
A Knowledge Level Analysis of Belief Revision

Published in R. Brachman, H. J. Levesque, and R. Reiter (eds.), Principles of Knowledge Representation and Reasoning:

Proceedings of the 1st International Conference (KR'89), p. 301{311, Toronto, ON, May 1989. Morgan Kaufmann.

Bernhard Nebel

�

IBM Germany, Scienti�c Center

Stuttgart, West Germany

e-mail: nebel@ds0lilog.bitnet

Abstract

Revising beliefs is a task any intelligent agent

has to perform. For this reason, belief re-

vision has received much interest in Arti�-

cial Intelligence. However, there are serious

problems when trying to analyze belief revi-

sion techniques developed in the �eld of Arti-

�cial Intelligence on the knowledge level. The

symbolic representation of beliefs seems to

be crucial. The theory of epistemic change

shows that a partial knowledge-level analy-

sis of belief revision is possible, but leaves

open the question of how this theory is re-

lated to belief revision approaches in Arti�-

cial Intelligence. In particular, it remains an

open question whether the results achieved in

the knowledge-level analysis are valid. Fur-

thermore, the idea of reason maintenance,

which is considered to be essential in AI,

has no counter-part in the theory of epis-

temic change. Addressing these problems, it

is shown how to reconstruct symbol-level be-

lief revision on the knowledge level.

1 Introduction

Any intelligent agent has to account for a changing

environment and the fact that its own beliefs might

be inaccurate. For this reason, belief revision is a task

central for any kind of intelligent behavior. For in-

stance, learning

[

Diettrich, 1986

]

, diagnosis from �rst

principles

[

Reiter, 1987

]

, and interpretation of coun-

terfactuals

[

Ginsberg, 1986

]

are all activities requiring

the revision of beliefs.

In Arti�cial Intelligence, a number of so-called truth-

maintenance systems

[

Doyle, 1979; McAllester, 1982;

�
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de Kleer, 1986

]

were developed which support belief

revision. However, the question remains how belief

revision can be described on an abstract level, inde-

pendent of how beliefs are represented and manipu-

lated inside a machine. In particular, it is unclear how

to describe belief revision on the knowledge level as

introduced by Newell

[

1981

]

. Levesque and Brachman

[

1986

]

demanded that every information system should

be describable on the knowledge level without any ref-

erence to how information is represented or manipu-

lated by the system. However, this seems to be di�cult

for belief revision. A large number of authors seem to

believe that a knowledge-level analysis of belief revi-

sion is impossible

[

Diettrich, 1986; Fagin et al., 1983;

Fagin et al., 1986; Ginsberg, 1986

]

. Considerations of

how beliefs are represented on the symbol level seem

inevitable for belief revision. Reconsidering Newell's

original intentions when he introduced the notion of

the knowledge level, we note that the main idea was de-

scribing the potential for generating actions by knowl-

edge and not providing a theory of how knowledge or

beliefs are manipulated

[

Newell, 1981

]

: \. . . there are

not well-de�ned structural properties associated with

access and augmentation." Hence, we may conclude

that belief revision is a phenomenon not analyzable

on the knowledge level.

However, the theory of epistemic change and the

logic of theory change developed by Alchourr�on,

G�ardenfors, and Makinson

[

Alchourr�on and Makin-

son, 1982; Alchourr�on et al., 1985; Makinson, 1985;

Makinson, 1987; G�ardenfors, 1988; G�ardenfors, 1989

]

,

which will be described briey in Section 2, show that

at least some aspects of belief revision can be sub-

ject to a knowledge level analysis. Based on some

rationality postulates any epistemic change operation

should satisfy, various epistemic change operations on

deductively closed theories are analyzed|some results

of this investigation will be presented in detail in Sec-

tion 3. This approach, which recently received a lot

of interest in the AI community (e.g.

[

G�ardenfors and

1



Makinson, 1988; Dalal, 1988

]

), su�ers from some de-

�ciencies, though. It is not clear how the results of

the theory of epistemic change relate to belief revision

as done in AI. Second, the theory of epistemic change

does ignore what is usually called reason maintenance.

These problems will be discussed in Section 4.

In Section 5, some approaches to belief revision in

AI and database theory are presented. These will be

analyzed by adapting the rationality predicates of the

theory of epistemic change, which leads to the conclu-

sion that these approaches satisfy most of the basic

rationality postulates.

Based on that, in Section 6, an explicit reconstruc-

tion of symbol-level belief revision in terms of the

theory of epistemic change is given|showing that a

knowledge level analysis of belief revision techniques

as developed in AI is indeed possible. It also shows

that reason maintenance needs not to be integrated as

a primitive notion in any theory of belief revision, but

that it results as a side-e�ect of the reconstruction,

contrary to the opinion most authors seem to have (cf.

[

Ginsberg, 1986; G�ardenfors, 1988

]

).

Finally, in Section 7, we will re�ne the reconstruc-

tion in order to satisfy all rationality postulates|

leading to a belief revision strategy similar to the one

used in the rup system

[

McAllester, 1982

]

.

2 The Theory of Epistemic Change

For the following discussion, we will assume a proposi-

tional language L containing propositions x; y; z and

the standard sentential connectives (:, _, ^, !,

$). Sets of propositions will be denoted by A;B;C.

Furthermore, ` shall denote classical propositional

derivability

1

and Cn should be a function mapping sets

of propositions to sets of propositions by applying `,

i.e.

