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Abstract

Terminological knowledge representation formalisms are intended

to capture the analytic relationships between terms of a vocabulary

intended to describe a domain. A term whose de�nition refers, ei-

ther directly or indirectly, to the term itself presents a problem for

most terminological representation systems because it is obvious nei-

ther whether such a term is meaningful, nor how it could be handled

by a knowledge representation system in a satisfying manner. After

some examples of intuitively sound terminological cycles are given,

di�erent formal semantics are investigated and evaluated with respect

to the examples. As it turns out, none of the di�erent styles of se-

mantics seems to be completely satisfying for all purposes. Finally,

consequences in terms of computational complexity and decidability

are discussed.

1 Introduction

When trying to represent an expert's knowledge about a su�ciently complex

domain we have to account for the vocabulary used in this domain

[

Brachman

and Levesque, 1982; Swartout and Neches, 1986

]

. This is exactly the pur-

pose of terminological knowledge representation formalisms, which have their

roots in structural inheritance networks

[

Brachman, 1979

]

. The main building

blocks of such representation formalisms are concepts and roles

[

Brachman

and Schmolze, 1985

]

, similar to generic frames and slots in frame systems and

to type nodes and links in semantic networks. In contrast to frame systems

�
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and semantic networks, however, it is possible to de�ne concepts by specify-

ing necessary and su�cient conditions, while in semantic networks and frame

systems only necessary conditions can be speci�ed.

The most important reasoning task in such a context is the determination

of subsumption between concepts, i.e., whether all instances of a concept

are necessarily instances of the other concept. This kind of reasoning can

be employed to support such diverse applications as information retrieval

[

Patel-Schneider et al., 1984

]

, explainable expert systems

[

Neches et al., 1985

]

,

natural language processing

[

Webber and Bobrow, 1980; Sondheimer and

Nebel, 1986

]

, and computer con�guration

[

Owsnicki-Klewe, 1988

]

.

Based on these ideas, a number of system were built, e.g. kandor

[

Patel-

Schneider, 1984

]

, kl-two

[

Vilain, 1985; Schmolze, 1989

]

, krypton

[

Brach-

man et al., 1985

]

, meson

[

Edelmann and Owsnicki, 1986

]

, back

[

von Luck

et al., 1987; Nebel and von Luck, 1988

]

, loom

[

MacGregor, 1988

]

, classic

[

Brachman et al., 1989; Borgida et al., 1989

]

, and sb-one

[

Kobsa, 1989

]

, and

the formal properties of these systems were investigated

[

Schmolze and Israel,

1983; Brachman and Levesque, 1984; Patel-Schneider, 1986; Levesque and

Brachman, 1987; Nebel, 1988; Schild, 1988; Patel-Schneider, 1989a; Patel-

Schneider, 1989b; Schmidt-Schau�, 1989; Schmidt-Schau� and Smolka, 1990;

Nebel and Smolka, 1990; Nebel, 1990; Donini et al., 1990; Hollunder et al.,

1990

]

.

When studying the above mentioned papers, one notes that terminological

cycles are usually ignored or explicitly excluded. Terminological cycles arise

when a concept is de�ned by referring directly or indirectly to itself (which

amounts to a loop in the network depicting the terminological knowledge

base) as in the (informal) de�nition of the concept Human below:

a Human is de�ned as

a Mammal with

exactly 2 parents and

all parents are Humans

Such a de�nition obviously violates the plausible idea that the meaning

of a concept \can be completely understood in terms of the meaning of its

parts and the way these are composed"

[

Schmolze and Brachman, 1982,

p. 11

]

. In trying to understand the meaning of Human, we inevitably end

up trying to �gure out what the meaning of Human could be. Additionally,

the subsumption algorithms usually employed (see e.g.

[

Schmolze and Israel,

1983

]

) would end up in an in�nite loop on such de�nitions. For these reasons

terminological cycles have been excluded in theoretical investigations and

practical terminological knowledge representation systems.
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This exclusion would be justi�ed if terminological cycles were not useful

in this style of knowledge representation. However, experience with termino-

logical knowledge representation systems in applications show that termino-

logical cycles are used regularly

[

Kaczmarek et al., 1986, p. 982

]

. Also, envi-

sioning a system that views a terminological knowledge base as an abstract

entity that can be changed incrementally (as described in

[

Nebel, 1989

]

), ter-

minological cycles can be easily created and either have to be detected and

rejected by the system|whichmakes the system speci�cation overly complex

and hard to understand by a user|or the system has to accept them as legal

constructions. In addition, a decision to prohibit the use of terminological

cycles should not be based on the fact that we do not understand the mean-

ing or do not know the inference algorithms, but it should be based on an

understanding of terminological cycles and justi�ed by arguments concern-

ing semantics and/or computational properties. For these reasons it seems

worthwhile to analyze the semantic and algorithmic nature of terminological

cycles.

The rest of the paper is organized as follows. A small and simple termi-

nological formalism is formally introduced in Section 2. In Section 3, a brief

description of possible kinds of terminological cycles is given, and the intu-

itive semantics of them are discussed. Based on that, Section 4 presents three

di�erent styles of semantics, namely, descriptive semantics, least �xpoint se-

mantics, and greatest �xpoint semantics that are evaluated with respect to

the examples. As it turns out, there is no obvious \winner." There are good

arguments for the descriptive semantics and equally good arguments for the

greatest �xpoint semantics. In fact, which one to choose seems to be a matter

of the intended purpose. In Section 5, algorithmic consequences are discussed

using results presented in

[

Nebel, 1990

]

and

[

Baader, 1990

]

. Finally, we will

show that depending on the expressiveness of the underlying terminological

formalism, terminological cycles can lead to severe computational problems,

namely, to undecidability of subsumption.

2 A Framework for Representing Termino-

logical Knowledge

In order to have something to build on, we need a concrete terminologi-

cal knowledge representation formalism. In this paper, a small termino-

logical formalism|called TLN

1

|which is a subformalism of almost all the

formalisms used in the systems quoted above,

2

will be used to investigate the

1

It is the formalism TL introduced in

[

Nebel, 1990

]

extended by number restrictions.

2

The only exception is krypton.



Terminological Cycles 4

nature of terminological cycles.

The basic building blocks of our formalism are a set R of atomic roles

(denoted by R) and a set A of atomic concepts (denoted by A and B).

We will assume that there are always two prede�ned concepts (which are

also elements of A), namely, > intended to denote everything, and ? which

denotes nothing. Using these atomic terms, the set D of concept descriptions

(denoted by C and D) is de�ned by the following abstract syntax rule:

C;D ! A atomic concept

j C uD concept conjunction

j 8R:C value restriction

j 9

�n

R minimum restriction

j 9

�n

R maximum restriction:

Intuitively, a concept description is intended to denote all objects that

ful�ll the description. For instance, the concept description

Human u Female u 9

�1

child u 8child: (Human u Female)

denotes the set of all Female Humans that have at least one child and whose

children are all Female Humans, i.e., this expression denotes all mothers that

have only daughters.

The formal meaning is given by a model-theoretic interpretation I =

hD; [[�]]

I

i, where D is an arbitrary set, the domain, and [[�]]

I

is a function,

the interpretation function, that maps atomic concepts to subsets of D and

atomic roles to total functions from D to 2

D

[

Brachman and Levesque, 1984

]

.

The prede�ned concepts > and ? have the �xed interpretation D and ;,

respectively. The set [[R]]

I

(d) will be called role-�ller set of role R for object

d. The denotation of concept descriptions is de�ned inductively by

3

[[C uD]]

I

= [[C]]

I

\ [[D]]

I

[[8R:C]]

I

= fd 2 Dj [[R]]

I

(d) � [[C]]

I

g

[[9

�n

R]]

I

= fd 2 Dj k[[R]]

I

(d)k � ng

[[9

�n

R]]

I

= fd 2 Dj k[[R]]

I

(d)k � ng:

Since we are not only interested in forming a variety of concept descrip-

tions, but also in de�ning new concepts, the notion of a terminology will

be used, which allows us to assign the meaning of concept descriptions to

atomic concepts. Formally, a terminology T is a total function T :A ! D,

where T (A) is the concept description de�ning the meaning of A or, if A is

3

The expression kSk denotes the cardinality of a set.
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primitive in the terminology, T (A) = A.

