(Moratz et al., 2000) and a calculus
for describing2D orientations using cyclic orderings(Isli and Cohn, 2000). All
of the mentioned approaches share the property that reasoning in these calculi can
be done by constraint propagation over systems of binary (or sometimes ternary)
relations with infinite domains.
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2 Qualitative Reasoning Using Constraint Propaga-
tion

In order to describe the reasoning technique that is used in most of the qualitative
spatial calculi, we will consider a particular simple calculus, the so-calledpoint
calculus. In this calculus, we can describe the relative positions of two points on
the real axis. Obviously, there are three possibilities how two points can be related,
namely,a < b, a = b, anda > b. If we want to describe indefinite information
such as the fact thata < b or a > b, it is also necessary to consider theset-theoretic
unions(corresponding to the logical disjunctions) of the relations, e.g.,< ∪ >,
which is more conventionally written as6=. Considering all possible unions, we
get≤,≥, 6=, and theuniversal relation > which holds for all pairs of numbers.
Finally, we will also consider theimpossible relation⊥ that holds between no
pairs of numbers. Using this set of eight relations (<,>, =,≤,≥, 6=,>,⊥), we
can describe the relative position of four pointsa, b, c, andd:

Θ = {a ≤ b, b ≤ c, b < d, d < c}. (1)

Now one can ask what additional relationships follow fromΘ and whether it is
possible to find real numbers that satisfy all the relationships simultaneously. For
the given descriptionΘ, one sees, for example, that we cannot add the formula
a ≥ c and have still all relationships satisfied by some real numbers. The reason
is that fromb < d andd < c, we can deduce thatb < c which leads together with
a ≤ b to a < c. This is clearly incompatible witha ≥ c, leading us to conclude
that we cannot add this formula.

2.1 Constraint Systems and Constraint Propagation

An algorithmic method for answering the above questions isconstraint propaga-
tion (Mackworth, 1987), or more specifically thepath-consistencymethod (Mon-
tanari, 1974). Aconstraint systemis given by

• a finite set ofvariables V = {v1, . . . , vn}, where each variable has ado-
main dom(vi);

• a set ofconstraints C = {C1 × . . . Ck}, where each constraint is de-
fined over a subset of the variables, denoted byvar(Cj). The cardinality
of var(Cj) is thearity of the constraintCj. Constraints can be understood
as subsets of the cross product over the domains of the variables invar(Cj).
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We say that anassignmentof values to variablesA = {v1 ← w1, . . . , vl ← wl}
(with vi ∈ V, wi ∈ dom(vi)) satisfiesa constraintCk, if it assigns values to all
variables invar(Ck) such that the tuple of values for the variables invar(Ck) is a
tuple of the constraintCk. A solution of a constraint system is an assignment to
all variables inV such that all constraints are satisfied. And this is most of the time
the most interesting question: Is a given constraint system satisfiable?1 Consider-
ing our small example (1) again, it is easy to see that the following assignment is
a solution:

{a← 1, b← 2, c← 2.5, d← 2.3}. (2)

In general, we observe that constraint systems based on the point calculus have
the following properties:

1. the constraints are allbinary;

2. the domains areinfinite.

The first property is shared by most constraint satisfaction problems. In par-
ticular, it means that most of the techniques from the area of constraint solving are
applicable (Mackworth, 1987). The second property, however, distinguishes qual-
itative reasoning problems from most constraint satisfaction problems, which are
usually defined over finite domains. Nevertheless, it is possible to apply thepath-
consistency method(Montanari, 1974) (also called3-consistency method). This
method eliminates relations between two variables by considering the relation to
a third variable. For instance, inΘ we made the statementb ≤ c. Taking nowd
into consideration, we see that there are the two constraintsb < d andd < c, from
which we can conclude thatb = c can be ruled out, i.e., the only possible remain-
ing relation betweenb andc is <. The path-consistency method now repeats the
process for every triple of variables until it is impossible to further restrict any re-
lation between two variables. Figure 1 visualizes which relations can be inferred
in the case of our example.

After we terminate, the constraint system is said to be3-consistent. This
means that for any partial assignment that satisfies the constraint between two
variables, the partial assignment can be extended to a third variable such that all
constraints between the three variables are satisfied. In our particular case – for
the point calculus – we can even conclude that if no impossible relation has been

1In fact, the satisfiability question can be considered as the central one because all other inter-
esting reasoning problems in the context of constraint systems can be reduced in polynomial time
to satisfiability (Golumbic and Shamir, 1993).
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Figure 1: Visualization of the constraint systemΘ = {a ≤ b, b ≤ c, b < d, d < c}
and the relations derived by the path-consistency method, which are symbolized
by dashed arrows.

generated in the process, then the system of constraints has a solution (Vilain and
Kautz, 1986). This, however, is not necessarily the case for all qualitative calculi.
For example, for Allen’s interval calculus, a 3-consistent constraint system not
containing the impossible relation may not have a solution.2

2.2 Operations on Relations, Relation Algebras, and Constraint
Algebras

In order to capture what we have described above on a more abstract and formal
level, we will considersystems of relationsin the following. We will use infix
notation such asaRb to express that the variablesa andb are constrained by the
relationR. We further use the notation(x, y) ∈ R if we want to express that the
pair of values(x, y), wherex andy are elements of the domain of some variables,
is in the relationR.

