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Abstract. Cognitive abilities can be studied by observing and inter-
preting natural systems or by developing artificial systems that interact
with their environments in intelligent ways. Cognitive systems research
connects both approaches. Typically, human requirements are in the fo-
cus of interest and systems are developed to interact with humans in as
natural ways as possible. To achieve this goal, a deep understanding of
human cognition is required. The present paper focuses on spatial cog-
nition, i.e. the ability of perceiving and conceiving spatial environments
and solving spatial tasks intelligently. It discusses artificial intelligence
approaches to spatial cognition for supporting human activities.

1 Cognitive Systems Research

Many everyday situations we encounter are easy for most people to cope with.
We can engage in communication, fill the refrigerator with our shopping items,
or plan a trip to somewhere else. All this may happen effortlessly and we do not
realize that these tasks involve complex cognitive activities. If, however, one tries
to understand the principles behind these capabilities and tries to replicate them
in computers or robots, it quickly becomes obvious that these cognitive activities
are rather complex, difficult to understand, and even harder to replicate.

The interdisciplinary research area cognitive science is concerned with under-
standing the principles of cognition using psychological experiments. In addition,
cognitive science researchers provide computational models that account for the
experimental evidence and allow to make predictions on cognitive behavior. In
this context, timing of responses or error rates often provide helpful clues to
understanding cognitive processes. In contrast to this empirical methodology,
in artificial intelligence (AI) researchers typically do not try to understand the
details of human cognition, but instead devise computational methods to imple-
ment certain cognitive functions on a computer, such as language understanding,
route planning, or mobile robot manipulation on the basis of theoretical consid-
erations. Although AI and cognitive science pursue different research goals, there
is a large overlap in research interests and methods between the two fields, and
results from one field are used in the other.



2 Spatial Cognition

One particular field of interest, both for AI and cognitive science, is the area of
cognition that is concerned with space, spatial cognition. There is a great body of
evidence on how humans (and animals) reason about space, how they navigate
through familiar and unknown environments without getting lost, how they act
in spatial environments, how they interact in space, and how they communicate
spatial information. One of the major challenges for current research is to unveil
the mechanisms behind these abilities and to utilize the knowledge to construct
systems that assist humans in an effective manner. The starting point for much
of the research in this area is the hypothesis that cognitive agents – i.e. humans,
animals, robots, or computer programs – apprehend their spatial environments
through (1) mental or computational operations, specifically association and
reasoning; (2) perception and action in space; or (3) communication in or about
space; and other forms of interaction.

In all cases, spatial structures are interpreted and computationally trans-
formed into new structures; the new structures reflect insights about spatial
situations. They form the basis for further reasoning processes, for actions in
the spatial environment or in external representations (e.g., maps), and for the
interaction with other agents.

Spatial structures are omnipresent in cognitive agents and around them.
From a developmental point of view, the use of spatial structures is a more basic
ability than abstract reasoning [26]. Therefore, the study of spatial representa-
tions and spatial computation also is very important as a basis for understanding
the more general cognitive abilities of natural and artificial agents.

Spatial tasks involve a multitude of aspects, such as topological, ordinal,
and metric aspects; these are manifest in different spatial reference systems and
in structures formed by orientation, neighborhood, and proximity evaluation
[35]. Some tasks require highly specialized competences. Frequently, however,
specialized processes must be integrated to obtain powerful spatial cognition
systems.

Many research endeavors in the area of spatial cognition investigate cogni-
tive agents in spatial environments. Several projects address the question how
cognitive agents can assist one another in solving spatial tasks such as reasoning
about space, map comprehension, navigation, and understanding and evaluat-
ing actions in space. Other projects study how to communicate about space
using language and maps to enable this assistance. The research is concerned
with mental processes and structures underlying behavior in large-scale space,
environmental space, vista space, and tabletop space environments [22]. Solv-
ing spatial tasks in these environments requires adequate representation and
processing as well as body locomotion or the movement of physical or mental
objects. In addition, since most of the mentioned spatial tasks involve the change
of spatial configuration, there is also a temporal dimension to spatial cognition,
and there is the natural question of how spatial and temporal cognition interact.



