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Abstract

Belief revision leads to temporal nonmono-

tonicity, i.e., the set of beliefs does not grow

monotonically with time. Default reasoning

leads to logical nonmonotonicity, i.e., the set

of consequences does not grow monotonically

with the set of premises. The connection be-

tween these forms of nonmonotonicity will

be studied in this paper focusing on syntax-

based approaches. It is shown that a gen-

eral form of syntax-based belief revision cor-

responds to a special kind of partial meet re-

vision in the sense of the theory of epistemic

change, which in turn is expressively equiv-

alent to some variants of logics for default

reasoning. Additionally, the computational

complexity of the membership problem in re-

vised belief sets and of the equivalent prob-

lem of derivability in default logics is ana-

lyzed, which turns out to be located at the

lower end of the polynomial hierarchy.

1 INTRODUCTION

Belief revision is the process of incorporating new

information into a knowledge base while preserving

consistency. Recently, belief revision has received

a lot of attention in AI,

1

which led to a number

of di�erent proposals for di�erent applications

[

Gins-

berg, 1986; Ginsberg and Smith, 1987; Dalal, 1988;

G�ardenfors and Makinson, 1988; Winslett, 1988; My-

ers and Smith, 1988; Rao and Foo, 1989; Nebel,

1989; Winslett, 1989; Katsuno and Mendelzon, 1989;

Katsuno and Mendelzon, 1990; Doyle, 1990

]

. Most

of this research has been considerably inuenced by

approaches in philosophical logic, in particular by

G�ardenfors and his colleagues

[

Alchourr�on et al., 1985;

G�ardenfors, 1988

]

, who developed the logic of theory

1

See also

[

Brachman, 1990

]

, in which \practical and

well-founded theories of belief revision" are called for.

change, also called theory of epistemic change, which

will be briey sketched in Section 2.

Syntax-based approaches to belief revision to be intro-

duced in Section 3 have been very popular because of

their conceptual simplicity. However, there also has

been criticisms since the outcome of a revision opera-

tion relies an arbitrary syntactic distinctions (see, e.g.,

[

Dalal, 1988; Winslett, 1988; Katsuno and Mendelzon,

1989

]

)|and for this reason such operations cannot be

analyzed on the knowledge level. In

[

Nebel, 1989

]

we

showed that syntax-based approaches can be inter-

preted as assigning higher relevance to explicitly rep-

resented sentences. Based on that view, one particular

kind of syntax-based revision, called base revision, was

shown to �t into the theory of epistemic change. In

Section 4 we generalize this result to prioritized bases

by employing the notion of epistemic relevance

[

Nebel,

1990

]

|a complete preorder over the set of all derivable

sentences.

The resulting revision operations do not satisfy all ra-

tionality postulates belief revision operations should

obey, however. In Section 5 some interesting special

cases of epistemic relevance are analyzed that satisfy

all rationality postulates. In particular, we show that

epistemic entrenchment as introduced in

[

G�ardenfors

and Makinson, 1988

]

is a special case of epistemic rel-

evance.

Makinson and G�ardenfors

[

1990

]

showed that there is a

tight connection between belief revision and nonmono-

tonic logics. In Section 6 we will strengthen this result.

First, we show that the form of logical nonmonotonic-

ity observable when revising beliefs is a necessary con-

sequence of temporal nonmonotonicity induced by be-

lief revision. Second, we will prove that this similarity

can be strengthened to equivalence of expressiveness

for particular nonmonotonic logics and belief revision

operations in the case of propositional logic. Poole's

[

1988

]

and Brewka's

[

1989; 1990

]

approaches are shown

to be expressively equivalent to some forms of syntax-

based belief revision approaches. An interesting con-

sequence of this result is that the \absurd belief state"

1



that is inconsistent turns out to be more important

than assumed to be in the theory of epistemic change.

Additionally to the logical properties of belief revision

and default reasoning, in Section 7 the computational

properties are analyzed. As it turns out, propositional

syntax-based belief revision and default reasoning is

not very much harder than propositional derivability.

2 THE THEORY OF EPISTEMIC

CHANGE

In this section we will briey survey some of the re-

sults of the theory of epistemic change in a setting of

propositional logic.

2

Throughout this paper, a propo-

sitional language L with the usual logical connectives

(:, _, ^,! and$) is assumed. The countable alpha-

bet of propositional variables a; b; c : : : is denoted by

�, propositional sentences by v; w; x; y; z; : : :, constant

truth by >, its negation by ?, and countable sets of

propositional sentences by A;B;C; : : : and X;Y; Z; : : :

The symbol ` denotes derivability and Cn the corre-

sponding closure operation, i.e.,

Cn(A)

def

= fx 2 LjA ` xg: (1)

Instead of Cn(fxg), we will also write Cn(x). De-

ductively closed sets of propositional sentences, i.e.,

A = Cn(A), are denoted by capital letters from the

beginning of the alphabet and are called belief sets.

Arbitrary sets of sentences are called belief bases and

are denoted by capital letters from the end of the al-

phabet. Systems of belief bases and belief sets are

denoted by S. Finite belief bases Z are often iden-

ti�ed with the conjunction of all propositions

V

Z. If

S = fX

1

; : : :X

n

g is a �nite family of �nite belief bases,

then

W

S shall denote a proposition logically equiva-

lent to (

V

X

1

)_: : :_(

V

X

n

). As usual, we set

W

; = ?.

In

[

G�ardenfors, 1988

]

three operations on belief sets

are analyzed, namely, expansion, contraction, and re-

vision. Expansion is the addition of a sentence x to a

belief set A, written A+x, resulting in a new (possibly

inconsistent) belief set, de�ned by

A+ x

def

= Cn(A [ fxg): (2)

Contraction is the removal of a sentence x from a be-

lief set A resulting in a new belief set, denoted by

A

:

� x, that does not contain x (if x is not a tautol-

ogy), and revision is the addition of a sentence x to A,

denoted by A

:

+ x, such that Cn(?) 6= A

:

+ x when-

ever 6` :x. Although contraction and revision are not

uniquely determined operations|the only commonly

agreed criterion is that the changes to the original be-

lief sets have to be minimal|it is possible to constrain

2

The formulation in

[

Alchourr�on et al., 1985;

G�ardenfors, 1988

]

is more general in that only some speci�c

properties are required for the underlying logic.

the space of reasonable change operations. G�ardenfors

proposed sets of rationality postulates

3

change oper-

ations on belief sets should satisfy. The G�ardenfors

postulates for revision look as follows (A a belief set,

x; y propositional sentences):

(

:

+1) A

:

+ x is a belief set;

(

:

+2) x 2 A

:

+ x;

(

:

+3) A

:

+ x � A+ x;

(

:

+4) If :x 62 A, then A+ x � A

:

+ x;

(

:

+5) A

:

+ x = Cn(?) only if ` :x;

(

:

+6) If ` x$ y then A

:

+ x = A

:

+ y;

(

:

+7) A

:

+ (x ^ y) � (A

:

+ x) + yg;

(

:

+8) If :y 62 A

:

+ x,

then (A

:

+ x) + y � A

:

+ (x ^ y).