4

In the following, we will use A

p

for the set of atomic concepts that are primitive in a terminology (which are

sometimes denoted by P and Q) and A

n

for the set of nonprimitive atomic

concepts. For > and ?, we assume >;? 62 A

n

[A

p

. Furthermore, we will

use the expression jCj when referring to the size of the concept description

C, which is de�ned as the number of operators and atomic terms appearing

in C, and we will use jT j to denote the size of a terminology, which is de�ned

as

P

A2A

n

jT (A)j.

The intended meaning of a terminology is the restriction of all possible

interpretations to those that have identical denotations for atomic concepts

and their de�ning concept descriptions. Formally, an interpretation I is a

model of T i�

[[A]]

I

= [[T (A)]]

I

for all A 2 A:

Now we can formalize the notion of subsumption between concepts, which

has been informally introduced in Section 1. C is subsumed by D in the

terminology T , written C �

T

D, under the following condition:

C �

T

D i� [[C]]

I

� [[D]]

I

for all models I of T:

Giving an example, in the terminology

T (Woman) = Human u Female (1)

T (Mother-of-daughters) = Woman u 9

�1

child u 8child:Woman (2)

T (Parent) = Human u 9

�1

child u 8child:Human; (3)

Mother-of-daughters is subsumed by Parent because everyMother-of-daughters

is a Parent in any model of the terminology.

Similarly to subsumption, equivalence of concepts in a terminology, writ-

ten C �

T

D, is de�ned by

C �

T

D i� [[C]]

I

= [[D]]

I

for all models I of T:

Finally, a concept C is called incoherent in a terminology T i� C �

T

?.

Because of the set-theoretic semantics, incoherence and equivalence can

be reduced to subsumption in O(n) time and subsumption can be reduced

to equivalence in O(n) time, where n is the size of the concept descriptions.

4

Note that this de�nition of primitiveness is the same as in krypton

[

Brachman et

al., 1985

]

and di�erent from the notion of a primitive concept in kl-one

[

Brachman and

Schmolze, 1985

]

. However, this does not a�ect the formal expressiveness of the represen-

tation language

[

Nebel, 1989, Ch. 3

]

.
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Proposition 1 Let T be a TLN -terminology, and let C and D be concept

descriptions. Then

C �

T

D i� (C �

T

D and D �

T

C);

C �

T

? i� C �

T

?;

C �

T

D i� C �

T

C uD:

For the sake of simplicity, we will sometimes consider terminologies such

that the second argument in each value restriction is an atomic concept.

Such terminologies will be called normalized terminologies.

5

Since any ter-

minology can be transformed into such a form (by introducing at most jT j

auxiliary nonprimitive atomic concepts) without changing the denotations of

the original terms, this assumption does not a�ect generality.

Although everything de�ned so far makes perfect sense, there is usually

an additional syntactic restriction enforced on the form of terminologies. As

pointed out in Section 1, the common intuition about terminologies is that

concept de�nitions are \well-founded," i.e., that there are no terminological

cycles such as the one presented in the beginning. Formally, a terminological

cycle can be de�ned as follows. An atomic concept A directly uses another

atomic concept B i� the expression T (A) contains B. An atomic concept

A

0

uses A

n

i� there is a chain A

0

; A

1

; : : : A

n

such that A

i

directly uses A

i+1

,

0 � i � n � 1. Finally, it will be said that a terminology T contains a

terminological cycle i� some atomic concept uses itself.

The advantage of the acyclicity restriction is that the meaning of a con-

cept can be understood in terms of the meaning of the atomic terms used

in the de�ning description and the way these are composed. This is mir-

rored on a model-theoretic level by the fact that models of a terminology

can be constructed inductively from initial partial interpretations that as-

sign denotations to primitive concepts and roles only. Such initial partial

interpretations will be denoted by

�

I.

Proposition 2 Given a terminology T without terminological cycles, any

initial partial interpretation

�

I can be uniquely extended to a model of T .

Proof Sketch: By induction on the depth of a terminology (see

[

Nebel,

1990, Lemma 1

]

).

From an algorithmic point of view, this means that subsumption deter-

mination in an acyclic terminology can be reduced to subsumption determi-

nation over concept descriptions, i.e., assuming that all atomic concepts are

primitive (see

[

Nebel, 1990, Theorem 1

]

). This is done by expanding all non-

primitive concepts in an expression until it contains only primitive atomic

concepts|which cannot be done if the terminology contains cycles.

5

Note that all the example terminologies in this paper are normalized.
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3 In Defense of Terminological Cycles

Basically, there are two kinds of terminological cycles|one which is obviously

meaningful and another one which does not seem to make sense. An exam-

ple of the latter kind of terminological cycles is the following terminology

introducing the concepts Male-Human and Man:

T (Man) = Human uMale-Human (4)

T (Male-Human) = Human uMan: (5)

These de�nitions suggest that Man is a specialization ofMale-Human and vice

versa, which seems to be rather weird and violates the idea that all concepts

in a terminology can be ordered hierarchically.

In general, such cycles will be called component cycles and the concepts

involved are called component-circular concepts. Formally, an atomic con-

cept A

0

uses A

n

as a component i� there is a chain of atomic concepts

A

0

; A

1

; : : : A

n

, n > 0, such that each A

i

directly uses A

i+1

, and A

i+1

ap-

pears outside of the scope of any 8 expression in T (A

i

), for 0 � i � n� 1. A

concept A is component-circular i� A uses itself as a component.

We might simply prohibit the use of such cycles. However, if we view a

terminological knowledge base as an abstract object on which some modi�-

cation operations can be carried out as sketched in Section 1, we have to take

special care to detect and reject operations intended to introduce cycles. This

makes the speci�cation of such a system complicated and clumsy. Therefore,

if the semantics of the representation language could give us a sensible an-

swer as to what such \de�nitions" could possibly mean, this would be much

more elegant.

Besides the meaningless kind of cycles, there are cycles which are ob-

viously meaningful and which often appear when modeling a domain. For

instance, the description of recursive structures, e.g. binary trees, requires

that we can use terminological cycles:

T (Binary-tree) = Tree u 9

�2

branch u 8branch:Binary-tree: (6)

The intuition behind this terminology is obviously that the concept Bina-

ry-Trees should describe tree-structured objects of degree two. For instance,

consider the following initial partial interpretation, which is depicted in Fig-

ure 1:

D = fa; b; c; d; e; f; g; hg

[[Tree]]

�

I

= D
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[[branch]]

�

I

=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

a 7! fb; cg

b 7! ;

c 7! fdg

d 7! ;

e 7! ff; gg

f 7! fhg

g 7! fhg:

��

��

a

�

�

�

�*

H

H

H

Hj

��

��

b

��

��

c

-

��

��

d

��

��

e

�

�

�

�*

H

H

H

Hj

��

��

f

H

H

H

Hj

��

��

g

�

�

�

�*

��

��

h

Figure 1: Some Object Structures Intended by the De�nition of Binary-tree

(Arrows denote branch relationships, circles denote elements of the denotation

of Tree)

Extending

�

I to a model I of the terminology given by (6), one notes that

fa; b; c; dg is a subset of the denotation of Binary-tree, as expected. Further-

more, also fe; f; g; hgmust be a subset of [[Binary-tree]]

I

, i.e., the terminology

permits also object structures which are directed acyclic graphs.

Concepts such as Binary-tree will be called restriction-circular concepts.

Formally, an atomic concept is restriction-circular i� it uses itself and it is

not component circular. Furthermore, assuming a normalized terminology

T , it will be said that an atomic concept B can be directly reached by a role

R from A i� B appears in a value restriction of T (A). The atomic concept

B can be reached by a role-chain W = R

1

R

2

: : : R

m

from A i�

1. m = 1 and B can be directly reached by R

1

from A, or

2. A directly uses a concept A

0

outside of any value restriction and B can

be reached by W from A

0

, or

3. a concept A

0

can be reached by R

1

and B can be reached by R

2

: : :R

m

from A

0

.

