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Abstract

The ability of a planner to reuse parts of old plans is hypothesized to be a valuable

tool for improving e�ciency of planning by avoiding the repetition of the same

planning e�ort. We test this hypothesis from an analytical and empirical point of

view. A comparative worst-case complexity analysis of generation and reuse under

di�erent assumptions reveals that it is not possible to achieve a provable e�ciency

gain of reuse over generation. Further, assuming \conservative" plan modi�cation,

plan reuse can actually be strictly more di�cult than plan generation. While these

results do not imply that there won't be an e�ciency gain in some situations,

retrieval of a good plan may present a serious bottleneck for plan reuse systems, as

we will show. Finally, we present the results of an empirical study of two di�erent

plan reuse systems, pointing out possible pitfalls one should be aware of when

attempting to employ reuse methods.
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1 Introduction

Plan generation in complex domains is normally a resource and time consu-

ming process. One way to improve the e�ciency of planning systems is to

avoid the repetition of planning e�ort whenever possible. For instance, in si-

tuations when the goal speci�cation is changed during plan execution or when

execution time failures happen, it seems more reasonable to modify the exi-

sting plan than to plan from scratch again. In the extreme, one might go as

far as basing the entire planning process on plan modi�cation, a method that

could be called planning from second principles.

Instead of generating a plan from scratch, that method tries to exploit know-

ledge stored in previously generated plans. The current problem instance is

used to �nd a plan in a plan library that|perhaps after some modi�cations|

can be (re-)used to solve the problem instance at hand. Current approaches

try to integrate methods from analogical or case-based reasoning to achieve

a higher e�ciency [18,33], integrate domain-dependent heuristics [21] or inve-

stigate reuse in the general context of deductive planning [3,5].

Some experiments give evidence that planning based on second principles

might indeed be more e�cient than planning from scratch [19,20,23,25,33].

However, it is by no means clear how far these results generalize. Addressing

this problem, we analyze the computational problems of plan modi�cation

from an analytical and empirical point of view in order to identify possible

pitfalls one should be aware of when employing reuse techniques.

Using a propositional planning framework, we show that modifying a plan is

not easier than planning from scratch. Moreover, there exist special cases when

modifying a plan conservatively [25, p. 196] can be harder than generating a

plan from scratch, even if we assume that the old and the new instance are

similar. From that we conclude that conservative plan modi�cation|which is

in fact an extremely dogmatic view of plan reuse|runs counter to the idea of

increasing e�ciency by plan reuse. For this reason, a conservative modi�cation

strategy should only be employed in a replanning context|when it is crucial

to retain as many steps as possible|but not in a plan reuse context. In fact,

all existing plan reuse system do not use a conservative modi�cation strategy.

Instead, plan modi�cation is considered as a heuristic technique, which recycles

as much of the old plan as the particular planning algorithm can probably use.

Although it is impossible to prove that reusing plans leads to a speedup in

terms of worst-case complexity, it seems intuitively plausible that in some

situations plan reuse is more e�cient than planning from scratch. However,

�nding a good reuse candidate in a plan library may be already very expen-

sive, leading to more computational costs than can be saved by reusing the
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candidate. We show that the problem of matching planning instances is NP-

hard in the general case. We also consider some special cases that lead to a

simpli�cation of this problem.

Finally, we present empirical results on the performance of two di�erent plan-

reuse systems, namely, spa [19,20] and mrl [29]. The aim of this analysis is to

identify factors inuencing the e�ciency gains of plan-reuse techniques. Alt-

hough we used only a very narrow class of test cases, the experiments provide

nevertheless a qualitative indication of the performance of reuse techniques

and an idea of how di�erent factors can inuence the relative e�ciency of

reuse techniques.

The paper is organized as follows. In Section 2, we de�ne the notion of propo-

sitional STRIPS planning following Bylander [6] and introduce a formal model

of plan modi�cation following Kambhampati and Hendler [25]. In Section 3,

we analyze the computational complexity of di�erent modi�cation problems

relative to their corresponding planning problems. In Section 4, we consider

one of the possible bottlenecks of plan-reuse techniques, namely, the retrieval

and matching problem. Finally, in Section 5, we present our empirical �ndings

and relate them to our analytical results.

2 Plan Modi�cation in a Propositional Framework

The computational complexity of di�erent forms of planning has been recently

analyzed by a number of authors [1,2,6,10,11,14,15,17]. However, the compu-

tational complexity of plan modi�cation has not been investigated yet. We

will analyze this problem in the formal framework of propositional STRIPS

planning as de�ned by Bylander [6]. As Bylander [6] notes, this model of plan-

ning is \impoverished compared to working planners" and is only intended to

be a \tool for theoretical analysis." However, since we are mainly interested in

comparing plan generation with plan modi�cation from a complexity-theoretic

perspective, this framework is appropriate for our purposes.

2.1 Propositional STRIPS Planning

Like Bylander [6], we de�ne an instance of propositional planning as a tuple

� = hP;O;I;Gi, where:

{ P is a �nite set of ground atomic formulae, the conditions,

{ O is a �nite set of operators, where each operator o 2 O has the form

o

+

; o

�

) o

+

; o

�

, where
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� o

+

� P are the positive preconditions,

� o

�

� P are the negative preconditions,

� o

+

� P are the positive postconditions (add list), and

� o

�

� P are the negative postconditions (delete list).

{ I � P is the initial state, and

{ G = hG

+

;G

�

i is the goal speci�cation with G

+

� P the positive goals and

G

�

� P the negative goals.

P is the set of relevant conditions. A state is either unde�ned, written ?, or

a subset S � P with the intended meaning that p 2 P is true in state S

if p 2 S, false otherwise. O is the set of operators that can change states.

I is the initial state, and G is the goal state speci�cation, with the intended

meaning that all conditions p 2 G

+

must be true and all conditions p 2 G

�

must be false. A plan � is a �nite sequence ho

1

; : : : ; o

n

i of plan steps o

i

2 O.

An operator may occur more than once in a plan. A plan � solves an instance

� of the planning problem i� the result of the application of � to I leads to

a state S that satis�es the goal speci�cation G, where the result of applying

� = ho

1

; : : : ; o

n

i to a state S is de�ned by the following function:

Result : (2

P

[ ?)�O

�

! 2

P

[ ?

Result(S; hi) = S

Result(S; hoi) =

8

>

<

>

:

(S [ o

+

)� o

�

if o

+

� S ^ o

�

\ S = ;

? otherwise

Result(S; ho

1

; o

2

; : : : ; o

n

i) = Result(Result(S; ho

1

i); ho

2

; : : : ; o

n

i)

In other words, if the precondition of an operator is satis�ed by a state, the

positive postconditions are added and the negative postconditions are deleted.

Otherwise, the state becomes unde�ned, denoted by ?.

2

As usual, we consider decision problems in order to analyze the computational

complexity of planning. This move is justi�ed by the fact that all decision

problems are at least as hard as the corresponding search problems, i.e, the

problem of generating a plan.

3

PLANSAT is de�ned to be the decision problem of determining whether an

instance � = hP;O;I;Gi of propositional STRIPS planning has a solution,

i.e., whether there exists a plan � such that Result(I;�) satis�es the goal

2

This is a slight deviation from Bylander's [6] de�nition that does not a�ect the

complexity of planning. This deviation is necessary, however, to allow for a mea-

ningful de�nition of the plan modi�cation problem.

3

We assume that the reader is familiar with the basic notions of complexity theory

as presented, for instance, by Garey and Johnson [16].
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speci�cation. PLANMIN [8] is de�ned to be the problem of determining whe-

ther there exists a solution of length n or less, i.e., it is the decision problem

corresponding to the search problem of generating plans with minimal length.