Cn(A)

def

= fx 2 Lj A ` xg (1)

Formalizing Newell's notions of the knowledge level

in this setting, sets of propositions A closed with re-

spect to Cn (i.e. A = Cn(A))|technically speak-

ing propositional theories|can be identi�ed with

knowledge-level knowledge bases as argued in

[

Diet-

trich, 1986; Levesque and Brachman, 1986

]

. Arbitrary,

�nite set of propositions B � L can be identi�ed with

symbol-level knowledge bases.

In the theory of epistemic change

[

G�ardenfors, 1988

]

,

only knowledge-level knowledge bases are considered,

1

The results presented in the following can be general-

ized to conservative extensions of propositional logics, pro-

vided they are compact and monotonic (cf.

[

G�ardenfors,

1988, p. 21{26

]

).

which are called belief sets. Epistemic change opera-

tions on such belief sets are

Expansion: the monotonic addition of a belief with

the requirement that the result is again a belief

set (written A+ x),

Contraction: the removal of a proposition from a

belief set resulting in a new belief set (written

A

:

� x),

Revision: incorporation of a new proposition into a

belief set under the requirement that the result is

a consistent belief set (written A

:

+ x).

While expansion is a well-de�ned, unique operation,

namely:

A+ x

def

= Cn(A [ fxg) (2)

the other two operations are problematical. An im-

mediate criterion for them is that a belief set shall be

changed minimally by an epistemic change operation

(but cf.

[

Winslett, 1986

]

). However considering con-

traction, given a belief set B and a proposition x, in

general there is no unique greatest belief set C � B

such that C 6` x.

The problem of �nding intuitively plausible change

operations is approached by formulating sets of ra-

tionality postulates any epistemic change operation

should satisfy. A set of such postulates for contraction

can be given as follows (A a belief set, x, y proposi-

tions):

(

:

�1) A

:

� x is a belief set (closure);

(

:

�2) A

:

� x � A (inclusion);

(

:

�3) If x 62 A then A

:

� x = A (vacuity);

(

:

�4) If 6` x, then x 62 (A

:

� x) (success);

(

:

�5) If Cn(fxg) = Cn(fyg) then A

:

� x = A

:

� y

(preservation);

(

:

�6) A � (A

:

� x) + x (recovery);

(

:

�7) (A

:

� x) \ (A

:

� y) � A

:

� (x ^ y);

(

:

�8) If x 62 A

:

� (x^y), then A

:

� (x^y) � A

:

� x.

Most of these postulates are straightforward. The

closure postulate (

:

�1) tells us that we always get a

belief set when applying

:

� to a belief set and a propo-

sition. The inclusion postulate (

:

�2) assures that when

a proposition is removed, nothing previously unknown

can enter into the belief set, setting an upper bound

for any possible contraction operation. Postulate (

:

�3)

takes care of one of the limiting cases, namely, that the

proposition to be removed is not part of the belief set,

while the next postulate (

:

�4) describes the e�ect of

2



the other case. If the proposition to be removed is not

a logically valid one, then the contraction operation

will e�ectively remove it. The preservation postulate

(

:

�5) assures that the syntactical form of the proposi-

tion to be removed will not e�ect the resulting belief

set. Any two propositions which are logically equiva-

lent shall lead to the same result. Finally, the recovery

postulate (

:

�6) describes the lower bound of any con-

traction operation. The contracted belief set should

contain enough information to recover all propositions

deleted. Note that (

:

�6) together with (

:

�1){(

:

�5) en-

tails the following conditional equation:

If x 2 A then A = (A

:

� x) + x (3)

The two postulates (

:

�7) and (

:

�8) are less obvi-

ous and not as basic as the former ones|a reason for

calling them \supplementary postulates." (

:

�7) states

that retracting a conjunction should remove less infor-

mation than retracting both conjuncts individually in

parallel, with (

:

�8) its conditional converse. Although

this does not sound like a strong restriction, not all

conceivable contraction operations satisfy it. In order

to shed some more light on these supplementary pos-

tulates, it might be worthwhile to present some prin-

ciples derivable from (

:

�7) and (

:

�8).

2

First, there is

the following \factoring" condition:

A

:

� (x ^ y) =

8

<

:

(A

:

� x) \ (A

:

� y) or

A

:

� x or

A

:

� y

(4)

This condition is actually equivalent to (

:

�7) and (

:

�8)

if a contraction operation already satis�es (

:

�1){(

:

�6).

Another interesting property derivable from the sup-

plementary postulates is an identity criterion for con-

tracted belief sets:

If (x! y) 2 A

:

� y and (y ! x) 2 A

:

� x

then A

:

� y = A

:

� x (5)

Turning now to revision, we note that there are two

independent ways to characterize this operation. First,

a set of rationality postulates for revision could be

speci�ed capturing the idea that a revised belief set

should minimally di�er from the original belief set, as

done in

[

Alchourr�on et al., 1985

]

. Second, one could

de�ne the revision operationA

:

+ x by �rst contracting

A with respect to :x in order to avoid inconsistencies,

and then expanding the result by x:

A

:

+ x

def

= (A

:

� :x) + x (6)

2

Proofs for the principles (4) and (5) can be found in

[

G�ardenfors, 1988

]

.

This way of de�ning a revision operation was proposed

by Levi

[

1977

]

. As it turns out, both ways of character-

izing revision are equivalent, as shown in

[

Alchourr�on

et al., 1985

]

. Any revision operation satisfying the ra-

tionality postulates for revision could be generated by

(6) and a contraction operation satisfying the contrac-

tion postulates and vice versa. What should be noted

at this point is that in the case when ` :x (and only in

this case), the revised belief set will be inconsistent|

which cannot be avoided, however.