Finally, A is said to be restriction-circular over the role-chain W i� A can

be reached byW from A. For instance, Binary-tree is restriction-circular over

the chain consisting of the one role \branch". Note that if there is one such
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role-chain W , then there there are in�nitely many such role-chains, e.g. W

n

,

n > 0.

Another example of a restriction-circular concept, which at �rst sight

seems to be similar, is Human as informally de�ned in Section 1:

T (Human) = Mammal u 9

�2

parent u 9

�2

parent u 8parent:Human: (7)

However, in this case, we are not aiming at describing �nite structures but

in�nite ones as in Figure 2, which depicts a �nite subset of an in�nite in-

terpretation where the circles denote elements of the denotation of Human

and Mammal, solid arrows denote parent relationships, and the dashed arrows

indicate that the tree extends in�nitely to the right.

��

��

a

�

�

�

�*

H

H

H

Hj

��

��

b

�

�

�

�:

X

X

X

Xz

��

��

c

�

�

�

�:

X

X

X

Xz

��

��

d

-

-

��

��

e
-

-

��

��

f

-

-

��

��

g

-

-

Figure 2: Object Structures Intended by the De�nition of Human

(Arrows indicate parent relationships and circles denote elements of the de-

notation of Mammal and Human)

This kind of concept de�nition might raise the question of the origin of

human beings. Because of space limitations, however, we will not discuss this

subject further. From a formal of view, one notes that if all domain elements

are in the denotation of Mammal and Human, then this interpretation is a

model of the terminology (7). However, there is another model with the same

initial partial interpretation such that [[Human]]

I

is empty.

For a common sense view of the world, at least, the de�nition seems

reasonable. I even believe that the conditions on Human are necessary and

su�cient! This sounds a little strange at �rst but can be defended by the

argument that an entity can be recognized as a Human when the entity has

two parents which are known to be Humans.

A third kind of terminological cycles stresses the idea that it may be

impossible to de�ne a concept by referring to already de�ned terms, but

possible to de�ne two concepts by referring each to the other. In other
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words, we are aiming at describing circular object structures:

T (Car) = Vehicle u 8engine-part:Car-engine u 9

�1

engine-part (8)

T (Car-engine) = Engine u 8is-engine-of:Car u 9

�1

is-engine-of: (9)

Some conceivable object structures are depicted in Figure 3, where simple

circles denote Car objects, double circles denote Car-engine objects, simple ar-

rows denote engine-part relationships, and double arrows denote is-car-engine-

of relationships. Note, however, that object structures are possible which do

not follow this pattern, e.g. in�nite chains of Car objects and Car-engine ob-

jects connected by the appropriate relationships.

6

��

��

��

��

a

��

��

b

��

��

c

��

��

��

��

d

'$

?

'$

?

&%

6

&%

6

"!

6

"!

6

Figure 3: Object structures intended by the de�nition of Car-engine and Car

(Simple circles denote Car objects, double circles denote Car-engine objects,

simple arrows denote engine-part relationships, and double arrows denote is-

car-engine-of relationships.)

Such concept de�nitions are obviously not \well-founded," and I know

that if I would really insist that this example is reasonable and has to be part

of any knowledge engineer's basic skills in modeling terminological knowl-

edge, then I probably would loose some credibility. Therefore, I will defend

this kind of terminological modeling only with a pragmatic argument.

Terminological cycles such as the one in (8){(9) can be exploited in hybrid

representation systems, which consists of an assertional and a terminological

component

[

Brachman and Levesque, 1982

]

. For instance, if it is known that

the object a is a Car, and a role �ller of the engine-part role for object a

is the object b, then we can conclude that object b must be a Car-engine.

Obviously, this game also works the other way around. Thus, this kind of

cycle permits a special and interesting mode of hybrid reasoning.

Depending on the expressiveness of the terminological formalism, there

can be similar kinds of terminological cycles involving roles. Furthermore,

6

Inverse roles are necessary to avoid such structures.
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we may have cycles such that the meaning of a role depends on a concept

which in turn uses the role in its de�nition. We will ignore these cases here,

however.

4 What's in a Terminological Cycle?

We have seen in Section 2 that the meaning of de�ned concepts can be com-

pletely derived from the meaning of primitive concepts, roles, and the various

concept-forming operators (see Prop. 2) provided the terminology is acyclic.

If we continue to use the semantics speci�ed in Section 2 (which will be called

descriptive semantics in the following) in the presence of terminological cy-

cles, we loose this nice property.

Using the Binary-tree example (see (6)), for instance, we note that for

some initial partial interpretations, there is more than one extension of the

initial interpretation to a model of T . Consider the following

�

I:

D = fa; b; cg

[[Tree]]

�

I

= fa; b; cg

[[branch]]

�

I

=

8

>

<

>

:

a 7! ;

b 7! fcg

c 7! fbg:

Now, there are two possible models, I and J , extending

�

I:

[[Binary-tree]]

I

= fag

[[Binary-tree]]

J

= fa; b; cg:

Since this seems to violate the ideas spelled out in Section 1, one idea

could be to use only one particular model extending a given initial partial

interpretation, which is in some sense \canonical"|provided such a model is

always identi�able. Whether one uses this approach or the descriptive seman-

tics is a matter of the models one considers as plausible and the subsumption

relationships one wants to have.

4.1 Fixpoint Models

In order to explore these ideas, we will characterize models as �xpoints of a

certain operator on interpretations. The set of interpretations (over a given

terminology T with �xed A and R) that have identical interpretations of

roles and primitive concepts, i.e. all interpretations with the same initial

partial part

�

I, will be denoted by 	

�

I

. Furthermore, � shall be a function
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mapping interpretations to interpretations (for a given terminology T ) as

follows:

�:	

�

I

! 	

�

I

�:I 7! J

such that

[[A]]

J

= [[T (A)]]

I

[[R]]

J

= [[R]]

I

:

A �xed point of �, i.e., an interpretation I with the property �(I) = I, is

clearly a model of the terminology T according to the de�nition in Section 2,

which will be called admissible model.

Least or greatest �xpoint models (lfp- and gfp-models for short) would

ful�l the requirement of being \canonical" in the sense mentioned above. In

order to de�ne lfp- and gfp-models, however, we need an ordering on 	

�

I

.

A straightforward and intuitively plausible ordering is the component-wise

set-inclusion relation over the denotation of nonprimitive atomic concepts,

written v:

I v J i� [[A]]

I

� [[A]]

J

for all A 2 A

n

;I;J 2 	

�

I

:

Obviously, (	

�

I

;v) is a partial ordering which forms together with compo-

nent-wise union as the least upper bound (

F

) a complete lattice. Thus, it

seems reasonable that it is possible to apply Tarski's

[

1955

]

�xpoint theorem,

which says that for a complete lattice L (with ?

L

as the least element) and

for any monotone function f :L ! L (i.e., for all x; y 2 L : f(x) v f(y) if

x v y)

1. the set of �xed points of f is nonempty and forms a complete lattice,

2. if f is continuous (i.e., for any totally ordered set X � L : f(

F

X) =

F

f(X)), then the least �xed point of f is equal to

F

1

n=0

f

n

(?

L

).

As a matter of fact, the basic condition of the theorem can be easily veri�ed.

Proposition 3 Given a terminology T and an initial partial interpretation

�

I, � is monotone on 	

�

I

.

Proof: By structural induction on the de�nition of the denotation of concept

descriptions.

Furthermore, we get the intuitive result that the set of lfp- and gfp-models

is identical with the set of admissible models when the terminology is acyclic.
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Proposition 4 Let T be a terminology without terminological cycles. Then

I is an admissible model i� it is a lfp-model and a gfp-model.

Proof: Immediate by Proposition 2 and the fact that all admissible models

are �xed points of �.