Based on this framework, Bylander [6,8] analyzed the computational comple-

xity of the general propositional planning problem and a number of generali-

zations and restricted problems. In its most general form, both PLANSAT and

PLANMIN are PSPACE-complete. Severe restrictions on the form of the ope-

rators are necessary to guarantee polynomial time or even NP-completeness.

2.2 Plan Reuse and Modi�cation

As described in the Introduction, planning from second principles consists of

two steps:

(i) Identifying an appropriate reuse candidate from a plan library.

(ii) Modifying this plan candidate so that it solves the new problem instance.

Assuming that the identi�cation of a candidate is based on a (polynomial-

time) heuristic evaluation function, the modi�cation problem clearly deter-

mines the complexity. However, even if we assume that the plan retrieval

process is supposed to identify the optimal candidate, this optimal candidate

can be found easily. One can tentatively modify each plan in the library and

select the plan that can be modi�ed optimally. Since this amounts to \only"

linearly many plan modi�cation operations in the number of plans stored in

the library, the computational complexity of modi�cation determines the com-

plexity of reuse. Note, however, that this does not hold any longer if we also

consider (possibly exponentially many) mappings between propositions of the

new problem instance and of the reuse candidate, as described by Kambham-

pati and Hendler [23,25] and Hanks and Weld [19,20]. In this case, which we

consider in Section 4, the costs of reuse may also be inuenced by the retrieval

problem.

Kambhampati and Hendler [25, p. 196] de�ne the plan modi�cation problem

as follows (adapted to our framework of propositional STRIPS planning):

Given an instance of the planning problem �

0

= hP;O;I

0

;G

0

i and a plan �

that solves the instance � = hP;O;I;Gi, produce a plan �

0

that solves �

0

by minimally modifying �.

We will call this problem MODGEN.

By \minimal modi�cation of a plan" Kambhampati and Hendler [25, p. 195]

mean to \salvage as much of the old plan as possible." Other authors are less
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explicit about what they mean by modifying a plan, but the idea to use as

much of the old plan as possible for solving the new problem instance seems

to be customary [33, p. 133]. The reason for this conservative approach to

modi�cation is twofold [25, p. 194{195]. Firstly, in a plan-reuse context, it is

expected that the additional planning e�ort necessary to generate the new

plan is minimized if the reused part of the old plan is maximized. Secondly,

in a replanning context, i.e., when a plan has to be modi�ed because of user-

initiated speci�cation changes or execution failures, one may want to respect

as many previous commitments as possible.

Turning the above speci�ed search problem into a decision problem leads to

what we will call the MODSAT problem:

An instance of the MODSAT problem is given by �

0

= hP;O;I

0

;G

0

i, a plan

� that solves � = hP;O;I;Gi, and an integer k � j�j. The question is

whether there exists a plan �

0

that solves �

0

and contains a subplan of �

of at least length k?

In order to fully specify MODSAT, we have to de�ne the meaning of the phrase

\�

0

contains a subplan of � of length k." For this purpose, we de�ne the

notion of a plan skeleton, a sequence of operators and \wildcards," denoted

by \�." The length of a plan skeleton is the number of operators, i.e., we

ignore the wildcards. A plan skeleton can be derived from a plan according to

a modi�cation strategy M by deleting and rearranging plan steps and adding

wildcards. A plan skeleton can be extended to a plan by replacing each wildcard

by a possibly empty sequence of operators. Now we say that plan �

0

contains

a subplan of � of length k according to a modi�cation strategyM i� a skeleton

� of length k can be derived from � according toM and � can be extended to

�

0

. In general, we will consider only polynomial-time modi�cation strategies,

i.e., strategies such that verifying that the skeleton � can be derived from the

plan � is a polynomial-time problem. In the following, we will consider three

di�erent plan modi�cation strategies that satisfy this constraint.

The �rst alternative we consider is to allow for deletions in the original plan

and additions before and after the original plan. Supposing the plan

� = ho

1

; : : : ; o

i

; o

i+1

; : : : ; o

j�1

; o

j

; : : : ; o

n

i;

the following plan skeleton could be derived from �, for instance:

� = h�; o

1

; : : : ; o

i

; o

j

; : : : ; o

n

; �i;

where � has length i+n� j+1. The corresponding modi�cation problem will

be called MODDEL.
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The second alternative is to allow for deletion of plan steps in the old plan

and additions before, after, and in the middle of the old plan. Assuming the

same plan � as above, the following skeleton plan of length i+n� j+1 could

be derived:

� = h�; o

1

; : : : ; o

i

; �; o

j

; : : : ; o

n

; �i:

The corresponding modi�cation problem is called MODDELINS.

The �nal alternative is to count the number of plan steps in the plan skeleton

� that also appear in the old plan � without considering the order. In other

words, we view� and � as multisets and take the cardinality of the intersection

as the number of old plan steps that appear in the new plan. The corresponding

modi�cation problem is called MODMIX. Although this model of modi�cation

may seem to give away too much of the structure of the old plan, \changing

step order" is considered to be a reasonable modi�cation operation (see, e.g.,

[19, p. 96]).

Finally, it should be noted that although the framework we have de�ned above

deals only with total-order plans, it can be easily modi�ed to apply to partial-

order planning, as well. Furthermore, all hardness results will apply to partial-

order planning since total-order plans are simply special cases of partial-order

ones.

3 The Complexity of Plan Modi�cation

First of all, there is the question of whether modifying a plan can lead to a

provable e�ciency gain over generation in terms of computational complexity.

Not very surprisingly, this is not the case when there are no restrictions on

the original instance. However, it does not seem to be impossible to achieve an

e�ciency gain if we require the old and new problem instance to be similar.

Second, one may ask the question whether plan modi�cation is always as easy

as planning from scratch. This question comes up because of the minimality

requirement in the de�nition of the plan modi�cation problem. This require-

ment makes plan modi�cation very similar to the belief revision problem, i.e.,

the problem of changing a logical theory minimally in order to accommodate a

new information. As is well-known, most revision schemata (but not all) turn

out to be computationally harder than deduction [12,31].

4

A similar result

4

More precisely, revision is in most cases �

p

2

-complete. Assuming, as is customary,

that the polynomial hierarchy does not collapse (see, e.g., [16,22]), this implies that

revising a propositional theory is harder than deduction, which is �

p

1

- or co-NP-
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[32,13] holds for abduction, which may be viewed as \minimally modifying

the assumptions in a proof."

In the following, we provide answers to both questions, addressing �rst the

problem of modifying plans conservatively, for arbitrary and similar planning

instances. After that, we consider the possible e�ciency gain of less restricted

modi�cation strategies.

3.1 Modifying Arbitrary Plans Conservatively

One almost immediate consequence of the de�nitions above is that plan modi-

�cation cannot be easier than plan generation. This even holds for all restric-

tions of the PLANSAT problem (concerning, e.g., the form of the operators

[8] or more global properties [2]). If PLANSAT

�

is a restricted planning pro-

blem, then MODSAT

�

shall denote the corresponding modi�cation problem

with the same restrictions.

Proposition 1 PLANSAT

�

transforms polynomially to MODSAT

�

for all re-

strictions �.

5

However, plan modi�cation is also not harder than plan generation in the

general case.

Proposition 2 MODSAT is PSPACE-complete.

