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1 Introduction

It is well-known that typical AI problems, such as natural language un-

derstanding, scene interpretation, planning, con�guration, or diagnosis are

computationally di�cult. Hence, it seems to be worthless to analyze the

computational complexity of these problems. In fact, some people believe

that all AI problems are NP-hard or even undecidable.

Conceiving AI as a scienti�c �eld that has as its goal the analysis and

synthesis of cognitive processes using the metaphor of computation, it ap-

pears to be obvious to exploit the theory of computer science for analyzing

AI problems. Interpreting cognitive processes as computational processes

implies that the limitations of computational processes apply to cognitive

processes as well. In particular, computational complexity theory may be

used in order to derive conjectures about the solvability of a given problem.

This also holds for the more technical point of view when we are interested

in emulating cognitive capabilities using computational processes.

In addition to a feasibility analysis, computational complexity theory can

also be used to give a deeper understanding of the structure of a problem. It

provides us with insights about the possible sources of complexity and can be

used to direct the search for e�cient methods to solve the problem, perhaps

giving up on generality or the quality of the solution.

In an AI textbook

[

Rich and Knight, 1991, p. 44

]

, AI is de�ned as

the study of techniques for solving exponentially hard problems

in polynomial time by exploiting knowledge about the problem

domain.

This statement is, of course, a contradiction in terms since an exponentially

hard problem cannot be solved in polynomial time by de�nition. This con-

tradiction can be resolved by noting that the AI notion of what a solution

is di�ers signi�cantly from the standard notion. In AI, one is satis�ed with

solutions that almost always give an almost correct answer. In other words,

in AI one usually does not solve the original problem but a weaker one

[

By-

lander, 1991

]

. Before giving up on an accurate solution, however, one should

try to �nd out whether the problem is indeed computationally di�cult. Fur-

ther, if one adapts a weaker problem de�nition, one should spell that out

and try to determine the implied computational di�culty. However, how do

we determine the di�culty of a problem?
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Complexity theory provides us with the right tools to judge the di�culty

of a problem. If we are able to show that a problem can be solved in polyno-

mial time, then it does not make much sense to think about an approximation

of the solution. Conversely, if we can show that a problem is NP-hard, then

we know that it is very unlikely that we can solve the general problem in re-

asonable time. However, having shown NP-hardness does usually not mean

that we have to give up on the problem completely. To the contrary, such

a proof can be viewed as a license for abandoning the search for e�cient,

complete and accurate methods, and for looking instead for ways to solve

interesting aspects by whatever methods are available.

The rest of the paper is structured as follows. In the next section, the

reader is reminded of the basic assumptions of complexity theory. Based on

that, di�erent kinds of complexity analyses are described in Section 3. In

particular, polynomial special cases, classi�cation of all special cases, di�e-

rential analyses for comparing di�erent formalizations of a given informal

problem, and the use of complexity theory to probe for plausibility of hy-

potheses concerning computational issues will be considered. Furthermore,

the usefulness of the precise determination of the complexity for NP-hard

problems is discussed. In Section 4, some ways to cope with the complexity

problem are sketched, such as natural and enforced restrictions of the pro-

blem, approximations, redi�nitions of the problem, and heuristics. Finally,

in Section 5, the main points are summarized.

2 Basic Assumptions of Computational

Complexity Theory

Computational complexity theory

1

tries to classify problems according to

their requirements on computational resources (time, memory) depending

on the size of the input. In this context, the term problem means, contrary

to the ordinary meaning, \generic question," which has di�erent instances.

For example, a particular crossword puzzle is not a problem, but an instance

of the problem of crossword puzzle solving.

1

Good text books on this topic are

[

Balc�azar et al., 1988; Balc�azar et al., 1990; Garey

and Johnson, 1979; Papadimitriou, 1994

]

.
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2.1 Polynomial vs. Exponential Runtime Require-

ments

A problem is considered to be e�ciently solvable if for all instances of the

problem an algorithm can �nd the correct answer in a number of computa-

tion steps that is polynomially bounded by the size of the instance { assuming

a \traditional" model of computation, i.e., a sequential, deterministic com-

putation model, e.g., Turing machines or random access machines.

2

In computational complexity theory, one usually restricts the attention to

so-called decision problems, i.e., problems that have only \yes" and \no" as

possible answers. Often these problems are also viewed as formal languages

formed by the \yes" instances. While this might seem to be a serious restric-

tion at �rst sight, it turns out that in most cases a polynomial algorithm for

a decision problem can be easily transformed into an e�cient algorithm for

the corresponding general problem.

The class of decision problems that can be characterized by being solvable

in polynomial time is denoted by P. Decision problems not belonging to this

class, e.g., problems that need exponential time, are considered to be not

e�ciently solvable. The reason for this judgement is that the growth rate

of exponential functions leads to astronomical runtime requirements even for

moderately sized instances.

The distinction between polynomial and exponential runtime require-

ments becomes even more vivid if one considers the e�ects of further ad-

vances in computer technology. Assuming we have a problemM

1

that needs

n

2

steps and that can be solved in reasonable time, e.g. one minute, up to an

instance size of m

1

, then an increase of speed by 10

6

leads to the e�ect that

instances up to a size of 1000�m

1

can be solved in one minute. For problem

M

2

that needs 2

n

steps the picture is quite di�erent, however. Assuming

that instances up to a size m

2

can be solved with the traditional technology

in reasonable time, an increase by 10

6

in speed leads only to 20 +m

2

as the

maximal instance size.

Although the distinction between \e�ciently" and \not e�ciently" sol-

vable problems according to whether the number of computation steps can

be polynomially bounded or not seems to be reasonable, one should always

2

Note that the de�nition of polynomially bounded computation is independent from

the particular machine model since all sequential, deterministic machines can be simulated

on each other in polynomial time.
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keep in mind that it is only a mathematical abstraction. It is based on the

assumption that in case of polynomial runtime the exponent is small, and

that in the case of exponential runtime the worst case occurs signi�cantly

often. As experience shows, however, these assumptions are valid for most

naturally occurring problems.

In order to �nd out, whether a problem is e�ciently solvable or not, we

only have to �nd a polynomial algorithm or to prove that such an algorithm

is impossible. However, there exist a large number of problems for which

no polynomial algorithms are known but at the same time it seems to be

impossible to prove that super-polynomial time is necessary to solve these

problems. The formal classi�cation of these problems is one of the challenges

of complexity theory.