These postulates intend to capture the intuitive mean-

ing of minimal change|from a logical point of view

[

Alchourr�on et al., 1985; G�ardenfors, 1988

]

. (

:

+1) states

that revision of belief set always results in a belief set.

(

:

+2) formalizes the requirement that revision is always

successful. (

:

+3) gives an upper bound for a revised be-

lief set. It should at most contain the consequences of

the original belief set and the new sentence. (

:

+4) is the

conditional converse of (

:

+3). In case when x is consis-

tent with the original belief set, the revised belief set

shall at least contain the original belief base and the

new sentence. (

:

+5) states that inconsistency should

be avoided when possible, and (

:

+6) formalizes the re-

quirement that revision shall be independent from the

syntactic form of the sentence the belief set is revised

by. While the �rst six postulates, also called basic

postulates, are straightforward, the last two postulates

are less obvious. They can be interpreted as general-

izations of (

:

+3) and (

:

+4).

Based on this framework, it is possible to analyze dif-

ferent ways of de�ning revision operations. In

[

Al-

chourr�on et al., 1985

]

, so-called partial meet revisions

are investigated. This notion is based on systems of

maximal (w.r.t. to set-inclusion) subsets of a given be-

lief set A that do not allow the derivation of x, called

the removal of x and written A#x:

A#x

def

= fB � AjB 6` x; 8C:B � C � A) C ` xg:(3)

A partial meet revision (on A for all x) is de�ned by a

selection function S that selects a nonempty subset of

A #:x (provided A #:x is nonempty, ; otherwise) in

3

In order to avoid confusion, one should note that ra-

tionality in the sense of the theory of epistemic change

means an idealization: \In this way the rationality crite-

ria serve as regulative ideals. Actual psychological states

of belief normally fail to be ideally rational in this sense"

[

G�ardenfors, 1988, Section 1.2

]

. Further, this notion of

rationality is quite di�erent from the notion of economic

rationality

[

Doyle, 1990

]

.

2



the following way:

4

A

:

+ x

def

=

�

\

S(A#:x)

�

+ x: (4)

Such partial meet revisions satisfy unconditionally the

�rst six postulates, also called basic postulates. Fur-

thermore, it is possible to show that all revision oper-

ations satisfying the basic postulates are partial meet

revisions

[

G�ardenfors, 1988, Theorem 4.13

]

. Actually,

this and the other results cited below were proven for

contraction. However, if contraction and revision sat-

isfy the basic postulates, they are interde�nable by the

Harper (5) and Levi (6) identity:

A

:

� x = (A

:

+ :x) \A; (5)

A

:

+ x = (A

:

� :x) + x: (6)

Further, the eight G�ardenfors postulates for contrac-

tion (see, e.g.

[

Alchourr�on et al., 1985; G�ardenfors,

1988

]

) are equivalent to the revision postulates under

these de�nitions in the following sense. The �rst six,

seven, or eight contraction postulates are satis�ed if

and only if the �rst six, seven or eight, revision postu-

lates for the corresponding revision operation are satis-

�ed, respectively

[

G�ardenfors, 1988, Theorem 3.2{3.5

]

.

It should be noted that two special cases of partial

meet revisions are unreasonable

[

Alchourr�on et al.,

1985; G�ardenfors, 1988

]

. The �rst special case is

that S always selects all of the elements of A # :x|

leading to the so-called full meet revision. In this case

A

:

+ x = Cn(x) if :x 2 A. Although unreasonable,

full meet revision is \fully rational" in the sense that

it satis�es all the G�ardenfors postulates, as is easy to

verify.

The second special case is that S always selects single-

tons from (A#:x)|resulting in the class of so-called

maxi-choice revisions. These revision operations have

the property that A

:

+ x is a complete belief set|

provided that :x 2 A. This means y 2 A

:

+ x or

:y 2 A

:

+ x for every y 2 L. In other words maxi-

choice revisions lead to an unmotivated ination of

beliefs.

3 SYNTAX-BASED REVISION

APPROACHES

The theory sketched above captures the logical portion

of minimal change giving us a kind of yardstick to

evaluate approaches to belief revision. However, it still

leaves open the problem of how to specify additional

restrictions so that a revision operation also satis�es a

\pragmatic" measure of minimal change.

Two principal points of departure are conceivable.

Starting with a belief base as the representation of

4

Note that all elements of A#:x are belief sets and that

the intersection of belief sets is a belief set again.

a belief set, either the syntactic form of the be-

lief base

[

Fagin et al., 1983; Ginsberg, 1986; Nebel,

1989

]

or the possible states of the world described by

the belief base|the models of the belief base|could

be changed minimally

[

Dalal, 1988; Winslett, 1988;

Katsuno and Mendelzon, 1989; Katsuno and Mendel-

zon, 1990

]

. The former approach seems to be more

reasonable if the belief base corresponds to a body of

explicit beliefs that has some relevance, such as a code

of norms or a scienti�c or naive theory which is almost

correct. The latter view seems plausible if the appli-

cation is oriented towards minimal change of the state

of the world described by a belief set.

The idea of changing a description minimally could be

formalized by selecting maximal subsets of the belief

base not implying a given sentence. If there is more

than one such maximal subset, the intersection of the

consequences of these subsets is used as the result.