This proposition could be taken as evidence that plan modi�cation is not

harder than plan generation. However, it should be noted that the proposition

is only about the general problem. So, it may be the case that there exist

special cases such that plan modi�cation is harder than generation. Such a case

will not be found among the PSPACE- and NP-complete planning problems,

however.

Theorem 3 If PLANSAT

�

is PSPACE-complete or NP-complete, then

MODSAT

�

is a PSPACE-complete or NP-complete problem, respectively.

The converse of the above theorem does not hold, however. There exist cases

when plan generation is a polynomial time problem while plan modi�cation

is NP-complete.

Theorem 4 There exists a polynomial-time PLANSAT

�

problem such

that the corresponding MODDEL

�

and MODDELINS

�

problems are NP-

complete.

5

Proofs of theorems and propositions can be found in the appendix.
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complete.

6

This means that it can be harder to modify a plan than generating it from

scratch. The reason for this fact is that the conservativity requirement intro-

duces an additional source of computational complexity. This source of com-

plexity is not visible when planning is NP-hard, because it requires simply

another nondeterministic choice. However, it shows up in the case when plan-

ning itself is easy. Hence, the expectation that conservatism leads to increased

e�ciency does not seem to be justi�ed.

3.2 Modifying Plans Conservatively When the Planning Instances are Simi-

lar

The results above could be considered as being not relevant for plan modi�ca-

tion in real applications because we made no assumption about the similarity

between old and new planning instances. The e�ciency gain expected from

plan reuse, on the other hand, is based on the assumption that the new in-

stance is su�ciently close to the old one|which supposedly permits an easy

adaptation of the old plan to the new situation. Besides the fact that this

looks like a good heuristic guidance, there is the question whether small di�e-

rences between the old and the new instance lead to a provable e�ciency gain

in terms of computational complexity. So it might be perhaps the case that

modi�cation is easier than planning if the goal speci�cations di�er only on a

constant or logarithmic number of atoms. Although this seems to be possible,

there is the conicting intuition that small changes in the planning instance

could lead to drastic (and hard to compute) changes in the plans.

As it turns out, restricting the number of di�ering atoms does not lead to

a di�erent picture than the one presented in the previous subsection. First

of all, Theorem 4 still holds for the restricted versions of the modi�cation

problems MODDEL and MODDELINS, where we require the old and new

initial states to be identical and the old and new goal speci�cation to di�er

only on one atom. We call these restricted versions of the modi�cation problem

MODDEL1G and MODDELINS1G, respectively.

Theorem 5 There exists a polynomial-time PLANSAT

�

problem such that

the corresponding MODDEL1G

�

and MODDELINS1G

�

problems are NP-

complete.

Although this theorem con�rms the intuition that small changes in the goal

speci�cation can lead to drastic changes in the plan, it does not rule out the

6

We were not able to identify a polynomial planning problem PLANSAT

�

such

that the corresponding MODMIX

�

problem becomes NP-complete.
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possibility that there are some hard planning problems such that the cor-

responding modi�cation problems are easy if the goal speci�cation is only

changed marginally. In order to rule out this possibility, we would need some-

thing similar to Proposition 1. However, there appears to be no general way

to reduce PLANSAT

�

problems to MODSAT1G

�

problems. For this reason,

we will settle for something slightly less general. We will show that generating

a plan by modifying a plan for a similar goal speci�cation is at least as hard

as the corresponding PLANSAT problem. Hence, instead of the decision pro-

blem MODSAT1G, we consider the search problem MODGEN1G. Further, in

order to allow for a \fair" comparison between PLANSAT and MODGEN1G,

we measure the resource restrictions of MODGEN1G in terms of the size of

the planning problem instance|and ignore the size of the plan to be modi-

�ed.

7

Under these assumptions, it is possible to specify a Turing reduction

from PLANSAT

�

to MODGEN1G

�

.

Theorem 6 If PLANSAT

�

is PSPACE-hard or NP-hard, then the correspon-

ding MODGEN1G

�

problem is PSPACE-hard or NP-hard, respectively, in the

size of the planning problem instance.

It should be noted that the above theorems apply also to the modi�cation

problems that are restricted to have a one-atom-di�erence between the initial

states.

3.3 Conservative versus Arbitrary Modi�cations

The hope that recyclingmaximal subplans increases the e�ciency of plan reuse

turns out to be unfounded, as the above results demonstrate. Our results imply

that conservative plan modi�cation introduces additional complexity into the

planning and reuse process. In particular, as a Corollary of Proposition 2, it

follows that is not possible to determine e�ciently (i.e., in polynomial time)

a maximal reusable plan skeleton before plan generation starts to extend the

skeleton.

Corollary 7 It is PSPACE-hard to compute a maximal plan skeleton for

MODSAT instances.

In other words, plan generation and plan modi�cation cannot be separated.

For this reason, the planning process becomes actually more involved when

recycling as much of the old plan as possible. Instead of searching for an

7

This is necessary to rule out such pathological situations as the one where mo-

difying an exponentially long plan appears to be polynomial while generating it is

exponential.
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arbitrary solution, a plan that contains a maximal subplan of the old plan has

to be sought.

Having a closer look at Kambhampati and Hendler's priar framework (which

is described as addressing the plan modi�cation problem by minimally mo-

difying plans) reveals that plan skeletons are derived in polynomial time [25,

p. 197] by a process called \annotation veri�cation." Hence, by Corollary 7,

this process cannot by any means derive maximal applicable plan skeletons.

Further, the authors do not give any arguments that they approximate such

skeletons. In fact, the skeletons derived by priar are not even guaranteed to

be applicable. So, priar does not seem to address the problem of \minimally

modifying plans," contrary to what the authors claim.

In fact, maximal reuse of an old plan only seems to make sense in a replanning

context if costs are charged for not executing already planned steps. So, it

seems to be the case that the two motivations for plan modi�cation, namely,

replanning and reuse may not be as similar as one might think. While in plan

reuse the e�ciency of the planning process is the most important factor, in

replanning the minimal disturbance of the old plan may be more important,

leading to a more involved planning process.

8

Plan modi�cation in the priar framework|and in other plan-reuse systems|

seems not to be a computational problem that has to be addressed, but rather

a solution, a heuristic technique. The \plan skeleton" that is reused is not the

maximal applicable one, but the one that the particular planning algorithm

perhaps can exploit in generating a solution. In other words, the old plan is

used as an \entry point" into the search space of possible plans, as made

explicit by Hanks and Weld [19].

While this seems to be indeed a reasonable way to go, it is (of course) not

a guaranteed cure for intractability. As the proof of Theorem 6 indicates,

modifying a plan cannot be easier than generating one, even if we allow for

arbitrary modi�cation strategies.

Theorem 8 If PLANSAT

�

is PSPACE-hard or NP-hard, then the correspon-

ding MODGEN1G

�

problem is PSPACE-hard or NP-hard, respectively, in the

size of the planning problem instance, even if we do not require to reuse a

maximal subplan.

As demonstrated by Theorem 8, we cannot hope for a provable speedup by

plan-reuse techniques in terms of computational complexity. Nevertheless, one

8

Kambhampati makes the same distinction in a later paper [24]. Based on argu-

ments concerning the search process of a planner, he also argues that guaranteeing

that every step that could be reused is reused could be computationally expensive|

a conjecture con�rmed by Theorem 4.

11



would expect a speedup in some cases. In fact, Bylander [7] shows that plan

modi�cation for similar planning instances is in some sense more e�cient in

the average case. The distributional assumptions Bylander makes are questio-

nable, however. He assumes a number of operators that is exponential in the

average size of the pre- and postconditions. While this appears to be an unrea-

listic assumption, Bylander's result is some indication on the analytical side

that plan modi�cation could be sometimes more e�cient than planning from

scratch.

