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Abstract

Hybrid knowledge representation formalisms consist of two or more di�erent subformalisms for

representing di�erent kinds of knowledge or knowledge in di�erent kinds of representation formats. For

a semantically well-founded hybrid formalism not only a precise semantics for each of the participating

subformalisms has to be given but a semantics for the interrelationship between these subformalisms

as well. A hybrid representation system therefore has to be implemented as a hybrid reasoning system

taken into account these semantic models. The BACK system as an instance of this class of systems will

be described with respect to the underlying semantic model and the demands for a reasoning component

as one part of the realization of the formalism. The consequences and limits for the implementation of

the BACK system are discussed.

1 Introduction

Aaron Sloman pointed out very clearly in [22] the need for di�erent knowledge representation formalisms

for the adequate representation of a realistic portion of the world. This position, contrasting the view that

one uniform formalism is su�cient (e.g., [8]), is nowadays widely accepted. The most visible consequence

of this is the emerging number of systems|so-called hybrid systems|supporting more than one knowledge

representation formalism. Problems with this hybrid approach to knowledge representation and reasoning

are that often system \seem to appeal to `the more the merrier,' without any clear idea of how merrier

is better" [4]. In particular, it is often not obvious how the di�erent knowledge representation formalisms

act together to form a coherent whole.

First of all, let's clarify some terms. If we talk about a knowledge representation formalism, we mean a

formal language with given syntax and semantics.
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This language can be analyzed for its expressivness and

naturalness with respect to its intended purpose, and for decidability and inherent complexity of inference

algorithms with respect to the formal semantics.

A knowledge representation system is a \materialization" of a formalism supporting the interpretation of

well-formed expressions of a knowledge representation language by means of inference algorithms realizing

the semantics to a certain extent. These inference algorithms should be sound|they should not lead to

wrong propositions|and in the ideal case they should be complete|be able to deduce any true proposition.

As it turns out, however, in the real world the latter goal can only be achieved if either the formalism is

very simple or if we allow for arbitrary long computations. Therefore, often the solution is to provide only

the obvious, easy to compute inferences and ignore the di�cult ones.

Of course, a knowledge representation system is more than just a mechanized reasoner. Another

task for such a system is the maintenance of represented knowledge, i.e., it has to account for additions

to and updates of the represented knowledge. In fact, this is the main di�erence between a knowledge

representation system and a static deductive calculus (or a programming language). Furthermore, any

knowledge representation system claiming to be usable has to provide a friendly interface to the human

user.
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In the following, however, we will ignore the latter and focus on the former two points.

In the ideal case, a hybrid knowledge representation system is an implementation of a hybrid knowledge

representation formalism, consisting of two or more di�erent subformalisms. However, the mere combina-

tion of formalisms does not necessarily result in a hybrid formalism. A kind of \glue" is needed in order

to constitute a hybrid formalism consisting of

�
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In the sense of, e.g., [14] or [7].
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And usually, a large fraction of code in a knowledge representation system is devoted to the user interface.
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1. a representational theory, explaining what knowledge is to be represented by what formalism, and

2. a common semantics for the overall formalism, explaining in a semantic sound manner the relationship

between expressions of di�erent subformalisms.

The representational theory should explain why there are di�erent subformalisms, what their bene�ts

are, and how they relate to each other. An answer should at least refer to adequacy criteria such as (cf.

[13]):

1. epistemological adequacy, i.e., that the subformalisms are necessary to represent epistemological

di�erent kind of knowledge (e.g., analytic and contingent knowledge), or

2. heuristic adequacy, i.e., that the di�erent subformalisms permit representation of the same knowledge

in di�erent ways for reasons of e�ciency.

A necessary precondition for gluing things together is that their shapes �t, a fact which might be violated

in designing a hybrid formalism, at least in the case where the subformalisms are intended to represent

epistemological di�erent kinds of knowledge. For example, if one subformalism permitted de�nition of terms

by using time relationships, but none of the other subformalisms referred to time at all, the subformalisms

would be in some sense unbalanced. This, however, can be easily uncovered by inspecting the common

semantics.