3 Dimensions of Spatial Representations

When we speak about space, we refer to notions of location, orientation, shape,
size (height, width, length and their combination), connection, distance, neigh-
borhood, etc. When we speak about time, we refer to notions of duration, prece-
dence, concurrency, simultaneity, consequence, etc. Some of the notions have
well-defined meanings in disciplines like physics, topology, geometry, and theo-
retical computer science; but here we are concerned with the question how hu-
mans think and talk about them, how they represent such notions to get around
in their spatio-temporal environment, how they reason successfully about the
environment, and how they solve problems based upon this reasoning. In AI,
these questions were first addressed in the framework of naive physics research
[14].

There is a multitude of ways in which space and time can be conceptualized,
each of which rests on implicit assumptions or explicit knowledge about the
physical structure of the world. We will start with a common sense picture,
which could be something like: space is “a collection of places which stand in
unchanging relative position to one another and which may or may not have
objects located at them”; time is “an ever growing arrow along which changes
take place”. Implicit in these pictures are the assumptions that the time arrow
grows even when no other changes are taking place, that space is there even
when there are no objects to fill it, and that spatial relations and changes can be
observed and described. As these assumptions cannot be redeemed in practice,
it is more reasonable to assume that objects and events constitute space or time,
respectively.

Another distinction concerns the question whether space or time should be
modeled by infinite sets of (extensionless) points or by finite intervals (or re-
gions). If we talk about Staufen being located South-West of Freiburg, it is
likely that we think of two geometric points (without spatial extension) on a
map of Germany. If, in a different situation, we say that you have to follow a
certain road through Freiburg to reach a particular destination, Freiburg will
be considered to have a spatial extension. Also, it is not clear from the outset
whether a discrete, a dense, or a continuous representation of time and space
may be more adequate for human cognition or for solving a given task [13]: if we
want to reason about arbitrarily small changes, a dense representation seems to
be a good choice; if we want to express that two objects touch each other and we
do not want anything to get in between them, a discrete representation seems
preferable; if on one level of consideration a touching relation and on another
level arbitrarily small changes seem appropriate, yet another structure may be
required. Nevertheless, a continuous structure (e.g. R2) is often assumed which
provides a better correspondence with models from physics.

4 Qualitative vs. Quantitative Descriptions

Space and time can be described in terms of external reference values or by ref-
erence to domain-internal entities. For external reference, usually standardized



quantities with regular spacing (scales) are used; this is done particularly when
precise and objective descriptions are desired; the described situations can be
reconstructed accurately (within the tolerance of the granularity of the scale)
in a different setting. In contrast, domain-internal entities usually do not pro-
vide regularly spaced reference values but reference values which happen to be
prominent in the given domain. The internal reference values define regions which
correspond to sets of quantitatively neighboring external values. The system of
internally defined regions is domain-specific.

Which of the two ways of representing knowledge about a physical environ-
ment is more useful for a cognitive system? In our modern world of ever-growing
standardization we have learned that common reference systems and precise
quantities are extremely useful for a global exchange of information. From an
external perspective, the signals generated in receptor cells of (natural and arti-
ficial) perception systems also provide quantitative information to the successive
processing stages. But already in the most primitive decision stages, for example
in simple threshold units, rich quantitative information is reduced to compar-
atively coarse qualitative information, when we consider the threshold as an
internal reference value.

