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Abstract. While the computational properties of qualitative temporal

reasoning have been analyzed quite thoroughly, the computational pro-

perties of qualitative spatial reasoning are not very well investigated. In

fact, almost no completeness results are known for qualitative spatial

calculi and no computational complexity analysis has been carried out

yet. In this paper, we will focus on the so-called RCC approach and use

Bennett's encoding of spatial reasoning in intuitionistic logic in order

to show that consistency checking for the topological base relations can

be done e�ciently. Further, we show that path-consistency is su�cient

for deciding global consistency. As a side-e�ect we prove a particular

fragment of propositional intuitionistic logic to be tractable.

1 Introduction

If precise, quantitative information is either not available or desirable, qualitative

representation and reasoning can be worthwhile. If, for instance, the layout of

documents that are to be analyzed should be described, a qualitative description

seems much more favorable than a rigid, quantitative description.

While the computational properties of qualitative temporal reasoning [1] have

been analyzed quite thoroughly [20, 19, 12], for qualitative spatial reasoning the

situation appears to be completely di�erent. First of all, it is not clear what the

representational primitives should be. Contrary to the one-dimensional temporal

case, for spatial reasoning there are a number of di�erent interesting aspects

along which one can abstract in order to derive qualitative descriptions (see e.g.

[5]). Secondly, for almost all proposals there are no formal results concerning

completeness or computational complexity of the proposed calculi.

In this paper, we will focus on the so-called RCC approach [15, 17]. This ap-

proach is based on modeling qualitative spatial binary relations between regions

using �rst-order predicate logic. While a description of the theory in terms of

�rst-order logic is certainly worthwhile for formalizing the approach, it does not

lead to e�cient computation by itself. In fact, even computing a composition
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table for the basic relations turns out to be very time-consuming if one relies on

the �rst-order formalization [16]. Bennett [2] used an encoding of the topologi-

cal RCC relations in intuitionistic logic in order to overcome this problem and

demonstrated that a propositional intuitionistic theorem prover could compute

a composition table much more e�ciently than a �rst-order theorem prover such

as otter.

Interestingly, Bennett's [2] encoding of qualitative spatial relations using in-

tuitionistic logic uses a quite restricted fragment of this logic. Indeed, as noted

by Bennett [2], this can lead to a possible reduction of the search space that

makes proofs in the restricted fragment much more e�cient than in general

intuitionistic logic.

As we will show below, the intuitionistic fragment needed to encode qualita-

tive spatial relations is a polynomial-time fragment, implying that the compo-

sition table could be generated quite e�ciently. Further, the fragment is in NC,

i.e., e�ciently solvable on parallel machines.

2

This is even more surprising when

considering the fact that general propositional intuitionistic logic is PSPACE-

complete. Based on the tractability proof for this fragment of intuitionistic logic,

it is also possible to show that a path-consistent [10, 11] network of topological

base relations is globally consistent.

The rest of the paper is structured as follows. In Section 2, the topological

relations de�ned in the RCC theory and Bennett's encoding in a fragment of

intuitionistic logic are sketched. In Section 3, we show that reasoning in this

fragment is tractable. Based on this proof, in Section 4 we show that path consi-

stency of a network of topological base relations is su�cient for deciding global

consistency. Finally, in Section 5 we discuss the results and give a list of intere-

sting open problems.

2 Spatial Reasoning and Intuitionistic Inference

Figure 1 gives 2-dimensional examples for the 8 pairwise disjoint and exhausting

relations that form the basis of the set of binary topological relations de�nable in

the RCC framework [17].

3

These relations will be denoted by the capital letters

R; T; S.

4

In order to describe the con�guration of a set of regions (denoted

by x; y; z), one can use atomic formulae of the form R(x; y), which we will call

spatial formulae (denoted by r; s; t). Finite sets of such spatial formulae are

denoted by �.

One computational problem in this context is to check whether such a set �

of spatial formulae is consistent, i.e., whether it is possible to assign regions to

2

See, for example, [8]. NC is the class of problems that can be solved in poly-

logarithmic time on machines with polynomially many processors.

3

These relations are identical to those considered by Egenhofer [4].

4

In the general case, one may also want to consider unions of the base relations in

order to express inde�nite information. In the present paper, however, we will only

consider base relations (but see Section 5).
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Fig. 1. Basic topological relations in the RCC theory

all variables such that the speci�ed relations hold. For instance, assuming

� = fTPP(y; x);TPP(z; y)g; (1)

it is obvious that there exists an instantiation of all variables to regions such

that the stated relations hold. This is even true if the formula NTPP(z; x) is

added to �. However, if we add PO(x; z) to �, the set becomes inconsistent.