Parallel to de�ning revision by contraction, we could

try it the other way around|de�ning contraction in

terms of revision:

3

A

:

� x

def

= (A

:

+ :x) \ A (7)

This means, revision and contraction are interde�n-

able and it su�ces to analyze one of these operations.

Whether contraction or revision is taken as the basic

one is mostly a matter of taste and philosophy (cf.

[

Makinson, 1985; Dalal, 1988

]

).

3 Constructing Contraction Functions

Using the rationality postulates, a number of possi-

ble contraction functions (and the associated revision

functions) are studied and evaluated in

[

Alchourr�on et

al., 1985

]

and

[

G�ardenfors, 1988

]

.

All of these operations are de�ned using the family

of maximal subsets not implying a given proposition,

denoted by A#x (pronounced \A less x"):

A#x

def

= fB � Aj B 6` x and

if B � C � A then C ` xg

(8)

Note that all elements of A#x are again belief sets

because of the maximality condition. Trying to con-

struct contraction functions based on A#x, a �rst idea

could be to take into account all possible outcomes of

removing a proposition, and, since we do not have a

measure of what is a better solution, to choose the

intersection of the outcomes as the result of the con-

traction operation. If A#x is empty|which can only

happen if x is a logically valid proposition|A itself

will be taken as the solution.

A

f

� x

def

=

(

\

(A#x) if 6` x

A otherwise

(9)

This operation satis�es obviously most of the ratio-

nality postulates.

4

3

Note that the intersection of two belief sets is again a

belief set.

4

In order to make the paper self-contained, I included

proofs for all lemmas in this section in Appendix A.
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Lemma 1 Full meet contraction satis�es (

:

�1){(

:

�5).

In order to see that full meet contraction also satis-

�es (

:

�6), the following lemma is helpful.

Lemma 2 Let A be a belief set, and let x be a propo-

sition such that x 2 A and 6` x. Then

A

f

� x = A \ Cn(f:xg) (10)

Applying this result to revision by using (6), it be-

comes obvious that full meet contraction is most prob-

ably not an operation one wants to use. Full meet

contraction removes too much information.

Corollary 3 For a revision operation de�ned by (6)

and (9), for any x such that :x 2 A and 6` :x it holds

that

A

:

+ x = Cn(fxg) (11)

Nevertheless, full meet contraction satis�es all the

rationality postulates for contraction.

Lemma 4 Full meet contraction as de�ned by (9) sat-

is�es (

:

�1){(

:

�8).

Looking for a more reasonable contraction function,

another way to contract a belief set could be to choose

one of the elements in A#x|employing a choice func-

tion C|instead of using the intersection over all ele-

ments:

A

m

� x

def

=

�

C(A#x) if 6` x

A otherwise

(12)

It is easy to see that this operation satis�es (

:

�1){

(

:

�6), but the supplementary postulates are not satis-

�ed unconditionally

[

Alchourr�on and Makinson, 1982

]

.

Ignoring this fact for the moment, let us try to char-

acterize the result of such contraction operations. As

it turns out, the contraction function de�ned by (12)

generates belief sets which are far too large to be plau-

sible.

Lemma 5 Let A be a belief set with x 2 A. Then for

any proposition y:

(x _ y) 2 A

m

� x or (x _ :y) 2 A

m

� x (13)

This property has a rather counter-intuitive conse-

quence for revision. Applying again (6), we get the

following result.

Corollary 6 Let

:

+ be a revision operation de�ned by

using (12) and (6). Then, for any proposition x and

belief set A with :x 2 A:

y 2 A

:

+ x or :y 2 A

:

+ x (14)

This means that by applying maxichoice revision to

an arbitrary belief set, we get all of the sudden a com-

plete belief set, provided that :x 2 A. However, start-

ing with an arbitrary belief set in which there may be

no belief in some proposition z or its negation :z and

ending up with a belief set in which for all propositions

z, either z or :z is believed, is clearly something not

desirable.

Viewing full meet contraction and maxichoice con-

traction as two extreme points, it might be worthwhile

to explore the \middle ground" between them. Instead

of chosing one element from A#x or the entire family

of belief sets, a subfamily of A #x is used to generate

the contracted belief set. For this purpose, let us as-

sume a selection function S which selects a subset of

A#x:

A

p

� x

def

=

(

\

S(A#x) if 6` x

A otherwise

(15)

This contraction function, called partial meet con-

traction, unconditionally satis�es the basic postulates,

which can be easily veri�ed.

Lemma 7 Any partial meet contraction operation

p

�

satis�es (

:

�1){(

:

�6).

What is more interesting is that the converse holds

as well. Any operation satisfying (

:

�1){(

:

�6) is a

partial meet contraction

[

G�ardenfors, 1988, Theo-

rem 4.13

]

. In order to satisfy the supplementary pos-

tulates, some restrictions on S must be imposed. Let

us assume a \preference relation" v over all subsets

of a belief set A independent of x such that for all

B;C � A:

if B 2 S(A#x) and C 2 A#x then C v B (16)

in which case the contraction function is called rela-

tional contraction.

Lemma 8 Any relational contraction function satis-

�es (

:

�1){(

:

�7)

If the relation v is a transitive relation, the corre-

sponding contraction function|called transitively re-

lational contraction|satis�es all postulates.

Lemma 9 Any transitively relational contraction

function satis�es (

:

�1){(

:

�8).

