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Abstract

In the last several years the hybrid approach to Knowledge Representation has received

much attention, because it was felt that one monolithic knowledge representation formalism

cannot meet all representational demands. In this paper we will present one particular hybrid

knowledge representation system, BACK, concentrating on matters of how to integrate di�erent

subformalisms and their interpretation. In particular, `balancing the expressiveness' of the

respective subformalisms and combining the reasoning of the subsystems in a sound way is

discussed. This will lead to a new view on the realization inference, �rst described by Mark,

as a process of constraint propagation.

1 Introduction

Aaron Sloman pointed out very clearly in [Sloman 85] the need for di�erent knowledge represen-

tation formalisms for the adequate representation of a realistic portion of the world. This position

contrasting the view that one uniform formalism is su�cient (e.g., [Kowalski 80]) is nowadays widely

accepted. The most visible consequence of this is the emerging number of systems|so-called hybrid

systems|supporting representation of knowledge by more than one formalism. The actual situation

in research on hybrid systems is described in [Brachman et al 85, p. 532]:

Many of the today's knowledge representation systems o�er their users a choice of

more than one language for expression of domain knowledge. While the idea has been

important to the �eld for many years, `multiple representations' seems to have recently

become a popular catch phrase. Many of the modern expert system development en-

vironments wave the polyglot banner, and except perhaps for some stalwart �rst-order

logicians, most everyone would probably agree that one uniform language will not serve

all representational needs.

It is sometimes di�cult to discern the true value of multiple languages; some of

the commercial development tools seem simply to appeal to the `the more the merrier',

without any clear idea of how merrier is better.

First of all, let's clarify some terms. If we talk about a knowledge representation formalism, we

mean a formal language with given syntax and semantics
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. This language can be analyzed for its
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In the sense of, e.g., [McDermott 78] or [Hayes 79].
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expressivness, naturalness with respect to its intended purpose, decidability and inherent complexity

of inference algorithms with respect to the formal semantics.

A knowledge representation system is a `materialization' of a formalism supporting the inter-

pretation of well-formed expressions of a knowledge representation language by means of inference

algorithms realizing the semantics to a certain extent. These inference algorithms should be sound|

they should not lead to wrong propositions|and in the ideal case they should be complete|be able

to deduce any true proposition. As it turns out, however, in the real world the latter goal can only

be achieved if either the formalism is very simple or if we allow for arbitrary long computations.

Therefore, often the solution is to provide only the obvious, easy to compute inferences and ignore

the di�cult ones.

Of course, a knowledge representation system is more than just a mechanized reasoner. Another

task for such a system is the maintenance of represented knowledge, i.e., it has to account for

additions to and updates of the represented knowledge. In fact, this is the main di�erence between

a knowledge representation system and a static deductive calculus (or a programming language).

Furthermore, any knowledge representation system claiming to be usable has to provide a friendly

interface to the human user
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. In the sequel, however, we will ignore the latter and focus on the

former two points.

In the ideal case a hybrid knowledge representation system is an implementation of a hybrid

knowledge representation formalism, consisting of two or more di�erent subformalisms. However,

the mere combination of formalisms does not necessarily result in a hybrid formalism. A kind of

`glue' is needed in order to constitute a hybrid formalism consisting of

� a representational theory (explaining what knowledge is to be represented by what formalism)

and

� a common semantics for the overall formalism (explaining in a semantic sound manner the

relationship between expressions of di�erent subformalisms).

The representational theory should explain why there are di�erent subformalism, what their

bene�ts are, and how they relate to each other. An answer should at least refer to adequacy criteria

such as (cf. [McCarthy, Hayes 69]):

� epistemological adequacy, i.e., that the subformalisms are necessary to represent epistemological

di�erent kind of knowledge (e.g., analytic and contingent knowledge), or

� heuristic adequacy, i.e., that the di�erent subformalisms permit representation of the same

knowledge in di�erent ways for reasons of e�ciency.

A necessary precondition for gluing things together is that their shapes �t, a fact which might be

violated in designing a hybrid formalism, at least in the case where the subformalisms are intended to

represent epistemological di�erent kinds of knowledge. For example, if one subformalism permitted

de�nition of terms by using time relationships, but none of the other subformalisms referred to time

at all, the subformalisms would be in some sense unbalanced. This, however, can be easily uncovered

by inspecting the common semantics.