Although the problem of deciding consistency for a set of spatial formulae is

important if one wants to reason with topological relations, no complexity results

are known. The proposed procedures for this problem are either not known to

be complete (those based on constraint propagation [4, 6]) or they appear to

ine�cient (those based on logical formalizations [17, 2]).

In order to analyze the complexity of the consistency problem for topological

base relations, we will use Bennett's [2] representation of topological relations in

propositional intuitionistic logic. Using the interpretation of propositional atoms

as open sets in a topological space [18], Bennett [2] describes an approach that

uses reasoning in propositional intuitionistic logic in order to decide the consist-

ency of a set of spatial formulae. In this approach, each of the topological base

relations is associated with a set of model constraints M and a set of entailment

constraints E , which are formulated using intuitionistic logic.

Table (1) speci�es the constraints for all base relations. We use the symbols

x; y; z to denote propositional atoms (corresponding to regions), and ^, _, �,

and) are used to denote the intuitionistic connectors conjunction, disjunction,

negation, and arrow, respectively.

The model and entailment constraints associated with a spatial formula r will

be denoted by M(r) or E(r). The constraints associated with a set of spatial

formulae� is simply the union over all constraints associated with each element,

and they are written asM(�) or E(�), respectively. Propositional intuitionistic

formulae are denoted by ' and  , and for intuitionistic entailment the symbol

`

I

is used.
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Relation Model Constraints Entailment Constraints

DC(x;y) �x _ �y �x;�y

EC(x;y) �(x ^ y) �x;�y;�x _�y

PO(x; y) �x;�y;�(x ^ y); x) y; y ) x

TPP(x; y) x) y �x;�y;�x _ y; y ) x

TPP

�1

(x; y) y) x �x;�y;�y _ x; x) y

NTPP(x; y) �x _ y �x;�y; y ) x

NTPP

�1

(x; y) �y _ x �x;�y; x) y

EQ(x;y) x) y; y ) x �x;�y

Table 1. Model and entailment constraints for the 8 base relations

The main intuition behind the model and entailment constraints is that the

model constraint must hold if the respective spatial formula is asserted, while

the entailment constraints should not be forced to be true, i.e., they should not

be entailed by the model constraints. Otherwise, the set of spatial formulae is

inconsistent. This intuition is formalized in Bennett's [2] theorem that reduces

inconsistency of spatial formulae to entailment in intuitionistic logic, as spelled

out below.

Theorem1 (Bennett 1994). A �nite set � of spatial formulae is consistent

i� for all ' 2 E(�): M(�) 6`

I

'.

As noted by Bennett [2], the move to propositional intuitionistic logic did

not only result in decidability, but because of the restricted form of the formu-

lae, reasoning appeared to be signi�cantly easier than reasoning with general

intuitionistic logic, which is known to be PSPACE-complete [7]. Below we will

see that reasoning in the fragment of propositional intuitionistic logic used in

Bennett's Theorem is indeed a polynomial-time problem, which implies that the

consistency of a set of spatial formulae can be checked e�ciently.

3 Reasoning E�ciently in Binary-Clause Intuitionistic

Logic

The formulae appearing in the entailment problems in Bennett's Theorem are all

of a particular simple form. They are all composed out of one or two propositional

atoms, perhaps one binary connector and perhaps negation, but without nesting

of negation or arrow in the scope of another negation or arrow. This description

covers the formulae

�x;�x _�y;�(x ^ y);�x _ y; x) y; (2)

which appear all in Table 1, as well as

x; x_ y; x ^ y;�x ^ y;�x ^ �y: (3)

4



We will call the fragment of propositional intuitionistic logic that contains only

formulae of the form given in (2) and (3) the binary-clause fragment, sym-

bolically I

b

.

It appears to be plausible that it is possible to �nd a specialized intuitionistic

proof calculus that permits e�cient deduction in I

b

. In fact, Bennett [2] mentions

that \the nondeterministic and extremely computationally expensive rule for

eliminating implications from the left side of a sequent can be replaced by other

rules," leading to a reduction in the search space. However, this modi�cation of

the calculus did obviously not lead to a completely deterministic proof system.

In order to show that intuitionistic entailment for I

b

is tractable, we will use

a (classical) possible-worlds semantics for intuitionistic logic [9] and rely on a

tableaux-based proof method (see [13]) to generate counter-examples invalida-

ting an intuitionistic formula.