There is a more subtle sense of how two formalisms in such a hybrid system can be unbalanced, which

has to do with the fact that most knowledge representation systems are necessarily incomplete in their

reasoning in order to provide answers in reasonable time. Because of this incompleteness there could be

situations where one subformalism allows to express something which obviously should have some impact

on another subformalism according to the common semantics, but the system does not realize this because

it's reasoning is incomplete in this aspect. These \black holes" may be there because the incompleteness

has principal reasons or because the subformalism is not heuristically adequate for this aspect. In any

case, the subformalisms of the system appear to be unbalanced. Although the term balancedness is a little

bit vague, it can be captured by the following principle of balancedness in hybrid representation systems:

If a representation construct in a subformalism of a hybrid formalism suggests that its usage has

some impact on knowledge represented with another subformalism (according to the common

semantics), then this should be realized by the reasoning component of the underlying system.

An example for a system with unbalanced subformalisms is KL-TWO [23]: While it is possible to de�ne

concepts with a very rich language, only a fraction of it is used for stating contingent propositions. In

particular, the number restrictions used in the NIKL subformalism has only a very limited impact on the

PENNI subformalism because the latter is not heuristically adequate to deal with cardinalities.

In the last few years, much e�ort has been devoted to the development of hybrid systems. Besides

systems favoring multiple representations for the sake of naturalness and e�ciency of the represented

knowledge (for instance the CAKE system [20]), systems combining formalisms for the representation of

knowledge according to the distinction Frege made between meaning (Sinn) and reference (Bedeutung)

were developed. In particular, the connection of KL-ONE [3] derivates as formalisms for representing

terminological knowledge (TBoxes) with formalisms for representing assertions about the actual state of

the world (ABoxes) has been investigated
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(e.g., KRYPTON [4], KL-TWO [23], MESON [5], BACK [11]

and KANDOR [17]). The main points in this research were the design of an appropriate ABox, sometimes

requiring severe restrictions of the expressivity in the TBox (e.g., in KRYPTON), and developing means

for connecting the reasoning of TBox and ABox.

In the following we will present one particular solution to these problems pursued in BACK

4

. The

following design criteria have been taken into account in developing BACK:

1. The subformalism of the BACK system should be balanced.

2. The BACK formalism should permit tractable inference algorithms covering almost all possible

inferences

5

.

3. The ABox formalism of BACK should be able to represent incomplete knowledge in a limited manner

(cf. [10]).

4. The BACK system should allow for extending the knowledge base incrementally (we do not consider

retractions here, but cf. [16]).

3

A rough similarity of this distinction is known in the database area with the distinction of database schemata and

database contents, but these approaches take the schema de�nition as a source of integrity constraints and not as a formalism

for the intensional de�nitions of terms.
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Unfortunately, complete and tractable inference algorithms are possible only for very simple TBoxes (cf. [2] and [15]).
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5. The BACK system should reject ABox entries which are inconsistent.

The rest of the paper is divided in four parts. The next section gives a brief introduction to the

KL-ONE-alike TBox employed in BACK. Then the BACK ABox is discussed, and it is shown how we

achieved the goals concerning the formalism stated above. Finally, we investigate what kind of inferences

the combination of the ABox and the TBox permit, and how these hybrid inferences can be realized

algorithmically. This leads to a new view on the realization inference as discussed in [12], which can be

characterized as a \symbolic constraint propagation" process.

2 Representation and Reasoning in the BACK TBox

KL-ONE as described in [3] is perfectly well suited for the introduction of a terminology. It allows de�ning

concepts by stating super-concepts and the restrictions on relationships to other concepts, which are called

roles. Concepts and roles correspond roughly to generic frames and slots in the frame terminology. Unlike

frames, however, concepts are understood as purely intensional. Furthermore, concepts may be introduced

as primitive or de�ned. In the former case, the concept description speci�es only the necessary conditions,

while in the latter case the concept description is necessary and su�cient.

The small formal language given in Figure 1, which is actually a subset of the BACK TBox formalism,

will be used as our TBox formalism in this paper.

hterminologyi ::= fhterm-introductioni j hrestrictionig

�

hterm-introductioni ::= hconcept-introductioni j

hrole-introductioni

hconcept-introductioni ::= hatomic-concepti = hconcepti j

hatomic-concepti � hconcepti

hrole-introductioni ::= hatomic-rolei = hrolei j

hatomic-rolei � hrolei

hconcepti ::= hatomic-concepti j

(and hconcepti

�

) j

(all hrolei hconcepti) j

(atleast hnumberi hrolei) j

(atmost hnumberi hrolei)

hrolei ::= hatomic-rolei

hrestrictioni ::= (disjoint hconcepti hconcepti)

Figure 1: BNF De�nition of TF

Using this language, we may, for instance, introduce the (slightly arti�cial) concept Modern-team.