There is a more subtle sense of how two formalisms in such a hybrid system can be unbalanced,

which has to do with the fact that most knowledge representation systems are necessarily incomplete

in their reasoning in order to provide answers in reasonable time. Because of this incompleteness

there could be situations where one subformalism allows to express something which obviously should

have some impact on another subformalism according to the common semantics, but the system does

not realize this because it's reasoning is incomplete in this aspect. This `black hole' might be there

because the incompleteness has principal reasons or because the subformalism is not heuristically

adequate for this aspect. In any way, the subformalisms of the system appear to be unbalanced.
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And usually, a large fraction of code in a knowledge representation system is devoted to the user interface.
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Although the term balancedness is a little bit vague, it can be captured by the following principle of

balancedness in hybrid representation systems:

If a representation construct in a subformalism of a hybrid formalism suggests that its

usage has some impact on knowledge represented with another subformalism (according

to the common semantics), then this should be realized by the system.

An example for a system with unbalanced subformalisms is KL-TWO [Vilain 85]: While it is

possible to de�ne concepts with a very rich language, only a fraction of it is used for stating contingent

propositions. In particular, the number restrictions used in the NIKL subformalism has only a very

limited impact on the PENNI subformalism, because the latter is not heuristically adequate to deal

with cardinalities.

In the last few years, much e�ort has been devoted to the development of hybrid systems.

Besides systems favoring multiple representations for the sake of naturalness and e�ciency of the

represented knowledge, systems combining formalisms for the representation of knowledge according

to the distinction Frege made between meaning (Sinn) and reference (Bedeutung) were developed.

In particular, the connection of KL-ONE [Brachman, Schmolze 85] derivates as formalisms for

representing terminological knowledge (TBoxes) with formalisms for representing assertions about

the actual state of the world (ABoxes) has been investigated
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(e.g., KRYPTON [Brachman et al

85], KL-TWO [Vilain 85], MESON [Edelmann, Owsnicki 86], BACK [Luck et al 87] and KANDOR

[Patel-Schneider 84]). The main points in this research were the design of an appropriate ABox,

sometimes requiring a restriction of the TBox (e.g., in KRYPTON), and developing means for

connecting the reasoning of TBox and ABox.

In the sequel we will present one particular solution to these problems pursued in BACK
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. The

following design criteria have been taken into account in developing BACK:

� The subformalism of the BACK system should be balanced.

� The BACK formalism should permit tractable inference algorithms covering almost all possible

inferences
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.

� The ABox formalism of BACK should be able to represent incomplete knowledge in a limited

manner (cf. [Luck et al 86]).

� The BACK system should allow for extending the knowledge base incrementally (we do not

consider retractions!).

� The BACK system should reject ABox entries which are inconsistent.

The rest of the paper is divided in four parts. The next section gives a very brief introduction

to hybrid KL-ONE systems for those readers unfamiliar with this topic. Then the BACK ABox is

discussed, and it is shown how we achieved the goals concerning the formalism stated above. Finally,

we investigate what kind of inferences the combination of the ABox and the TBox permit, and how

these inferences can be realized. This leads to a new view on the realization inference as discussed

in [Mark 82], which can be characterized as a `constraint propagation' process.
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Unfortunately, complete and tractable inference algorithms are possible only for very simple TBoxes (cf. [Nebel

87] and [Brachman, Levesque 84]).
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2 A Short Characterization of Hybrid KL-ONE Systems

KL-ONE as described in [Brachman, Schmolze 85] is perfectly well suited for the introduction of a

terminology. It allows to specify concepts by stating superconcepts and restrictions on relationships

to other concepts, which are called roles. Concepts and roles correspond roughly to generic frames

and slots in the frame terminology. Unlike frames, however, concepts are understood as purely

intensional. Furthermore, concepts may be introduced as primitive or de�ned. In the former case,

the concept description speci�es only the necessary conditions, while in the latter case the concept

description is necessary and su�cient.

The following is an (informal) example for the de�nition of the (slightly arti�cial) concept modern-

small-team. Assuming that human, woman, and team are already introduced as concepts and that

member is a role with leader as a subrole, the de�nition might look as follows:

A modern-small-team is (de�ned as)

a team and

having at most 4 members and

all members are humans and

having exactly 1 leader and

all leaders are woman

This example shows some of the important concept-forming operators which may be used in

order to create new concepts, namely specialization, number restriction and value restriction of a

role. In KL-ONE, concepts and roles are usually presented by graphical means (cf. Fig. 1) which

may be sometimes easier to comprehend. However, it does not make any di�erence whether a linear

notation or a graphical network is used provided that a formal semantics can be given (cf. [Luck et

al 87], [Luck, Owsnicki 87]).
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Figure 1: An example of a KL-ONE concept

While KL-ONE does very well in the area of de�ning concepts, it is weak in stating any contingent

truth about the world, for example that \KIM is a woman, and that she is a member of some modern-

small-team, but not the leader of that team". Another example would be that \there is at least one

modern-small-team". In order to compensate for this, an ABox has to be employed, a topic we will

discuss below.