A possible-world model for propositional intuitionistic logic is a triple

P = hW;�; �i; (4)

where (W;�) is a partially ordered set of worlds and � is a function fromW to

sets of propositional atoms such that

for all w;w

0

withw � w

0

: �(w) � �(w

0

): (5)

We now de�ne the forcing relation, symbolically j̀ , between worlds and

formulae by induction over the structure of the formulae for full propositional

intuitionistic logic:

w j̀ x i� x 2 �(w) (6)

w j̀ (')  ) i� for all v � w: v j̀ ' implies v j̀  (7)

w j̀ �' i� for all v � w: v j6` ' (8)

w j̀ (' ^  ) i� w j̀ ' and w j̀  (9)

w j̀ (' _  ) i� w j̀ ' or w j̀  (10)

We say that a formula is forced in a model P if it is forced by every world

in P. We say that a formula is intuitionistically valid if it is forced in all

models. As shown by Kripke [9], this notion coincides with the property that the

formula has an intuitionistic proof.

The formula  is called an intuitionistic consequence of '

1

; : : : ; '

n

, sym-

bolically '

1

; : : : ; '

n

j=

I

 , if for any model and any world w, w j̀ '

1

; : : : ; '

n

implies w j̀  . Obviously, this notion, which coincides with intuitionistic entail-

ment, can be reduced to intuitionistic validity:

'

1

; : : : ; '

n

j=

I

 i� '

1

^ : : :^ '

n

)  is valid: (11)

One way to show that a formula is valid (or invalid) is to systematically

construct models that contain a world not forcing the formula. If one of these

attempts succeeds, we know that the formula is not valid, otherwise it must be

valid. This is precisely what tableaux-based proof methods do. However, instead
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of presenting now tableaux rules for intuitionistic logic [13], in our tractability

proof we will rely on the reader's intuition that we have exhausted all possible

ways of constructing counter-examples.

The key observations for the tractability proof of entailment in I

b

is that

entailment can be reduced to 2SAT, i.e., to the problem of deciding whether

a classical propositional formula in CNF containing only binary clauses

5

{ also

calledKrom formula { is satis�able. Such a formula can be constructed because:

1. A counter-example to the validity of a formula corresponding to an entail-

ment problem in I

b

needs not more than four worlds.

2. The forcing relation for propositional atoms can be expressed by a classical

propositional Krom formula.

3. Finally, the constraint (5) in the de�nition of an intuitionistic possible-world

model is expressible as a Krom formula as well.

Lemma2. Intuitionistic entailment in I

b

can be log-space reduced to 2SAT.

Proof. First of all, it should be obvious that we can ignore the third, fourth,

and �fth formula form in (3). On the left hand side, they are equivalent to sets

of unit clauses. On the right hand side, the entailment of a conjunction can be

reduced to the entailment of each conjunct.

As a �rst step, we construct the generic structure of a model that provides

a counter-example to the validity of the formula

'

1

^ : : :^ '

n

)  ; (12)

where '

i

;  2 I

b

. This formula is not forced in a world u i� there exists a world

v with u � v such that the left hand side of the arrow is forced and the right

hand side is not forced, i.e.,

9v � u: v j6`  ; v j̀ '

1

^ : : :^ '

n

: (13)

For the purpose of constructing a counter-example model, we can here and in

the following safely assume that existentially quanti�ed worlds are di�erent from

all other already introduced worlds.

6

As a second step, we consider all the forms  can have and continue con-

structing the counter-example model:

1.  = �x. This formula is not forced by v i�

9w � v: w j̀ x: (14)

2.  = �x _ �y. This formula is not forced by v i�

9w

0

; w

00

� v: w

0

j̀ x; w

00

j̀ y: (15)

For the purpose of constructing a counter-example, we can assume without

loss of generality that w

0

and w

00

are incomparable with respect to �.

5

We make no assumption about whether the two literals are di�erent!

6

In fact, here it would also be safe to assume that u = v.
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3.  = �(x ^ y). This formula is not forced by v i�

9w � v: w j̀ x; w j̀ y: (16)

4.  = �x _ y. This formula is not forced by v i�

9w � v: v j6` y; w j̀ x: (17)

5.  = x) y. This formula is not forced i�

9w � v: w j̀ x; w j6` y: (18)

6.  = x. This formula is not forced by v i�

v j6` x: (19)

7.  = x _ y. This formula is not forced by v i�

v j6` x; v j6` y: (20)

This means that in all cases we have at most four possible worlds and the forcing

of propositional atoms is deterministic. For the purpose of specifying a reduction,

we will assume that we always have w

0

and w

00

as di�erent worlds.