When we want to describe the above process of enforcingpath-consistency,
we need twooperationson relations. First, we need thecomposition of two
relationsR andS, symbolicallyR ◦ S:

R ◦ S
def
= {(x, y) | ∃z: (x, z) ∈ R ∧ (z, y) ∈ S}. (3)

If we now denote the constraint between the variablesvi andvj by Cij, then the
operation ofrestrictingthe relation betweenvi andvj by taking a third variablevk

2Allen (1983) already gave an example of a 3-consistent network that is unsatisfiable.
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into account can be described as follows:

C ′
ij ← Cij ∩ (Cik ◦ Ckj), (4)

whereC ′
ij denotes the constraint betweenvi andvj after applying the operation.

It is now clear, what to do with pairs of constraints of the formaRb andbSc.
However, what do we do when we only have constraints of the formaRb and
cSb? In this case, we first have to determine theconverseof the relationS. The
converseof a binary relationR, symbolicallyR^, is defined as follows:

R^ def
= {(x, y) | (y, x) ∈ R}. (5)

In the following, we will assume that for any binary constraint betweenvi andvj

in a constraint system, we have

Cij = C^
ji . (6)

Obviously, the operation described by (4) never eliminates a pair of values
from a constraint that would be a possible solution. What is less obvious, how-
ever, is how to represent the new constraintC ′

ij in cases where one allows for
infinite domains. In case of the point calculus above it appears to be the case
that a new constraint is always one of the eight point relations. However, under
which conditions is this the case? From the above, it is clear that we need a set
of relations,3 which isclosedunderconverse, finite intersection, andcomposition.
These requirements result from (6) and (4). In addition, we want the universal
relation and the identity relation to be part of the relation system. The former is
necessary to state that there is no constraint, the latter in order to make conjunctive
statement. A set of binary relationsR containing the universal and the identity re-
lation together with the above mentioned operations is calledconstraint algebra
if it is closed under the operations.

It can be easily verified that the point calculus satisfies these condition, pro-
vided the relations are interpreted over the rationale or real numbers. However, if
we interpret them over the integers, then the relations are not closed under com-
position.4

3For practical purposes, the set should be finite because we want the path-consistency method
to terminate.

4Consider, e.g., the composition of< ◦ <, which should be identical to< – at least there is no
other relation which could be identical to< ◦ <. However, if we consider1 < 2, then it is clear
that there is integer between1 and2, i.e., we have< ◦ <⊆<, but<6⊆< ◦ <.
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From a mathematical point of view, we are talking about a substructure of a
proper relation algebra(PRA) (Maddux, 1991), where a PRA has to be addition-
ally closed under complement and finite union. The interesting point about proper
relation algebras is that they have an axiomatic counter-part, where the properties
of the relation system is described purely axiomatically. In particular, a number
of results in this area of algebraic logic can be transferred to qualitative reasoning
about space and time (Hirsch, 1997; Hirsch, 2000; Ladkin and Maddux, 1994).

However, relation algebras are a bit more powerful than is needed for con-
straint propagation. For this reason, one may miss important properties when
viewing the relation systems as PRAs. In particular, when one aims for a sub-
system of a relation system that permits better computational properties, it may
be important that the relation system isnot closedunder disjunction and comple-
ment. As a matter of fact, as described below, there exist often subsets of the re-
lation systems for which 3-consistency is sufficient to decide satisfiability. These
subsets are, however, not closed under union and complement. For these reasons,
it seems preferable to considerconstraint algebrasinstead of relation algebras.

2.3 Build Your Own Constraint Algebra

One may now be interested in what one needs to set up one’s own constraint
algebra. The best way to start is to divide all the possible binary relations into a
set of jointly exhaustive, pairwise disjoint(JEPD) relations, containing= as one
relation. For example, for the point calculus, we started with the relations<, =, >.
As a next step, one should make sure that the set of JEPD relations is closed under
converse – so that we can guarantee condition (6). JEPD relations that are closed
under converse are usually calledbase relations.