Similarly to subsumption w.r.t. descriptive semantics as de�ned in Sec-

tion 2, we de�ne lfp-subsumption, written �

lfp

T

, and gfp-subsumption, written

�

gfp

T

, by

C �

lfp

T

D i� [[C]]

I

� [[D]]

I

for all lfp-models I of T;

C �

gfp

T

D i� [[C]]

I

� [[D]]

I

for all gfp-models I of T:

For concept equivalence w.r.t to lfp- and gfp-semantics we will use a similar

notation.

Although we know by monotonicity of � on 	

�

I

and Tarski's �xpoint the-

orem that the least and greatest �xpoint exist, it is not possible to generate

the least �xed point by an ordinary �xpoint iteration. The reason is that �

is not a continuous function because the denotation of (8R:C) can depend

on in�nitely many elements in D.

7

Thus, we could either use trans�nite �x-

point iteration (see

[

Lloyd, 1984, p. 29

]

) or we could restrict our attention to

models with �nite role-�ller sets, which will be called roleset �nite. Indeed,

this restriction does not change subsumption relationships, and, furthermore,

such models seem to be more plausible.

Lemma 1 C �

lfp

T

D i� [[C]]

I

� [[D]]

I

for all roleset-�nite lfp-models I.

Proof: The \only if" direction is obvious. For the \if" direction let I be

any admissible model of a normalized terminology T . Assume that for some

d 2 D the set [[R]]

I

(d) is in�nite. Then there exists another model J of T

which is identical with I except that [[R]]

J

(d) is a �nite subset of [[R]]

I

(d)

(which satis�es or violates all value, minimum and maximum restrictions for

all de�ned concepts and all subexpressions of C and D which were originally

satis�ed or violated, for the element d).

Assume that I is a lfp-model, i.e., the smallestmodel extending the initial,

partial interpretation

�

I. Now, we will show that J is the smallest model

extending the initial partial interpretation

�

J . Assuming otherwise, i.e., that

there is a model J

0

that extends

�

J and that is smaller than J , leads to the

conclusion that for some e 2 D and some concept C: e 62 [[C]]

J

0

but e 2 [[C]]

J

.

Since

�

J and

�

I di�er only in role-�ller sets of d, d must be such an element.

However, since we preserved all value, minimum, and maximum restrictions,

7

An example of noncontinuity can be found in

[

Baader, 1990

]

.



Terminological Cycles 14

it follows that there is a model I

0

which extends

�

I such that d 62 [[C]]

I

0

, i.e.,

I

0

is smaller than I|a contradiction of the assumption. Thus, if I was a

lfp-model, then J is a lfp-model, as well.

Since d was chosen arbitrarily, the arguments above apply to the entire

domain. Hence, if there is an arbitrary lfp-model I, then there exists a

roleset-�nite lfp-model J with identical denotations for all A 2 A and for

given C and D. Thus, subsumption is identical.

For this set of roleset-�nite interpretations, denoted by 	

f

�

I

, the desired

property of � can be easily proven.

Proposition 5 Given a terminology T and an initial partial interpretation

�

I, � is continuous on 	

f

�

I

.

Proof: Let � a totally ordered subset of 	

f

�

I

. By monotonicity we know

F

�(�) v �(

F

�). For the other direction let I = �(

F

�), J =

F

�, and

assume d 2 [[A]]

I

. The reason for d 2 [[A]]

I

is that there is a �nite subset F

of D such that for all e 2 F : e 2 [[B]]

J

for some atomic concepts B 2 A

and e 2 [[R]]

J

(d) for some atomic roles R 2 R. Since � is totally ordered,

there must be J

0

2 � with the same property. Hence, d 2 [[A]]

t�(�)

, i.e.,

F

�(�) w �(

F

�).

4.2 Least Fixpoint Semantics

When there is choice between di�erent �xed points, the least one is usually

the most \attractive" one|it is the �xed point which makes the least \com-

mitments". For instance, in semantics of programming languages, we are

usually interested in the least �xed point because in the space of functions

the least �xed point corresponds to the partial function giving results for

terminating computations and being unde�ned for nonterminating compu-

tations. In our case, an lfp-model amounts to something similar. It is the

least model contained in all admissiblemodels. Furthermore, for roleset-�nite

lfp-models, the semantics is highly constructive. For a given initial partial

interpretation, we have d 2 [[C]]

I

for the lfp-model I 2 	

f

�

I

i� there exists

some �nite approximation J =

F

i

n=0

�(?

	

f

�

I

) such that d 2 [[C]]

J

.

For these reasons, lfp-semantics might seem to be the most plausible one

to choose. Before we do so, however, the lfp-semantics should be evaluated

against the intuitions spelled out in Section 3.

The �rst kind of cycles, the component cycles, are treated in way which

seems to be reasonable.

Proposition 6 If A is a component-circular concept in a terminology T ,

then A �

lfp

T

?.
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Proof: Let C

c

be the maximal set of nonprimitive atomic concepts that use

A as a component and are used by A as a component at the same time. All

concepts in C

c

are obviously component-circular (and it is the greatest such

set containing A).

Now note that if allB 2 C

c

have an empty denotation in an interpretation

I, this holds for �(I) as well. Thus, there exists no natural number i such

that J =

F

�

i

n=0

(?

	

f

�

I

) and [[B]]

J

6= ; for any B 2 C

c

. Thus, for any

lfp-model I of T : [[B]]

I

= [[?]]

I

for all B 2 C

c

.

This means we could eliminate these cycles by de�ning all component-

circular concepts as ? without changing the meaning of the terminology.

Corollary 1 If the terminology T contains component cycles, then there ex-

ists a terminology T

0

that does not contain component cycles and

I is a lfp-model of T i� I is a lfp-model of T

0

:

It should be obvious that the other type of terminological cycles, the

restriction cycle, is more complicated. In particular, we can describe object

structures which cannot be described by acyclic terminologies, and, hence,

such cycles cannot be eliminated from a terminology.

In order to describe the e�ect of these cycles, the denotation of role-

chains (as introduced in Section 3) has to be de�ned. Let W = R

1

R

2

: : : R

m

.

Then the denotation of W is de�ned as the functional composition [[W ]]

I

=

[[R

m

]]

I

� : : : � [[R

2

]]

I

� [[R

1

]]

I

. The expression jW j will be used to denote the

length of a role-chain.

Proposition 7 Let A be a restriction-circular concept that is circular over

the role-chains W

j

in a terminology T . Then for all roleset-�nite lfp-models

I of T : If d 2 [[A]]

I

, then there exists a natural number n > 0 such that

[[W

j

]]

I

(d) = ; for all role-chains with jW

j

j � n.

Proof: Assume that [[W

j

]]

I

(d) 6= ; for all role-chains regardless of their

length. By induction over the construction of the least �xed point it follows

that for all natural numbers m: for J =

F

m

i=0

�

i

(?

	

f

�

I

), we have d 62 [[A]]

J

,

and, hence, d 62 [[A]]

I

for any lfp-model I of T .

Applying Prop. 7 to the Binary-tree example (see (6)), we see that we

neither get circular binary trees nor trees with in�nite depth, which matches

nicely with the intuition. However, this also means that we do not get the

structure we would have expected in the cases of Human (see (7)) and Car

(see (8){(9)). Even worse, the denotations of Human and Car are empty in

all lfp-models, as can be easily deduced from the next corollary.
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Corollary 2 Let A

0

A

1

: : : A

n

, where A

0

= A

n

, be a restriction cycle such

that A

0

is circular over P = R

1

: : :R

m

, and let A

i

1

: : :A

i

m

be the concepts

such that A

i

j

+1

is directly reached by R

j

from A

i

j

. If all expressions T (A

i

j

)

contain a minimum restriction on R

j

, then A

i

�

lfp

T

?, for 0 � i � n.

We could take the observation that humans and cars do not exist as a

deep truth (of which nobody was aware), or, taking a more pragmatic view,

as an indication that lfp-semantics might be not the right choice.