As the third step, we add the forcing conditions implied by '

1

^ : : :^'

n

. All

of the conjuncts of this formula must be forced by v:

1. '

i

= �x. This formula is forced by v i� x is not forced in all worlds larger

or equal to v:

8w � v: w j6` x: (21)

2. '

i

= �x _ �y. This formula is forced by v i� �x or �y is forced by v, i.e.,

if x is not forced by all worlds larger or equal to v or if y is not forced by

these worlds:

8w � v: w j6` x or 8w � v: w j6` y: (22)

Note that in our counter-example model this can be expressed by saying

that either x or y is not forced by all maximal worlds (of which we have

maximally two).

3. '

i

= �(x^ y). This formula is forced by v i� in all worlds w larger or equal

to v x or y is not forced:

8w � v: (w j6` x or w j6` y): (23)

4. '

i

= �x_ y. This formula is forced by v i� y is forced by v or for all worlds

larger or equal x is not forced:

v j̀ y or 8w � v: w j6` x: (24)

Note that in our counter-example model this could be equivalently expressed

by requiring that y is forced by v or x is not forced in all maximal worlds.

7



5. '

i

= x) y. This formula is forced i� for all worlds larger and equal to v, y

is forced if x is forced

8w � v: (w j̀ x implies w j̀ y): (25)

6. '

i

= x. This formula is forced by v i� x forced by v (and therefore in all

larger worlds):

v j̀ x: (26)

7. '

i

= x _ y. This formula is forced by v i� x or y are forced by v:

v j̀ x or v j̀ y: (27)

We now consider whether it is possible to construct a model that has the

structure and forcing relations as speci�ed for  satisfying at the same time the

forcing requirements for all the '

i

's. These requirements can be obviously met

if all forcing and non-forcing requirements for all propositional atoms can be

satis�ed.

In order to solve this problem, we translate the forcing requirements to clas-

sical propositional logic. If x must be forced by w, we use the formula consisting

of the positive literal x

w

to describe this. Similarly, the requirement that w j6` x

is translated to :x

w

.

First of all, we notice that all forcing requirements generated by  result in

unit clauses. Secondly, we note that requirement (5) on intuitionistic possible-

world models can be expressed by binary clauses. For each atom x we add

:x

v

_ x

w

for all pairs of worlds worlds with v � w. Thirdly, we note that the

conditions for the '

i

's can be expressed as binary clauses in the worlds, and in

case of '

i

= �x_�y or '

i

= �x_y as binary clauses between atoms in di�erent

worlds. For '

i

= �x_�y and the case that we have two maximal worlds w

0

and

w

00

, the encoding is (:x

w

0

^ :x

w

00

) _ (:y

w

0

^ :y

w

00

) which can be transformed

to Krom. For '

i

= �x _ y, the condition would be y

v

_ (:x

w

0

^ :x

w

00

), which

can be transformed to Krom as well.

Summarizing, the forcing conditions on atoms in a potential counter-example

model can be expressed as a Krom formula. In other words, the question whether

a counter-example can be constructed reduces to the question of whether the

classical propositional Krom formula is satis�able.

Since the reduction produces a classical Krom formula that is polynomially

bounded in size by the number of propositional atoms in the intuitionistic for-

mula, and hence by the size of the intuitionistic formula, and since the reduction

is \local" in the sense that one binary source clause produces a goal formula of

constant size, the entire reduction can be carried out in logarithmic space.

Because we can reduce entailment in I

b

to 2SAT in logarithmic space, i.e., in

polynomial time as well, and 2SAT can be decided in polynomial time, it follows

that deciding entailment in I

b

is a polynomial-time problem. In fact, because the

reduction can be carried out in log-space and 2SAT is in NC, a stronger result

follows.

8



Theorem3. Deciding entailment for the binary-clause fragment of intuitioni-

stic logic is in NC.

Since the reduction in Bennett's Theorem can be carried out in log-space,

the positive complexity result for I

b

is inherited by the spatial reasoning task

we have considered.

Theorem4. Deciding consistency of a set of spatial formulae is in NC.

This result can be easily generalized. The only prerequisite for the theorem to

hold is that the relations are representable by model and entailment constraints

using I

b

.