6

Assuming that Human, Woman, and Team are already introduced as concepts and that member is a role

with leader as a subrole, a de�nition of Modern-team might look as follows:

Modern-team = (and Team

(atmost 4 member)

(all member Human)

(atmost 1 leader)

(all leader Woman))

This example shows some of the important concept-forming operators which may be used in order to

create new concepts, namely specialization of a concept, expressed by the occurence of a concept name

inside an and expression; number restriction of a role, expressed by an atmost or atleast expression;

and value restriction of a role, expressed by an all expression. In KL-ONE, concepts and roles are usually

graphically depicted (cf. [3]), which may be sometimes easier to comprehend. However, it does not make

any di�erence whether a linear notation or a graphical network is used, provided that a formal semantics

can be given.

6

In the following, concept names will be capitalized.
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Reasoning in such a TBox is mostly concerned with the determination of subsumption,

7

i.e., whether

one concept is more special or more general than another. For instance,

Small-team = (and Team (atmost 5 member))

is a more general concept than Modern-team as de�ned above, even though this relationship has not been

explicitly stated. Any object in the world which could be described as a Modern-team is a Small-team as

well.

In order to capture this relationship formally, let us de�ne the semantics of our small TBox language.

We will follow here the ideas spelled out in [4], specifying the semantics model-theoretically. That is, any

concept and role is associated with its extension|with the class of objects and relationships denoted. The

subsumption relationships should then be the necessary set inclusion of the extensions.

De�nition 1 (Extension Function) Let T be a terminology using TF syntax.. Let D, the domain, be

any set. Let E be any function from concepts and roles to subsets of D and D � D, respectively. Then E

is called an extension function wrt to T i�:

E [c

1

] \ E [c

2

] = ; if `(disjoint c

1

c

2

)' is in T

E [t] = E [def ] if ` t = def ' is in T

E [t] � E [def ] if ` t � def ' is in T

E [(and c

1

: : : c

n

)] =

T

n

i=1

E [c

i

]

E [(all r c)] = fx 2 Dj 8y : hx; yi 2 E [r] ) y 2 E [c]g

E [(atleast n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E [r]gk � ng

E [(atmost n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E [r]gk � ng

Recalling our argument that subsumption between concepts should be mirrored as a necessary set

inclusion between extensions of concepts and roles, we can now precisely say what is meant by that.

De�nition 2 (Subsumption) Let T be a terminology. Then we say the term t

1

is subsumed by the term

t

2

in T i� for any domain D and any extension function E of T it holds that E [t

1

] � E [t

2

].

Inference algorithms computing this relationship are described, for instance, in [21]. As it turns out,

a complete inference algorithm, even for the small language described, is intractable [15]. However, as

mentioned above, we will be satis�ed with a sound algorithm as long as all obvious relationships are

uncovered|a claim very similar to the one made by Allen about his time reasoning system [1].

Summing up, KL-ONE-alike formalisms are very well in the area of de�ning concepts and reasoning

about relationships between these concepts, but they are weak in stating any contingent truth about the

world, for example that \KIM is a Woman, and that she is a member of some Modern-team, but not the

leader of that Team." Another example would be that \there is at least one Modern-team." In order to

compensate for this, an ABox has to be employed, a topic we will discuss next.

3 The Design of the BACK ABox

The formalisms for representing terminological knowledge in the hybrid systems mentioned di�er only in

what concept- and role-forming operators they provide|sometimes motivated by arguments concerning

the computational complexity. The situation with ABoxes, however, is quite di�erent. Here we meet a

variety of approaches, e.g.:

KRYPTON Full �rst-order predicate logic.

KL-TWO Variable-free predicate logic with equality.

KANDOR Object-centered, frame-like schema.

MESON Object-centered, frame-like schema.