2.2 Nondeterministic Computations and the Com-

plexity Class NP

One formal tool to characterize these problems is the nondeterministic Turing

machine. Such a machine can choose nondeterministically among di�erent

successor states during its computation and it accepts an input (answers

\yes") if there exists a sequence of nondeterministic choices that leads to an

accepting state. A nondeterministic Turing machine accepts a language L

in polynomial time if, and only if, all words of L are accepted using only a

polynomial number of computation steps on the nondeterministic machine.

The class of languages (or decision problems) that are accepted on nonde-

terministic Turing machines using polynomial time is called NP. Since all

deterministic machines can be viewed as nondeterministic machines, it fol-

lows that P � NP. Whether the converse inclusion holds is an open problem,

however. This is the famous P

?

=NP problem.

Although we don't know whether P 6= NP, it is nevertheless possible

to identify the \hardest" problems in NP. The formal tool for doing so are

resource-limited reductions between problems. A problem A can be polyno-

mially many-one reduced to problem B, symbolicallyA �

m

B, if there exists

a function f from strings to strings that can be computed in polynomial time

and that has the property that w 2 A if and only if f(w) 2 B. Intuitively,

an algorithm for problem B can be used to solve problem A with only po-

lynomial overhead. In other words, B must be at least as hard as A with
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respect to solvability in polynomial time.

2.3 NP-Hardness and NP-Completeness

A problem that has the property that all problems in NP can be polynomially

reduced to it is obviously at least as hard as all problems in NP, i.e., it is

NP-hard with respect to polynomial many-one reductions.

Since it is very di�cult to prove something by quantifying over the entire

class of languages in NP, it would be convenient to identify a problem X that

is in NP and NP-hard. Because of the transitivity of �

m

it then su�ces to

reduce X to Y in order to show NP-hardness of Y .

Problems that are NP-hard and in NP are called NP-complete. More

generally, a problem is called C-complete for a complexity class C, if it is in C

and C-hard. Although it is not obvious that NP-complete problems exist, it

turns out that a large number of natural problem for which we do not know

polynomial algorithms are NP-complete.

3

NP-complete problems have the

interesting property that a polynomial, deterministic algorithm for one of

these problems implies that all problems in NP can be solved in polynomial

times on a deterministic machine, i.e., it implies that P = NP. Since all

attempts of �nding polynomial algorithms for NP-complete problems have

failed so far, the proof that a problem is NP-hard implies that no e�cient

algorithm is known for this problem according to the current state of the

art. Further, because of the large number of unsuccessful attempts to �nd

e�cient methods for solving NP-complete problems it is nowadays believed

that it is impossible to solve such problems in polynomial time.

The prototypical example of an NP-complete problem is sat|the pro-

blem of determining whether a boolean formula F over the set of boolean

variables V is satis�able. sat is obviously a problem in NP since we can

guess a truth assignment for the variables in V in jV j steps and verify in

polynomially many steps that this assignment makes F true. Showing that

sat is also NP-hard is much more di�cult. The proof is based on a gene-

ric reduction that assigns to each pair formed by a nondeterministic Turing

machineM and an instance I a boolean formula F that is satis�able if, and

only if, I is accepted by M in polynomial time.

The problem that is complementary to sat, i.e., the problem to decide

3

Garey and Johnson

[

1979

]

provide a list of approximately 300 NP-complete problems.
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whether a boolean formula is unsatis�able, is called unsat. Interestingly,

unsat is not necessarily in NP, since no nondeterministic algorithm is known

that accepts the corresponding language in polynomial time. unsat and all

other problems complementary to problems in NP are assigned to the class

coNP, and it is conjectured that NP 6= coNP. Obviously, unsat is a coNP-

complete problem under the de�nitions given above.

If one is only interested in showing that a problem is di�cult, one often

uses a di�erent form of reduction, namely the polynomial Turing reduction.

A problem A can be reduced to B by a polynomial Turing reduction, written

A �

T

B, if A can be decided in polynomial time by a deterministic Turing

machineM that is allowed to use a procedure (a so-called oracle) for deciding

B, whereby calling the procedure does only cost constant time. Under this

type of reductions all problems that are NP-hard and coNP-hard with respect

to polynomial many-one reductions are NP-hard. Further, a problem that is

in NP and NP-hard under polynomial Turing reductions cannot be solved in

polynomial time unless P = NP. If we use the term NP-hard in the following

without any quali�cation, we mean (as usual) NP-hardness with respect to

Turing reductions. This convention allows us to describe all di�cult problems

by the term \NP-hard."

2.4 Other Complexity Classes

In addition to P and NP, there exist a number of other so-called complexity

classes.

4

On one hand, there are subclasses of P that are used to characterize

problems that can be solved e�ciently on parallel machines. This is a topic,

however, that has not been extensively studied in AI (but cf.

[

Kasif, 1990;

Kasif and Delcher, 1994

]

). On the other hand, there are classes that permit

to characterize NP-hard problems more accurately, a topic we will discuss

below.

3 Analyzing the Complexity of AI Problems

An essential prerequisite for a complexity analysis is a rigorous and unam-

biguous problem speci�cation, something that one does not �nd very often

in AI. Such a problem speci�cation has the great advantage|independently

4

Johnson

[

1990

]

gives a survey of the state of the art.
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from a complexity analysis|that it can communicate the essential ideas of

an approach. For instance, one of the �rst papers on the complexity of know-

ledge representation and reasoning

[

Brachman and Levesque, 1984

]

contains

a concise and elegant speci�cation of the semantics for so-called description

logics (also called terminological logics or concept languages)

[

Brachman and

Schmolze, 1985; Nebel and Smolka, 1991; Schmolze and Woods, 1992

]

.

The observation that an AI problem is NP-hard, however, is usually not

very interesting in itself since, as mentioned in the Introduction, most AI

problems appear to be di�cult in any case. Such an observation is interesting

only if there are di�erent opinions about the di�culty, as in the case of the

blocks-world planning problem

[

Gupta and Nau, 1992

]

, or if it is claimed that

a problem can be solved e�ciently

[

Nebel, 1988

]

. Further, an NP-hardness

result alone does not provide many insights about the problem. It does not

tell us which aspects of the problem are responsible for the di�culty, it does

not tell us which aspects can nevertheless be solved e�ciently and it gives

no information about the relationship to other problems.

3.1 Polynomial Special Cases

One of the most interesting questions in the context of NP-hard problems

is whether the problem speci�cation is too general, and whether reasonable

restrictions might lead to an e�ciently solvable problem.

For instance, although sat is an NP-complete problem, there are syntac-

tically restricted variants that are e�ciently solvable. For example, 2sat, the

satis�ability problem for boolean formulas in conjunctive normal form with

only two literals per clause, can be solved in polynomial time.