Furthermore, it is possible to show that any contrac-

tion function satisfying (

:

�1){(

:

�8) is a transitively re-

lational contraction

[

G�ardenfors, 1988, Theorem 4.16

]

.
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4 Problems with the Approach

Although the results presented in the previous sections

sound interesting and provide some insights into the

problem of belief revision, it seems arguable whether

the approach could be used in a computational con-

text, as in AI or in the database �eld. The theory

of epistemic change seems to capture only the ideal-

ized process of belief revision|ignoring some impor-

tant problems of belief revision appearing in the \real

world."

First of all, closed theories cannot be dealt with di-

rectly in a computational context because they are too

large. At least, if we deal with them, we would like to

have a �nite representation (i.e. a �nite axiomatiza-

tion), and there seems to be no obvious way to derive

a �nite representation from a revised or contracted be-

lief set in the general case.

Second, it seems to be preferable for pragmatic rea-

sons to modify belief bases, i.e. �nite sets of proposi-

tions, instead of belief sets, i.e. deductively closed the-

ories. Propositions in belief bases usually represent

something like facts, observations, rules, laws, etc.,

and when we are forced to change the belief set we

would like to stay as close as possible to the original

formulation of the �nite base. In particular, when it

becomes necessary to give up a proposition in the be-

lief base, we would like to throw away the consequences

of the retracted proposition if they are not supported

otherwise, i.e. to perform reason maintenance. More

formally, given a belief base B and propositions x; y 2

Cn(B) and assuming that a proposition y is removed

from B to accomplish a contraction Cn(B)

:

� x, then

we expect that z 62 (Cn(B)

:

� x) if y was responsible

for z, i.e. z 2 Cn(B) but z 62 Cn(B n fyg).

For instance, let a be the proposition \the device is

ok," let b be the proposition \the output voltage is 5V"

and let us assume we have the base B = fa; (a! b)g,

i.e. \the device is ok" and \if the device is ok then the

output voltage is 5V." That means that from B we

can infer that \the output voltage is 5V." Now, when

we learn that the device is defect, then together with

a we would like to get rid of b because the reason for

the belief that the output voltage is 5V has vanished.

This, however, cannot be easily accomplished by the

approach described above. On the contrary, since the

theory of the epistemic change formalizes the idea of

keeping as much of the old propositions (in the belief

set) as possible, it seems likely that b will be among the

propositions in the contracted belief set since it does

not contradict :a. G�ardenfors puts it in the following

way

[

G�ardenfors, 1988, p. 67

]

:

However, belief sets cannot be used to ex-

press that some beliefs may be reasons for

other beliefs. (This de�ciency was one of the

motivations behind Doyle's TMS . . . ). And

intuitively, when we compare degrees of sim-

ilarity between di�erent epistemic states, we

want the structure of reasons or justi�cations

to count as well.

Actually, viewing this property from a cognitive an-

gle, it could be defended by the argument that the

theory of epistemic change models what is called the

coherence theory of belief revision

[

G�ardenfors, 1989

]

.

This means that in the course of revising beliefs the

main emphasis is to arrive at a new coherent set of be-

liefs, which may be interpreted as a logically consistent

set of beliefs. Identifying and discarding derived beliefs

when their justi�cations are undermined, on the other

hand, is not viewed as essential in the coherence theory.

It is argued that it is intellectually much too expensive

to keep track of all justi�cations|a fact supported by

empirical evidence.

Nevertheless, although this theory may be right in

the general case, in a problem-solving context, as mod-

eled in typical AI applications, we usually want reason

maintenance|as e.g. in the toy example given above.

Summarizing, we see that belief revision and reason

maintenance are not genuinely connected with each

other, as it sometimes seems to be perceived in AI

(cf.

[

Martins and Shapiro, 1988

]

). However, as will be

shown, it is not necessary to add reason maintenance

as a primitive notion to a theory of belief revision.

Reason maintenance will result as a side-e�ect when

we choose the \right" contraction operation.

5 Contracting Finite Bases

As spelled out in the previous section, there are good

reasons to perform belief revision on belief bases|

considering the propositions in the base as the ba-

sic beliefs. As a matter of fact, such operations were

adopted in an analysis of update semantics for logical

databases

[

Fagin et al., 1983; Fagin et al., 1986

]

and in

modelling counterfactual reasoning

[

Ginsberg, 1986

]

.

Basically, revision (

�

+) and contraction (�) on a be-

lief base B is de�ned in the following way:

B � x

def

=

8

<

:

_

C2(B#x)

C If 6` x

B otherwise

(17)

B

�

+ x

def

= (B � :x) ^ x (18)

with B # x being the same operation as de�ned by

equation (8) without requiring that B is deductively

5



closed. The guiding idea behind (17) and (18) is that

we want to retain as many old propositions as possible,

and if there are ties, we take the disjunction. More-

over, (18) is logically very similar to (6). Obviously,

such change operations realize some form of reason

maintenance, as one can see in (19).

fa; a! bg � a = fa! bg 6` b (19)

Based on (17) and (18), both Ginsberg

[

1986

]

and

Fagin et al.

[

1983

]

consider more elaborated versions

of contraction and revision, which distinguish between

di�erent kinds propositions in the belief base. For in-

stance, Fagin et al. distinguish between facts and in-

tegrity rules in the belief base, and Ginsberg proposes

to protect some propositions against retraction. We

will ignore this issue here. However, one should note

that such a construction is not qualitatively di�erent

from � and

�

+

[

Nebel, 1989

]

. In particular, the results

in this and the next section are valid for such opera-

tions.