Using predicate logic (�rst-order or restricted) as the ABox has several advantages. One is that it gives

a clear account to a common semantics for the entire formalism

8

. Another bene�t of predicate logic is its

plasticity as Hayes called it [6]|the possibility to give partial descriptions and to extend a knowledge base

incrementally. On the other hand, there are a lot of disadvantages. One obvious problem with unrestricted

�rst-order predicate logic are the computional costs, a fact which exclude such systems from being used

as a knowledge representation system in practical AI systems. Besides that, there are also problems with

the expressiveness of predicate logic. For instance, there is no easy way to state that a given description

7

Any other meaningful relationship between concepts or property of a concept can be reduced to subsumption.

8

In these approaches concepts are viewed as 1-place predicates and roles as 2-place predicates.
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is exhaustive or that di�erent constants denote di�erent objects. The latter two properties are responsible

for the fact that number restrictions on roles are omitted from the KRYPTON TBox and that they are

almost mere comments in the KL-TWO TBox.

For frame-like ABoxes as employed in KANDOR or MESON the situation is opposite. The unique

name assumption and closed world assumption (cf. [19]) are taken for granted, very similar to conventional

data bases. This forces the user of such a system to give a complete description of the state of a�airs

and prohibits incremental \monotonic" additions. However, this kind of representation|called \vivid" by

Levesque in [9]|allows for elegant and simple inference algorithms. In the case of hybrid KL-ONE systems

it implies that number restrictions and value restrictions of the TBox can be fully utilized in the ABox. A

short note about formal semantics might be in order here. While frame-like schemata are often viewed as

some ad hoc data structure, it is nevertheless possible to specify a precise formal semantics for at least a

subset (cf. [7]).

In BACK we tried to combine the bene�ts of both approaches. An object-centered language was chosen

to describe objects of the domain. However, instead of insisting that all role �llers for a given object have

to be speci�ed, the information can be incomplete and may be re�ned later. For this purpose the follwing

operators are provided:

1. stating the cardinality of a role-�ller set, e.g., \MARY has at least 2 children;"

2. disjunctive information on role �llers, as e.g., \MARY is married to JOHN or TOM;"

3. stating the exhaustiveness of the provided information selectively (cf. [6]), e.g., \MARY has as a

friend TOM, and these are all friends MARY has."

We will not describe the entire assertional formalism here,

9

but specify only the part of the ABox which

will be used in the follwing examples (cf. Figure 2).

hworld-descriptioni ::= (hobject-descriptioni j hrelation-descriptioni)

�

hobject-descriptioni ::= (hatomic-concepti hobjecti)

hrelation-descriptioni ::= (hatomic-rolei hobjecti hobjecti) j

(hatomic-rolei hobjecti (atleast hnumberi)) j

(hatomic-rolei hobjecti (atmost hnumberi)) j

Figure 2: BNF De�nition of AF

Obviously, the assertional formalism AF is very weak. We just can state that an object is in the

extension of some concept amd that two objects are related, or that one object is in relation to a number

of other objects. The semantics of this formalism can be described as in the following de�nition.

De�nition 3 (Model of a World Description) Let W be a world description in AF syntax. Let D,

the domain, be any set. Let N

O

; N

C

; N

R

be sets of objects, atomic concepts, and atomic roles, respectively.

Let I be a function

I : N

O

! D

I : N

C

! 2

D

I : N

R

! 2

D�D

Then the structure hD; Ii is called a model of W i�

I[o

1

] 6= I[o

2

] if o

1

; o

2

2 N

O

and o

1

6= o

2

I[o] 2 I[c] if (c o) is in W

hI[o

1

]; I[o

2

]i 2 I[r] if (r o

1

o

2

) is in W

kfhI[o]; xi 2 I[r]gk � n if (r o (atleast n)) is in W

kfhI[o]; xi 2 I[r]gk � n if (r o (atmost n)) is in W

9

For a more complete treatment cf. [10].
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4 Combining ABox and TBox: Hybrid Reasoning

While it appears to be very obvious what kind of inferences are granted by the separate formalisms, the

interesting problems stand up if we combine the reasoning of the TBox and the ABox.

The TBox alone is only good for terminological inferences, including detecting implicit specialization

relationships between concepts, recognizing contradictory concepts and computing the properties inherited

from superconcepts. The ABox alone, depending on its avor, can draw the inferences sanctioned by �rst-

order logic (in the KRYPTON case), by variable-free predicate logic with equality (in KL-TWO), or it

can infer whether a domain object is related to other objects, and how many there are (in the case of

object-centered ABoxes), as in our case.

In order to demonstrate the interaction between ABox and TBox in BACK let us investigate a small

example. Let us assume the concept de�nitions given in Figure 3.