5

Further, the

problem of deciding whether a conjunction of Horn formulae is satis�able, is

a polynomial time problem.

Similar observations can be made in the area of knowledge representation

formalisms, and often an application requires only the syntactically restricted

form that allows e�cient inferences. Let us consider as an example reasoning

about qualitative temporal information.

Temporal information is often conveyed qualitatively by specifying the

relative positions of time intervals such as \: : :point to the �gure while ex-

5

A straightforward argument proving this claim is based on the observation that reso-

lution with clauses of length two leads only to resolvents of length two, of which there are

only quadratically many.
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Basic Interval Sym- Endpoint

Relation bol Relations

X before Y � X

�

< Y

�

, X

�

< Y

+

,

Y after X � X

+

< Y

�

, X

+

< Y

+

X meets Y m X

�

< Y

�

, X

�

< Y

+

,

Y met-by X m

^

X

+

= Y

�

, X

+

< Y

+

X overlaps Y o X

�

< Y

�

, X

�

< Y

+

,

Y overlapped-by X o

^

X

+

> Y

�

, X

+

< Y

+

X during Y d X

�

> Y

�

, X

�

< Y

+

,

Y includes X d

^

X

+

> Y

�

, X

+

< Y

+

X starts Y s X

�

= Y

�

, X

�

< Y

+

,

Y started-by X s

^

X

+

> Y

�

, X

+

< Y

+

X �nishes Y f X

�

> Y

�

, X

�

< Y

+

,

Y �nished-by X f

^

X

+

> Y

�

, X

+

= Y

+

X equals Y � X

�

= Y

�

, X

�

< Y

+

,

X

+

> Y

�

, X

+

= Y

+

Table 1: The set B of the thirteen basic relations.

plaining the performance of the system : : :" Consequently, for natural lan-

guage understanding

[

Allen, 1984; Song and Cohen, 1988

]

, general planning

[

Allen, 1991; Allen and Koomen, 1983

]

, and presentation planning in a multi-

media context

[

Feiner et al., 1993

]

, the representation of qualitative temporal

relations and reasoning about them is essential.

Allen

[

1983

]

introduces a calculus of binary relations on intervals for re-

presenting qualitative temporal information and addresses the problem of

reasoning about such information. This approach to reasoning about time is

based on the notion of time intervals and binary relations on them. A time

interval X is an ordered pair (X

�

;X

+

) such that X

�

< X

+

, where X

�

and

X

+

are interpreted as points on the real line.

Given two time intervals, their relative positions can be described by

exactly one of the elements of the set B of thirteen basic interval relations

(denoted by B in the following), where each basic relation can be de�ned in

terms of its endpoint relations (see Table 1).

In order to express inde�nite information, unions of the basic interval

relations are used, which are written as sets of basic relations leading to 2

13
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binary inde�nite interval relations. The set of all binary interval relations

2

B

is denoted by A.

An atomic formula of the formXfB

1

; : : : ; B

n

gY is called interval formula.

Such a formula is said to be satis�ed by an assignment of time intervals to

X and Y if one of the basic relations B

i

holds between the two assigned

intervals. A �nite set of interval formulas � is satis�able if there exists an

assignment that satis�es all formulas in the set.

As an example consider three intervals X

1

;X

2

;X

3

such that X

1

is strictly

inside X

2

and X

3

lies after X

1

but strictly inside X

2

:

(X

1

fdgX

2

) (X

3

f�;m

^

gX

1

) (X

3

fdgX

2

)

This set is satis�able, while the addition of (X

3

fsgX

2

) would make it unsa-

tis�able.

The fundamental reasoning problem in this framework is the problem of

deciding the satis�ability of a set of interval formulae, also called ISAT in

the following. This problem is fundamental because all other interesting

problems can be polynomially reduced to it

[

Golumbic and Shamir, 1992

]

.

Unfortunately however, ISAT is NP-hard, as has been shown by Vilain and

Kautz

[

1986

]

.

If one uses Allen's calculus in the context of natural language understan-

ding for reasoning about the relative positions of events mentioned in a story,

however, it turns out that only a subset of all possible relations is necessary

[

Song and Cohen, 1988

]

. This subset has the property that each relation can

be described as a conjunction of arithmetic comparisons between the interval

endpoints. For example, all basic relations belong to this subset, as well as

the relation fd; o; sg, which can be characterized by the conjunction

(X

�

< X

+

) ^ (Y

�

< Y

+

) ^ (X

�

< Y

+

) ^ (Y

�

< X

+

) ^ (X

+

< Y

+

)

The same subset of relations is su�cient for diagnosis of technical artifacts

[

N�okel, 1991

]

. Interestingly, the reasoning problems for the restricted set of

relations are e�ciently solvable

[

Vilain et al., 1989; van Beek and Cohen,

1990

]

.

Another problem that is NP-hard in general but seems to be easily solva-

ble in practice is the problem of interpreting \sketch maps" as they can be

derived from aerial photographs

[

Reiter and Mackworth, 1989

]

. Interpreta-

tion means here to assign a meaning such as \shore," \river," \street," etc.
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to the lines on the sketch map. As has been shown by Selman

[

1994

]

, the

problem is only NP-hard if we think that it is possible that the source of a

river can be on a street. If such a con�guration is impossible, however, the

problem can be formalized as a 2sat problem, and is e�ciently solvable for

this reason. Hence, if we exclude such unlikely interpretations, sketch map

interpretation is an easy problem.

3.2 Classifying all Special Cases

While identifying relevant polynomial special cases of an NP-hard problem

is interesting in itself and may help to solve the problem at hand, it only

provides us with some indications of the sources of complexity involved in the

general problem. An analysis of all special cases according to some problem

parameter and a determination of the exact boundary between polynomial

and NP-hard special cases is, however, much more interesting.

6

Further, such

a classi�cation can be used in order to check quickly whether the special case

appearing in an application can be solved e�ciently.

One example for such a complete classi�cation is the paper by Donini et

al.

[

1991a

]

, in which the complexity of the basic reasoning problem for di�e-

rent description logics is analyzed. Description logics, which have their roots

in the knowledge representation formalismkl-one

[

Brachman and Schmolze,

1985

]

, have been developed to support the representation of the conceptual

and terminological part of Arti�cial Intelligence applications. The main com-

putational services provided by description logic systems are the computation

of the concept hierarchy according to the subsumption relation between con-

cepts and the computation of instance relationships between concepts and

objects of the application domain.