3 The Design of the BACK ABox

The formalisms for representing terminological knowledge in the hybrid systems mentioned above

di�er only in what concept- and role-forming operators they provide|sometimes motivated by

arguments concerning the computational complexity. The situation with ABoxes, however, is quite

di�erent. Here we meet a variety of approaches, e.g.:
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KRYPTON Full �rst-order predicate logic.

KL-TWO Variable-free predicate logic with equality.

KANDOR Object-centered, frame-like schema.

MESON Object-centered, frame-like schema.

Using predicate logic (�rst-order or restricted) as the ABox has several advantages. One is that it

gives a clear account to a common semantics for the entire formalism

6

. Another bene�t of predicate

logic is its plasticity as Hayes called it [Hayes 74]|the possibility to give partial descriptions and to

extend a knowledge base incrementally. On the other hand, there are a lot of disadvantages. One

obvious problem with unrestricted �rst-order predicate logic are the computional costs, a fact which

exclude such systems from being used as a knowledge representation system in practical AI systems.

Besides that, there are also problems with the expressiveness of predicate logic. For instance, there

is no easy way to state that a given description is exhaustive or that di�erent constants denote

di�erent objects. The latter two properties are responsible for the fact that number restrictions

on roles are omitted from the KRYPTON TBox and that they are almost mere comments in the

KL-TWO TBox.

For frame-like ABoxes as employed in KANDOR or MESON the situation is opposite. The unique

name hypothesis and closed world assumption are taken for granted, very similar to conventional data

bases. This forces the user of such a system to give a complete description of the state of a�airs and

prohibits incremental `monotonic' additions. However, this kind of representation|called `vivid' by

Levesque in [Levesque 86]|allows for elegant and simple inference algorithms. In the case of hybrid

KL-ONE systems it implies that number restrictions and value restrictions of the TBox can be fully

utilized in the ABox. A short note about formal semantics might be in order here. While frame-like

schemata are often viewed as some ad hoc data structure, it is nevertheless possible to specify a

precise formal semantics for at least a subset (cf. [Hayes 79]).

In BACK we tried to combine the bene�ts of both approaches. An object-centered language was

chosen to describe objects of the domain. However, instead of insisting that all role �llers for a given

object have to be speci�ed, the information can be incomplete and may be re�ned later. For this

purpose the follwing operators are provided:

� stating the cardinality of a role-�ller set, e.g., \MARY has at least 2 children";

� disjunctive information on role �llers, as e.g., \MARY is married to JOHN or TOM";

� stating the exhaustiveness of the provided information selectively (cf. [Hayes 74]), e.g., \MARY

has as a friend TOM, and these are all friends MARY has".

In [Luck 86]
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it was shown that these operators are su�cient to achieve the goal of `balanced

expressiveness' at least with respect to number restrictions. This also applies to the other concept-

forming operators introduced in section 2 as we will see below. Furthermore, the formalism permits

the representation of incomplete knowledge, incremental re�nement as well as the treatment of

complete information. Finally, because of the careful selection of ABox operators, reasoning in the

ABox appears to be tractable at least in a weak sense.

4 Combining the Reasoning of ABox and TBox

While it appears to be very obvious what kind of inferences are granted by the separate formalisms,

the interesting problems stand up if we combine the reasoning of the TBox and the ABox.
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In these approaches concepts are viewed as 1-place predicates and roles as 2-place predicates.
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The TBox alone is only good for terminological inferences, including detecting implicit specaliza-

tion relationships between concepts, recognizing contradictory concepts and computing the proper-

ties inherited from superconcepts. The ABox alone, depending on its 
avor, can draw the inferences

sanctioned by �rst-order logic (in the KRYPTON case), by variable-free predicate logic with equality

(in KL-TWO), or it can infer whether a domain object is related to other objects, and how many

there are (in the case of object-centered ABoxes).

In order to demonstrate the interaction between ABox and TBox in BACK let us investigate a

small (informal) example. Let us assume the following concept de�nitions:

A man is a

human.

A woman is a

human.

man and woman are disjoint concepts.

A team is (de�ned as) a

set with members which are all humans, and

any leaders are members as well.

A male-team is (de�ned as) a

team with all members are men.

A small-team is (de�ned as) a

team with at most 4 members.