Thus, using (Z #x) as the set of maximal subsets of Z

not implying x as above, simple base revision, written

as Z�x, could be de�ned as follows

[

Fagin et al., 1983;

Ginsberg, 1986; Nebel, 1989

]

:

Z � x

def

=

�

\

Y 2(Z#:x)

Cn(Y )

�

+ x: (7)

The operation � considers all sentences in a base as

equally relevant. In most applications, however, we

want to distinguish between the relevance of sentences

(see, e.g.,

[

Fagin et al., 1983; Ginsberg, 1986

]

). For this

purpose, we assume that Z is partitioned into disjoint

priority classes Z

i

, i � 1, and de�ne the prioritized

removal of x, written Z + x, in a way such that sen-

tences in Z

i

have higher priority than those in Z

j

i�

i < j:

Z + x

def

=

n

Y � Zj Y 6` x; Y =

S

i�1

Y

i

;

8i � 1:

�

Y

i

� Z

i

;

8X: Y

i

� X � Z

i

)

(

S

i�1

j=1

Y

j

[X) ` x

�o

:

(8)

Intuitively, the elements of Z + x are constructed in

a stepwise manner starting with Z

1

and selecting as

many sentences from Z

i

as possible such that the se-

lected sentences from Z

1

; : : : ; Z

i

do not lead to the

derivation of x.

Using + instead of # in the de�nition (7) leads then to

a prioritized base revision operation, denoted by

^

� ,

with the special case of only one priority class that is

identical with simple base revision.

In the interesting special case when we are dealing with

�nite belief bases, the result of a base revision can be

�nitely represented.

Proposition 1 If Z is a �nite belief base then

Z

^

� x = Cn

�

(

_

(Z + :x)) ^ x

�

; (9)

3



for every prioritized base revision

^

� on Z.

5

In order to demonstrate how base revision works, let

us assume the following scenario. Assume that a sus-

pect tells you that he went to the beach for swimming

and assume that you have observed that the sun was

shining. Further, you �rmly believe that going to the

beach for swimming when the sun is shining implies a

sun tan. If you then discover that the suspect is not

tanned, there is an inconsistency to resolve. Supposing

the following propositions:

b = \going to the beach for swimming",

s = \the sun is shining",

t = \sun tan",

the situation can be modeled formally by a prioritized

base Z:

Z

1

= f(b ^ s! t)g;

Z

2

= fsg;

Z

3

= fbg;

Z = Z

1

[ Z

2

[ Z

3

:

From this belief base t can be derived. If we later

observe that :t, the belief base has to be revised:

Z

^

� :t =

\

�

Cn(Z + t)

�

+ :t

= Cn

�

_

n

f(b ^ s! t); sg

o�

+ :t

= Cn(f(b ^ s! t); s;:tg):

In particular, we would conclude that b was a lie.

A consequence of the de�nition of (simple and pri-

oritized) base revision is that for two di�erent belief

bases X and Y that have the same meaning, i.e.,

Cn(X) = Cn(Y ), base revision can lead to di�erent

results, i.e., Cn(X

^

� x) 6= Cn(Y

^

� x). Base revision

has a \morbid sensitivity to the syntax of the descrip-

tion of the world"

[

Winslett, 1988

]

, which is considered

as an undesirable property. It is argued that revision

shall be independent from the syntactical representa-

tion of a belief set, that they should be speci�ed on

the knowledge level

[

Newell, 1982

]

. Dalal

[

1988

]

for-

mulated the principle of irrelevance of syntax which

states that a revision shall be independent of the syn-

tactic form of the belief base representing a belief set

and of the syntactic form of the sentence that has to

be incorporated into the belief set (see also

[

Katsuno

and Mendelzon, 1989

]

).

Obviously, base revision does not satisfy the principle

of irrelevance of syntax|and is not a revision oper-

ation in the sense of the theory of epistemic change

for this reason. Worse yet, abstracting from the syn-

tactic representation of a belief base and consider-

ing the logical equivalent belief set leads to nowhere.

5

Full proofs for this and the following propositions can

be found in

[

Nebel, 1991

]

.

Simple base revision applied to belief sets is equiv-

alent to full meet revision, thus, useless. For these

reasons, it is argued in

[

Dalal, 1988; Winslett, 1988;

Katsuno and Mendelzon, 1989

]

that revision shall be

performed on the model-theoretic level, i.e., by view-

ing a belief set as the set of models that satisfy a given

belief base and by performing revision in a way that

selects models that satisfy the new sentence and di�er

minimally from the models of the original belief base.

In order to de�ne what the term minimal di�erence

means, we have to say something about how models

are to be compared, though. In Dalal

[

1988

]

, for in-

stance, the \distance" between models is measured by

the number of propositional variables that have dif-

ferent truth values. Katsuno and Mendelzon

[

1989

]

generalize this approach by considering particular or-

derings over models. In any case, it is impossible to

de�ne a revision operation by referring only to logical

properties. Some inherently extra-logical, pragmatic

preferences are necessary to guide the revision process.

As argued above, for some applications it does not

seem to be a bad idea to derive preferences from the

syntactic form of the representation of a belief set. Ac-

tually, from a more abstract point of view, it is not

the particular syntactic form a belief base we are in-

terested in, but it is the fact that we believe that a

particular set of sentences is more valuable or justi�ed

than another logically equivalent set, and we want to

preserve as many of the \valuable" sentences as possi-

ble. Using this idea it is possible to reconstruct base

revision in the framework of the theory of epistemic

change by employing the notion of epistemic relevance

[

Nebel, 1990

]

.

4 EPISTEMIC RELEVANCE AND

BASE REVISION

The intention behind base revision is that all the sen-

tences in a belief base X are considered as relevant|

some perhaps more so than others. For this reason

we want to give up as few sentences from X as pos-

sible, while with sentences that are only derivable we

are more liberal. This idea can be formalized by em-

ploying a complete preorder with maximal elements,

written x � y, on the elements of a belief set. In other

words, we consider a reexive and transitive relation on

Cn(X) such that for all x; y 2 Cn(X) we have x � y

or y � x. Further, there exists at least one maximal

element x, i.e., for no element y: x � y and y 6� x.

This relation will be called epistemic relevance order-

ing. It induces an equivalence relation, written x ' y,

as follows:

x ' y i� (x � y and y � x): (10)

The corresponding equivalence classes are denoted by

x and are called degrees of epistemic relevance. Since

the preorder is complete, � is a linear order on the

4



degrees of epistemic relevance. Further, there exists

a maximal such degree because the preorder contains

maximal elements. Using the degrees of epistemic rel-

evance, we de�ne a strict partial ordering expressing

preferences on subsets X;Y 2 2

A

, written as X � Y ,

by

X � Y i� 9v:

�

(X \ v � Y \ v) and

8w 6� v: (X \ w = Y \w)

�

;

(11)

which in turn can be used to de�ne a selection function

S

�

that selects all maximally preferred elements of

A#x:

S

�

(A#x)

def

= fB 2 (A#x)j 8C 2 (A#x):B 6� Cg: (12)

Such a selection function may then be used to de�ne

a revision operation as done in equation (4). Revi-

sions de�ned in this way will be called revisions based

on epistemic relevance. Analyzing the properties of

such revisions, we note that they satisfy most of the

G�ardenfors postulates.