In trying to relate � to

:

�, we see that the rational-

ity postulates presented in Section 2 cannot be applied

immediately to � since it does not operate on belief

sets. However, it seems possible to adapt the postu-

lates to belief bases by setting

A

def

= Cn(B) (20)

A

:

� x

def

= Cn(B � x) (21)

Thus, in a sense, we view � as an implementation of

:

�.

Lemma 10 Under the assumption of (20) and (21),

� satis�es (

:

�1){(

:

�5).

Proof: (

:

�1) holds trivially because of (21). If 6` x,

(

:

�2) is satis�ed because

Cn(

_

C2(B#x)

C) =

\

C2(B#x)

Cn(C) (22)

and for all C : Cn(C) � Cn(B). If ` x, (

:

�2) is satis�ed

as well since the belief base is not changed. (

:

�3) is

satis�ed because if B 6` x, then B # x = fBg. (

:

�4)

holds because for all C 2 (B # x) we have C 6` x

and, hence,

W

C 6` x. Finally, (

:

�5) holds since for the

determination of B #x the syntactic form of x does not

matter.

Unfortunately, however, the recovery postulate is

not satis�ed. For instance, we have

Cn((fa; a! bg � b) [ fbg) 6� Cn(fa; a! bg) (23)

Trying to �nd the reason for this unsatisfying behav-

ior, one notes that even the weakest possible contrac-

tion function on belief sets|full meet contraction|

generates belief sets such that (Lemma 2)

A

:

� x = A \ Cn(f:xg)

which is su�cient for restoring the original belief set

as we have seen in Lemma 4.

Adding a �nite conjunct, logically equivalent to

A \ Cn(f:xg), to the outcome of � leads to a new

contraction function which has the desired property:

B

:

� x

def

=

8

<

:

(

_

C2(B#x)

C) ^ (B _ :x) if 6` x

B otherwise

(24)

Lemma 11 Under the assumption of (20) and (21),

:

� satis�es (

:

�1){(

:

�6).

Proof: The satisfaction of (

:

�1), (

:

�3), and (

:

�5) can

be shown with the arguments used in the proof of

Lemma 10. That (

:

�2) holds becomes obvious by ob-

serving that Cn(B_:x) and Cn(

W

C) are both subsets

of Cn(B), and, hence, the set of consequences of their

unions can only be a subset of Cn(B). (

:

�4) holds be-

cause for the added conjunct we have (B _ :x) 6` x

and no C 2 B #x implies x. Finally, (

:

�6) holds since

Cn(B

:

� x) contains Cn(B) \ Cn(f:xg), which is suf-

�cient for recovery as shown in the proof of Lemma 4.

Actually, if revision is the only operation of interest,

it does not make a di�erence whether we employ

:

� or

�. The revision operation

�

+ gives identical results

(wrt Cn) regardless of whether

:

� or � is used.

Theorem 12 The operations

:

� and � are revision-

equivalent wrt

�

+ as de�ned by (18), i.e.

Cn((B

:

� :x) ^ x) = Cn((B � :x) ^ x) (25)

Proof: In the limiting cases when ` :x or :x 62

Cn(B), � and

:

� give the same results trivially. For

the principal case, 6` :x and :x 2 Cn(B), we have:

Cn((B

:

� :x) ^ x) =

= Cn((

_

C2(B#:x)

C) ^ (B _ x) ^ x)

= Cn((

_

C2(B#:x)

C) ^ x)

= Cn(B � :x) + x

6



This result might raise the question of the value

of the recovery postulate|a problem discussed in

[

Makinson, 1987

]

. Despite the fact that it is neces-

sary to establish some of the theoretical results cited

in Section 3, it has some practical value, I believe. In

a setting where revision and contraction are equally

important, as in the case of database updates (cf.

[

Fa-

gin et al., 1986

]

), we had better use

:

� instead of �.

Otherwise, more information is lost than intended. In

particular, we might be unable to undo a contraction

operation.

Before we now go on trying to verify that the supple-

mentary postulates are satis�ed by

:

�, we will try to es-

tablish a connection between belief-base and belief-set

contraction. In

[

Ginsberg, 1986

]

, as well as in

[

Fagin

et al., 1983

]

, some thoughts are devoted to the issue of

modifying closed theories, i.e. belief sets. However, by

considering (22) and permitting in�nite disjunctions,

it becomes quickly obvious that in the limiting case

when the belief base is a belief set, � is identical to full

meet contraction. This kind of contraction is rather

useless, however, as demonstrated by Lemma 2 and

Corollary 3. Thus, Fagin et al.

[

1983

]

and Ginsberg

[

1986

]

conclude that belief revision is a phenomenon

which can only be modeled if the syntactic representa-

tion of a belief set (its belief base) is taken into account.

A knowledge-level analysis of belief revision seems to

be impossible.

Addressing this problem, Ginsberg

[

1986, Sec-

tion 8.1

]

proposes to incorporate reason-maintenance

information into the logic by using derivations as

truth-values. This proposal leads to the desired

results, i.e. changes of belief sets (in the reason-

maintenance style logic) are identical to changes of a

�nite belief bases. However, this approach does not

shed too much light onto the relation between modi�-

cations of belief sets and modi�cations of �nite belief

bases.