7

In order to describe concepts, we start with an alphabet C of concept

symbols (denoted by A) and an alphabet R of role symbols (denoted by P ),

which are disjoint. Concept symbols are intended to denote some subset of a

domain, and role symbols are intended to denote unary, set-valued functions

or, equivalently, two-place relations on the domain. From concept and role

6

One should note that it is in general impossible to identify a greatest polynomial sub-

problem of an NP-complete problem (provided P 6= NP)

[

Orponen et al., 1986

]

. However,

for a given problem parameter, the identi�cation of the boundary may nevertheless be

possible.

7

See also the chapter on description logics in this volume.
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symbols, complex concept descriptions (denoted by C) and complex role des-

criptions (denoted by R) are composed using a variety of description-forming

operations.

In order to give an example, we will specify the language FL

�

originally

introduced by Brachman and Levesque

[

1984

]

:

C ! A j C u C

0

j 8R:C j9R;

where roles can be speci�ed only as atomic roles

R ! P:

Using this language, we can form various concept descriptions, such as

\father" or \father all of whose children are professors:"

Man u 9child

Man u 9child u 8child:Professor

The formal meaning of concept descriptions built according to the above

rules is given by an interpretation I = (D

I

; �

I

), where D

I

(the domain) is

an arbitrary, nonempty set and �

I

(the interpretation function) is a function

such that:

A

I

� D

I

P

I

� D

I

�D

I

:

The denotation of complex concept descriptions is given inductively by:

(C u C

0

)

I

= C

I

\ C

0I

(8P :C)

I

= fd 2 D

I

j P

I

(d) � C

I

g

(9P )

I

= fd 2 D

I

j P

I

(d)g:

Based on this semantics, the notion of subsumption mentioned above is de�-

ned as set-inclusion. A concept C is subsumed by another concept C

0

, written

C � C

0

, i� (C)

I

� (C

0

)

I

for every interpretation I. For instance, we have

Man u 9child u 8child:Professor � Man u 9child

Based on this subsumption relation, a concept hierarchy can be computed.

If the logic is extended to describe single objects by using role and concept

12



symbols, then the notion of instance relationship can be formalized as set-

membership in concepts.

Note that one can think of quite di�erent terminological logics employ-

ing, for instance, di�erent role-forming operators, cardinality restrictions on

roles, concept disjunction, concept negation and so on. Indeed, quite a num-

ber of di�erent representation systems have been built using a variety of

terminological logics (for a survey, see

[

Nebel, 1990a

]

).

Brachman and Levesque started with the description logic speci�ed above

and showed that the subsumption problem can be solved in polynomial time.

The addition of an innocent looking role-forming operator

R ! P j (RjC)

with the following semantics

(RjC)

I

= f(x; y) 2 D �Dj (x; y) 2 R

I

^ y 2 C

I

g

makes the subsumption problem NP-hard, however.

8

Brachman and Le-

vesque

[

1984

]

argue that an exponential runtime behavior of a knowledge

representation system using description logics is unacceptable and asked for

the shape of the \computational cli�" they had identi�ed.

It took seven years to come up with an exhaustive answer. Between

1987 and 1992, a number of results concerning complexity and decidability

of subsumption for di�erent description logics where published

[

Levesque and

Brachman, 1987; Nebel, 1988; Patel-Schneider, 1989b; Schmidt-Schau�, 1989;

Hollunder et al., 1990; Schmidt-Schau� and Smolka, 1991; Donini et al.,

1991b; Schild, 1991; Donini et al., 1992

]

, but the boundary between polyno-

mial and NP-hard description logic appeared still fuzzy. Finally, Donini et

al.

[

1991a

]

were able to provide an exhaustive classi�cation of all description

logics that contain FL

�

as a sublanguage.

Similar classi�cations were carried out in the area of plan generation. By-

lander

[

1994

]

analyzed the computational complexity of propositional strips

planning

[

Fikes and Nilsson, 1971

]

according to di�erent restrictions on ope-

rators and B�ackstr�om and Nebel

[

1993

]

did a similar analysis for a slightly

more expressive planning formalism taking local and global restrictions into

account. In both cases, polynomiality is achieved only for very severe restric-

tions on the planning formalism, however.

8

The proof appears in

[

Levesque and Brachman, 1987

]

.
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In both cases described above, it was possible to analyze the complexity

of the subproblems manually. Sometimes, the space of subproblems may

be so large, however, that a manual analysis is impossible. If one tries to

analyze all possible subproblems in Allen's interval calculus according to the

allowed relations, it turns out that there are 2

2

13

subproblems. By analyzing

the structure of the space of subproblems and using a computer-based case

analysis, it was nevertheless possible to identify the precise boundary between

polynomial and NP-hard subproblems also in this case

[

Nebel and B�urckert,

1994

]

.

3.3 Di�erential Analyses

Often a reasoning problem is only informally speci�ed and there exist di�e-

rent formalizations, which may lead to di�erent complexity classes for the for-

malized reasoning problems. In this situation, the complexity results might

be used as one criterion to choose between di�erent formalization.

For instance, there exist a number of formalizations of defeasible inhe-

ritance in so-called inheritance networks. Inheritance networks are composed

out of nodes denoting individuals, concepts, or properties, and positive and

negative links between nodes standing for \X is typically Y ," symbolically

X ! Y , and \X is typically not a Y ," symbolically X 6! Y

[

Fahlman, 1979;

Touretzky, 1986

]

. A typical example of an inheritance network is given in

Figure 1.

From the network in Figure 1 we may conclude, for instance, that Clyde

is a member of the class of royal elephants, which are typically elephants,

which are in turn typically grey. This would usually imply that it is very

likely that Clyde is grey { if there is no information to the contrary. In

our case, however, there is an explicit indication that royal elephants are

typically not grey, which overrides the more general statement about the

color of elephants.

Fahlman

[

1979

]

gives a formalization of the defeasible inheritance problem

based on an e�cient marker propagation method. As Touretzky

[

1986

]

points

out, however, this method can lead to counter-intuitive results. For this

reason, Touretzky provides a calculus for defeasible inheritance trying to

circumvent the problems in Fahlman's approach. In Touretzky's approach

conclusions are supported by argument chains built from links in the network.

For instance, the conclusion \Clyde 6! grey" is supported by the argument

14



Clyde

grey

royal elephant

elephant

Figure 1: Example of an inheritance network

chain \Clyde ! royal elephant 6! grey. Touretzky then speci�es a method

to derive sets of coherent argument chains meaning that

1. longer argument chains are created from shorter ones;

2. sets of argument chains are not allowed to lead to contradictory con-

clusions;

3. if there is more speci�c information, this information must be used.

Maximal sets of argument chains are also called extensions. Ignoring the

technical details, it should be nevertheless obvious that in the general case one

can derive more than one extension from a network. One way to cope with

this problem is to accept all conclusions that are supported by at least one

extension, called credulous reasoning. Another way to deal with the problem

is to accept only those conclusions that are supported by all extensions, called

ideally skeptical reasoning.