Theorem 2 Revisions based on epistemic relevance

satisfy (

:

+1){(

:

+7).

Proof Sketch: First of all, note that any revision

based on epistemic relevance is a partial meet revision

because S

�

selects always a nonempty subset of (A #

x), provided this set is nonempty. By Theorem 4.13 of

[

G�ardenfors, 1988

]

, any partial meet revision satis�es

(

:

+1){(

:

+6). Satisfaction of (

:

+7) follows from the fact

that S

�

is a relational selection function

[

G�ardenfors,

1988, Lemma 4.14

]

.

Note that revision based on epistemic relevance does

not satisfy (

:

+8) in general. The interesting point about

such partial meet revisions is that they correspond to

prioritized base revision as de�ned in Section 3. The

deeper reason for this correspondence is that a selec-

tion function can be constructed in a way such that it

selects the intersection of the consequential closure of

a system of sets, as spelled out below.

Lemma 3 Let A be a belief set, and let x be a sentence

such that :x 2 A. Let S be a system of subsets of A,

where Z 6` :x, for all Z 2 S. Then

�

\

fC 2 A#:xj 9Z 2 S: Z � Cg

�

+ x = (13)

=

�

\

Z2S

Cn(Z)

�

+ x:

Using this lemma, the correspondence between revi-

sion based on epistemic relevance and prioritized base

revision can be easily shown.

Theorem 4 For any revision operation

:

+ de�ned on

A and based on epistemic relevance there exists a cor-

responding prioritized base revision

^

� on some base Z

and vice versa such that

A

:

+ x = Z

^

� x: (14)

Proof Sketch: For the limiting cases :x 62 A or ` :x

the theorem holds trivially.

): First, any belief set is a belief base by de�nition.

Second, any epistemic entrenchment ordering de�nes

priority classes on such a base. Third, for any deduc-

tively closed prioritized base A, a set X is a member

of (A + x) if and only if X is maximal in (A#x) w.r.t.

�. Applying Lemma 3, the conclusion follows.

(: Given a prioritized base Z, de�ne an epistemic

entrenchment ordering on Cn(Z) such that v � w i�

v 2 Cn(Z) � Z or v 2 Z

i

, w 2 Z

j

, and i � j. Now

it is easy to show that B 2 S

�

(Cn(Z) # x) i� there

is a set X 2 (Z + x) and X � B. Applying again

Lemma 3, shows that a revision based on the relevance

ordering de�ned above leads to the same results as the

prioritized base revision.

This means that prioritized base revision coincides

with revision based on epistemic relevance. This ab-

stract view on syntax-based revision may also answer

some of the questions raised by Myers and Smith

[

1988

]

. They observed that sometimes base revision

does not seem to be the appropriate operation be-

cause some derived information turns out to be more

relevant than the syntactically represented sentences

in a belief base, and we get the wrong results when

using base revision. However, there is no magic in-

volved here. Base revision leads to the right results

only if the syntactic representation really reects the

epistemic relevance. For this reason, the notion of re-

vision based on epistemic relevance seems to be prefer-

able over base revision because it avoids the confusion

between surface-level syntactic representation and the

intended relevance of propositions.

The question of whether the above de�ned correspon-

dence can be exploited computationally cannot be an-

swered positively in the general case. For the case of

belief sets that are �nite modulo logical equivalence,

however, revision based on epistemic relevance can be

performed by a prioritized base revision on a �nite

base.

Proposition 5 Let A be a belief set �nite modulo log-

ical equivalence. If

:

+ is a revision based on epistemic

relevance de�ned on A, then there exists a �nite pri-

oritized base Z, such that for all x:

A

:

+ x = Z

^

� x: (15)

Although revisions based on epistemic relevance do

not satisfy all G�ardenfors postulates, there are spe-

cial cases that do so. A trivial special case is a revi-

sion based on only one degree of epistemic relevance,

which is equivalent to full meet revision. There are

more interesting cases, however, we will investigate in

the following section.
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5 EPISTEMIC RELEVANCE AND

ENTRENCHMENT

G�ardenfors and Makinson claim that the notion of

epistemic entrenchment introduced in

[

G�ardenfors and

Makinson, 1988

]

is closely related to the notion of

database priorities as proposed in

[

Fagin et al., 1983

]

.

Since the notion of database priorities is identical to

the notion of priority classes introduced in Section 3,

which in turn coincides with degrees of epistemic rele-

vance, one would expect that epistemic entrenchment

orderings are closely related to epistemic relevance or-

derings. Although the intuitions are clearly similar,

the question is whether the di�erent formalizations

lead to identical result of revision operations.

Epistemic entrenchment orderings, written as x �

�

y,

are de�ned over the entire set of sentences L and have

to satisfy the following properties:

(�

�

1) If x �

�

y and y �

�

z, then x �

�

z.

(�

�

2) If x ` y, then x �

�

y.

(�

�

3) For any x; y, x �

�

(x ^ y) or y �

�

(x ^ y).

(�

�

4) When A 6= Cn(?), then x 62 A i� x �

�

y for

all y 2 L.

(�

�

5) If y �

�

x for all y 2 L, then ` x.

Using such a relation, G�ardenfors and Makinson de�ne

contraction based on epistemic entrenchment, written

A

�

� x, by

y 2 A

�

� x i� y 2 A and ((x _ y) 6�

�

x or ` x) (16)

and show that a contraction based on epistemic en-

trenchment satis�es all rationality postulates for con-

traction as well as the following condition

[

G�ardenfors

and Makinson, 1988, Theorem 4

]

:

x �

�

y i� x 62 A

�

� (x ^ y) or ` (x ^ y): (17)

Further, they show that any contraction operation sat-

isfying all of the rationality postulates is generated

by some epistemic entrenchment ordering

[

G�ardenfors

and Makinson, 1988, Theorem 5

]

.

The question is now how to interpret these results

in the framework of epistemic relevance. It follows

straightforwardly that the restriction of �

�

to the sen-

tences in a belief set can be considered as an epistemic

relevance ordering as de�ned in the previous section.