4.3 Greatest Fixpoint Semantics

Using gfp-semantics obviously avoids the cruel consequences concerning the

existence of the reader, the author, and the cars they possess. However, there

are other shortcomings. First of all, it is not as constructive as lfp-semantics.

8

Second, it violates one intuition spelled out in Section 3. Elaborating on the

Human example, we could de�ne the concept Horse in the same way:

T (Human) = Mammal u 9

�2

parent u 9

�2

parent u 8parent:Human (10)

T (Horse) = Mammal u 9

�2

parent u 9

�2

parent u 8parent:Horse: (11)

As is easy to see, [[Human]]

I

= [[Horse]]

I

for all gfp-models because assuming

that the denotations are di�erent leads to the conclusion that there is another

�xpoint which is greater and has identical denotations for Human and Horse.

That means we have to give up the intuition that (10) de�nes the concept

Human. One should add a primitive atomic concept, say Humanness, to

the de�nition of Human in order to distinguish Human from other Mammals

with two parents. As a consequence it follows that under gfp-semantics the

condition that ones parents are human beings is not su�cient for proving

that one is a human being as well|a way of reasoning that could be nicely

exploited when assertional knowledge is represented as well.

After having now an idea what gfp-semantics does to restriction-circular

concepts, it seems worthwhile to analyze component-circular concepts.

Proposition 8 Let A be a component-circular concept and let C

c

be the

largest set of concepts that use A as a component and are used by A as a

component. Let D(A) be a concept description identical to T (A) except that

all occurrences of concepts from C

c

that do not appear in value restrictions

are replaced by >. Then for all B 2 C

c

:

B �

gfp

T

u

A2C

c

D(A):

8

In

[

Baader, 1990

]

, however, it is shown that � is \downward continuous" on 	

�

I

, which

means that any element in the complement of a concept denotation is not contained in

some �nite approximation of the greatest �xed point denotation of this concept.
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Proof: First of all, note that all concepts in C

c

must have the same de-

notation. Second, since enlarging the denotation of one concept, enlarges

the entire interpretation, all concepts in C

c

must have the greatest possible

denotation, which is just

u

A2C

c

D(A).

Although this result is less satisfying than Prop. 6, it is, of course, tol-

erable because we are not much interested in component-circular concepts.

Furthermore, it shows that under gfp-semantics, such cycles can be easily

eliminated, as well.

Corollary 3 If the terminology T contains component cycles, then there ex-

ists a terminology T

0

that does not contain component cycles and

I is a gfp-model of T i� I is a gfp-model of T

0

:

4.4 Descriptive Semantics

Finally, descriptive semantics should be briey characterized. This style of

semantics|which is similar to the ordinary semantics of �rst-order logic|

does not lead to equivalence of Humans and Horses because we can think

of in�nite or circular object structures which satisfy the terminology (10){

(11) without making the denotations of Human and Horse identical. This

means on one hand that we can indeed somebody recognize as a Human if

and only if her two parents are Humans without being committed to conclude

that she is a Horse, as well. On the other hand, the de�nition does not

determine a unique interpretation for given initial, partial interpretations of

primitive concepts and roles, which leads to the fact that for datatype-like

concepts such as Binary-tree and Ternary-tree expected subsumption-relations

are missed.

T (Binary-tree) = Tree u 9

�2

branch u 8branch:Binary-tree (12)

T (Ternary-tree) = Tree u 9

�3

branch u 8branch:Ternary-tree (13)

Although Binary-tree �

T

Ternary-tree is something everybody would ex-

pect, descriptive semantics does not support this subsumption relationships

because models may contain in�nite and circular object structures. How-

ever, it should be noted that a hybrid reasoner would classify any (�nite)

tree-structured object that can be classi�ed as Binary-tree as a Ternary-tree

as well.

In some sense, descriptive semantics seems to assign more importance to

concept names of circular concepts. Restriction-circular concepts are very

similar to primitive concepts in that they can \choose" their denotation.
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However, since the denotation of these concepts is not completely uncon-

strained, there are some very subtle relations between such concepts, which

will be analyzed in the next section. For component-circular concepts the

picture is clearer. We get again the result that such cycles are superu-

ous and that they can be eliminated without changing the meaning of the

terminology.

Proposition 9 Assume as in Prop. 8 a component-circular concept A, the

largest set of component-circular concepts C

c

that contains A, and D(A)

as identical to T (A) except that all concepts occurring in C

c

which appear

outside of a value restrictions are replaced by >. Then for all B;B

0

2 C

c

:

1. B �

T

B

0

,

2. B �

T

u

A2C

c

D(A),

3. C �

T

B i� C �

T

? or C uses B as a component.

Proof: The �rst property follows immediately from the de�nition of a model

in Section 2, and the second property is a direct consequence of Prop. 8.

Furthermore, the \if" direction of the third property is obvious. For the

\only if" direction assume that C �

T

B, but C does not use B and C 6�

T

?.

Let I be a model such that [[C]]

I

6= ; and [[C]]

I

� [[B]]

I

. Let d 2 [[C]]

I

. Now

extend the model I to an interpretation I

0

with domain D

0

= D [ fd

0

g such

that for all e 2 D: e 2 [[R]]

I

0

(d

0

) i� e 2 [[R]]

I

(d) and d

0

2 [[A]]

I

0

i� d 2 [[A]]

I

,

for all R 2 R and all A 2 A. As can be easily veri�ed, I

0

is a model again.

Removing d

0

from [[B]]

I

0

and from all denotations of concepts that use B as

a component leads to another interpretation J , which is again a model. J

does not satisfy our assumption, however.

This means, a set of component circular concepts behaves as if a unique,

fresh primitive concept is used in the de�nition of all of them. As a matter

of fact, we can transform the terminology into such a form without chang-

ing \relevant parts" of the models. Let Ij

X

denote the restriction of an

interpretation to a certain set X of concepts and roles.

Corollary 4 If the terminology T over A and R contains component cycles,

then there exists a terminology T

0

over A

0

and R, where A � A

0

, such that

for every admissible model I of T there exists an admissible model I

0

of T

0

,

and vice versa, with Ij

(A[R)

= I

0

j

(A[R)

, and T

0

does not contain a component

cycle.
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Proof: Let C

c

and D(A) be de�ned as in Prop. 9. Let P 62 A and A

0

=

A [ fPg. Let T

0

be a terminology de�ned as follows:

T

0

(A) =

8

>

<

>

:

P if A = P;

P u

u

B2C

c

D(B) if A 2 C

c

;

T (A) otherwise:

If I is a model of T , then we obtain a model I

0

of T

0

by setting [[X]]

I

0

= [[X]]

I

for all X 2 A [R and [[P]]

I

0

= [[B]]

I

, for some B 2 C

c

.

Let I

0

be a model of T

0

. Restricting I

0

to A[R, we get an interpretation

I. To show that I is a model of T , we have to verify that all equations

[[A]]

I

= [[T (A)]]

I

are satis�ed. This is trivially true for all concepts A 62 C

c

.

For the concepts in C

c

, the de�nition can be written as T (A) = D(A) u B

for some B 2 C

c

. Since [[A]]

I

0

= [[B]]

I

0

and [[A]]

I

0

� [[D(A)]]

I

0

, we know

[[A]]

I

= [[T (A)]]

I

for all A 2 C

c

.

Thus, removing component cycles iteratively, we can obtain a terminology

T

0

with the desired property.

4.5 Comparing the Di�erent Styles of Semantics

First of all, the di�erent styles of semantics shall be characterized in terms

of the induced subsumption relation. It is obvious that subsumption w.r.t.

descriptive semantics implies lfp- and gfp-subsumption because in the former

case, more models, i.e., all �xpoints, have to be considered. Furthermore,

since lfp-semantics tends to force denotations of circular concepts to the

empty set, which leads to the fact that Human and Car are identical, we

know that lfp-subsumption does not imply gfp-subsumption. The converse,

however, seems to be plausible|but does not hold. Because of Prop. 7,

we know that a restriction-circular concept cannot be lfp-equivalent to >,

but there are restriction-circular concepts that are gfp-equivalent to >, for

instance, T (A) = 8R:A.