6 Base Contraction Viewed as Partial

Meet Contraction

Reconsidering the arguments from above, we note that

we are not interested in the particular syntactical form

of a belief base, but we regard the propositions in the

belief base as somehow more important than any de-

rived propositions. In particular, given two belief bases

B and B

0

such that for all x 2 B there exists x

0

2 B

0

with Cn(fxg) = Cn(fx

0

g) and vice versa, it is imme-

diate that Cn(B

:

� y) = Cn(B

0

:

� y). This means

that it is not the syntactical form of a belief base we

are interested in, but the \logical force" of the propo-

sitions in the base. Using this idea, it is tempting to

de�ne a selection function which selects elements from

(A # x) which contain maximal subsets of B, a set of

propositions considered as \interesting":

S

B

(A#x)

def

= fC 2 (A#x)j8C

0

2 A#x : C

0

\ B 6� C \ Bg

Based on this selection function, we can de�ne a

partial meet contraction on belief sets which has the

property of being identical to

:

� (wrt Cn). In order to

show this, the next lemma proves to be helpful.

Lemma 13 Let A be a belief set and S be any subset

of A such that S 6` x. Then

\

fC 2 (A#x)j S � Cg = Cn(S [ (A \ Cn(f:xg)))

Proof: \�": First, by Lemma 2 we know that any

intersection over a subfamily of A # x must contain

(A \ Cn(f:xg)). Second, since all C in the subfamily

chosen contain S, the lhs contains S. Finally, be-

cause the intersection over any subfamily of A # x is

a belief set, the lhs is a belief set containing S and

(A \ Cn(f:xg)) and, hence, the right hand side.

\�": Assume the contrary, i.e. there is a y such

that y 2 lhs and y 62 rhs. Using set theory and

the properties of Cn, we can transform the rhs in the

following way:

Cn(S [ (A \ Cn(f:xg))) =

= Cn((S [ A) \ (S [ Cn(f:xg)))

= Cn(A \ Cn(S [ Cn(f:xg)))

= A \ Cn(S [ f:xg)

Since y 2 A because of our assumption, we must have

y 62 Cn(S [ f:xg) and, in particular, :x 6` y. Using

this, we can derive (x _ :y) 6` x, following the same

line of arguments as in the proof of Lemma 2. By that

and the observation that y 62 Cn(S), we can conclude

that x 62 Cn(S [ f(x _ :y)g). Since adding y to this

set would lead to the derivation of x, there must be a

set E � S [ f(x _ :y)g with y 62 E and E 2 (A #x),

which means that y cannot be a member of all sets in

A#x which contain S, and we have a contradiction.

Based on this lemma, we can establish the connec-

tion between contractions on belief bases and contrac-

tions on belief sets.

Theorem 14 Contraction of �nite premise sets B us-

ing

:

� is identical (wrt `) to a partial meet contraction

p

� de�ned by the selection function S

B

, i.e.

Cn(B

:

� x) = Cn(B)

p

� x (26)
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Proof: In the limiting cases when ` x or x 62 Cn(B)

the result is immediate. For the principal case, we note

that

S

B

(Cn(B)#x) =

=

[

D2(B#x)

fC 2 (Cn(B)#x)jD � Cg (27)

Applying Lemma 13, it follows that

Cn(B)

p

� x =

=

\

S

B

(Cn(B)#x)

=

\

D2(B#x)

Cn((D) [ (Cn(B) \ Cn(f:xg)))

= Cn((

\

D2(B#x)

Cn(D)) [ (Cn(B) \ Cn(f:xg)))

= Cn((

_

D2(B#x)

Cn(D)) ^ (B _ :x))

= Cn(B

:

� x)

Thus, contrary to the assumptions spelled out in

[

Diettrich, 1986; Fagin et al., 1983; Fagin et al., 1986;

Ginsberg, 1986

]

, revision and contraction on �nite be-

lief bases are not qualitatively di�erent from epistemic

change operations on deductively closed belief sets.

The �nite case can be modeled without any prob-

lem by a particular selection function. Viewed from

a knowledge-level perspective, the only additional in-

formation needed for belief revision is a preference re-

lation on sets of propositions. It should be noted, how-

ever, that the construction did not lead to an epistemic

change function which satis�es all rationality postu-

lates.

Theorem 15 Any partial meet contraction using S

B

satis�es the rationality postulates (

:

� 1){(

:

� 7).

Proof: Because of Lemma 7 and the fact that

p

� con-

structed by S

B

is a partial meet contraction, (

:

�1){

(

:

�6) are satis�ed. That (

:

�7) is satis�ed follows from

Lemma 8 and the fact that S

B

satis�es (16), if v is

de�ned as:

X v Y i� X \ B 6� Y \ B (28)

Since S

B

is not a transitively relational selection

function, (

:

�8) is not satis�ed in general. In order to

give an example where (

:

�8) is violated, let us assume

that S

B

is used to de�ne the partial meet contraction

p

� and that

B = fa; b ^ c; a ^ b ^ d; a ^ dg

Setting, x = (a ^ c) and y = (b ^ d), we see that

x 62 Cn(B)

p

� (x ^ y)

but

Cn(B)

p

� (x ^ y) 6� Cn(B)

p

� x

because we have the following relationships:

(a ^ c) 62 Cn(B)

p

� ((a ^ c) ^ (b ^ d))

a 2 Cn(B)

p

� ((a ^ c) ^ (b ^ d))

a 62 Cn(B)

p

� (a ^ c)

As can be veri�ed, the factoring condition (4) is vio-

lated, as well. So what? Does this result imply that

p

�

de�ned by using S

B

and, hence,

:

� is not a reasonable

contraction operation? Actually, it seems to make a

lot more sense than

f

�.