Although Touretzky's formalization of defeasible reasoning leads to more

intuitive results than Fahlman's method, it is possible to have di�erent opi-

nions about whether Touretzky's proposal is the most reasonable one. In

fact, there exist a number of di�erent proposals for the de�nition of what

an extension is

[

Touretzky et al., 1987

]

. There exist alternative proposals

15



for the concatenation of argument chains, for con
ict resolution, and for the

notion of speci�city. All in all, there are (at least) eight di�erent ways of

interpreting inheritance networks. Furthermore, it seems to be the case that

it is not clear what the \best" interpretation is.

This leads to the interesting problem of identifying the interpretation

with the best computational properties. Selman and Levesque

[

1989; 1993

]

have analyzed the following reasoning problems:

� Computation of the set of conclusions supported by one (arbitrary)

extension.

� Deciding whether a conclusion follows by ideally skeptical or credulous

reasoning.

Since an extension may contain exponentially many argument chains, it is

computationally infeasible to compute a set of conclusions by generating

the extension. As shown by Selman and Levesque

[

1993

]

, one source of

complexity is the way how argument chains are concatenated. In the case

of Touretzky's coupled concatenation, it is NP-hard to generate a conclusion

set. If one uses decoupled inheritance

[

Horty et al., 1987

]

, however, conclusion

sets can be generated in polynomial time.

Unfortunately, this positive result does not carry over to ideally skep-

tical and credulous reasoning, because in this case all extensions must be

considered|and there may be exponentially many extensions. Polynomia-

lity can only be guaranteed if there is a limited number of extensions. This

can be achieved by what is called skeptical inheritance (not to be confused

with ideally skeptical reasoning). In this inheritance regime, an argument

chain is only included in an extension if there is no potentially valid contra-

dicting argument chain, and for this reason, this inheritance regime generates

only one extension.

Summarizing, the result of Selman and Levesque's analysis is that the

only way to guarantee e�ciency in defeasible inheritance is the adoption of

skeptical, decoupled inheritance. In particular, it also follows that Touretzky's

[

1986

]

method of \compiling" inheritance networks into structures that allow

for applying Fahlman's e�cient marker propagation method uses exponential

time.
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3.4 Using Complexity Analyses to Check for Plausi-

bility

Sometimes it is claimed that there exist certain relationships between di�e-

rent problems or methods, for instance, that problem P is a subproblem of

another problem Q or that a particular method A is more e�cient then a

method B. Such claims are usually justi�ed by intuitively plausible argu-

ments. However, such claims should not only make sense from an intuitive

point of view, but they should also be in accordance with the computational

properties of the problems or methods, which is not always the case.

Dean and Boddy

[

1987; 1988

]

, for instance, claim that the problem of

temporal projection in partially ordered sets of event is one of the important

subproblems in partial-order (or nonlinear) planning. Based on this claim,

they analyze the complexity of the temporal projection problem, which turns

out to be NP-hard, even under severe restrictions. For this reason, they

specify an e�cient approximation method that solves the projection problem

only partially, but in polynomial time. However, from a computational point

of view, the underlying claim seems to be arguable.

The temporal projection problem is the problem of determining for a given

initial state and a given partially ordered set of actions the conditions that

hold necessarily (i.e., in all linearizations) before a given event.

9

This pro-

blem is analyzed by Dean and Boddy in the context of propositional strips

planning

[

Fikes and Nilsson, 1971

]

.

Formally, Dean and Boddy

[

1988

]

de�ne a (propositional) state S to be

a set of propositional atoms. Events are sets of triples of the form

e = fhp

1

; a

1

; d

1

i; : : : ; hp

n

; a

n

; d

n

ig;

with p

i

, a

i

and d

i

being sets of propositional atoms standing for the (positive)

preconditions, the add-list and the delete-list, respectively. An event contai-

ning only one triple is also called unconditional event. The occurrence of an

event e = fhp

i

; a

i

; d

i

ig in state S results in a new state S

0

that is computed

by adding all a

i

's from e to S and deleting all d

i

's from this set for all triples

hp

i

; a

i

; d

i

i such that p

i

� S. A sequence of events starting from an initial

state I leads to a �nal state F by applying this rule iteratively.

9

This problem can be varied by asking for the conditions that hold after an event or

by asking for the conditions that hold possibly, i.e., in one linearization.
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If we consider, for example, a set of two events fe

1

; e

2

g that are speci�ed

as follows

e

1

= fhfpg; fqg; fpgig

e

2

= fhfpg; frg; fsghg;

and which are unordered, we can ask whether q holds necessarily after e

1

given the initial state I = fpg. This is indeed the case, since e

1

(in the

sequence e

1

e

2

) results in the state S = fqg and e

2

e

1

results in the state

S

0

= fr; qg. Similarly, one can easily verify that r holds possibly, but not

necessarily after e

2

.

While it is easy to compute the consequences of a sequence of events on a

given initial state, the problem of computing consequences for partially orde-

red event sets seems to be di�cult. Since there are potentially exponentially

many linearizations of the partial order, one may suspect that this problem

is NP-hard. As mentioned above, Dean and Boddy

[

1988

]

showed that this

indeed the case, even for severe restrictions, such as restricting the events to

be unconditional.

In fact, it turns out that temporal projection is even harder than thought.

Dean and Boddy conjectured that the problem becomes polynomial under

the following restrictions:

1. only unconditional events,

2. the precondition set, the add list and the delete list are singletons and

the precondition set is identical with the delete list, and

3. the initial state is a singleton set.

However, even in this case, temporal projection remains NP-hard

[

Nebel and

B�ackstr�om, 1994

]

. Interestingly, if we apply the same restrictions to the plan

generation problem|which is an NP-hard problem in the general case|it

becomes polynomial. For this reason, there is the question whether temporal

projection is indeed a subproblem of planning. Dean and Boddy

[

1988

]

seem

to assume that the temporal projection problem is in particular important

for checking the validity of a plan, i.e., for checking whether the plan is

executable and leads indeed to the desired goal.