When evaluating the three styles of semantics against the intuitions

spelled out in Section 3, it is obvious that lfp-semantics is a looser since

it forces us to conclude that a number of examples which are intuitively

plausible are in fact incoherent. There is no such clear judgement for the

remaining two styles, however. Although, at �rst sight, gfp-semantics seems

to be the more plausible one, there are a number of good arguments for

the descriptive semantics, as well. Greatest �xpoint semantics has on the

positive side that

� it supports subsumption relationships one would expect between

\structurally similar concepts,"

9

such as the one between Binary-tree

9

This somewhat vague notion will become more precise in the next section.
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and Ternary-tree,

� extends an initial partial interpretation to a unique model similar to

the acyclic case, i.e., it generalizes the idea of determining the meaning

of a concept in terms of the meaning of its parts and the way these are

composed.

On the negative side, we �nd that gfp-semantics does not permit a special

mode of hybrid reasoning where we conclude the humanness of an object from

the humanness of the parents|without some unacceptable consequences. A

more serious argument against gfp-semantics is that it cannot be generalized

to more powerful terminological languages. For instance, if roles can be

de�ned in terms of concepts,

10

� is not monotone any longer. The reason is

that increasing role denotations leads to smaller concept denotations in the

general case.

When considering descriptive semantics, we can conclude that

� by not forcing structurally similar concepts to be equivalent, hybrid

reasoning might be better supported,

� it is the conceptually most straightforward generalization of the stan-

dard semantics, and

� it can be applied to arbitrary terminological languages.

On the other hand, conditions for subsumption w.r.t. descriptive semantics

are conceptually more complicated than gfp-semantics, as we will see below.

All in all, I believe there are no conclusive arguments yet. However, by

having explored the space of reasonable alternatives, we know now what the

implications are|to a certain extent.

5 Reasoning with Terminological Cycles

As mentioned in Section 1, there are two main reasons why terminologi-

cal cycles are usually omitted. One is the unclear semantics, and the other

one is the problem cycles create for subsumption algorithms|a problem we

will tackle in this section. Based on results presented in

[

Nebel, 1990

]

and

[

Baader, 1990

]

, it will be shown that subsumption in general terminologies

that may contain cycles is more di�cult than subsumption in acyclic ones.

For this purpose, we will concentrate on a even smaller terminological lan-

guage, called TL, that does not contain minimum and maximum restrictions.

10

The restrict operator of the language FL described in

[

Levesque and Brachman,

1987

]

, for example, can be used for this purpose.
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Although it seems to be straightforward to generalize the results obtained

for TLN , they cannot be generalized to arbitrarily powerful terminological

languages, which is shown by giving an example of a terminological language

for which subsumption is decidable in the acyclic case but undecidable when

terminological cycles are permitted.

Usually subsumption algorithms are speci�ed over concept descriptions

only, assuming that all atomic concepts are primitive (see, for instance,

[

Levesque and Brachman, 1987; Patel-Schneider, 1989a; Schmidt-Schau� and

Smolka, 1990; Hollunder et al., 1990

]

). This is su�cient as long as the ter-

minology is acyclic because in this case we can expand all nonprimitive con-

cepts by their de�nitions until the concept descriptions contain only primitive

atomic concepts.

11

In

[

Nebel, 1990

]

it was shown that another perspective on subsumption de-

termination in terminologies is possible when considering terminological lan-

guages containing only value restrictions and concept conjunctions, namely,

to view acyclic terminologies as acyclic nondeterministic �nite state automata

(NDFA). Under this view it turns out that concept equivalence is reducible

to automaton equivalence. Similarly, concept subsumption is reducible to

inclusion of the languages accepted by the automata.

5.1 Viewing Terminologies as Automata

Restricting our attention to a terminological language containing only con-

cept conjunction and value restriction, a normalized terminology T can be

viewed as a set of NDFAs

A

hT;A;Si

= (R;A; �; A; S);

where A 2 A, S � A

p

[ f?g, and

1. R is the set of input symbols,

2. A is the set of states

3. A is the initial state,

4. S is the set of �nal states, and

5. the transition function �:A � (R [ f�g) ! 2

A

, where � is the empty

word, is de�ned as follows. If P 2 A

p

[ f>g then �(P;R) = ; for all

R 2 R. Similarly, for the empty word � we set �(P; �) = ;. Further-

more, �(?; R) = A

p

[ f?g, for all R 2 R [ f�g. For all nonprimitive

11

Note that these expanded concept descriptions may have a size exponential in the size

of the original terminology, however.
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concepts A 2 A

n

, we set B 2 �(A;R) if and only if T (A) contains a

subexpression of the form 8R:B and B 2 �(A; �) if and only if T (A)

contains the atomic concept B outside of a value restriction.

A word W is called the label of a path from A

0

to A

n

i� there is a

sequence of states A

0

; A

1

; : : : ; A

n

, and there is an associated sequence of

symbols R

0

; : : : ; R

n�1

, where R

i

2 R [ f�g, such that R

0

R

1

: : :R

n�1

= W

and A

i+1

2 �(A

i

; R

i

). Note that by construction of the NDFAs it follows

that a label W of a path from A

0

to A

n

is a role-chain such that A

n

can

be reached by W from A

0

in T , with the addition that if ? can be reached

by a role chain W from a concept A, then A can reach ? and all primitive

concepts by all role chains of the form WR

�

.

The word W is accepted by A i� W is a label of a path from the initial

state to one of the �nal states. The set of all words accepted by A is called

the language accepted by A, written L(A). For L(A

hT;A;Si

) we will also write

L(T;A; S). Based on this view, subsumption of concepts reduces to inclusion

of languages accepted by the associated NDFAs.

Theorem 1 Let T be an acyclic TL-terminology with A;B 2 A. Then

A �

T

B i� L(T;A; fPg) � L(T;B; fPg) for all P 2 A

p

[ f?g:

Proof Sketch: The proof follows by generalizing the proof of Theorem 2

in

[

Nebel, 1990

]

. Note that in order to decide inclusion of languages for the

automata A

hT;A;Si

generated from acyclic terminologies it su�ces to consider

only words up to a length of kA

n

k.

Intuitively, this theorem says that the set of constraints of the form 8W :P

(P 2 A

p

[f?g) that an instance of a concept has to obey is the same as the

set of words the corresponding automata with �nal state P recognize. This

reduction has a number of important consequences. For instance, it can be

used to show that concept subsumption in acyclic TL-terminologies is more

di�cult than perceived, namely, of the same complexity as the equivalence

problem for NDFAs that accept �nite languages, which is a co-NP-complete

problem

[

Garey and Johnson, 1979, p. 265

]

.

Corollary 5 Concept subsumption in acyclic TL-terminologies is co-NP-

complete.

Proof: Note that C �

T

D can be reduced to subsumption of atomic concepts

in polynomial time by adding appropriate de�nitions to the terminology, and

by Theorem 1 this problem can be reduced to a language inclusion problem,

i.e., subsumption is in co-NP. Since by employing Theorem 1, automaton
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equivalence for acyclic automata can be polynomially reduced to concept

equivalence in acyclic terminologies, which can be reduced in polynomial

time to subsumption (Prop. 1), subsumption is co-NP-hard.

This means subsumption in acyclic terminologies is co-NP-hard for all

terminological formalisms considered so far|even when subsumption deter-

mination over concept descriptions is polynomial. However, subsumption

determination in acyclic terminologies seems to be fairly e�cient in almost

all cases occurring in practice

[

Nebel, 1990

]

.

Additionally, Theorem 1 shows that instead of expanding de�nitions and

determining subsumption over concept descriptions, it is also possible to

transform the terminology into a form corresponding to a deterministic au-

tomaton for which equivalence and subsumption can be decided in polyno-

mial time|which is often more e�cient than the former strategy.

12

Finally,

it provides us with a tool that can be used to characterize subsumption in

cyclic terminologies.