One of the interesting and challenging problems in the research on plan reuse

seems to be the identi�cation of conditions under which plan reuse leads to

a provable speedup. A possible candidate has been pointed out to us by one

of the anonymous reviewers. Variant process planning [9], which is used in

commercial manufacturing industries for generating process plans for a given

product design, is based on (manual) modi�cation of plans for similar product

designs. Since in this case a similar design implies a similar plan, reusing old

plans leads indeed to signi�cant e�ciency gains.

4 Plan Retrieval and Matching

Experiments in the blocks-world domain [19,20,23,25] demonstrate that reu-

sing a plan that solves an instance similar to the one under consideration

leads indeed to an e�ciency gain in many cases (see also Section 5). It should

be noted, however, that in those experiments, the reuse candidate was sup-

plied manually. In order to apply the reuse technique in the general case, it

is necessary to provide a plan library from which a \su�ciently similar" reuse

candidate can be chosen. \Su�ciently similar" could in this case mean that

the reuse candidate has a large number of goal atoms and atoms in the initial

state in common with the new instance. However, one may also want to con-

sider reuse candidates that are similar to the new instance after the atoms in

the reuse candidate have been systematically renamed. As a matter of fact,

every plan reuse systems contains a matching component that tries to �nd a

mapping between the objects of the reuse candidate and the objects of the

new instance such that the number of common goal atoms is maximized and

the additional planning e�ort to achieve the initial state of the library plan is

minimized (see also Section 5). In the following, we will have a closer look at

this matching problem.
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4.1 Matching Planning Instances

In order to analyze the matching problem, we assume that the set of conditions

P has some particular structure. Let O be a set of constants c

i

, with the

understanding that distinct constants denote distinct objects, and let P be a

set of predicate symbols P

n

j

of arity n, then P(O;P) is the set of all ground

atomic formulae over this signature. In domains, where there are di�erent

types of constants, it can be useful to employ a many-sorted logic instead of

the unsorted logic we consider here. However, we will abstract from this issue

and consider only problems such that all constants have the same type. As an

example for such a domain, where an unsorted logic is su�cient, consider the

blocks-world where we have only blocks (of the same size) and the predicates

are universally applicable to all of these blocks.

We assume further that the operators are closed under substitution of con-

stants by constants, i.e., we require that if there exists an operator o

k

mentio-

ning the constants fc

1

; : : : ; c

n

g � O, then there exists also an operator o

l

over

the arbitrary set of constants fd

1

; : : : ; d

n

g � O such that o

l

becomes identi-

cal to o

k

if the d

i

's are replaced by c

i

's. In other words, we assume that the

operators could be represented as ordinary STRIPS operators using variables.

If there are two instances

�= hP(O;P);O;I;Gi

�

0

= hP(O

0

;P

0

);O

0

;I

0

;G

0

i

such that (without loss of generality)

O�O

0

P=P

0

O�O

0

;

then a mapping � from � to �

0

is an injective function

9

�: O ! O

0

:

Although injectivity might not always be required, it is a safe condition. It

guarantees that distinct constants are mapped to distinct constants. The map-

ping � is extended to ground atomic formulae and sets of such formulae in the

canonical way, i.e.,

9

A function f is injective if it is \invertible," i.e., if x 6= y implies f(x) 6= f(y) for

all x and y in the domain of f .
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�(P

n

i

(c

1

; : : : ; c

n

))=P

n

i

(�(c

1

); : : : ; �(c

n

))

�(fP

1

(: : :); : : : ; P

m

(: : :)g)= f�(P

1

(: : :)); : : : ; �(P

m

(: : :))g:

If there exists a bijective

10

mapping � from � to �

0

such that all goal and

initial-state atoms are matched, then it is obvious that a plan � for � can be

directly reused for solving �

0

since �

0

and � are identical to within a renaming

of constant symbols, i.e., �(�) solves �

0

. In the case that � is not a bijection

or does not match all goal and initial-state atoms, �(�) can still be used as a

starting point for searching for a plan that solves �

0

.

Following Hanks and Weld [20] and Kambhampati and Hendler [23,25], we

de�ne a match of a reuse candidate � with a new instance �

0

as a mapping �

from � to �

0

that maximizes �rst the cardinality of (�(G

+

)\G

0

+

)[(�(G

�

)\G

0

�

)

and second the cardinality of �(I) \ I

0

. It should be noted that in spa and

priar the conditions for the initial-state match are slightly more complica-

ted. In spa, the number of \open conditions" is minimized, i.e., violations

of preconditions in the library plan are minimized. In priar, the number of

\inconsistencies in the validation structure" of the library plan is minimized.

Since the absence of one atom in the initial state may lead to several \open

conditions" or \inconsistencies in the validation structure," our measure is

slightly di�erent from the ones used in spa and priar. Nevertheless, it is

certainly also a reasonable approximation of \the amount of planning work

necessary to get the input initial world state to the state expected by the

library plan" [20, p. 25]. While our purely syntactic criterion is certainly in-

ferior in predictive power, it is probably easier to compute than the measures

used in spa and priar because in our case it is not necessary to consider the

structure of the library plan.

The optimization problem de�ned above corresponds to the following decision

problem, which we call PMATCH:

Given two planning instances, � and �', and two natural numbers k and n,

decide whether there exists a mapping � from � to �

0

such that j(�(G

+

) \

G

0

+

) [ (�(G

�

) \ G

0

�

)j = k, j�(I) \ I

0

j � n and there is no mapping �

0

with

j(�

0

(G

+

) \ G

0

+

) [ (�

0

(G

�

) \ G

0

�

)j > k.

It should be noted that in order to select an optimal reuse candidate from

the plan library, this matching problem has to be solved for each potentially

relevant candidate in the plan library. Of course, one may use structuring

and indexing techniques in order to avoid considering all plans in the library.

Nevertheless, it seems unavoidable to solve this problem a considerable number

of times before an appropriate reuse candidate is identi�ed. For this reason,

the e�ciency of the matching component is most probably crucial for the

10

A function is bijective if it is injective and onto.
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overall system performance. Unfortunately, the matching problem is an NP-

hard problem.

Theorem 9 PMATCH is NP-hard, even if the initial states are empty.

It should be noted that NP-hardness of PMATCH holds even if we do not

require an optimal match of the initial state. Hence, the hardness result applies

immediately to the matching criterion used in spa and priar.

This NP-hardness result implies that matching may be indeed a bottleneck

for plan reuse systems. In fact, it seems to be the case that planning instances

with complex goal or initial-state descriptions may not bene�t from plan-reuse

techniques because matching and retrieval is too expensive.

One promising avenue of further research may be to look for good polynomial

approximation algorithms for the matching problem [28]. Another way out

may be to characterize those planning instances for which matching can be

performed in reasonable time. For instance, one way to reduce the matching

costs is to introduce sorts in order to limit the number of possible matches.

In the following we will have a closer look at the matching problem in the

blocks-world domain. This domain is interesting for two reasons. First, the in-

stances are relatively simple, and may thus permit e�cient matching. Second,

the blocks-world domain has been used extensively to illustrate the bene�ts

of plan reuse.

4.2 Matching Blocks-World Planning Instances

In general, a blocks-world planning instance consists of

{ a set of blocks O = fb

1

; : : : ; b

n

g,

{ the set of predicates P = fontable(�); clear(�); on(�; �)g,

{ operators Move(x; y; z) (move block x from y to z), Stack(x; y) (pick up

block x from the table and stack it on block y), and Unstack(x; y) (unstack

x from y),

{ the initial state that should be complete (i.e., mention every true atomic

ground formula corresponding to the initial physical con�guration of blocks)

and consistent (i.e, describing one possible physical con�guration of the

blocks), and

{ the goal state that speci�es a set of ground atomic formulae to be achieved.