Man � Human

Woman � Human

(disjoint Man Woman)

Team = (and Set (all member Human) (atleast 2 member))

Male-team = (and Team (all member Man))

Small-team = (and Team (atmost 5 member))

leader � member

Modern-team = (and Team (atmost 4 member)

(atleast 1 leader) (all leader Woman))

Figure 3: A Formal Terminology Using TF Syntax

Furthermore, let us assume that object decriptions are entered into the system as displayed in Figure 4.

If we interpret this partial \world description" taking the terminology given in Figure 3 into account, there

are a number of relationships which can be deduced. For instance, the JUNK team is obviously a Small-team

as well, because Small-team subsumes Modern-team. However, there are a number of other relationships

as well. In order to get an idea what can be inferred from such world descriptions combined with a

terminology, it might be helpful to have a formal de�nition.

(Man TOM)

(Man DICK)

(Man HARRY)

(Modern-team JUNK)

(member JUNK TOM)

(member JUNK DICK)

(member JUNK HARRY)

(member JUNK KIM)

(Male-team CHAUVIS)

(member CHAUVIS KIM)

Figure 4: A Formal World Description

Interpreting a terminology and a world description in combination means that we have to relate the

models of a world description and the extension functions of a terminology somehow. While we may view

extensions of a terminology as possible structures induced by the way we have organized our vocabulary,

world descriptions are partial descriptions of how the world actually is supposed to be. However, such

partial descriptions should, of course, respect the relationships layed down in a terminology. Respecting a

terminology means for a world description that the models we really intend to have are those which are at

the same time extensions of a terminology.

De�nition 4 (Models Respecting a Terminology) Any model hD; Ii of a world descriptionW is said

to respect the terminology T , written hD; Ii

T

, i� there is an extension function E over D such that it holds

for the restriction of I to atomic concepts and roles I

N

C

[N

R

, and for the restriction of E to introduced

terms E

N

d

that: I

N

C

[N

R

= E

N

d

.
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Using the set of models respecting a terminology, we can say which descriptions are entailed by a world

descriptions and a terminology, as spelled out in the next de�nition:

De�nition 5 (Hybrid Entailment) Let W be a world description and T be a terminology. Then we

say a object or relation description d is hybridly entailed by W and T i� the models of W respecting T

are the same as the models of W extended by d respecting T .

Taking these de�nitions into account, we see that there are a couple of descriptions which are entailed.

For instance, it must be the case that KIM is a Man as well, because all members of a Male-team have to

be. Moreover, because at least one of the members of the JUNK team has to be a Woman, namely, the

leader, there is a contraction in this world description. There is actually no model of the world description

displayed in Figure 3 respecting the terminology in Figure 4.

5 Realization as Constraint Propagation

In order to �nd such contradictions and, more generally, to determine the concepts which most accurately

describe a given object, a forward inference technique called realization [12] is usually employed. Realization

is very similar to classi�cation, an inference technique used to maintain the taxonomy of concepts in the

TBox according to subsumption [21]. In fact, realization can be viewed as abstraction|generating a

description in terms of the TBox|followed by classi�cation of this description (cf. [23]).

A �rst approximation to the implementation of this inference could be realized as follows. After a new

assertion about an indivdual enters the ABox (either a new concept or a new role �ller) the following has

to be done:

1. Propagate all role �llers of subroles to the corresponding superrole.

2. Determine the cardinality of the role �ller sets for each role (this can be a range in the case of

incomplete information). This cardinality information is used as the actual number restriction for

the role in the abstraction process.

3. If a role-�ller set is closed, i.e., all potential candidates are known, then the generalization

10

of the

descriptions of all potential role �llers can serve as the actual value restriction in the abstraction

process.

4. Now, the generated number and value restrictions, the old description of the individual as well as the

new one can be used to construct a concept de�nition which can be classi�ed and after that serve as

the new most general specialization (MSG) of the object under investigation.

This algorithm does take into account all information which is supplied locally to an individual, but

ignores any non-local consequences. In the example of the last section, we would at least require that

after the abstraction process the role �llers are to be specialized according to the value restriction of the

Male-team. Additionally, we note that in order to detect the contradiction in the example we also have

to account for the case that the specialization of an individual (KIM from Human to Man) can lead to the

specialization of another individual (JUNK from Modern-team to the empty concept) the �rst one is a role

�ller of.