5.2 Subsumption in General Terminologies

Since component cycles can be removed from a terminology without changing

the meaning of any concept (see Corollaries 1, 3, and 4), and since this can

be obviously done in polynomial time, let us assume in the following that

there are no such cycles.

13

This means we have to consider only restriction

cycles.

In trying to generalize the view spelled out above, one notes that in

general terminologies it is not enough to consider only �nite role-chains, but

in�nite role-chains are also important (see Prop. 7). In order to capture

this formally, let U(T;A; ;) be the set of all (in�nite) labels of in�nite paths

starting at the initial state A. Furthermore, sometimes even the atomic

concepts may play a role, as is highlighted by the \Tree" terminology (12){

(13)). Formalizing this aspect, let AW

0

BW

1

BW

2

: : : denote the in�nite path

starting at A which reaches B in�nitely often where W

j

are nonempty labels

from A to B for j = 0 and from B to B for j > 0.

Based on the view spelled out above, Baader

[

1990

]

analyzed subsumption

in general TL-terminologies and characterized subsumption as follows.

14

Theorem 2 Let T be a general TL-terminology, and let A;B be two atomic

concepts. Then

12

As a matter of fact, this technique is used in most implemented terminological rep-

resentation systems. See, for instance, the informal description of the �rst implemented

terminological reasoning component in kl-one

[

Lipkis, 1982

]

.

13

Note that component cycles correspond to �-cycles in the associated automata.

14

In

[

Baader, 1990

]

, also �-cycles are covered, which we eliminated beforehand.
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A �

gfp

T

B i�

L(T;A; fPg) � L(T;B; fPg) for all P 2 A

p

[ f?g.

A �

lfp

T

B i�

1. L(T;A; fPg) � L(T;B; fPg) for all P 2 A

p

[ f?g and

2. U(T;A; ;) � U(T;B; ;).

A �

T

B i�

1. L(T;A; fPg) � L(T;B; fPg) for all P 2 A

p

[ f?g and

2. for all in�nite paths BW

0

B

0

W

1

B

0

W

2

: : : there is a natural number k � 0

such that W

0

W

1

: : :W

k

is a label of a path from A to B

0

or to ?.

Proof: Generalize the proofs in

[

Baader, 1990

]

to cover ?.

A consequence of this result is that gfp-subsumption and lfp-subsumption

in general terminologies is more di�cult than subsumption in acyclic

terminologies|from a theoretical point of view.

Corollary 6 Concept subsumption w.r.t. lfp- and gfp-semantics in general

TL-terminologies is PSPACE-complete.

Proof: Since the PSPACE-complete problem of deciding language inclusion

for general NDFAs and the problem of deciding concept subsumption for gen-

eral TL-terminologies are interreducible for gfp-semantics, gfp-subsumption is

PSPACE-complete. For a proof of PSPACE-completeness of lfp-subsumption

see

[

Baader, 1990

]

.

Additionally, it shows that gfp-semantics has indeed the conceptually

easiest characterization. Furthermore, it leads directly to deterministic al-

gorithms for gfp-subsumption determination in general TL-terminologies,

namely, a transformation of the NDFA corresponding to the terminology

to a deterministic automaton, on which language inclusion can be decided in

polynomial time. Although, in general, the set of states which can be reached

by the initial state increases exponentially when transforming a nondetermin-

istic into an equivalent deterministic automaton, I expect that this behavior

occurs rather seldomly in the context of terminologies because terminolo-

gies are usually formulated in a way such that the corresponding NDFA is

\almost" deterministic.

Unfortunately, descriptive semantics does not lead to such a straightfor-

ward result. In

[

Baader, 1990

]

it is shown that subsumption w.r.t. descriptive
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semantics can be reduced to an inclusion problem for a class of languages

containing in�nite words (languages accepted by B�uchi automata).

An alternative characterization in terms of the structure of automata

can be given when the corresponding deterministic automaton (DFA) is

considered.

15

Let A

hT;A;Si

= (R;A; �; A; S) be a NDFA as de�ned above.

Then

b

A

hT;A;

b

Si

= (R;

c

A;

b

�;A;

b

S) shall denote the corresponding DFA, which

can be created using the subset-construction (see, e.g.,

[

Lewis and Papadim-

itriou, 1981, p. 59�

]

). Each state X 2

c

A is a subset of the states in the

NDFA, where singletons are identi�ed with elements.

For notational convenience,

b

�

�

will be used to denote the canonical exten-

sion of the transition function

b

� to words, i.e.,

b

�

�

(X; �) = X and

b

�

�

(X;RW ) =

b

�

�

(

b

�(X;R);W ).

Using these assumptions, concept equivalence for descriptive semantics

can be characterized in terms of language equivalence and the structure of

the DFA.

16

Informally, two concepts A and B are equivalent if and only if the

corresponding automatons accept the same language and there are not two

di�erent cycles with identical labels in the DFAs such that one is reachable

from A by a word W and the other one is reachable by the same word W

from B.

Proposition 10 Let T be a general TL-terminology. Then A �

T

B i�

1. L(T;A; fPg) = L(T;B; fPg) for all P 2 A

p

[ f?g and

2. for all words W 2 R

�

, if X =

b

�

�

(A;W ), Y =

b

�

�

(B;W ), and X 6= Y ,

then there is no word V 2 R

+

such that X =

b

�

�

(X;V ) and Y =

b

�

�

(Y; V ).

Proof: For the \if" direction assume that the concepts are not equivalent.

By Theorem 2, either the languages of the automata are not identical|

which violates the �rst condition in the proposition|or there exists w.l.g. an

in�nite path in in the NDFA of the form AW

1

B

0

W

2

B

0

: : : such that for no

k � 0 there is a label W

1

W

2

: : :W

k

of a path from B to B

0

.

Note that for a path of the above form in the NDFA starting at A there

is a corresponding path in the DFA with the same label and there is at least

one state Z 2

c

A that appears in�nitely often and B

0

2 Z, i.e. there is an

in�nite path AV

1

ZV

2

Z : : : in the DFA. Starting at B in the DFA, we have

a similar path and a sequence of states Z

1

; Z

2

; : : : such that BV

1

Z

1

V

2

Z

2

: : :.

15

A DFA has no �-transitions and the transition function does not map states and

symbols to sets of states but to single states.

16

Note that it is not possible to describe concept subsumption in terms of the structure

of the DFA.
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Since there are only �nitely many states in the DFA, we know that there

are i; j such that Z

i

= Z

j

. Assuming that Z = Z

i

= Z

j

would result in the

conclusion that there is a number k � 0 s.t. there is a path BW

1

W

2

: : :W

k

B

0

in the NDFA, which contradicts our assumption. Assuming that Z 6= Z

i

violates the second condition in the proposition. Hence, if the concepts are

not equivalent, then one of the conditions will be violated.

For the \only if" direction assume that the concepts are equivalent, but

one of the conditions is violated. If the �rst condition is violated, then by

Theorem 2, the concepts cannot be equivalent. If the second condition is

violated, then there are words W , V and states X;Y 2

c

A such that the

condition is violated. Without loss of generality, let us assume X � Y 6= ;.

Choose one element B

0

in X � Y such that there is path B

0

V

n

B

0

in the

NDFA, for some n > 0. Such an element exists because of the following

reasons. Since X =

b

�

�

(X;V ), each element in X must be reachable in the

NDFA by V from some element in X. Assuming that there is no state

B

0

2 X � Y s.t. B

0

V

n

B

0

is a path in the NDFA leads to the conclusion that

some elements in X � Y must be reachable in the NDFA by V from some

elements in Y \X. This, however, means Y 6=

b

�

�

(Y; V ).

Finally, using the chosen state B

0

, it is possible to �nd an in�nite path of

the formAWB

0

V

n

B

0

V

n

: : : in the NDFA such that there is no natural number

k with BWV

n

k

B

0

. Thus, the concepts cannot be equivalent by Theorem 2.

This observation leads to a PSPACE decision procedure for equivalence

(and, thus, subsumption) of concepts w.r.t. to descriptive semantics.

17

Corollary 7 Concept subsumption w.r.t. to descriptive semantics in general

TL-terminologies is in PSPACE.