A plan is executable if the preconditions of all actions are satis�ed. If we

are dealing with partially ordered sets of actions (or events), this must, of
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course, hold for all linearizations. In the general case, temporal projection

and plan validation have the same complexity and it seems to be the case that

there is no natural decomposition of the validity problem into temporal pro-

jection problems. However, if we restrict ourselves to unconditional actions,

there exists a quite natural decomposition. A partial-order plan consisting

of only unconditional actions is valid if, and only if, the preconditions of all

actions are necessarily satis�ed and the goal speci�cation is necessarily true

after all actions have been executed. In other words, it is possible to reduce

the validity problem to a sequence of temporal projection problems. While

this sounds like a clever divide and conquer strategy, it turns out to be the

opposite if one takes a computational point of view. Deciding the validity

for partial-order plans consisting of unconditional actions can be shown to a

be polynomial time problem

[

Nebel and B�ackstr�om, 1994

]

using the techni-

que developed by Chapman

[

Chapman, 1987

]

. Deciding the corresponding

temporal projection problems is NP-hard, however. For this reason, Dean

and Boddy's claim that temporal projection is a substantial subproblem of

planning (or of plan validation) seems to be at least arguable.

Another area where computational complexity analysis has been applied

to probe for the plausibility of some hypotheses is the area of case-based

planning. While it seems intuitively plausible that it makes sense to reuse

old solutions when generating solutions for a new planning situation, there is

the question under which circumstances we might achieve a provable speed-

up. Not very surprisingly, reusing old solutions never leads to a provable

speed up in terms of computational complexity, even if we assume that the

new situation di�ers only minimally from the old situation we already have

a solution for

[

Nebel and Koehler, 1995

]

. In fact, if we take the suggestion

from the literature seriously that the new solution should be generated by

minimally modifying the old solution

[

Kambhampati and Hendler, 1992

]

,

there are cases when it is easier to generate a plan from scratch. Even worse,

�nding a solution in a case library that is appropriate to be used as the

starting point for generating a new solution can already be computationally

expensive

[

Nebel and Koehler, 1995

]

.

While all these results concern \only" the worst-case complexity, empiri-

cal tests of di�erent plan reuse techniques also seem to suggest that it is not

obvious that plan reuse techniques pay o� under all circumstances

[

Nebel

and Koehler, 1995

]

.
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3.5 Classifying NP-hard Problems

Although the classi�cation \polynomial vs. NP-hard" seems to be su�cient

in most cases, it is sometimes worthwhile to determine the precise complexity

of a problem. First of all, such a precise classi�cation gives us a hint about

how many sources of complexity we can expect to �nd, and, connected with

that, it tells us how severe restrictions must be before we can expect to �nd

polynomial subproblems. Secondly, a precise classi�cation tells us something

about the applicability of certain methods. If we can show, for instance, that

a problem is NP-complete, it may be the case that methods for other NP-

complete problems can be applied, while this is not the case for problems in

higher complexity classes. Thirdly, a precise determination of the complexity

can be used to compare the relative di�culty of di�erent problems.

In Section 2, we remarked that a large number of NP-hard problems are

also NP-complete or coNP-complete. However, there exist also NP-hard pro-

blems that do not seem to belong to NP or coNP. In order to classify those

problems, other machine models and di�erent resource restrictions are used.

For instance, the class PSPACE is the class of decision problems that can

be solved on deterministic Turing machines using polynomial space. Intere-

stingly, the nondeterministic class NPSPACE (i.e., polynomial space on non-

deterministic machines) is identical to PSPACE because a nondeterministic

Turing machine can be simulated on a deterministic one with only quadratic

space overhead. For this reason, we have obviously NP � PSPACE. As in

the case of P and NP, it is unknown whether this inclusion is strict, but it is

believed to be.

NP-complete as well as PSPACE-complete problems can be solved on de-

terministic Turing machines using exponential time. In other words, the

theoretical di�erence between NP-complete and PSPACE-complete problems

does not seem to be relevant for practical purposes. However, it turns out

that PSPACE-complete problems require much more severe restrictions in

order to achieve polynomiality. For instance, as mentioned above, plan ge-

neration in a propositional strips framework appears to be a problem for

which we have to make quite severe restrictions in order to achieve polyno-

miality. The deeper reason for this seems to be that the general problem

is PSPACE-complete

[

Bylander, 1994

]

. Hence, the theoretical di�erence in

complexity also seems to have practical consequences.

There exist also problems that appear slightly harder than NP-complete
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problems but easier than the PSPACE-complete problems. One such problem

is the problem of belief revision. This is the problem of changing a belief state,

knowledge base, or database in order to accommodate new information that

is possibly inconsistent with the belief state. This problem has been studied

in philosophical logic

[

Alchourr�on et al., 1985

]

, as well as in AI

[

Ginsberg,

1986

]

and the �eld of logical databases

[

Fagin et al., 1983

]

. There are many

di�erent ways of revising a belief state rationally { according to the rationality

postulates for revision that have been developed by Alchourr�on, Makinson,

and G�ardenfors

[

Alchourr�on et al., 1985

]

. In Computer Science, the preferred

way seems to be to use a syntax-based revision scheme

[

Nebel, 1991a

]

that

can be sketched as follows. Given a belief state K represented by a �nite set

of propositions and a new proposition ', the revised belief state, symbolically

K

:

+ ', is the disjunction of all maximal subsets of K consistent with ' plus

' itself.

Assume, for instance, that our belief state is represented by

K = fp; r; p! qg:

Assume further that we want to revise K by :q. The following two subsets

of K are maximal subsets consistent with :q:

K

1

= fr; p! qg

K

2

= fr; pg

Hence, the revised belief state could be represented by

K

:

+ :q = fr;:qg:

The main reasoning problem in this context is to �nd out whether a

proposition  follows from K

:

+ '. Assuming propositional logic as the base

logic, this problem is obviously coNP-hard, because p^:p follows from ;

:

+ '

if and only if ' is unsatis�able. It seems very unlikely that the problem is

complete for coNP, however, since one can also show that it is NP-hard (with

respect to polynomial many-one reductions). Further, although the problem

can be easily shown to be solvable in polynomial space, it seems impossible

to show that is complete for PSPACE. In fact, the problem turns out to be

complete for a complexity class that lies between NP and PSPACE, namely

the class coNP

NP

(also denoted by �

p

2

)

[

Nebel, 1991a; Eiter and Gottlob,
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1992

]

. This is the class of problems that are complementary to problems

that can be solved on a nondeterministic Turing machine in polynomial time

under the provision that it is allowed to access a so-called NP-oracle, i.e., a

procedure that can solve an NP problem in constant time.

Intuitively, this means that the problem contains two sources of comple-

xity. In fact, in the case of belief revision these two sources can be easily

identi�ed. Firstly, there is the classical logical reasoning problem, which is

coNP-complete in case of propositional logic. Secondly, there is the problem

of quantifying over the potentially exponentially many maximal consistent

subsets of the belief state. This implies that in order to achieve polynomi-

ality, both sources of complexity have to be eliminated. It is not enough to

restrict the base logic to, say, propositional Horn logic

[

Eiter and Gottlob,

1992

]

, but one also has to restrict the number of maximal, consistent subsets

[

Nebel, 1994

]

.