Provided, the goal state is also a complete description of a physical con�gu-

ration, it is possible to visualize the initial state and goal state as in Figure 1.
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Fig. 1. A Blocks-World Example

Most of the planning instances that have been used to demonstrate the bene-

�ts of plan reuse techniques all have a particular simple structure. The goal

state is always one stack of blocks. As is easy to see, the matching problem

for such instances can be solved in polynomial time. In order to maximize

goal matching, the blocks in the smaller stack must be mapped to the blocks

in the larger stack respecting the order of the blocks. Obviously, there are

only linearly many such mappings. In fact, if the goal description also con-

tains atoms of the form ontable(�) and clear(�), then there are at most two

mappings with a maximal number of goal atoms in common. It is then easy

to identify the mapping that maximizes the match between the initial states.

Proposition 10 PMATCH restricted to blocks-world planning instances,

where the goal is a complete description of one stack, is a polynomial-time

problem.

However, this positive result does not generalize. If we drop the restriction

that the goal is one stack, the matching problem becomes again NP-hard.

Theorem 11 PMATCH restricted to blocks-world planning instances, where

the goal is a complete description of a set of stacks, is NP-hard.

While this hardness result does not directly apply to the matching strate-

gies of spa and priar|these systems do not maximize matching of initial-

state atoms but minimize \open conditions" or \inconsistencies in the valida-

tion structure," respectively|Theorem 11 is nevertheless an indication that

matching incurs considerable computational costs, even for moderately simple

goal structures. In fact, the problem-independent matching strategy imple-

mented in spa runs in time exponential in the number of objects since it

simply evaluates all possible mappings. As we will see in the next section, the

runtime for matching one candidate to a planning instance is signi�cant, even

for moderately complex planning instance containing only eight blocks.

Interestingly, (non-optimal) planning in the blocks-world is polynomial, even

if there are many goal stacks [17]. In other words, in case of a special-purpose
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blocks-world planning system one better does not use a retrieval algorithm that

identi�es the optimal reuse candidate, but one that also accepts candidates

that are less than perfect. Otherwise retrieval may become more expensive

than plan generation.

5 Empirical Results

In order to complement our analytical results on the relationship between plan

reuse and plan generation, we conducted some experiments to gain insight

into the performance of reuse techniques under varying conditions. We were

particularly interested in how the following conditions inuence the e�ciency

gains of plan-reuse techniques:

{ similarity between the planning instances: the e�ort spent on matching and

plan modi�cation depends supposedly at least partially on the structural

similarity between the reuse candidate and the new instance;

{ the planning domain: properties of the planning domain can probably render

matching and modi�cation more or less di�cult.

5.1 Plan-Reuse Systems

In our experiments, we used the plan-reuse systems spa [19,20] and mrl

[27,29].

spa is based on a lifted version of McAllester and Rosenblitt's [30] systematic

partial-order planning algorithm. In this framework, the planning process is

viewed as a search through a tree of partial plans. Plan generation starts at

the root of the tree (corresponding to the empty plan) and adds plan steps and

constraints, while plan modi�cation starts at an arbitrary place in the tree and

can either add (going down in the tree) or delete constraints and steps (going

up in the tree). Plan modi�cation in spa has three di�erent phases. In the

�rst phase, a reuse candidate is matched against the new planning instance.

In the second phase, which is called �tting, a plan skeleton is computed. In

the third phase, called adaptation, the skeleton is used to �nd a plan to solve

the new instance.

As described in the preceding section, plan matching in spa is based on �nding

a mapping between the objects of the reuse candidate and the new planning

instance that maximizes the number of common goal atoms. If several map-

pings lead to a best match, the initial preconditions from the reuse candidate

and the current plan speci�cation are matched against each other and a map-
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ping that leads to a minimal number of unsatis�ed preconditions of operators

in the reuse candidate is chosen.

Plan �tting modi�es the reuse candidate in order to create a plan skeleton by

removing superuous causal dependencies and marking all unsatis�ed condi-

tions. Finally, the plan adaptation process tries to �nd a solution for the new

planning instance by extending the skeleton, i.e., adding new constraints or

plan steps, and reduction, i.e., removing constraints or plan steps.

The other plan reuse system we consider is mrl, which is based on the de-

ductive (total-order) planner phi [3,5]. The underlying logic of this planning

system is the interval-based modal logic llp [4]. It should be noted that in

using this logic in a planning system it becomes possible to specify interme-

diate goals, i.e., goals that have to be achieved at some point and not neces-

sarily in the end { something which could not be done in the usual strips or

tweak type planning systems (see also [26]).

Plan generation in phi is performed by constructing proofs for plan speci�ca-

tions in a sequent calculus. During the proof, a plan (formula) is constructed

satisfying the formal plan speci�cation. The proofs are guided by tactics, which

support the declarative representation of control knowledge and make deduc-

tive planning quite e�cient. The search space considered during the proof can

be kept to a manageable size and only those deduction steps are performed

which seem to be promising. Contrary to spa, phi is not a \complete" planner

in the sense that it will (eventually) �nd a plan if one exists. However, the

currently implemented tactics are su�cient for generating all \easy to �nd\

plans. As a matter of fact, it was possible to adapt the blocks-world planning

instances without changing or adding tactics. While the \incompleteness" of

phi may seem to be a disadvantage, the guarantee that a \complete" planner

will eventually �nd a plan if one exists is only of limited value, since �nding this

plan may simply take too much time { because systematic planners usually

require exponential time.

Plan reuse by the mrl system is based on a logical formalization of the reuse

process including the modi�cation, representation and retrieval of plans. The

system is able to automatically reuse and modify sequential, conditional, and

iterative plans.

Plan modi�cation in mrl proceeds in two phases: During the plan interpre-

tation phase the current planning instance and the speci�cation of the reuse

candidate are semantically compared. This process is implemented as a theo-

rem proving attempt. The result of the plan interpretation phase is a proof

stating that the plan belonging to the reuse candidate can be reused without

modi�cation, or a failed proof from which re�tting information can be extrac-

ted. Plan re�tting starts with constructing a plan skeleton from the reused plan
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according to the result of the proof attempt using the modi�cation strategy

MODDELINS. The plan skeleton is extended to a correct plan by a construc-

tive proof of the plan speci�cation formula which was instantiated with this

skeleton.

The systems use di�erent planning formalisms, are implemented in di�erent

programming languages, and run on di�erent machines. Therefore, a runtime

performance comparison between the systems does not appear to be meaning-

ful. Instead, we are interested in the relative e�ciency caused by plan reuse

when the above mentioned conditioned are varied. Although, we used only a

quite narrow class of test cases, we still believe that our results provide at

least a qualitative indication of the relative e�ciency of plan-reuse techniques

under varying conditions.

5.2 Test Cases

For our experiments, we considered test cases from two di�erent domains. The

�rst domain is a particular subset of blocks-world planning instances that has

been used to explore the performance of priar and spa [23,25,20].

The blocks-world planning instances we used can be roughly categorized as

falling into two classes named \nbs" and \nbs1," where n is an integer para-

meter denoting the number of blocks which are involved:

{ nbs instances have an initial state in which all blocks are clear and on the

table and a goal state with one stack that contains all blocks mentioned in

the description of the initial state.