4 Path-Consistency and Global Consistency

Most of the work concerning reasoning with qualitative spatial information seems

to focus on how to compute composition tables [4, 6, 16, 2]. The implicit assump-

tion seems to be that once we have such a table, constraint propagation can do

the rest. While it is true that constraint propagation in the form of the path-

consistency algorithm [10] leads to sound conclusions, it is not clear whether

the method is complete for topological relations, even if we consider only cons-

traints that are base relations { as we do in this paper.

7

Incompleteness of the

path-consistency algorithm would not matter much if the reasoning problem was

NP-hard, because in this case the path-consistency algorithm would provide us

with a polynomial-time approximation. As we have seen, however, determining

consistency for sets of base relations is computationally tractable.

In other words, the path-consistency algorithm should better be complete in

our case. Otherwise it would not be a method one should consider for implemen-

ting spatial reasoning systems.

As it turns out, however, the path-consistency method is indeed complete.

The key observation for proving completeness is that any inconsistency of a

set of (classical) binary clauses corresponds to a cycle passing x and :x in the

graph formed by the implications corresponding to the clauses. Further, this

cycle corresponds to a path through the constraint network. By renaming nodes

in the cycle, one can produce a cycle which by assumption should be inconsistent,

but the corresponding path in the constraint network must be consistent because

of path-consistency.

Theorem5. The path-consistency algorithm is refutation complete for cons-

traint networks containing only base relations.

7

While one might conjecture that a path-consistent network that contains only base

relations (from some relation algebra) is globally consistent, this is unfortunately

not true. Robin Hirsh gave me a counter-example (which he attributed to Roger

Maddux) invalidating this conjecture.
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Proof Sketch. A constraint network containing only base relations corresponds

to a set � of spatial formulae constraining the relations between all regions to

base relations. The path-consistency algorithm ensures that for all paths starting

at x and returning to x an instantiation of the variables can be found such

that all the constraints (relations) between two regions are satis�ed, where for

multiple occurrences of the same variable y on the path di�erent instantiations

are allowed [10, 11]. If this is not possible, the path-consistency algorithm signals

an inconsistency.

We will assume that the path-consistency algorithm has not signalled an

inconsistency on �, although � is inconsistent. The latter implies that one of

the entailments in Bennett's Theorem hold, i.e., the corresponding Krom formula

constructed in Lemma 2 is unsatis�able.

A Krom formula is unsatis�able i� a particular graph corresponding to the

formula has a cycle that contains the propositional atom x and its negation [14,

Theorem 9.1]. This cycle corresponds to path through the constraint network

starting and ending at a node x. Now, multiple occurrences of literals corre-

sponding to one node in the constraint-network can be renamed such that the

Krom-graph still contains a cycle, but the path through the constraint network

has all multiple occurring nodes renamed to di�erent \copies" of this node.

Because we assumed path-consistency, this path with di�erent copies must be

consistent, which is a contradiction. Hence, a path-consistent constraint network

that contains only base relations must be globally consistent.

As in the previous section, this result can be straightforwardly generalized

to all relations that can be represented by I

b

-constraints.

5 Discussion and Outlook

Representation of qualitative spatial knowledge and reasoning with it has become

a very lively research topic [5]. However, computational complexity issues of the

reasoning problems have been ignored. In most cases, constraint propagation

techniques have been proposed (e.g., [4, 6]), but it remained unclear what the

coverage of these techniques is.

In this paper, we made �rst steps to analyze the computational complexity

of the underlying reasoning problems and to validate the use of constraint pro-

pagation techniques. Using Bennett's Theorem [2] that relates reasoning about

topological relations in the RCC framework with intuitionistic logic, we showed

that reasoning with the base relations is a polynomial-time problem. As a side-

e�ect, a particular fragment of propositional intuitionistic logic was shown to

be tractable. Based on this proof, we showed that the path-consistency algo-

rithm is in fact refutation-complete for constraint networks that contain only

base relations.

While these results answer some questions concerning the computational pro-

perties of qualitative spatial reasoning, they also raise a number of other questi-

ons:
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{ How far can we generalize Theorem 4 and Theorem 5 to other than the base

relations? We already pointed out some obvious generalizations, but these

have to be made more concrete and there may be other possible ways to go.

{ Is it possible to strengthen Theorem 5 in the direction such that path-

consistency implies minimality of the constraint network?While for networks

of base relations, this is trivially true, it becomes an issue if disjunctive re-

lations are permitted.

{ Is reasoning with arbitrary disjunctive topological relations NP-hard?