Interestingly, a number of related reasoning problems can be classi�ed as

belonging to the same complexity class. For instance the cautious reasoning

problems in nonmonotonic logics, such as default logic, autoepistemic logic,

and circumscription are coNP

NP

-complete

[

Gottlob, 1992; Stillman, 1992;

Eiter and Gottlob, 1993b

]

, as well as a number of abduction problems

[

Eiter

and Gottlob, 1993a

]

.

10

This implies that all these problems are equivalent

on an abstract algorithmic level and that all these problems can be more or

less directly translated into each other (e.g.

[

Gottlob, 1994

]

).

Furthermore, these results also enable us to check the plausibility of cer-

tain conjectures. Ben-Eliyahu and Dechter

[

1991

]

conjectured, for example,

that their (polynomial-time) method of translating certain restricted default

theories into classical propositional logic could also be applied to general de-

fault theories. As pointed out by Gottlob

[

Gottlob, 1992

]

, this seems rather

unlikely since it would mean that there exist a method of reducing a coNP

NP

-

complete problem to a coNP-complete problem implying that the two classes

are identical, which is believed to be quite unlikely

[

Johnson, 1990

]

.

10

Cadoli and Schaerf

[

1993

]

gave an extensive survey of complexity results for nonmo-

notonic propositional logics.
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4 Coping with NP-hardness

Having shown that a problem is NP-hard does not imply that it is impossible

to tackle this problem computationally. It only means that we cannot hope

to solve arbitrarily large instances of the problem in its full generality in

reasonable time. However, this leaves us with a large number of options.

We may concentrate on restricted version of the problem, we may go for

approximate answers, we may use randomized algorithms or we may design

exponential time algorithms that are practical for small to moderately sized

instances.

In fact, coping with NP-hard problems can be viewed as one of the central

themes of AI. Usually, in AI the complexity problem is tackled using a prac-

tical, experimental approach

[

Bylander, 1991

]

and theoretical considerations

come second. Analytical, complexity theoretic analyses can then \only" ex-

plain why a certain approach is successful or why another one is likely to fail.

However, such analyses are very important when the range of applicability

of a certain technique is to be determined or when \scaling up" is an issue.

4.1 Natural Restrictions of a Problem

As has been noted in the previous section, often it is not necessary to solve a

problem in its full generality, but it is su�cient to consider only a restricted

form of the problem, which may turn out to be e�ciently solvable. The

examples considered were of the kind that the restriction was expressed in

the form that only certain combinations of the basic vocabulary are allowed.

Often, however, it may be some numerical parameter of the problem instance

that can be blamed for the combinatorial explosion. In this case, it may turn

out that (almost) all instances occurring in practice have this parameter

bounded by a constant.

As an example, let us consider the two-level morphology that has been

used for word-form recognition in natural language processing

[

Koskenniemi,

1983

]

. Barton

[

Barton, 1986

]

showed that this approach is NP-complete in

the number of morphological rules, which means that the processing time

can grow exponentially with the number of rules. A closer look reveals,

however, that only a certain kind of rules, rules that realize co-called harmony

processes, are responsible for the NP-completeness result. Furthermore, for

all known languages it happens that only a very limited number of these
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rules is necessary, namely at most two

[

Koskenniemi and Church, 1988

]

. In

other words, for all practical cases, word-form recognition using two-level

morphology is computationally feasible.

As a second example, we will consider subsumption checking in descrip-

tion logics. In most papers on the complexity of this problem, it is assu-

med that the interpretation of atomic concepts is unconstrained. However,

in all existing knowledge representation systems that use description logics

it is possible to de�ne the meaning of an atomic concept

[

Heinsohn et al.,

1994

]

. For instance, using the description-forming operators introduced in

Section 3.2, we may de�ne the meaning of a Father and a Proud-father as

follows:

Father

:

= Man u 9child

Proud-father

:

= Father u 8child:Professor:

The formal interpretation of such de�ning equations is that the set of inter-

pretations is restricted to those satisfying the equations, and subsumption is

computed with respect to these satisfying interpretations.

In most cases, it is required that a set of such equations meets the follo-

wing restrictions:

� every atomic concept appears at most once on the left hand side, and

� the de�nitions must be cycle-free, i.e., non-recursive,

11

which means that one can view these equations as \macro de�nitions." Ba-

sed on this observation, it is easily possible to reduce subsumption checking

relative to a set of concept de�nitions to subsumption checking between two

complex concept expressions that contain only unde�ned atomic concepts.

One only has to replace each de�ned atomic concept by its de�nition.

While this reduction appears to be conceptually easy, it turns out that

it may imply considerable computational costs. In the worst case, it can

happen that the expansion process leads to an exponentially larger concept

description

[

Nebel, 1990b

]

. Furthermore, this is not an artifact of the algo-

rithmic technique, but the problem of subsumption checking relative to a set

of equations seems to be inherently di�cult. While subsumption checking in

11

See

[

Baader, 1990; Nebel, 1991b

]

for an analysis of cyclic concept de�nitions.
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FL

�

is polynomial, as noted in Section 3.2, it becomes NP-hard if subsump-

tion checking has to be done relative to a set of equations

[

Nebel, 1990b

]

.

Interestingly, in all practically occurring situations the worst case never

seems to happen. The reason is that de�nitions occurring in practice are

somehow well-structured. They always have only limited depth which leads

to a reasonable runtime behavior

[

Nebel, 1990b

]

; and this does not only hold

for knowledge representation systems based on description logic but also for

object-oriented database systems

[

Bergamaschi and Nebel, 1994

]

.

In both cases described above, we have the situation that a problem that

has been classi�ed as di�cult is nevertheless e�ciently solvable in practice.

Although the NP-hardness results seem to be irrelevant in these cases, they

give us hints that the runtime requirement can be very sensitive with respect

to the identi�ed problem parameter, i.e., the number of harmony rules or the

depth of de�nitions. In fact, an empirical analysis of di�erent description

logic systems

[

Heinsohn et al., 1994

]

con�rmed that the structure of the

knowledge base can have indeed a severe in
uence on the runtime behavior.

While the restrictions on the above identi�ed parameters lead provably

to polynomiality, it can also be the case that a problem parameter predicts

the di�culty of a problem with high probability. Empirical investigations of

the graph coloring problem

[

Cheeseman et al., 1991

]

and of the satis�ability

problem for constant clause length

[

Mitchell et al., 1992

]

seem to suggest

that certain problem parameters determine easy and hard problem ranges.