The disadvantage of not having (

:

�8) is actually very

subtle. One consequence is that revision operations

based on

:

� violate the respective postulate for revi-

sion, which is needed to derive an identity criterion

for revised belief sets similar to (5):

If x 2 A

:

+ y and y 2 A

:

+ x

then A

:

+ y = A

:

+ x (29)

This criterion in turn is similar to a principle Stal-

naker

[

1968

]

postulated for the interpretation of

counterfactual conditionals on \neighboring possible

worlds." However, it seems to be di�cult to come up

with an example demonstrating that the violation of

this principle leads to obviously counter-intuitive re-

sults.

7 Maxichoice Contraction on Belief

Bases

As we noted above, we could achieve satisfaction of

(

:

�8) if the ordering v is transitive. Embedding the

partial order de�ned by set-inclusion in a total order-

ing would certainly help. This can be achieved by

starting from an arbitrary total ordering on the propo-

sitions in a belief base, for instance.

5

Thus, let us as-

sume such an ordering� on the propositions of a belief

base B. Furthermore, de�ne v

0

on 2

B

:

X v

0

Y i� 8x 2 (X n Y ) 9y 2 (Y nX) : x � y

5

Note that such a construction is fundamentally dif-

ferent from the notion of epistemic entrenchment as in-

troduced in

[

G�ardenfors, 1988; G�ardenfors and Makinson,

1988

]

.
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This means, in case when X and Y are incomparable

by set-inclusion, we assume Y to be larger than X by

v

0

i� there is an element in Y which is larger by �

than any element in X which is not in Y . Based on

that, let us de�ne a selection function as follows:

S

B;�

(A#x)

def

= fC 2 (A#x)j 8C

0

2 (A#x) :

C

0

\ B v

0

C \ Bg

Theorem 16 A partial meet contraction de�ned by

using S

B;�

satis�es all rationality postulates.

Proof: Obviously, v

0

is a transitive relation, and,

thus, the partial meet contraction de�ned by S

B;�

is

a transitively relational contraction.

Another interesting point about S

B;�

is that it is

similar to a maxichoice contraction on belief bases.

Lemma 17 For partial meet contractions de�ned by

using S

B;�

, for all x with 6` x, there is an E 2

(Cn(B)#x) such that

Cn(B)

p

� x = Cn(E [ (Cn(B) \ Cn(f:xg))) (30)

Proof: The main point is that there is exactly one

element in E 2 (B #x) such that for all C 2 (B #x) we

have C v

0

E. Applying Lemma 13, we get the desired

result.

From this we can conclude two things. First, maxi-

choice contraction on belief bases does not have the

undesirable result as the same operation applied to

belief sets. Second, considering the rationality pos-

tulates, it is more \rational" to chose one alternative

of (B # x) than to take the disjunction of all alterna-

tives. Furthermore, from a practical point of view, this

strategy has the advantage that the belief base is not

cluttered with disjunctions, but it simply shrinks.

Summarizing, although it might seem arbitrary to

choose one maximal consistent set during a contrac-

tion, it is despite its practical value justi�ed because

it is at least as \rational" as using the disjunctions.

Thus, for example, the truth-maintenance system rup

[

McAllester, 1982

]

, which implements this strategy for

belief revision, could be characterized as a \fully ra-

tional belief revision system" (modulo its inferential

incompleteness).

8 Conclusion and Outlook

We have shown that belief revision, as exercised in

many applications in AI, is not an activity which can

only be analyzed on the symbol level. Employing the

theory of epistemic change we demonstrated how to re-

construct symbol-level belief revision in the theory of

epistemic change|resulting in a knowledge-level anal-

ysis of some aspects of belief revision. In particular,

we have shown that reason maintenance is a symbol-

level notion, which although not present in the theory

of epistemic change, appears as a side-e�ect. Further-

more, analyzing the approaches, we noted that chosing

one maximal consistent subset of a belief base seems to

be more rational than taking disjunctions of all max-

imal consistent sets|considering the rationality pos-

tulates.

However, a number of issues remain unresolved|

of course. For instance, iterated contractions were

ignored because they present serious problems. One

has to provide update operations for the preference re-

lation among propositions. Furthermore, implausible

contraction operations, such as fa ^ bg � a = ;, were

ignored. Choosing the \right" form of the premises

seems to be one of the central tasks before any kind of

belief revision can be applied.

Acknowledgments

I am grateful to Alex Borgida, Mukesh Dalal, and Karl

Schlechta who provided me with a number of hints

and ideas concerning the issues discussed in this pa-

per. I would also like to express my thanks to Peter

G�ardenfors, who sent me copies of his papers, made

available the manuscript of his book, and provided me

with some helpful comments an earlier version of this

paper.

A Proofs of Lemmas of Section 3

Lemma 1 Full meet contraction sats�es (

:

�1){(

:

�5).

Proof: (

:

�1) is satis�ed because the intersection of

belief sets is a belief set. (

:

�2) is satis�ed because for all

E 2 (A#x), E � A. (

:

�3) holds because A#x = fAg,

if A 6` x. (

:

�4) holds since for all E 2 (A #x), E 6` x,

if 6` x. (

:

�5) is satis�ed since the syntactical form of x

in A#x is irrelevant.