Further, in this case, using interde�nability of revision

and contraction, de�nition (16) coincides with a con-

traction operation that is de�ned by using the Harper

identity (5) and a revision operation based on a epis-

temic relevance ordering that satis�es (�

�

1){(�

�

5).

Theorem 6 Suppose a belief set A, an epistemic en-

trenchment ordering �

�

, and a contraction operation

�

� based on �

�

. Let � be an epistemic relevance order-

ing that is the restriction of �

�

to A, and let

:

+ be a

revision based on the epistemic relevance ordering �.

Then

A

�

� x = (A

:

+ :x) \A: (18)

Proof Sketch: For the limiting cases ` x and x 62 A

the theorem holds trivially. For the principal case, one

straightforwardly veri�es that

y 2

\

S

�

(A#x) i� y 2 A and (x _ y) 6�

�

x: (19)

From this the conclusion follows immediately.

Thus, the notion of epistemic entrenchment can indeed

be viewed as a re�ned special case of database priori-

ties or epistemic relevance. It is not obvious, however,

how to arrive at such epistemic entrenchment order-

ings. While epistemic relevance can be easily derived

from given priority classes, it is not clear whether there

are natural ways to generate epistemic entrenchment

orderings. In

[

G�ardenfors and Makinson, 1988

]

it is

proposed to start with a complete ordering over the

maximal disjunctions derivable from a belief set. De-

spite the fact that this does not sound very \natural",

it also implies that a large amount of information has

to be supplied, sometimes too much (see Section 7), in

order to change a belief set.

Interestingly, there is another special case of epistemic

relevance that leads to a revision operation that sat-

is�es all postulates. When all priority classes of a

prioritized belief base are singletons, then the priori-

tized base revision (as well as the corresponding partial

meet revision and the epistemic relevance ordering) are

called unambiguous.

Proposition 7 Let Z be a prioritized belief base such

that all priority classes are singletons. Then (Z + x)

is a singleton i� 6` x.

Clearly, the corresponding epistemic relevance order-

ing is not necessarily an epistemic entrenchment order-

ing. Nevertheless, unambiguous partial meet revisions

satisfy all rationality postulates.

Theorem 8 Let � be an unambiguous epistemic rel-

evance ordering. Then the revision based on this or-

dering satis�es all G�ardenfors postulates.

Proof Sketch: By Theorem 2 (

:

+1){(

:

+7) are satis-

�ed. If :x 62 A, then (

:

+8) holds because of (

:

+4). If

` :x, then (

:

+8) holds because the \if" part of (

:

+8)

is never true. For the principal case we make use of

Proposition 7 and Theorem 4 and show that for the

unambiguously prioritized base Z:

If fXg = (Z + :x) and

X [ fxg 6` :y and

fY g = (Z + (:x_ :y))

then X � Y:

(20)
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Assume that (20) is violated, i.e., there exists a small-

est index j such that X\

S

j

i=1

Z

i

� Y \

S

j

i=1

Z

i

. This,

however, would mean that X � ((Y \

S

j

i=1

Z

i

)[Z

j

) `

:x _ :y. Thus, X ` x ! :y, which is equivalent to

X [ fxg ` :y contradicting the precondition in (20).

Although an unambiguous relevance ordering is not

necessarily an entrenchment ordering, using (17) it is

possible to specify an epistemic entrenchment order-

ing that leads to an identical revision operation since

unambiguous revisions are fully rational.

6 BELIEF REVISION AND

DEFAULT REASONING

Doyle remarked in

[

Doyle, 1990, App. A

]

that \the

adjective `nonmonotonic' has su�ered much careless

usage recently in arti�cial intelligence, and the only

thing common to many of its uses is the term `non-

monotonic' itself." Doyle identi�ed two principal ideas

behind the use of this term, namely,

[: : : ] that attitudes are gained and lost over

time, that reasoning is nonmonotonic|this

we call temporal nonmonotonicity|and that

unsound assumptions can be the deliberate

product of sound reasoning, incomplete in-

formation, and a \will to believe"|which we

call logical nonmonotonicity.

Although these two forms of nonmonotonicity should

not be confused, they are intimately connected. In

particular, the temporal nonmonotonicity induced by

belief revision, i.e., the fact that in general we do not

have A � A

:

+ x, is connected with logical nonmono-

tonicity induced by some forms of default reasoning.

When reasoning with defaults in a setting as described

in

[

Poole, 1988; Brewka, 1989

]

, we are prepared to

\drop" some of the defaults if they are inconsistent

with the facts. This, however, is quite similar to

what we are doing when revising beliefs in the the-

ory of epistemic change. Propositions of a theory are

given up when they are inconsistent with new facts.

Since default reasoning leads to logical nonmonotonic-

ity, one would expect that belief revision is nonmono-

tonic in the facts to be added, i.e., we would expect

that Cn(x) � Cn(y) does not imply A

:

+ x � A

:

+ y.

Conversely, requiring monotony in the second operand

of a belief revision operation is impossible in the gen-

eral case.

Proposition 9 Let

:

+ be a belief revision operation de-

�ned on a belief set A. If for all x; y

A

:

+ x � A

:

+ y if Cn(x) � Cn(y); (21)

then

1. A = Cn(;) and A

:

+ x = Cn(x), or

2. A = Cn(?) and A

:

+ x = Cn(x), or

3.

:

+ violates at least one of the basic G�ardenfors pos-

tulates.

Makinson and G�ardenfors

[

1990

]

use this similarity

of logical nonmonotonicity and the nonmonotonicity

of belief revision in the second operand as a start-

ing point to investigate the relationship between non-

monotonic logics and belief revision on an very general

and abstract level. They compare various general con-

ditions on nonmonotonic provability relations with the

G�ardenfors postulates.

For the approaches to belief revision described in the

previous section there is an even stronger connec-

tion to nonmonotonic logic. Prioritized base revi-

sion, and hence partial meet revision based on epis-

temic relevance, is expressively equivalent to skep-

tical provability

6

in Poole's

[

1988

]

theory formation

approach and Brewka's

[

1989

]

level default theories

(ldt)|for the case of �nitary propositional logic.

A common generalization of both approaches are

ranked default theories (rdt). A rdt � is a pair

� = (D;F), where D is a �nite sequence hD

1

; : : : ;D

n

i

of �nite sets of sentences (propositional, in our case)

interpreted as ranked defaults and F is a �nite set of

sentences interpreted as hard facts.