Proof: Guessing two words W;V and two sets of states S; S

0

� A, we

can verify in polynomial space that the the second condition in Prop. 10

is violated. Since the �rst condition can be checked in polynomial space,

as well, concept equivalence is in PSPACE. Since concept equivalence and

subsumption are interreducible in linear time, concept subsumption is also

in PSPACE.

It is by no means obvious, however, whether subsumption w.r.t. descrip-

tive semantics is PSPACE-complete or easier.

17

The same result follows from the reduction to inclusion of languages accepted B�uchi

automatons

[

Baader, 1990

]

.
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5.3 Terminological Cycles in more Powerful Lan-

guages

After having now an idea what subsumption algorithms for general termi-

nologies look like and how di�cult subsumption determination can be, there

is the natural question of how to extend this result to more powerful termi-

nological languages.

In

[

Nebel, 1989, Ch. 5

]

, a slightly more powerful language was analyzed

with respect to terminological cycles. This language contains TLN plus sub-

roles and negation of primitive concepts. It was shown that subsumption

w.r.t. descriptive semantics is still decidable for this formalism by using an

argument to the e�ect that it is always possible to consider only models up

to a certain �nite size in order to decide subsumption. Generalizing this ar-

gument, it seems possible to prove decidability for other languages. However,

there are, of course, limits. In order to demonstrate where these limits are,

TL will be extended in a way such that it captures an essential subset of the

terminological language used in the classic system

[

Brachman et al., 1989;

Borgida et al., 1989

]

.

Let us assume a set F of single-valued roles, also called features

18

in the

following, (denoted by f) that is a subset of R. The interpretation of these

features is constrained by

k[[f ]]

I

(d)k � 1 for all d 2 D and all f 2 F,

Chains of features are denoted by v and w. These are interpreted in the same

way as role chains (see Section 4.2). Finally, we de�ne a new description-

forming operator v # w, called coreference constraint, intended to denote

all elements such that the role-�ller of v is identical to the role-�ller of w,

formally:

[[v # w]]

I

= fd 2 Dj [[v]]

I

(d) = [[w]]

I

(d)g

Adding this operator to TL results in a terminological language|we will

call TLC|with a very interesting property. Subsumption over concept de-

scriptions is polynomial

[

Donini et al., 1990

]

, i.e., subsumption in acyclic

TLC-terminologies is decidable,

19

but if terminological cycles come into play,

subsumption becomes undecidable.

The claim above will be shown by reducing the word problem in Thue

systems to subsumption in general TLC-terminologies using the same proof

18

I use the term features because single-valued roles are essentially the same as features

in feature logic (see, e.g.,

[

Nebel and Smolka, 1990

]

).

19

Note that coreference constraints lead to undecidability of subsumption in acyclic ter-

minologies if the role-chains in the constraint are not features but ordinary roles

[

Schmidt-

Schau�, 1989

]

.
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technique as in

[

Schmidt-Schau�, 1989

]

and

[

Smolka, 1989, Sect. 8

]

. A Thue

system is a �nite set of unordered pairs S =

n

fv

i

; w

i

g

o

, where v

i

and w

i

are

words over an alphabet F. Two words v;w 2 F

�

are interderivable in one

step, written v

S

$w, i�

v = xv

j

y and w = xw

j

y for some fv

j

; w

j

g 2 S

Two words v;w are interderivable i� they are related by the transitive, reex-

ive closure of

S

$, which will be denoted by

S

,. Note that

S

, is an equivalence

relation on F

�

. The word problem in Thue systems is the problem to decide

whether v

S

,w. It is well known that this problem is undecidable (see e.g.

[

Lewis and Papadimitriou, 1981, Sect. 6.4

]

).

Lemma 2 Let S =

n

fv

i

; w

i

g

o

be a Thue system over an alphabet F = ff

j

g,

and let T be the following TLC-terminology:

T (A) =

u

8f

j

:A u

u

v

i

# w

i

:

Then

v

S

,w i� [[A]]

I

� [[v # w]]

I

for all models I of T .

Proof: Let I be a model of T and assume v

S

$w, where v = xv

i

y and w =

xw

i

y. Now we know for all d 2 [[A]]

I

: [[x]]

I

(d) � [[A]]

I

(because of

u

8f

j

:A).

From that it follows that [[xv

i

]]

I

(d) = [[xw

i

]]

I

(d), hence [[v]]

I

(d) = [[w]]

I

(d) for

all d 2 [[A]]

I

. By induction, we can conclude that [[A]]

I

� [[v # w]]

I

if v

S

,w.

For the other direction assume that [[A]]

I

� [[v # w]]

I

for all models I of

T . Let [x]

S

denote the equivalence class of x w.r.t.

S

,. Now we construct a

particular model of T as follows:

D = f[x]

S

j x 2 F

�

g

[[f

j

]]

I

=

n

[x]

S

7! f[xf

j

]

S

g

o

[[A]]

I

= D:

Obviously, I is a model of T since

1. for all d 2 [[A]]

I

it holds that [[f

j

]]

I

(d) 2 [[A]]

I

for all f

j

2 F, and

2. [[v

i

]]

I

(d) = [[w

i

]]

I

(d) for all pairs fv

i

; w

i

g of the Thue system S because

[[v

i

]]

I

([x]

S

) = f[xv

i

]

S

g = f[xw

i

]

S

g = [[w

i

]]

I

([x]

S

).
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Because of our assumption, we know that [[v]]

I

(d) = [[w]]

I

(d) for all ele-

ments d 2 [[A]]

I

= D. Thus, in particular, we have [[v]]

I

([�]

S

) = [[w]]

I

([�]

S

),

hence [�v]

S

= [�w]

S

, hence [v]

S

= [w]

S

, which means v

S

,w.

From that the undecidability of subsumption w.r.t. descriptive semantics

follows immediately.

Theorem 3 Subsumption w.r.t. descriptive semantics in general TLC-termi-

nologies is undecidable.

Proof: Since the word problem in Thue systems is undecidable and it can be

reduced to subsumption w.r.t. to descriptive semantics, subsumption w.r.t.

descriptive semantics is undecidable.

As should be obvious, adding coreference constraints to our language

does not change the monotonicity of �, i.e., it makes sense to ask about the

behavior of subsumption under lfp- and gfp-semantics. It is easy to see that

the above result applies to gfp-semantics, as well.

Corollary 8 Subsumption w.r.t. gfp-semantics in general TLC-terminologies

is undecidable.

Proof: Since the �rst part of Lemma 2 applies to all models, it applies to

gfp-models, as well. The model constructed in the second part of the proof

is a gfp-model, as can be easily veri�ed.

Unfortunately, the proof technique used above does not seem to be usable

for showing lfp-subsumption to be undecidable. However, since we ruled out

this semantics in Section 4.5 because of other reasons, we will not dig deeper

at this point.

In general, these undecidability results mean that terminological cycles

are not always tolerable. In particular, when coreference constraints are

part of the language, the unrestricted use of terminological cycles should be

prohibited.

6 Conclusions

Terminological cycles present conceptual and algorithmic problems for ter-

minological representation systems. As shown in Section 4, it is possible to

extend the standard semantics of terminological representation formalisms to

cover cyclic terminologies. However, it is not completely obvious which style

of semantics is the best one. Greatest �xpoint semantics has the advantage
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that it leads to a conceptually simple subsumption relation, which is iden-

tical to language inclusion of the nondeterministic automata corresponding

to the terminology. However this style of semantics cannot be extended to

cover more powerful formalisms. Descriptive semantics, on the other hand,

is the most straightforward extension of the standard semantics, covers all

conceivable terminological formalisms, and permits interesting inferences in

hybrid representation systems, but leads to subsumption relationships which

are not fully obvious|except one considers the structure of the determin-

istic automata corresponding to a terminology. Finally, it was shown that

the unrestricted use of terminological cycles can lead to undecidability. In

particular, it was shown that adding terminological cycles to an essential

subset of the terminological formalism used in the classic systems results

in undecidability.
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