We can learn from these considerations, that information reduction and ab-
straction may be worthwhile at any level of processing. As long as we stay within
a given context, the transition from quantitative to qualitative descriptions does
not imply a loss of precision; it merely means focusing on situation-relevant
distinctions. By using relevant entities from within a given environment for ref-
erence, we obtain a customized system that is able to capture the distinctions
relevant in the given domain. Customization as information processing strategy
was to be considered expensive when information processing power was central-
ized; but with decentralized computing, as we find in biological and in advanced
technical systems, locally customized information processing may simplify com-
putation and decision-making considerably.

Significant decisions frequently are not only of local relevance; thus it must be
possible to communicate them to other environments. How can we do this if we
have opted for qualitative local descriptions? To answer this question, we must
first decide which are the relevant aspects that have to be communicated. Do we
have to communicate precise quantitative values as, for example, in international
trade or do qualitative values like trends and comparisons suffice?

In cognitive systems, a qualitative description of a local decision frequently
will suffice to “get the picture” of the situation; the specific quantities taken into
account may have no particular meaning in another local context. Qualitative
descriptions can convey comparisons from one context to another, provided that
the general structures of the two contexts agree. If the descriptions refer to the
spatio-temporal structures of two different environments, this will be the case.

Now consider qualitative spatio-temporal descriptions in a given environ-
ment. As they compare one entity to another entity with respect to a certain
feature dimension, they form binary (or possibly higher-order) relations like John
is taller than the arch or Ed arrived after dinner was ready. In concrete situa-



tions in which descriptions serve to solve certain tasks, it only makes sense to
compare given entities to specific other entities. For example, comparing the size
of a person to the height of an arch is meaningful, as persons do want to pass
through arches and comparing the arrival time of a person to the completion
time of a meal may be meaningful, as the meal may have been prepared for con-
sumption by that person; on the other hand, it may not make sense to compare
the height of a person to the size of a shoe, or the arrival time of a person at home
with the manufacturing date of some tooth paste. For this reason, we frequently
abbreviate binary spatial or temporal relations by unary relations (leaving the
reference of the comparison implicit). Thus, to a person understanding the situ-
ation context, the absolute descriptions John is tall and Ed arrived late in effect
may provide the same information as the previous statements in terms of explicit
comparisons.

5 Formal Approaches to Spatial Representation and
Reasoning

In particular the idea of representing time and space in qualitative ways has been
the starting point of many research endeavors in artificial intelligence. Repre-
senting spatial information and reasoning about this information is an impor-
tant subproblem in many applications, such as geographical information systems
(GIS), natural language understanding, robot navigation, and document inter-
pretation. Often this information is available qualitatively, for instance when a
GIS query or integrity condition has to be specified [33]. Similarly, in document
interpretation, the precise size and location of layout objects is not of interest,
but the relative position of these objects matters [34].

A number of approaches to representing qualitative spatial information and
reasoning about have been explored. A very early attempt at qualitative spatial
representation and reasoning is Kuipers’ TOUR model [19], which addresses
the navigation problem using qualitative descriptions. Other approaches aim,
for instance, at capturing spatial notions using first-order logic [5, 28], or even
address representation and reasoning over spatio-temporal configurations [24].

All these approaches rely on quite expressive languages to talk about space.
In contrast, there are approaches based on constraint satisfaction, which have a
rather limited expressiveness and usually reasonably good computational proper-
ties [32]. The characteristic of these methods is that one has a system of (usually
binary) relations, which is used to relate the objects of interest. For example,
one can specify the relative position of layout objects using the relations left and
right as well as above and below. Using this vocabulary, we can, for instance, state
that an object A is left & above of an object B, which in turn is right & above
of an object C. Having given these descriptions, it is obvious that the additional
statement A below C is incompatible with what has been stated above.

Meanwhile there exist a large number of reasoning systems of this type. The
first calculus in this family was Allen’s interval calculus [1], which has originally
been used for reasoning about qualitative temporal information. However, this



one-dimensional calculus can also be interpreted spatially [7, 17]. Furthermore,
it can be generalized to two and more dimensions by projecting the objects
of interest onto the axis of the coordinate system and describe the relationship
between objects by the relationships between the projections [2, 12]. For example,
the qualitative description of the relative position of layout objects sketched
above can be done using the 2D version of Allen’s interval calculus.