An extension of � is a deductively closed set of propo-

sitions E = Cn((

S

n

i=1

R

i

)[F) such that for all i with

1 � i � n:

1. R

i

� D

i

,

2. (

S

i

j=1

R

j

) [ F is consistent,

7

and

3. (

S

i

j=1

R

j

) is set-inclusion maximal.

A sentence x is strongly provable in �, written �j�x,

i� for all extensions E of �: x 2 E.

Poole's approach is a special case of rdt's where D =

hD

1

i, and Brewka's ldt's are rdt's with F = ;. Note,

however, that the expressive di�erence between rdt's

and ldt's is actually very small and shows up only if F

is inconsistent. In this case, rdt's allow the derivation

of ? while this is impossible in ldt's.

Theorem 10 Let � = (hD

1

; : : : ;D

n

i;F) be a rdt.

Let Z =

S

n

i=1

D

i

be a prioritized base with priority

classes D

1

; : : : ;D

n

. Then

�j�x i� x 2 (Z

^

� F): (22)

6

A correspondence to credulous derivability can be

achieved if a notion of nondeterministic revision as pro-

posed in

[

Doyle, 1990

]

is adopted.

7

Note that this de�nition, which is similar to the de�ni-

tion of an extension in

[

Poole, 1988

]

, excludes inconsistent

extensions. Nevertheless, the de�nition of strong provabil-

ity implies that ? can be derived i� F is inconsistent.

7



Proof Sketch: In the limiting case when F ` ?,

Z

^

� F = Cn(?). Further, in this case there is no ex-

tension of �, hence �j�x for all x 2 L by the de�nition

of strong provability.

When F is consistent, it is easy to see that E is an

extension of � if and only if there is a belief base

X 2 (Z + :(

V

F)) such that E = Cn(X [ F).

This means that �nite ranked default theories have the

same expressive power as prioritized base revision op-

erations, which coincide with revisions based on epis-

temic relevance by Theorem 4.

It should be noted that in ranked default theories

there is no requirement on the internal consistency

of defaults. This means that the set

S

i

D

i

may very

well be inconsistent. In Theorem 10 that may lead to

? 2 Cn(Z), i.e., the belief set to be revised is incon-

sistent. Although this might sound unreasonable in

the context of modeling (idealized) epistemic states|

in fact, inconsistency is indeed explicitly excluded by

requirement (2.2.1) in

[

G�ardenfors, 1988

]

|it does not

lead to technical problems in the theory of epistemic

change. Additionally, it is possible to give a trans-

formation between reasoning in rdt's and prioritized

base revision using only consistent belief sets.

Corollary 11 Let � be a rdt as above. Then there

exists a consistent prioritized base Z and a proposition

y such that

�j�x i� x 2

�

Z

^

� (y ^F)

�

: (23)

Proof Sketch: De�ne Z as in Theorem 10. Trans-

form every sentence in Z into negation normal form

(i.e., into a formula such that negation signs appear

only in front of propositional variables), replace any

negative literal :a in all sentences of Z by a fresh vari-

able a

0

and de�ne (assuming w.l.g. that � is �nite):

y

def

=

^

a2�

(:a$ a

0

): (24)

This ensures that Z is consistent and that the result

of the revision is the same as in Theorem 10.

From the results above and the translation of (

:

+8)

to a condition on nonmonotonic derivability relations

in

[

Makinson and G�ardenfors, 1990

]

, it follows that

the derivability relation of rdt's w.r.t. the set of

hard facts F does not satisfy the condition of ratio-

nal monotony (see

[

Makinson and G�ardenfors, 1990

]

).

Note that this result depends on the exact correspon-

dence between rdt's and belief revision based on epis-

temic relevance. In

[

Makinson and G�ardenfors, 1990;

G�ardenfors, 1990

]

the correspondence between Poole's

logic and belief revision was only approximate because

the defaults were assumed to be deductively closed.

Another interesting observation in this context is that

the addition of constraints to rdt's is similar but not

identical to a contraction operation as de�ned in Sec-

tion 2. Poole

[

1988

]

introduced constraints|another

set of sentences|as a means to restrict the applicabil-

ity of defaults. A ranked default theory with constraints

is a triple � = (D;F ; C), where D and F are de�ned

as above and C is a �nite set of sentences interpreted

as constraints. The notion of an extension is modi�ed

as follows. Instead of condition 2. it is required that

2. (

S

n

i=1

R

i

) [ F [ C is consistent.

Provided the set F[C is consistent, which is the inter-

esting case, skeptical derivability can be modeled as a

form of contraction on belief bases (see

[

Nebel, 1989

]

),

followed by an expansion.

Theorem 12 Let � = (hD

1

; : : : ;D

n

i;F ; C) be an rdt

with constraints such that F [ C is consistent. Let

Z =

S

n

i=1

D

i

be a prioritized base with D

1

; : : : ;D

n

the

priority classes of Z. Then

�j�x i�

_

�

Z + :(F ^ C)

�

^F ` x (25)

Proof Sketch: Assuming that F[C is consistent, any

extension E of � is the set of consequences of F and

a set X =

S

n

i=1

R

i

such that for all j � n:

S

j

i=1

R

i

is

consistent with F [ C and maximal. This, however, is

by de�nition equivalent to X 2 (Z + :(F ^ C)).

This means that contrary to the opinion that there is

no counter-part to contraction in nonmonotonic log-

ics as spelled out in

[

Makinson and G�ardenfors, 1990

]

,

default reasoning with constraints in Poole's theory

formation approach can be modeled by using an oper-

ation similar to contraction. However, this similarity

does not apply to contraction on belief sets. Assum-

ing that the defaults are internally inconsistent, i.e.,

Z ` ?, application of the Harper identity (5) leads to

A

:

� :x = A

:

+ x; (26)

which means that the constraints become part of every

extension violating the intention behind introducing

constraints. This does not happen when contracting

a base because base contraction removes more beliefs

than contraction on belief sets (see also

[

Nebel, 1989

]

).

7 COMPUTATIONAL

COMPLEXITY

For the investigation of the computational complex-

ity of belief revision, we consider the problem of de-

termining membership of a sentence y in a belief set

A = Cn(Z) revised by x, i.e.,

y 2 A

:

+ x: (27)

As the input size we use the sum of the size jZj of the

belief base Z that represents A and the sizes jxj and

jyj of the sentences x and y, respectively.
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This assumption implies that the representation of the

preference relation used to guide the revision process

should be polynomially bounded by jZj+ jxj+ jyj. Al-

though this sounds like a reasonable restriction, it is

not met by all belief revision approaches. Belief revi-

sion based on epistemic entrenchment orderings

[

G�ar-

denfors and Makinson, 1988

]

, for instance, requires

more preference information in the general case. An

epistemic entrenchment ordering over all elements of

a belief set can be uniquely characterized by an initial

complete order over the set of all derivable maximal

disjunctions (over all literals)

[

G�ardenfors and Makin-

son, 1988, Theorem 7

]

. This set is logarithmic in the

size of the set of formulas (modulo logical equivalence)

in a belief set. However, the number of maximal dis-

junctions may still be very large, namely, exponential

in the size of a belief base.