If we analyze this algorithm more thoroughly, we may note that this process can trigger other specializa-

tions which in turn may propagate restrictions. Because this sounds very expensive from a computational

point of view, one could argue that because the system reasoning process is incomplete anyway, it is legiti-

mate to restrict the resources allocated for the realization process and leave such situations alone. And this

was indeed the �rst approximation to a solution we chose. However, this is not a general incompleteness

of the inference algorithm, but it depends on the order of input! If, in our example, the order of input

between the JUNK and the CHAUVI were reversed, the contradiction would be easily detected.

That is certainly not the kind of behaviour we expect from a knowledge representation system. Although

it is clear that we have to live with incomplete reasoners, this incompleteness should be systematic, perhaps

even describable by a systematic, model-theoretic approach (cf. [18]). In conclusion, if we claim to integrate

the reasoning of two formalisms, a minimal requirement is that the inferences are independent of the order

of input.

The only solution to this problem is to employ some sort of symbolic constraint propagation.

11

After a

new MSG is determined for some individual I,

10

Generalization is not a concept-forming operator and there seems to be no easy way to assign a compositional semantics

to it. However, it is easy to build such a concept structurally, which is the most specialized one subsuming a given set of

concepts.

11

A fact ignored in KANDOR and the old KL-TWO system. Meanwhile, in KL-TWO this de�ciency has been removed [24].
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1. all role �llers at I have to be specialized to the corresponding value restriction (forward propagation);

2. additionally, all individuals, which mention I as a role �ller have to be checked whether it is possible

to specalize them (backward propagation); this can only happen if the corresponding role-�ller set is

closed;

3. �nally, these steps have to be performed for all individuals which get new MSGs during this process.

For the example above, this su�ces to detect the contradiction. The JUNK team will be specialized to

the following concept:

(and Modern-team (all member man))

In classifying this concept, the value restriction of the member role is propagated to the subrole leader

(a subrole has to adhere to the value restriction of its superrole) resulting in a value restriction of (and

Man Woman) which apparently is contradictory.

Altogether, this process assures that incompleteness depending on the order of input cannot appear.

However, it also sounds very costly from a computational point of view. It is even not very clear whether

this process always terminates.

Fortunately, the process of propagating MSG is not a general constraint propagation process. A �rst

fact about this process, we may note, is that backtracking cannot occur. That means if we encounter a

contradiction there is no way to resolve it, but to reject the input which led to the contradiction. This

tells us that we will not get a combinatorial explosion because of reasoning by case. There are more facts

which constrain the propagation space:

� An individual which gets a new MSG by backward propagation cannot trigger new forward propa-

gations. This is because the new MSG does reect the current role �llers as necessary and su�cient

conditions, i.e., there cannot be any new restrictions on role �llers.

� Backward propagation leads to a new MSG, if the role-�ller set is closed and all other role �llers are

already more specialized than the value restriction, a situation which does not occur very often.

� Forward propagation has a signi�cant non-local e�ect only if the chain of individuals the value

restrictions are propagated along corresponds to a line of concepts which are specialized in parallel,

which is not very likely.

� In the worst case, the number of recomputations of an MSG during forward and backward propagation

is bounded by the product of the number of individuals and the number of concepts in the TBox

(before the entire process starts). This, however, would result in MSGs which cannot be specialized

further, i.e., the upper bound can be divided by the number of input operations.

Finally, we should discuss where incompleteness might arise in in the integrated reasoning process.

First, realization cannot be more complete than classi�cation. This means that some very weird cases

of contradictions cannot be recognized (cf. [15]). Furthermore, the abstraction process is a source of

incompleteness as well. In our example, we could prove that KIM is necessarily a Woman after the �rst

two inputs; however, the abstraction failed to recognize this. The reason is, that this would require some

kind of reasoning by case we strictly avoided because of the computional costs.

6 Conclusion

The hybrid reasoning component of the BACK system was presented and disscussed as the \materialization"

of a hybrid representation formalism. In particular, the \realization" inference was discussed and it was

shown that a symbolic constraint propagation technique is necessary to insure the global propagation of

consequences of incremental, local additions of properties. Together with the completion and abstraction of

local properties this mechanism glues together the Abox and Tbox of BACK with respect to the underlying

semantics.
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