An interesting but less expressive approach to representing orientational re-
lationships between extended spatial entities was introduced by Goyal and Egen-
hofer [11]. Their calculus consists of a 3 × 3 “direction-relation matrix” which
represents the 9 sectors formed by the minimal bounding axes of an extended
spatial entity. Later, Liu et al. [21] developed reasoning algorithms for this cal-
culus and analyzed its computational properties.

Other qualitative spatial reasoning systems are, for example, a calculus for
reasoning about orientations [8], a calculus for reasoning about cardinal direc-
tions [6, 20], the dipole calculus [23], and a calculus for describing 2D orientations
using cyclic orderings [15].

One particular promiment reasoning system is a system of topological re-
lations called RCC-8 [29] (which is very similar to Egenhofer’s 9-intersection
system [4]). Given two spatial regions X and Y , there are 8 possible relations
between them (see Fig. 1).
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Fig. 1. Two-dimensional examples for the eight base relations of RCC8.

All the mentioned approaches share the property that reasoning in these cal-
culi can be done by constraint propagation over systems of binary (or sometimes
ternary) relations with infinite domains.

In order to describe the reasoning technique that is used in most of the
qualitative spatial calculi, we will use the RCC8 system. Starting with the rela-
tions of the RCC8 system, one can express that, for example, region X overlaps
region Y . If we want to describe indefinite information such as the fact that
EC(X,Y ) or PO(X,Y ), it is also necessary to consider the set-theoretic unions



(corresponding to the logical disjunctions) of the relations, e.g., EC ∪ PO. If
we want to express such indefinite information, we will use the following nota-
tion EC|PO(X,Y ). Considering all possible unions, we get 28 different relations,
among them the universal relation > which holds for all pairs of regions and the
impossible relation ⊥ that holds between no pairs of regions.

Using this set of relations, we could for example describe a particular spatial
configuration of three regions X, Y , and Z as follows:

Θ = {TPP(X,Y ),DC|NTTP(Y,Z)}. (1)

Now one can ask what additional relationships follow from Θ and whether it
is possible to find regions that satisfy all the relationships simultaneously. For
the given description Θ, one sees, for example, that we cannot add the formula
NTPP(Z,X) and have still all relationships satisfied by some regions. On the
other hand, we know that Z is either DC or NTPP−1 to X. In other words, we
could add the statement DC|NTTP−1(Z,X) to Θ without changing anything.
And this is, what constraint propagation is all about. We add derived statements
about triples of objects as long as these statements are new and we have not
derived the impossible relation.

The main research goal in this context is the analysis of the computational
properties of deciding consistency of such qualitative descriptions of spatial con-
figurations as well as related problems. This includes the analysis of the com-
putational complexity and decidability as well as the design of efficient approx-
imation and complete algorithms. For example, Renz and Nebel [30], identified
all fragments of the RCC-8 calculus that permit tractable consistency problems
and contain all eight base relations on which they based and devised an efficient
algorithm for deciding consistency on the full calculus [31].

6 Interaction between Empirical and Synthetic
Approaches to Cognition

Cognitive systems tend to be complex. As a consequence, only partial models
can be constructed from empirical data that reliably reflect the structures and
functions of the natural role models. On the other hand, running computational
models must be complete on a given level of description to be executable. Thus,
functional AI models must contain structures that are not based on empirical
evidence but on the constructor’s intuitions. A great advantage of synthetic
systems is that all constructive elements and structures are known, at least in
principle.

If we view natural and artificial agents as different implementations of a
given cognitive functionality, we can actively explore differences in performance
and adapt our implementations according to new insights. In this way, cognitive
psychologists may extend their range of empirical studies to artificial agents and
AI programs can help bridge the knowledge gap between structure and function
of cognitive systems.