{ nbs1 instances have the same goal state as nbs instances, but in the initial

state some of the blocks are stacked on others.

Figure 2 gives as an example the con�guration of blocks in the 8bs1 blocks-

world planning instance.

Considering the 8bs1 instance in more detail, it becomes obvious that there

are no \deadlocks" [17] during plan generation. In other words, one can easily

generate an optimal plan by simply building up the goal stack starting at the

bottom block and it is never necessary to put a block temporarily on the ta-

ble before moving it to its �nal position. Further, this property holds for all

nbs1 instances contained in priar's test case collection. Most probably, this

property simpli�es the generation and modi�cation of plans. For this reason

and because of the fact that optimal plans can be found in polynomial time

for all blocks-world problem instances containing only one stack in their goal

description [17], we believe that the claim [25, p. 198] that \experiments in

the blocks-world certainly bear out the exibility and e�ciency of the incre-
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Fig. 2. The 8bs1 Example

mental plan modi�cation : : :over a variety of speci�cation changes" is at least

arguable. Nevertheless, this set of test cases appears to be useful for getting

an idea how the relative e�ciency di�ers, because these test cases have been

used in evaluating di�erent plan-reuse systems.

In order to analyze the e�ect di�erent domains can have on the e�ciency of the

plan-reuse process, we considered also another domain. The second domain is

the unixmail domain, which we used only in connection with the mrl system.

In the mail domain, objects of di�erent sort like messages and mailboxes are

manipulated by actions like read, delete, and save. This domain di�ers from

the blocks-world mainly in that the objects are all of di�erent type.

5.3 Experimental Results

We ran di�erent test samples on the two plan-reuse systems in order to get an

idea how the performance of the reuse system vary under di�erent conditions.

Inuence of Similarity of Planning Instances

In the �rst experiment, we investigate how the structural similarity of the

reuse candidate with the new planning instance inuences the performance

of the plan modi�cation process. In order to study this inuence, we tested

the spa system on nbs ! kbs, nbs ! kbs1, and nbs1 ! kbs1 modi�cation

tasks that are prede�ned in the plan library of spa. Since the deviation in

the initial state increases and the number of \open conditions" to be resolved

during plan adaptation increases, we expected that plan adaptation becomes

more di�cult moving from the �rst kind of tasks to the latter kind of tasks.
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In Figure 3,

11

we give the results of the experiments described above for the

case k = 8. We also performed the same experiments with k = 7 and k = 12,

which led to a similar picture.

In all examples, matching shows an exponential run time behavior for the

domain-independent matching algorithm we used.

12

As a matter of fact, even

for a moderately sized domain containing only eight blocks, the matching costs

are already signi�cant. For the 9bs ! 8bs1 example, the time of matching is

already signi�cantly higher than the plan modi�cation time.

Figure 3a gives the performance data for the easiest modi�cation problem,

where the initial and the goal states di�er only by the number of blocks used,

in which case the total modi�cation e�ort never exceeds the plan generation

e�ort. If a linear matching algorithm would be used, the modi�cation e�ort

would linearly decrease as the reused plan becomes more and more similar to

the desired solution.
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Fig. 3. Matching and modi�cation costs in spa. The horizontal bar gives the time

for generating a plan for 8bs or 8bs1 from scratch. The dashed line plots the time

for plan modi�cation and the dotted line plots the time for matching using a prob-

lem-independent strategy. The solid line plots the resulting time for matching and

modi�cation.

When the modi�cation tasks become more di�cult, since the reuse candidate

and the new planning instance are structurally less similar, the savings of

plan modi�cation become less predictable. In particular, it happened that the

modi�cation and matching e�ort is higher than the e�ort of generating a plan

from scratch.

13

For the reuse of nbs1 problems to solve the 8bs1 problem, the

11

Each data point represents the average of 20 runs on a freshly initialized system.

The deviation of a single run never exceeded 10%.

12

spa also provides an application-dependent matching algorithm which is linear

but restricted to blocks-world instances with one goal stack. Instead of this more

e�cient method, we used the general matching algorithm in order to get an idea

about the matching costs in spa in the general case

13

The observed runtime behavior correlates linearly with the number of considered

partial plans. In other words, the runtime peaks are not caused by any machine-
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performance of plan modi�cation becomes worse. There are more cases when

plan reuse is less e�cient than plan generation and plan modi�cation can take

more than 5 times as much time as generation.

Comparing these results with the empirical data on the performance of the

priar plan-reuse system reported by Kambhampati and Hendler [25], one

notes that instead of a speedup in all cases, there are a number of cases when

plan modi�cation is actually more expensive. The reasons for these results

are manifold. First of all, we did not employ the domain-dependent control

functions spa o�ers for the blocks-world domain.

14

Secondly, as already noted

by Hanks and Weld [20], priar's generative performance degrades much more

quickly than its modi�cation performance, leading to impressive savings for

large instances.

All in all, the experiments indicate that there is a certain danger that the

modi�cation e�ort may be in fact higher than the generation e�ort if the reuse

candidate is not structurally similar to the new problem instance. Hence, we

have an interesting tradeo� for the plan retrieval component. If we try to

retrieve the reuse candidate with a best match, we may have a good chance

that the plan can be easily modi�ed, but the retrieval itself can be costly.

On the other hand, if the retrieval component only performs an approximate

match, matching might be inexpensive, but the modi�cation e�ort can be

quite high.

Inuence of Planning Domain

With our second experiment, we want to highlight the inuence of the applica-

tion domain on the performance of plan-reuse techniques. In the experiment,

we considered in addition to the blocks-world the unix mail domain, which

is quite di�erent from the blocks-world. Typical planning instances in the

blocks-world incorporate a large number of objects of the same type (blocks)

but only a small number of di�erent operators. Typical planning instances in

the mail domain involve few objects which are of di�erent type (e.g., mails

and mailboxes) but a large number of di�erent operators (e.g., open or close

a mailbox, read, save, and delete messages).

Running mrl on nbs ! 8bs instances and on mail domain instances, we

obtained the runtime behavior displayed in Figure 4.

15

It should be noted

that we used the same proof tactics and order-sorted uni�cation algorithm for

dependent features but by the plan-modi�cation process.

14

The reader should note that the use of control functions leads to a much better

performance of the system as reported in [20].

15

As above, the data points represent the average of 20 runs on a freshly initialized

system.
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Fig. 4. Matching and modi�cation costs in mrl. As above, the horizontal bar in-

dicates plan generation time, the dashed line plots the time for plan modi�cation,

and the dotted line plots the time for matching. The solid line plots the resulting

time for matching and modi�cation.

both example sets.

The experiments demonstrate that the e�ort for planning from scratch and for

plan modi�cation is almost the same for both problems, but they di�er signi-

�cantly in the e�ort which has to be spent on matching. In the blocks world,

matching is much more expensive because the goal state description is very

homogeneous, i.e., all objects are of the same sort. This leads to many di�erent

matching possibilities. In the mail domain we have fewer objects and they are

of di�erent sorts, which makes matching less expensive since the uni�cation

algorithm can bene�t from the sort information|an observation supporting

our conjecture that many-sorted logics in heterogeneous domains can lead to

a signi�cant e�ciency gain for the matching problem (see Section 4.1).

The di�erent matching costs lead to di�erent relative performance �gures for

plan reuse in mrl: in the mail domain, solving the current problem by reusing

a given plan leads to an e�ciency gain, while solving the blocks world problem

by plan reuse is always more expensive.