A modern-small-team is (de�ned as) a

small-team with at least 1 leader and

all leaders are women.

Now let us assume that the following object decriptions are given:

TOM, DICK and HARRY are instances of

the concept man.

JUNK is an instance of

modern-small-team with

TOM, DICK, HARRY and KIM

as members of the team.

CHAUVIS is an instance of

male-team with

KIM

as one of its members.

After this sequence, nothing is wrong with the contents of the knowledge base at �rst sight. If,

however, the situation is more thorougly analyzed, it becomes obvious that

� after the JUNK team is introduced, KIM is known to be human, because of the value restriction

on member;

� after the CHAUVIS team is introduced, it becomes clear that KIM is a man with the same

argument;

� and because of that, nobody can become the leader of the JUNK team, because the leader subrole

can only be �lled with a woman.

Thus, the ABox contents is contradictory. The JUNK team cannot exist in this con�guration and

simultaneously be called a modern-small-team, or otherwise, KIM cannot a member of the male-team.

While the arguments above are only informal, it is, of course, possible to formalize the problem

using the common semantics of the formalism [Luck et al 87] and deduce a contradiction as follows:
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8x: man(x) ) human(x) (1)

8x: woman(x) ) human(x) (2)

8x: :man(x) _ :woman(x) (3)

8x: team(x) , set(x) ^ (8y: member(x; y) ) human(y)) ^

(8z: leader(x; z) ) member(x; z)) (4)

8x: male-team(x) , team(x) ^ (8y: member(x; y) ) man(y)) (5)

8x: small-team(x) , team(x) ^

(9 y

1

; y

2

; y

3

; y

4

: member(x; y

1

) ^ member(x; y

2

) ^

member(x; y

3

) ^ member(x; y

4

) ^

(8z: member(x; z) ) z = y

1

_ z = y

2

_ z = y

3

_ z = y4)) (6)

8x: modern-small-team(x) , small-team(x) ^ (9z : leader(x; z)) ^

(8y: leader(x; y) ) woman(y)) (7)

TOM 6=DICK ^ TOM 6=HARRY ^ TOM 6=KIM ^ DICK6=HARRY ^ DICK6=KIM ^ HARRY 6=KIM

8

(8)

man(TOM) ^ man(DICK) ^ man(HARRY) (9)

modern-small-team(JUNK) ^ member(JUNK,TOM) ^ member(JUNK,DICK) ^

member(JUNK,HARRY) ^ member(JUNK,KIM) (10)

male-team(CHAUVIS) ^ member(CHAUVIS,KIM) (11)

by (5,11): man(KIM) (12)

by (3,9,12): :woman(KIM) ^ :woman(TOM) ^ :woman(DICK) ^ :woman(HARRY) (13)

by (6,7,8): 8z : member(JUNK,z) ) z=TOM _ z=DICK _ z=HARRY _ z=KIM (14)

by (4,7): 9z : member(JUNK,z) ^ woman(z) (15)

by (14,15): woman(KIM) _ woman(TOM) _ woman(DICK) _ woman(HARRY) (16)

by (13,16): contradiction

5 Realization as Constraint Propagation

In order to �nd such contradictions and, more generally, to determine the concept which most accu-

rately describes a given object a forward inference technique called realization [Mark 82] is usually

employed. Realization is very similar to classi�cation, an inference technique used to maintain the

taxonomy of concepts in the TBox [Lipkis 82]. In fact, realization can be viewed as abstraction|

generating a description in terms of the TBox|followed by classi�cation of this description (cf.

[Vilain 85]).

A �rst approximation to the implementation of this inference could be realized as follows. After

a new assertion about an indivdual enters the ABox (either a new concept or a new role �ller) the

following has to be done:

� Propagate all role �llers of subroles to the corresponding superrole.

� Determine the cardinality of the role �ller sets for each role (this can be a range in the case of

incomplete information). This cardinality information is used as the actual number restriction

for the role in the abstraction process.

� If a role-�ller set is closed, i.e., all potential candidates are known, then the generalization

9

of the descriptions of all potential role �llers can serve as the actual value restriction in the

abstraction process.

� Now, the generated number and value restrictions, the old description of the individual as well

as the new one can be used to construct a concept de�nition which can be classi�ed and after

that serve as the new most general specialization (MSG) of the individual under investigation.