The neuroanatomist and cybernetician Braitenberg characterized the use of
synthetic constructs for the exploration of natural systems by noting that a
given performance always can be achieved by many different mechanisms [3]. He
formulated the law of uphill analysis and downhill invention noting that it is
easy to create little machines that produce surprising behavior by simple means
and much more difficult to derive from the outside the internal structure from
the observation of behavior. As a psychological consequence of this he noted
that we tend to overestimate the complexity of a mechanism when we analyze
it. His experiments suggest that by building and exploring synthetic structures
on the basis of biological principles we may make the best progress towards
understanding natural structures.

As mentioned in the beginning, Cognitive Science has research goals that
differ widely from those of AI. And in fact, the complexity results mentioned in
the previous section seem hardly of relevance for Cognitive Science. In human
cognition asymptotic performance of an algorithm is not very interesting because
humans can deal only with a very limited number of objects at the same time.
Nevertheless, there are a number of questions that people in both areas find
interesting and/or where a result of one area is relevant for the other area.

For example, when considering the calculus RCC8 mentioned above, the ques-
tion arises whether the qualitative distinctions are on the right level. One could,
for instance, also consider a system with only five relations which does not dis-
tinguish between the fact that two regions touch each other or not. In other
words, the relation pairs EC and DC, TPP and NTPP, as well as TPP−1 and
NTPP−1 would be considered as indistinguishable. Knauff et al. [16] addressed
this and other questions in order to determine the conceptual adequacy of the
RCC8 calculus. As it turns out, RCC8 seems to be more cognitively adequate
than the 5-relation system. Moreover, form and size appear as less prominent
than the topological relations. Obviously, such results are important when one
considers to use such a calculus in a human-computer interface. So, psychological
experiments clearly have an impact on computer science research.

However, also the other way around, computer science results can have an
impact on psychological research. For example, when Knauff et al. [17] tested
a hypothesis concerning so-called preferred relations, they used an extensive
formal analysis of Allen’s relation system about the number of different models
satisfying a given set of statements.

Furthermore, while the direct application of computational complexity theory
to human cognition does not seem to make sense, the very idea of measuring the
difficulty of cognitive tasks by counting the necessary operations of some compu-
tational model can well be applied. For instance, Ragni et al. [27] proposed a two-
dimensional array on which a spatial focus operates, which is used to insert and
inspect object proxies at particular places of this array. Counting the necessary
operations for solving so-called three-term series tasks, it turned out that human
subjects tend to minimize the number of such operations. While this observation
seems to hold for a number of different tasks, sometimes direction-dependent ef-



fects can be observed, which results in a modified model that accounts for such
effects [18].

7 Conclusion

Informatics and artificial intelligence provide the theory and practical tools to
characterize and implement cognitive systems. These systems can be studied in
much the same way as natural cognitive systems. Artificial cognitive systems
as objects of research, however, have the great advantage that the mechanisms
underlying their cognitive functions are known in detail; thus, principles of cog-
nitive processing can be described in terms of fundamental information process-
ing mechanisms. Typically, artificial cognitive systems differ in strengths and
weaknesses from natural cognitive systems. While the strength of natural cogni-
tive systems is in the availability and integration of a large variety of knowledge
sources and experience, the strength of artificial system is in the large and reliable
working memory and its precision. This makes artificial cognitive systems excel-
lent candidates to assist human cognizers and to complement their weaknesses.
A major limitation of human cognition is the resource limitation especially with
respect to working memory capacity and availability of factual information. Such
limitations are partially compensated for by ingenious forms of abstraction, gen-
eralization, and cognitive off-loading as well as brilliant inference mechanisms;
these allow humans to recover from situations in which most artificial systems
are lost. Thus, a major challenge for cognitive systems research is to better un-
derstand natural forms of multifaceted knowledge organization and knowledge
processing under resource limitation.
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