Lemma 2 Let A be a belief set, and let x be a propo-

sition such that x 2 A and 6` x, then

A

f

� x = A \ Cn(f:xg)

Proof: First, consider the case when y 2 A and :x `

y. Now assume that y 62 A

f

� x. That means that

there is a set E 2 A # x such that y 62 E. Because

of the maximality condition on all such sets, we know

that x 2 Cn(E [ fyg)). Using contraposition on our

premise :x ` y, we get :y ` x and hence x 2 Cn(E [

f:yg). Together with the previous result, we have

x 2 Cn(E [ f(y _:y)g) = Cn(E) and a contradiction.
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For the case y 2 A and :x 6` y, we know by con-

traposition that :y 6` x and hence x _ :y 6` x. Be-

cause of the maximality of the sets in A # x, there

are two sets E

0

; E

00

with y 2 E

0

and (x _ :y) 2 E

00

,

but there can be no set which includes both because

x 2 Cn(fy; (x _ :y)g), and thus y 62

T

(A#x).

Corollary 3 For a revision operation de�ned by (6)

and (9), for any x such that :x 2 A and 6` :x it holds

that

A

:

+ x = Cn(fxg)

Proof: Using (6) and (10) leads to:

A

:

+ x = Cn((A \ Cn(fxg)) [ fxg)

= Cn((A [ fxg) \ (Cn(fxg) [ fxg))

= Cn(Cn(A [ fxg) \ Cn(fxg))

Since we assumed A ` :x, we know Cn(A[fxg) = L,

and, thus, the result is Cn(fxg).

Lemma 4 Full meet contraction as de�ned by (9) sat-

is�es (

:

�1){(

:

�8).

Proof Sketch: Since (

:

�1){(

:

�5) are obvious, we will

focus on (

:

�6){(

:

�8). These are satis�ed trivially for

the two limiting cases ` x and x 62 A. That (

:

�6) holds

in the principal case, x 2 A and 6` x, becomes obvious

when substituting the right hand side of equation (10)

for A

:

� x in (

:

�6), which leads to:

A � Cn((A \ Cn(f:xg)) [ fxg) (31)

Now, because for any y 2 A we know that (y _ :x) 2

Cn(f:xg) and that this together with x implies y, the

right hand side of (31) is clearly a superset of the left

hand side. Furthermore, using Lemma 2, it can be

easily derived that (

:

�7) (it can even be strengthened

to equality) and (

:

�8) hold as well.

Lemma 5 Let A be a belief set with x 2 A. Then for

any proposition y:

(x _ y) 2 A

m

� x or (x _ :y) 2 A

m

� x

Proof: In the limiting cases when ` x, the lemma

holds trivially. In the other case, we know that y 6` x

or :y 6` x. Thus, because of the maximality of the

elements of A#x, either y or :y is in A

m

� x. Since for

any z: y ` (y _ z), the lemma holds.

Corollary 6 Let

:

+ be a revision operation de�ned by

using (12) and (6). Then, for any proposition x and

belief set A with

y 2 A

:

+ x or :y 2 A

:

+ x

Proof: Expanding A

m

� :x by x leads by Lemma 5

for all propositions y to

((:x _ y) ^ x) 2 (A

m

� :x) + x or

((:x _ :y) ^ x) 2 (A

m

� :x) + x

from which the desired result is immediate.

Lemma 7 Any partial meet contraction operation

p

�

satis�es (

:

�1){(

:

�6).

Proof Sketch: (

:

�1){(

:

�5) can be easily veri�ed. (

:

�6)

holds because A

:

� x always contains A \ Cn(f:xg),

which is su�cient for recovery.

Lemma 8 Any relational contraction function satis-

�es (

:

�1){(

:

�7)

Proof: (

:

�1){(

:

�6) follow from Lemma 7. If ` x, ` y,

x 62 A, or y 62 A, the proof is immediate. For the other

cases, we have to show that

\

S(A#x) \

\

S(A#y) �

\

S(A#(x ^ y))

This could be done by showing that

(S(A#x) [ S(A#y)) � S(A#(x ^ y)

Assume the contrary, i.e. there is an E 2 rhs, but

E 62 lhs. Since we cannot have x; y 2 E, assume

wlg x 62 E. Now it could be the case that E 62 lhs

because E 62 (A # x). However, since x 62 E, there

must be D 2 (A # x) with E � D. Furthermore,

because (x^ y) 62 D, there is an F 2 (A#(x^ y)) with

E � D � F , which is a contradiction. This means

E 2 (A#x). Accepting this, we must have D 2 (A#x)

with D 6v E. Because D is maximal, either y 2 D or

x 2 Cn(D[fyg). Thus, D 2 (A#(x^y)), and because

of relationality, the premise E 2 rhs is contradicted.

Lemma 9 Any transitively relational contraction

function satis�es (

:

�1){(

:

�8).

Proof: (

:

�1){(

:

�7) follows from Lemma 8. Similar to

the proof above, for the principal case, we will show

that when x 62

T

S(A#(x ^ y)), then

S(A#(x ^ y)) � S(A#x)

Assume the contrary, i.e. E 2 rhs but E 62 lhs. Be-

cause E is maximal, either y 2 E or x 2 Cn(E [ fyg),

and hence E 2 (A # (x ^ y)). Since E 62 lhs, there

is D 2 (A # (x ^ y)) with D 6v E. Because of our

premise x 62

T

S(A # (x ^ y)), there must be at least

one F 2 S(A # (x ^ y)) with x 62 F , which is also an

element of (A #x). Thus D v F and F v E, and be-

cause of transitivity D v E, which is a contradiction.
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