6 Conclusions

Improving the e�ciency of planning systems by adding capabilities to mo-

dify existing plans has received some research interest recently. We considered

the relationship between plan reuse|as it occurs in planning from second

principles and case-based planning|and plan generation from an analytical

and empirical point of view in this paper.
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In analyzing the relative computational complexity of plan modi�cation versus

plan generation, we showed that the same combinatorial cli�s that exist for

planning from scratch also exist for plan reuse. Hence, case-based planners do

not o�er a guaranteed cure for intractability. In fact, plan modi�cation can

even be harder than planning from scratch|if we require the modi�cation to

be conservative. While conservatism has been discussed in the literature as

a possible way to increase the e�ciency, it turns out that this hope is not

justi�ed.

In fact, in plan-reuse systems, plan modi�cation is not attacked as a problem

but considered as a heuristic technique. This means that instead of using as

much of the old plan as possible these systems recycle as much of the old

plan as the particular planning algorithm will perhaps be able to use in solving

the new problem instance. Hence, adopting the principle of conservatism in

plan modi�cation only seems to make sense in a replanning context where one

wants to minimize the perturbation of the original plan.

Although plan modi�cation does not lead to a provable e�ciency gain in

terms of computational complexity, it seems intuitively plausible that reusing

old plans can sometimes (perhaps in a signi�cant number of cases) lead to an

improvement in e�ciency. However, in order to exploit plan-reuse techniques

in the general case, it is necessary to select an appropriate reuse candidate

from a plan library. The bottleneck in retrieving such a candidate from the

library seems to be that the matching problem, the problem of matching the

objects of the reuse candidate to the objects of the new planning situation, is

already quite di�cult. As we show, this problem is NP-hard in general. This

holds even for moderately simple blocks-world planning instances. Only in

the case that there is exactly one stack in the goal description, the matching

problem is solvable in polynomial time.

The identi�cation of sources of computational complexity raises the question

of how implemented systems cope with the combinatorial cli�s. This motiva-

ted experiments with existing plan-reuse systems in order to identify possible

pitfalls for reuse techniques. Summarizing our empirical results, we noted that

{ if the underlying planning system is already very e�cient (for a given do-

main), the costs for matching and modi�cation can easily be higher than

the costs for generating a plan from scratch;

{ if the reuse candidate is not structurally similar to the new instance, the

modi�cation e�ort can be much higher as in the case when the candidate is

similar;

{ if a domain-independent optimalmatch between candidate and new instance

is sought, the retrieval costs can be quite high;

{ if the planning domain is heterogeneous (i.e., di�erent objects have di�erent

types), matching becomes much more e�cient.
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Our future research will concentrate on further theoretical and empirical in-

vestigations of plan-reuse techniques. We are particularly interested in iden-

tifying conditions under which plan reuse is provably more e�cient than plan

generation. Further, we plan to analyze the empirical performance of di�erent

plan-reuse systems on more complex real-world domains in order to characte-

rize the range of applicability of particular reuse techniques.
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A Proofs

Proposition 1 PLANSAT

�

transforms polynomially to MODSAT

�

for all re-

strictions �.

Proof. The restriction of MODSAT

�

to empty old plans and k = 0 is identical

to PLANSAT

�

. 2

Proposition 2 MODSAT is PSPACE-complete.

Proof. Because of Proposition 1 and the fact that PLANSAT is PSPACE-

complete [6, Theorem 1], MODSAT is PSPACE-hard.

MODSAT is in NPSPACE because (1) guessing a skeleton � of length k and

verifying that it can be derived from the old plan � and (2) guessing step by

step (with a maximum of 2

jPj

steps) a new plan �

0

and verifying that it solves

the instance �

0

and extends � can be obviously done in polynomial space.

Since NPSPACE = PSPACE, it follows that MODSAT 2 PSPACE. 2

Theorem 3 If PLANSAT

�

is PSPACE-complete or NP-complete, then

MODSAT

�

is a PSPACE-complete or NP-complete problem, respectively.
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Proof. PSPACE-hardness and NP-hardness, respectively, are obvious because

of Proposition 1. Membership follows in case of PSPACE by Proposition 2. In

case of NP, we initially guess (1) n (0 � n � j�j+2) possibly empty plans �

i

such that j�

i

j � j�j, (2) 2n states S

1

; : : : ; S

2n

, and (3) n polynomially bounded

proofs that there exists plans from each state S

2i

to state S

2i+1

for 1 � i �

n�1. Since PLANSAT

�

is in NP, such proofs exist (in most cases, these proofs

will be plans). Then we verify in polynomial time (1) that S

1

= I and S

2n

satis�es the goal speci�cation G, (2) that Result(S

2i�1

;�

i

) = S

2i

, (3) that the

plan existence proofs are correct, and (4) that h�

1

; �;�

2

; �; : : : ;�

n�1

; �;�

n

i

is a skeleton of length k that can be derived from �. This is obviously a

nondeterministic algorithm that runs in polynomial time. 2

Theorem 4 There exists a polynomial-time PLANSAT

�

problem such that

the corresponding MODDEL

�

and MODDELINS

�

problems are NP-complete.

Proof. The planning problem PLANSAT

+

1

de�ned by restricting operators to

have only positive preconditions and only one postcondition can be solved in

polynomial time [6, Theorem 7]. Let PLANSAT

+;post

1

be the planning problem

de�ned by restricting operators to have (1) only one postcondition p, (2) the

negated condition p as a precondition, and (3) any number of additional posi-

tive preconditions. From the speci�cation of the algorithm Bylander [6] gives

for PLANSAT

+

1

, it is evident that PLANSAT

+;post

1

can also be solved in poly-

nomial time (see also [2]). We will show that the corresponding modi�cation

problems MODDEL

+;post

1

and MODDELINS

+;post

1

are NP-complete.

For the hardness part we use a reduction from SAT, the problem of satisfying

a boolean formula in conjunctive normal form. Let V = fv

1

; : : : ; v

m

g be the

set of boolean variables and let C = fc

1

; : : : ; c

n

g be the set of clauses. Now

we construct a MODDEL

+;post

1

problem that can be satis�ed i� there exists a

satisfying truth assignment for the SAT problem.

The set of conditions P contains the following ground atoms:

T

i

; 1 � i � m; v

i

= true has been selected

F

i

; 1 � i � m; v

i

= false has been selected

S

i

; 1 � i � m; the truth value for v

i

has been selected

E

i

; 0 � i � m; enable evaluation

C

j

; 1 � j � n; c

j

evaluates to true.
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Further, we assume the following set of operators O:

o

+

; o

�

) o

+

; o

�

t

i

� fT

i

g; ; ) ;; fT

i

g

f

i

� fF

i

g; ; ) ;; fF

i

g

st

i

� fT

i

; E

0

; : : : ; E

m

g; fS

i

g ) fS

i

g; ;

sf

i

� fF

i

; E

0

; : : : ; E

m

g; fS

i

g ) fS

i

g; ;

e

i

� ;; fE

i

g ) fE

i

g; ;

pos

i;j

� fT

i

; E

0

; : : : ; E

m

g; fC

j

g ) fC

j

g; ; if v

i

2 c

j

neg

i;j

� fF

i

; E

0

; : : : ; E

m

g; fC

j

g ) fC

j

g; ; if v

i

2 c

j

:

Assume the following initial and goal state:

I = fT

1

; : : : ; T

m

; F

1

; : : : ; F

m

g

G

+

= fE

0

; : : : ; E

m

g

G

�

= fT

1

; : : : ; T

m

; F

1

; : : : ; F

m

g:

The instance � = hP;O;I;Gi is, for example, solved by the following plan �:

� = ht

1

; : : : ; t

m

; f

1

; : : : ; f

m

; e

0

; : : : ; e

m

i:

Now consider the instance �

0

= hP;O;I

0

;G

0

i such that

I

0

=I

G

0

+

= fE

0

; : : : ; E

m

; S

1

; : : : ; S

m

; C

1

; : : : ; C

n

g

G

0

�

= ;:

We claim that the SAT formula is satis�able if, and only if, the plan � can be

modi�ed by deleting at most m operators and adding some operators before

and after the resulting skeleton � in order to achieve a new plan �

0

that solves

�

0

.