{ What are the computational properties of calculi extending the topological

relation system [17, 6]? Bennett's [3] encoding of most of the RCC relations

in modal logic may be a good starting point for applying the techniques used

in our paper in order to get an answer for the RCC relations.

Acknowledgements

I would like to thank Simone Pribbenow, who motivated me to look into

computational complexity issues of qualitative spatial reasoning, Brandon Ben-

nett for discussions concerning his work on representing spatial relations using

intuitionistic and modal logics, Robin Hirsh for providing me with an exam-

ple which shows that path-consistency of a network of base relations does not

necessarily imply global consistency, and Brandon Bennett, Harald Rue�, and

the anonymous reviewers for comments on earlier versions of this paper.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of

the ACM, 26(11):832{843, Nov. 1983.

2. B. Bennett. Spatial reasoning with propositional logic. In J. Doyle, E. Sandewall,

and P. Torasso, editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the 4th International Conference, pages 51{62, Bonn, Germany,

May 1994. Morgan Kaufmann.

3. B. Bennett. Modal logics for qualitative spatial reasoning. Bulletin of the IGPL,

1995. To appear.

4. M. J. Egenhofer. Reasoning about binary topological relations. In O. G�unther

and H.-J. Schek, editors, Proceedings of the Second Symposium on Large Spatial

Databases, SSD'91, volume 525 of Lecture Notes in Computer Science, pages 143{

160. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

5. C. Habel, editor. KI 4/93 (Themenheft: R�aumliche Repr�asentation und r�aumliches

Schlie�en). 1993.

6. D. Hern�andez. Qualitative Representation of Spatial Knowledge, volume 804 of

Lecture Notes in Arti�cial Intelligence. Springer-Verlag, Berlin, Heidelberg, New

York, 1994.

7. J. Hudelmaier. An O(n log n)-space decision procedure for intuitionistic proposi-

tional logic. Journal for Logic and Computation, 3(1):63{75, 1993.

8. D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, Vol. A, pages 67{161. MIT Press, 1990.

9. S. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley and

M. Dummett, editors, Formal Systems and Recursive Functions, pages 92{130.

North-Holland, Amsterdam, Holland, 1965.

11



10. A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,

8:99{118, 1977.

11. U. Montanari. Networks of constraints: fundamental properties and applications

to picture processing. Information Science, 7:95{132, 1974.

12. B. Nebel and H.-J. B�urckert. Reasoning about temporal relations: A maximal

tractable subclass of Allen's interval algebra. In Proceedings of the 12th National

Conference of the American Association for Arti�cial Intelligence, pages 356{361,

Seattle, WA, July 1994. MIT Press. Extended version to appear in JACM.

13. A. Nerode. Some lectures on intuitionistic logic. In S. Homer, A. Nerode, R. A.

Platek, G. E. Sacks, and A. Scedrov, editors, Logic and Computer Science, vo-

lume 1429 of Lecture Notes in Mathematics, pages 12{59. Springer-Verlag, Berlin,

Heidelberg, New York, 1990.

14. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA,

1994.

15. D. A. Randell and A. G. Cohn. Modelling topological and metrical properties

of physical processes. In R. Brachman, H. J. Levesque, and R. Reiter, editors,

Principles of Knowledge Representation and Reasoning: Proceedings of the 1st In-

ternational Conference, pages 55{66, Toronto, ON, May 1989. Morgan Kaufmann.

16. D. A. Randell, A. G. Cohn, and Z. Cui. Computing transitivity tables: A challenge

for automated theorem provers. In Proceedings of the 11th CADE. Springer-Verlag,

1992.

17. D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and

connection. In B. Nebel, W. Swartout, and C. Rich, editors, Principles of Know-

ledge Representation and Reasoning: Proceedings of the 3rd International Confe-

rence, pages 165{176, Cambridge, MA, Oct. 1992. Morgan Kaufmann.

18. A. Tarski. What is elementary geometry? In L. Brouwer, E. Beth, and A. Heyting,

editors, The Axiomatic Method, pages 16{29. North-Holland, Amsterdam, Holland,

1959.

19. P. van Beek and R. Cohen. Exact and approximate reasoning about temporal

relations. Computational Intelligence, 6:132{144, 1990.

20. M. B. Vilain and H. A. Kautz. Constraint propagation algorithms for temporal

reasoning. In Proceedings of the 5th National Conference of the American Asso-

ciation for Arti�cial Intelligence, pages 377{382, Philadelphia, PA, Aug. 1986.

12