8

This statement expresses the unique name hypothesis.
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Generalization is not a concept-forming operator and there seems to be no easy way to assign a compositional

semantics to it. However, it is easy to build such a concept structurally, which is the most specialized one subsuming

a given set of concepts.
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This algorithm does take into account all information which is supplied locally to an individual,

but ignores any non-local consequences. In the example of the last section, we would at least

require that after the abstraction process the role �llers are to be specialized according to the value

restriction of the male-team. Additionally, we note that in order to detect the contradiction in the

example we also have to account for the case that the specialization of an individual (KIM from

human to man) can lead to the specialization of another individual (JUNK from modern-small-team to

the empty concept) the �rst one is a role �ller of.

If we analyze this algorithm more thoroughly, we may note that this process can trigger other

specializations which in turn may propagate restrictions. Because this sounds very expensive from a

computational point of view, one could argue that because the system reasoning process is incomplete

anyway, it is legitimate to restrict the resources allocated for the realization process and leave such

situations alone. And this was indeed the �rst approximation to a solution we chose. However, this

is not a general incompleteness of the inference algorithm, but it depends on the order of input! If,

in our example, the order of input between the JUNK and the CHAUVI would have been reversed the

contradiction would be easily detected.

That is certainly not the kind of behaviour we expect from a knowledge representation system.

Although it is clear that we have to live with incomplete reasoners, this incompleteness should be

systematic, perhaps even describable by a systematic, model-theoretic approach (cf. [Patel-Schneider

86]). In conclusion, if we claim to integrate the reasoning of two formalisms, a minimal requirement

is that the inferences are independent of the order of input.

The only solution to this problem is to employ some sort of `constraint propagation'

10

. After a

new MSG is determined for some individual I,

� all role �llers at I have to be specialized to the corresponding value restriction (forward prop-

agation);

� additionally, all individuals, which mention I as a role �ller have to be checked whether it is

possible to specalize them (backward propagation); this can only happen if the corresponding

role-�ller set is closed;

� �nally, these steps have to be performed for all individuals which get new MSGs during this

process.

For the example above, this su�ces to detect the contradiction. The JUNK team will be special-

ized to the following concept:

a modern-small-team and

all of its members are men

In classifying this concept, the value restriction of the member role is propagated to the subrole

leader (a subrole has to adhere to the value restriction of its superrole) resulting in a value restriction

of (AND man woman) which apparently is contradictory.

Altogether, this process assures that incompleteness depending on the order of input cannot

appear. However, it also sounds very costly from a computational point of view. It is even not very

clear whether this process always terminates.

Fortunately, the process of propagating MSG is not a general constraint propagation process.

A �rst fact about this process, we may note, is that backtracking cannot occur. That means if we

encounter a contradiction there is no way to resolve it, but to reject the input which led to the

contradiction. This tells us that we will not get a combinatorial explosion because of reasoning by

case. There are more facts which constrain the propagation space:

10

While we �rst thought that BACK is the only system using this technique, because the literature does not give

any hints in this direction, latter on we learned from Marc Vilain that KL-TWO works in a similar way.
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� An individual which gets a new MSG by backward propagation cannot trigger new forward

propagations. This is because the new MSG does re
ect the current role �llers as necessary

and su�cient conditions, i.e., there cannot be any new restrictions on role �llers.

� Backward propagation leads to a new MSG, if the role-�ller set is closed and all other role

�llers are already more specialized than the value restriction, a situation which does not occur

very often.

� Forward propagation has a signi�cant non-local e�ect only if the chain of individuals the value

restrictions are propagated along corresponds to a line of concepts which are specialized in

parallel, which is not very likely.

� In the worst case, the number of recomputations of an MSG during forward and backward

propagation is bounded by the product of the number of individuals and the number of concepts

in the TBox (before the entire process starts). This, however, would result in MSGs which

cannot be specialized further, i.e., the upper bound can be divided by the number of input

operations.

Finally, we should discuss where incompleteness might arise in in the integrated reasoning process.

First, realization cannot be more complete than classi�cation. This means that some very weird

cases of contradictions cannot be recognized (cf. [Nebel 87]). Furthermore, the abstraction process

is a source of incompleteness as well. In our example, we could prove that KIM is necessarily a woman

after the �rst two inputs; however, the abstraction failed to recognize this. The reason is, that this

would require some kind of reasoning by case we strictly avoided because of the computional costs.

6 Conclusion

We have argued that a hybrid knowledge representation system should be balanced in its expres-

siveness and integrate the reasoning of its subformalisms in a sound manner based on a common

semantics. Furthermore, we made plausible that the BACK system does very well in these respects.

By giving a thorough description of an inference technique known as `realization', we demonstrated

that this inference can only be realized as a constraint propagation process, a very special and limited

one, though.
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