A similar statement could be made about revisions

based on epistemic relevance. However, if we consider

only complete preorders over Z with the understand-

ing that the degree of least relevant sentences is just

Cn(Z) � Z, then the ordering is represented in a way

that is polynomially bounded by jZj and

:

+ can be

computed by using the corresponding prioritized base

revision.

Analyzing the computational complexity of the belief

revision problems, the �rst thing one notes that decid-

ing the trivial case y 2 Cn(;)

:

+ x is already co-NP-

complete,

8

and we might give up immediately. How-

ever, �nding a characterization of the complexity that

is more �ne grained than just saying it is NP-hard can

help to understand the structure of the problem better.

In particular, we may be able to compare the inherent

complexity of di�erent approaches and, most impor-

tantly, we may say something about feasible imple-

mentations, which most likely will make compromises

along the line that the expressiveness of the logical

language is restricted and/or incompleteness is toler-

ated at some point. For this purpose we have to know,

however, what the sources of complexities are.

The belief revision problems considered in this paper

fall into complexity classes located at the lower end of

the polynomial hierarchy. Since this notion is not as

common as the central complexity classes, it will be

briey sketched

[

Garey and Johnson, 1979, Sect. 7.2

]

.

Let X be a class of decision problems. Then P

X

de-

notes the class of decision problems L 2 P

X

such that

there is a decision problem L

0

2 X and a polynomial

Turing-reduction from L to L

0

, i.e., all instances of L

can be solved in polynomial time on a Turing machine

that employs an oracle for L

0

. Similarly, NP

X

denotes

the class of decision problems L 2 NP

X

such that there

is nondeterministic Turing-machine that solves all in-

8

We assume some familiarity with the basic notions of

the theory of NP-completeness as presented in the �rst few

chapters of

[

Garey and Johnson, 1979

]

.

stances of L in polynomial time using an oracle for

L

0

2 X. Based on these notions, the sets �

p

k

, �

p

k

, and

�

p

k

are de�ned as follows:

9

�

p

0

= �

p

0

= �

p

0

= P; (28)

�

p

k+1

= P

�

p

k

; (29)

�

p

k+1

= NP

�

p

k

; (30)

�

p

k+1

= co-�

p

k+1

: (31)

Thus, �

p

1

= NP, �

p

1

= co-NP, and �

p

2

is the set

of NP-easy problems. Further note that

S

k�0

�

p

k

=

S

k�0

�

p

k

=

S

k�0

�

p

k

� PSPACE.

The role of the \canonical" complete problem (w.r.t.

polynomial transformability), which is played by SAT

for �

p

1

, is played by k-QBF for �

p

k

. k-QBF is the

problem of deciding whether the following quanti�ed

boolean formula is true:

9~a 8

~

b : : :

| {z }

k alternating quanti�ers starting with 9

F (~a;

~

b; : : :): (32)

Turning now to the revision operations discussed in

this paper, we �rst of all notice that the special be-

lief revision problem of determining membership for

a full meet revision, called FMR-problem, is compa-

rably easy. With respect to Turing-reducibility, there

is actually no di�erence to the complexity of ordinary

propositional derivability, i.e., the FMR-problem is NP-

equivalent.

Proposition 13 FMR 2 �

p

2

�(�

p

1

[�

p

1

) provided �

p

1

6=

�

p

1

.

Proof Sketch: If

:

+ is a full meet revision, x 2

Cn(Z)

:

+ y can be solved by the following algorithm:

if Z 6` :x

then Z [ fxg ` y

else x ` y

From this, membership in �

p

2

follows.

Further, SAT can be polynomially transformed to FMR

by solving x 2 Cn(x)

:

+ >, and unsatis�ability (SAT)

can be polynomially transformed to FMR by solving

? 2 Cn(;)

:

+ x. Hence, assuming FMR 2 NP [ co-NP

would lead to NP = co-NP.

The membership problem for simple base revision will

be called SBR-problem. This problem is obviously

more complicated than the FMR-problem. However,

the added complexity is not overwhelming|from a

theoretical point of view.

Theorem 14 SBR is �

p

2

-complete.

9

The superscript p is only used to distinguish these sets

from the analogous sets in the Kleene hierarchy.
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Proof Sketch: We will prove that the complemen-

tary problem Z � x 6` y, which is called SBR, is �

p

2

-

complete. Hardness is shown by a polynomial trans-

formation from 2-QBF to SBR. Let ~a = a

1

; : : : ; a

n

, let

~

b = b

1

; : : : ; b

m

, and let 9~a 8

~

b F (~a;

~

b) be an instance of

2-QBF. Now set

Z = fa

1

; : : : ; a

n

;:a

1

; : : : ;:a

n

;:F (~a;

~

b)g: (33)

Now it is easy to see that

Z � > 6` :F (~a;

~

b) i� 9~a 8

~

b F (~a;

~

b) is true. (34)

Membership in �

p

2

follows from the following algorithm

that needs nondeterministic polynomial time using an

oracle for SAT:

1. Guess a set Y � Z.

2. Verify Y [ fxg 6` x.

3. Verify that there is no z 2 Z � Y such that Y [

fzg 6` :x.

This means that SBR is, on one hand, not much more

di�cult than FMR, and, on the other hand, apparently

easier than derivability in the modal logics (e.g., K, T ,

and S4), which is a PSPACE-complete problem

[

Garey

and Johnson, 1979, p. 262

]

. Asking for the computa-

tional signi�cance of this result, the answer is some-

what unsatisfying. All problems in the polynomial hi-

erarchy have the same property as the NP-complete

problems, namely, that they can be solved in polyno-

mial time if and only if P = NP. Further, all problems

in the polynomial hierarchy can be solved by an ex-

haustive search that takes exponential time. However,

from the structure of the algorithm used in the proof

one sees that even if we restrict ourselves to polyno-

mial methods for computing propositional satis�abil-

ity, there would still be the problem of determining the

maximal consitent subsets Y .