Basically, for one range of parameter values the problem is underconstrained,

in which case it is easily solvable by almost all methods. For another range,

the problem is overconstrained, leading to the same observation. Only in the

range where approximately 50% of the instances lead to a \yes" answer, the

problem appears to be di�cult. These results, however, depend on certain

assumptions concerning the distribution of problem instances leading to quite

di�ering results. Gent and Walsh

[

1994

]

, for instance, located the area of

hard problems at another point than Mitchell et al

[

1992

]

because they used

another distribution.

4.2 Enforced Restrictions

In an application-independent system one cannot simply assume that ever-

ything works out well. At least, one should be able to specify the range of

applicability.
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Brachman and Levesque

[

1984

]

go even one step further. They postulate

that a knowledge representation system should have a status similar to a

database system in conventional Computer Science applications. It should

give a correct answer in a time bound that is predictable and reasonable

[

Levesque, 1986

]

. Based on their observation that a particular description-

forming object can make subsumption NP-hard, they propose to restrict the

expressiveness of representation languages as one way to achieve guaranteed

e�ciency.

This proposal, which does not seem to be unreasonable from a technical

point of view, led to severe criticism, however

[

Doyle and Patil, 1991

]

. The

main point of this criticisms was that restricting the representation language

leads in most cases to the fact that the representation language becomes

useless. While this is true in the general case, one should consider two points.

First of all, Brachman and Levesque proposed this way of achieving e�ciency

only as one way. Secondly, there are indeed applications that can bene�t from

restricted knowledge representation languages

[

Wright et al., 1993

]

.

In any case, the discussion of this issue demonstrates that the idea of

developing and analyzing knowledge representation systems independently

from applications seems to be arguable. Applications pose varying requi-

rements on the expressiveness and on the quality of replies, but e�ciency

almost always plays a prominent role.

4.3 Approximations

If it is impossible to identify restrictions that are tolerable, it may be possible

to reduce the requirements on the answer quality. In particular, it is often

possible to give up on the optimality of solutions. For example, generating

arbitrary plans in the blocks world is polynomial while requiring optimal

plans leads to NP-hardness

[

Gupta and Nau, 1992

]

.

However, often AI problems cannot be weakened by giving up on op-

timality. In particular logic-based problems such as subsumption checking,

diagnosis, or temporal projection are not optimization problems and it seems

to be di�cult to de�ne what an approximation to a solution is.

One common solution is in this case to retreat to correct but incomplete

methods. This means that the method only draws logically valid conclusions

but may miss some. In order to be able to characterize the behavior of such

methods formally, one can try to capture the incompleteness declaratively
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using a weaker semantics. For example, Patel-Schneider

[

1989a

]

uses a four-

valued semantics for characterizing a subsumption relation that is polynomial

but weaker than the standard one. Levesque and Lakemeyer use a similar

technique to weaken the general logical implication for propositional belief

logics

[

Levesque, 1984; Lakemeyer, 1987

]

.

Other approaches try to approximate the right answer from above and

below by using correct but incomplete and incorrect but complete methods.

For example, in the work by Cadoli and Schaerf

[

1991; 1992

]

sequences of

interpretations are used to approximate the right answer from above and

below. In Selman and Kautz'

[

1991

]

Horn theories are used to approximate

arbitrary propositional theories from above and below. In this approach, it is

assumed, however, that the approximating theories are computed \o�-line"

since their computation can be quite involved. First experiments using this

approach show that this might be indeed an interesting way to go

[

Kautz

and Selman, 1994

]

.

While the above approaches provide us with incompleteness in a princi-

pled way that can be characterized declaratively, there is also a way of appro-

ximating the solution of a problem by methods that seem to work empirically

well|without giving any guarantees at all. One such approach is the \greedy

satis�ability" method, also called GSAT

[

Selman et al., 1992

]

, that tries to

solve the satis�ability problem by local search attempting to maximize the

number of satis�ed clauses of a formula in conjunctive normal form. Local

search is a well-known technique to solve optimization problems. However,

it applicability to decision problems such as SAT is not a priori obvious.

Nevertheless, GSAT works surprisingly well for a number of problem classes

on which conventional techniques based on systematic search fail.

4.4 Reconsidering the Problem

If everything else fails, one may reconsider the problem and take an NP-

hardness result as the starting point for radically rede�ning the problem.

In particular, if the original problem formulation was intended to capture a

cognitive capability which humans apply e�ortlessly, an NP-hardness result

can be interpreted as stating that the problem formulation does not match

the capability.

Enzinger et al

[

1994

]

, for instance, consider a number of AI problems,

which are formulated as NP-hard search problems, and contrast them with
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simpli�cations and reformulations based on arguments from cognitive science.

For example, they compare case-based diagnosis (see

[

Riesbeck and Schank,

1989

]

) with consistency-based diagnosis as formulated by Reiter

[

1987

]

and

conclude that the former is much better behaved from a computational com-

plexity point of view.

However, one should note that the application areas of the two approaches

are very di�erent. Case-based diagnosis works only if there exists experience

with the technical device one wants to diagnose, which is not necessary for the

consistency based approach. In other words, if one is interested in a diagnosis

that uses only the knowledge about the structure and the functionality of a

technical device, case-based analysis did not help at all to solve the problem

at hand.

4.5 Solving Small Instances

The �nal way then is to accept the combinatorial explosion and to �nd ef-

�cient ways that help to solve instances as large as possible. Heuristics and

structuring the search space in clever ways can help to do so. However, be-

cause of the inherent complexity, the instance size will always be limited to

be only moderately large and there is no way to scale up to instances that

are much larger (say, by a small constant factor).

5 Summary

If we view AI as the �eld concerned with the analysis and synthesis of cogni-

tive capabilities using computation, then it appears to be natural to apply

the tools that have been developed in theoretical computer science. In par-

ticular complexity theory is useful for analyzing the algorithmic structure of

AI problems. Complexity analyses can help to identify sources of complexity,

and to isolate aspects of a problem that may be e�ciently solvable. Further,

complexity theory can be used to compare and contrast di�erent problems

or problem formulations, and may be used to test hypotheses concerning the

computational nature of problems.

In this context, an NP-hardness proof does not constitute the end of the

analysis, but it marks the starting point for searching for e�cient means to

solve interesting aspects of the problems by whatever methods are available.
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This may be done by restricting the problem, by developing approximation

methods, or by radically rede�ning the problem. In a large number of cases,

however, one must accept that exponential time is inevitable and the only

question is how to solve instances up to some bounded size in reasonable

time.
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