As a next step, we can create the entire relation system by building all unions
of the base relations – and adding the empty relation⊥. Finally, we have to make
sure that the set is closed under converse, intersection and composition. Converse
is easy because the following equation holds:

(R1 ∪ . . . ∪Rk) = R^
1 ∪ . . . ∪R^

k . (7)

So, we get closure under converse for free. Similarly, closure under intersection
comes for free because each relation is the disjoint union of some base relations.
Closure under composition is not that easy, however. The only simplification we
can achieve is that it suffices to check the compositions of base relations because
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the following equation holds:

(R1 ∪ . . . ∪Rk) ◦ (S1 ∪ . . . ∪ Sl) =
k⋃

i=1

l⋃
j=1

(Ri ◦ Sj). (8)

Incidentally, this equation tells us also how to compute the composition as re-
quired in the path-consistency operation (4). We reduce arbitrary compositions to
compositions over base relations and combine these by building the union. So, the
only thing that we have to know when we want to reason in our constraint calculus
are the results of all compositions of base relations. For this purpose, one usually
computes the so-calledcomposition table, which contains just these results. For
the point calculus, this table is given in Table 1.

R ◦ S < = >

< < < <, =, >
= < = >
> <, =, > > >

Table 1: Composition Table for the Point Calculus

Such a composition table is usually generated manually by enumerating for
each entry the possible relations. In order to make sure that one indeed gets all
possible relations listed in an entry (and not more or less), formal proofs are nec-
essary. This can be done manually or by using computer support (Randell et al.,
1992a; Bennett, 1994). A prerequisite to both, however, is that one has a precise
and formal semantics for the relations.

One might wonder whether it is really necessary to get formal at this point.
Does it really happen that somebody gets a composition table wrong? Or is it
possible that a relation systems generated from JEPD relations that are closed un-
der converse is not closed under composition? And isn’t it then possible to refine
the relation system so that it becomes closed under composition? As mentioned
above, it is indeed possible that a relation system is not closed under composition.
For instance, the point calculus is not closed under composition if it is interpreted
over the integers. Moreover, there is no finite refinement that leads to closure
under composition.

While the point calculus over the integers is certainly not an interesting case,
there are interesting relation systems that are not closed under composition. The
ternary Double Cross calculus (Freksa, 1992), for instance, turns out to have this
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property. In addition, there is no finite refinement of this relation system that leads
to closure under composition (Scivos and Nebel, 2001).

So what can we do if the relation system is not closed under composition? In
this case, we can use an operation often calledweak compositionthat determines
the most specialized relation containing the result of the ordinary composition.
Using such weak compositions, we can still apply the path-consistency operation
(4) and eliminate impossible relations. However, the result will not necessarily be
a 3-consistent constraint system – and for this reason we will not be able to make
any further guarantees.

2.4 Computational Complexity and Completeness

Up to this point, the design, analysis, and usage of a constraint algebra is mostly
straightforward. In particular, we know that by applying the path-consistency
method we get sound inferences. The interesting and non-trivial part is to find out
whether or under which condition 3-consistency is sufficient to decide satisfiabil-
ity. As we already stated above, for the point calculus this is the case. However,
for most of the other constraint algebras, this is not the case. Instead, the satisfi-
ability problem is NP-hard, and since path-consistency runs in polynomial time,
it cannot be complete for these algebras. In fact, one usually can identify cases
when a 3-consistent constraint system does not contain the empty relation but is
nevertheless unsatisfiable.

Sometimes things can be even worse. It can happen that even if only base
relations are used between all pairs of variables and the constraint system is 3-
consistent, the constraint system may not be satisfiable. An example for this case
is thepentagonal relation algebra(Maddux, 1991; Hirsch, 1997).

Often however, it is possible to identify sub-algebras of the full constraint
algebra, for which we can come up with the guarantee that a 3-consistent con-
straint system that does not contain the empty relation is satisfiable. For Allen’s
interval algebra, e.g., this is the case. There exists a unique largest sub-algebra
containing all base relations for which the path-consistency method decides sat-
isfiability (Nebel and B̈urckert, 1995). Similarly, for the topological constraint
algebra RCC8, largest such sub-algebra have been identified (Renz and Nebel,
1999; Renz, 1999). Golumbic and Shamir (1993) also analyzed subsets of rela-
tions of Allen’s interval algebra that are not sub-algebras and came up with some
interesting results.

All these results are useful, when only limited expressivity is needed in an
application. However, even when the full constraint algebra is needed, the results
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are useful. They can be used to speed up the backtracking algorithm which is
used to determine satisfiability in the general case (Nebel, 1997; Renz and Nebel,
2001).

3 Conclusions and Discussion

One approach to qualitative spatial representation and reasoning is to use con-
straint calculi, which are based on the mathematical notion of proper relation al-
gebras or constraint algebras over systems of binary relations. Inference in these
systems is performed by a special constraint-propagation technique, namely by
the path-consistency method. Starting with Allen’s interval calculus, a large num-
ber of such calculi have been developed and analyzed in the past. From a formal
point of view, it is quite straightforward to develop a constraint calculus for a par-
ticular application. The difficult problems are the computation of a composition
table, the verification that all the closure properties are met, and the determination
of the computational complexity. Finally, and most difficult, is the problem to
identify fragments for which the path-consistency method is sufficient to decide
satisfiability. However, even ignoring this issue, the path-consistency method can
always be relied on to generate sound inferences.
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