Having now a very precise idea of the complexity of

the SBR-problem, we may ask what the computational

costs of introducing priorities are. In other words

whether the membership problem for prioritized base

revision, called PBR-problem, is more di�cult than

SBR.

Theorem 15 PBR is �

p

2

-complete.

Proof Sketch: �

p

2

-hardness is immediate by Theo-

rem 14. Membership in �

p

2

follows from the fact that

the algorithm used in the proof above can be easily

adapted by guessing and verifying maximality for ev-

ery priority class.

This means that we do not have to pay for introduc-

ing priority classes. In the case of default logics, the

generalization from Poole's logic to rdt's does not in-

crease the computational costs. Note also, that the

computational complexity of derivability for Brewka's

ldt's is not easier because the reduction in the proof

of Theorem 14 applies to the special case F = ;, as

well.

The membership problem for unambiguous prioritized

base revision, the UBR-problem, turns out to be easier

than SBR and PBR.

Theorem 16 UBR 2 �

p

2

� (�

p

1

[�

p

1

), provided �

p

1

6=

�

p

1

.

Proof Sketch: The nondeterministic algorithm used

in the proof above can be obviously modi�ed so that

it runs in deterministic polynomial time if the priority

classes are singletons. Hence, UBR 2 �

p

2

. Further,

UBR 62 NP[ co-NP if NP 6= co-NP follows from Propo-

sition 13 because FMR is a special case of UBR.

From the proof, we can infer that if we can come up

with a polynomial algorithm for satis�ability (by re-

stricting the language, for instance), then unambigu-

ous base revision will be itself polynomial. This re-

sult gives a formal justi�cation for the claim made in

[

Nebel, 1989

]

that this form of revision is similar to

the functionality the rup system

[

McAllester, 1982

]

o�ers|in an abstract sense, though.

10

The impor-

tant point to note is that a feasible implementation

of belief revision is possible if we restrict ourselves to

polynomialmethods for satis�ability by restricting the

language or by tolerating incompleteness and by using

a polynomial method for selecting among competing

alternatives.

Finally, it may be interesting to compare syntax-based

revision approaches with model-based approaches,

such as the one proposed by Dalal

[

1988

]

. In order

to do so, we �rst need some de�nitions. A truth-

assignment I is a function I: �! fT;Fg. A model I

of a belief base Z is a truth-assignment that satis�es all

propositions in Z in the classical sense, written j=

I

Z.

mod (Z) denotes the set of all models of Z. �(I;J ) de-

notes the number of propositional variables such that

I and J map them to di�erent truth-values. g

m

(M)

is the set of truth assignments J such that there is

a truth-assignment I 2 M with �(J ; I) � m. If Z

is a �nite belief base, then G

m

(Z) is some belief base

such that mod(G

m

(Z)) = (g

m

(mod (Z))). Although

G

m

is not a deterministic function, all possible results

are obviously logically equivalent.

Now, model based revision, written Z � x is de�ned

10

The RUP systems provides the possibility to put

premises into di�erent likelihood classes. However, it seems

to be the case that in resolving inconsistencies it could se-

lect non-maximal sets w.r.t.� [McAllester, 1990, personal

communication].

10



by:

11

Z � x

def

=

(

G

m

(Z) [ fxg for the least m s.t.

G

m

(Z) [ fxg 6` ?

fxg if Z ` ? or x ` ?:

(35)

Interestingly, the membership problem for model-

based revision, called MBR-problem, has the same

complexity as UBR and FMR. However, it is not obvi-

ous whether a restriction of the expressiveness of the

logical language would lead to a polynomial algorithm

in this case.

Theorem 17 MBR 2 �

p

2

� (�

p

1

[�

p

1

), provided �

p

1

6=

�

p

1

.

Proof Sketch: Note that for any n, G

n

(Z) 6` x is a

problem that can be solved in nondeterministic poly-

nomial time by guessing two truth assignment I;J

and verifying in polynomial time that

1. j=

I

Z,

2. 6j=

J

x, and

3. �(I;J ) � n.

Further, solving G

n

(Z) [ fxg 6` y for �xed n also re-

quires only nondeterministic polynomial time. Hence,

MBR 2 �

p

2

. Since SAT and SAT can be polynomi-

ally transformed to MBR, MBR 2 NP [ co-NP only if

NP = co-NP.

Reconsidering the complexity results, there appears to

be an interesting pattern. Note that the best result for

a belief revision problem we can hope for is member-

ship in �

p

2

because the problem involves consistency

and inconsistency problems. While, the revision oper-

ations satisfying all the G�ardenfors postulates, namely,

FMR, UBR, and MBR (for the latter see

[

Dalal, 1988

]

)

turn out to be in this class, the revision operations

that do not satisfy (

:

+8) cannot be shown to be in this

class. An interesting question is what conditions are

in fact responsible for membership in �

p

2

.

8 SUMMARY AND OUTLOOK

Syntax-based approaches to belief revision, the class

of partial meet revisions based on epistemic relevance,

and ranked default theories (rdt's)|a generaliza-

tion of Poole's and Brewka's approaches to default

reasoning|turn out to be strictly equivalent in the

case of �nitary propositional logic. One of the conse-

quences is that rdt's do not satisfy rational monotony

w.r.t. the set of hard facts. Further, we are able to ap-

ply the complexity results for belief revision directly

to reasoning in rdt's.

11

This de�nition is a slight extension of the de�nition

given in

[

Dalal, 1988

]

that takes also care of the limiting

cases when Z or x is inconsistent.

The complexity results for revision and default rea-

soning con�rm the intuition that unambiguous prior-

itized base revision is not harder but apparently less

complex than general prioritized base revision

[

Doyle,

1990, Sect. 3.2

]

, which in turn is not harder than simple

base revision. An interesting point is that model-based

revision as proposed by Dalal is still NP-easy.

One of the open questions is, whether the correspon-

dence between belief revision and nonmonotonic logic

holds for the in�nite case as well. However, for this

purpose the theory of epistemic change has to be ex-

tended so that belief sets cannot only be revised by

sentences but also by other belief sets. Another in-

teresting question in this context is whether there

is a natural condition on belief revision and non-

monotonic consequence operations that characterizes

syntax-based approaches completely.

Finally, the observation that all \fully rational" revi-

sion operations analyzed in this paper share the prop-

erty of being NP-easy suggests to analyze this class of

revision operations in more detail in order to detect

interesting tractable special cases.
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