First, the operators st

i

and sf

i

can only be added after the original plan bec-

ause there arem+1 operators e

i

at the end of � that produce the preconditions

for the above operators. Second, in order to achieve the part of the goal spe-

ci�cation that requires S

i

to hold for each i means that from each pair ft

i

; f

i

g

one operator in � must be deleted.
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Now assume that the SAT formula is satis�able. In this case, we can delete m

of the t

i

and f

i

operators such that the T

i

's and F

i

's correspond to a satisfying

truth assignment. Then it is trivial to construct a sequence of pos

i;j

's and

neg

i;j

's that can be added in the end in order to achieve the goal speci�cation

requiring C

j

, for all 1 � j � n, to hold. Conversely, if such a sequence can be

found, then the values of T

i

and F

i

give a satisfying truth assignment for the

SAT formula.

Since st

i

; sf

i

; pos

i;j

, and neg

i;j

cannot be added before any of the e

i

operators,

the reduction applies to MODDELINS

+;post

1

, as well.

Membership in NP follows since PLANSAT

+;post

1

is in NP. Using the same

algorithm as described in the proof of Theorem 3 leads to a nondeterministic

polynomial-time algorithm for MODDEL

+;post

1

and MODDELINS

+;post

1

. 2

Theorem 5 There exists a polynomial-time PLANSAT

�

problem such that

the corresponding MODDEL1G

�

and MODDELINS1G

�

problems are NP-

complete.

Proof. The transformation used in the proof of Theorem 4 is modi�ed as

follows. A new atomB is added, which is assumed to be false in the initial state

I and not mentioned in the old goal speci�cation G. The new goal speci�cation

G

0

is:

G

0

+

=G

+

[ fBg

G

0

�

=G

�

:

Finally, the following operator is added:

fE

0

; : : : ; E

m

; S

1

; : : : ; S

m

; C

1

; : : : ; C

n

g; fBg ) ;; fBg

The MODDEL

�

and MODDELINS

�

problems generated by this modi�ed

transformation obviously satisfy the constraint that the goal speci�cations

di�er only on one atom. Further, the modi�ed transformation has obviously

the same property as the original one, i.e., the generated MODSAT problems

can be used to solve the satis�ability problem.

Membership in NP is again obvious. 2

Theorem 6 If PLANSAT

�

is PSPACE-hard or NP-hard, then the correspon-

ding MODGEN1G

�

problem is PSPACE-hard or NP-hard, respectively, in the

size of the planning problem instance.

28



Proof. Using an oracle for MODGEN1G

�

, we can generate a plan by modify-

ing it iteratively, starting with the empty plan and empty goal speci�cation

and continuing by adding step by step one goal atom. Since the size of the goal

speci�cation is linearly bounded by the problem instance, we would need only

linearly many calls. Supposing that the theorem does not hold would imply

that generating a plan under restrictions � is easier than PLANSAT

�

, which

is impossible by de�nition. 2

Theorem 8 If PLANSAT

�

is PSPACE-hard or NP-hard, then the correspon-

ding MODGEN1G

�

problem is PSPACE-hard or NP-hard, respectively, in the

size of the planning problem instance, even if we do not require to reuse a

maximal subplan.

Proof. In the reduction used in the proof of Theorem 6, we did not rely on

any particular property of the MODGEN1G

�

oracle. In particular, we did not

make the assumption that the oracle has to recycle a maximal reusable plan

skeleton. Hence, the result holds for arbitrary modi�cation strategies, even

those that are not required to use a maximal subplan. 2

Theorem 9 PMATCH is NP-hard, even if the initial states are empty.

Proof. NP-hardness is proved by a polynomial transformation from the sub-

graph isomorphism problem for directed graphs [16, p. 202], which is NP-

complete. This problem is de�ned as follows:

Given two digraphs G = (V

1

; A

1

);H = (V

2

; A

2

), does G contain a subgraph

isomorphic to H, i.e., do there exist subsets V � V

1

and A � A

1

such that

jV j = jV

2

j and jAj = jA

2

j, and there exists a one-to-one function f :V

2

! V

satisfying (u; v) 2 A

2

if and only if (f(u); f(v)) 2 A?

Given an instance of the subgraph isomorphism problem, we construct an

instance of PMATCH as follows.

O = O

0

= V

1

[ V

2

P = P

0

= fPg

I = I

0

= ;

G

�

= G

0

�

= ;

G

+

= fP (v;w)j (v;w) 2 A

2

g

G

0

+

= fP (v;w)j (v;w) 2 A

1

g:
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Now it is obvious that G contains a subgraph isomorphic to H i� there exists

a mapping � such that j�(G

+

) \ G

0

+

j = jA

2

j. 2

Theorem 11 PMATCH restricted to blocks-world planning instances, where

the goal is a complete description of a set of stacks, is NP-hard.

Proof. In order to prove NP-hardness, we use a polynomial transformation

from the NP-complete problem of 3-dimensional matching (3DM), which is

de�ned as follows [16, p. 221]:

Given a set M �W �X � Y , where W , X, and Y are disjoint sets having

the same number q of elements, decide whetherM contains a matching, i.e.,

a subset N �M such that jN j = q and no two elements of N agree in any

coordinate.

For convenience, we assume that there exists a function g that assigns a unique

index to all elements in W [X [ Y such that

1 � g(w) � q for all w 2 W;

1 + q � g(x) � 2q for all x 2 X;

1 + 2q � g(y) � 3q for all y 2 Y:

Given an instance of 3DM, we construct two planning instances

�= hP(O;P);O;I;Gi

�

0

= hP(O

0

;P

0

);O

0

;I

0

;G

0

i

in the following way (see also Figure A.1):

(i) For each triple hm

i;1

;m

i;2

;m

i;3

i 2 M , 1 � i � jM j, we set up a stack of

three blocks b

i;1

, b

i;2

, b

i;3

in the goal description G

0

, i.e., we add the ground

atomic formulae ontable(b

i;1

), on(b

i;2

; b

i;1

), on(b

i;3

; b

i;2

), clear(b

i;3

) to G

0

+

.

(ii) For each block b

i;j

appearing in the goal state G

0

, we add a stack of

g(m

i;j

) + 1 blocks to the initial state description I

0

, where b

i;j

is the top

block of this stack.

(iii) We set up q stacks of three blocks x

j;1

; x

j;2

; x

j;3

, 1 � j � q, in the goal

state G, where x

j;1

is the bottom block and x

j;3

is the top block.

(iv) For each block x

j;k

appearing in the goal state description G, a stack of

height 1 consisting of the block x

j;k

is added to the initial state description

I.

(v) For each set S

h

of stacks with the same height h in the initial state

description I

0

, we add jS

h

j � 1 stacks of height h to the initial state I.
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Fig. A.1. Reduction used in the proof of Theorem 11

Now it is obvious that there exists a mapping � from � to �

0

that matches

jG

+

j goal atoms and jIj�3q initial-state atoms i� there exists a 3-dimensional

matching. 2
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