
Some Thoughts on Forward Induction in
Multi-Agent-Path Finding Under Destination

Uncertainty

Bernhard Nebel

Albert-Ludwigs-Universität Freiburg, Institut für Informatik
nebel@uni-freiburg.de

http://www.informatik.uni-freiburg.de/~nebel

Abstract. While the notion of implicit coordination helps to design
frameworks in which agents can cooperatively act with only minimal
communication, it so far lacks exploiting observations made while exe-
cuting a plan. In this note, we have a look at what can be done in order
to overcome this shortcoming, at least in a specialized setting.

1 Introduction

In implicitly coordinated multi-agent path finding under destination uncertainty
(MAPF/DU) [5] (and more generally in epistemic planning [3,2]), we have so far
concentrated on generating plans in a way such that each agent tries to generate
situations from which the other agents can provably find a plan that guarantees
success. This means in particular that we do not make use of observations made
during the execution of a plan in order to learn something about the destinations
(or gain other information), something similar to what is called forward induction
[1] in game theory or plan recognition [8,6] in the area of automated planning.

Not making use of observations implies that agents cannot use their actions
in order to signal their intention. For these reasons, plans might be longer than
necessary or an instance might not be solvable, although by making inferences
about the intentions of the other players, the instance could be solvable. In this
paper, we will analyze, in which situations one can make use of observations and
how this can be integrated into the planning process.

In order to so, we will introduce the basic notation and terminology in the
next section. In Section 3, we will then analyze how to modify our notion of a
solution concept for MAPF/DU.

2 Background

The multi-agent path finding problem in its simplest form could be stated as
follows. The environment is modelled as an undirected, simple graph G = (V,E).
A configuration of agents A on the graph G is an injective function α : A→ V .
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For i ∈ A and v ∈ V , by α[i/v] we refer to the function that has the same values
for all j 6= i as α, but for i it has the value v: α[i/v](i) = v.

Given a movement action of agent i from v to v′ and a configuration α, a suc-
cessor configuration α′ = α[i/v′] is generated, provided α(i) = v, (α(i), α′(i)) ∈
E, and there exists no j with α(j) = v′. The MAPF problem is then to generate
for a given MAPF instance M = 〈A,G, α0, α∗〉 with a given set of agents A,
a given graph G, the initial configuration α0, and the goal configuration α∗, a
sequence of movements from α0 to α∗. We always assume that such movement
plans are cycle-free, i.e., that during the execution of such a plan no configuration
is reached twice. We call a plan successful for a MAPF instance if it transforms
α0 into α∗. Since in the following we only consider successful movement plans,
we just call them plans. If there exists such a plan for a given instance, we call
the instance solvable.

For this basic version of the MAPF problem, most interesting questions con-
cerning computational properties have been answered already in a paper by
Kornhauser et al. in 1984 [4]. It is known that solvability can be decided in
cubic time and the plan length and the time to find a plan is also bounded
cubicly. Finally, solving the bounded planning problem (corresponding to the
optimization problem) is NP-complete [7].

2.1 Generalized MAPF

Plans are usually generated in a centralized manner and the agents then follow
the plan. In our generalized setting, we assume all agents plan by themselves
and the goals of the agents are not common knowledge any longer. Instead only
the agent itself knows its own destination. Common knowledge are the possible
destinations for each agent, formalized by a destination function β : A → 2V ,
with the constraint that for all i ∈ A either the real destination is among the
possible ones, i.e., α∗(i) ∈ β(i), or β(i) = ∅, because agent i already arrived (and
is not allowed to move anymore). We require further that all combinations of
possible destinations are consistent, i.e., β(i) ∩ β(j) = ∅ for all i 6= j ∈ A.

In the original MAPF problem, the state space for the planning process is
simply the space of all configurations α of the agents in the graph. For the
MAPF problem with destination uncertainty we also have to take into account
the possible belief states of all the agents. For this reason, we have to make the
possible destination function part of the state space as well, i.e., an objective
state is now the tuple s = (α, β), which captures the common knowledge of all
agents. Since the precise destinations are not common knowledge any longer,
it is necessary to have some form of signal so that an agent can tell the other
agents that it does not want to move any more—meaning it has reached its final
destination. Only with such a success announcement the agents will in the end
know that everyone has reached its destination.

An instance of the problem is now given by the tupleMDU = 〈A,G, s0, α∗〉,
with the set of agents A, the graph G = (V,E), the initial objective state
s0 = (α0, β0), and the goal configuration α∗. Movement actions change the
configuration α, while success announcements change the destination function
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β. If an agent i makes a success announcement while being in location v, we
change the destination function to β[i/∅], signaling that the agent has reached
its destination and is not allowed to move anymore. The goal state is reached if
for all agents i, α(i) = α∗(i) (the destination has been reached) and β(i) = ∅
(success has been announced).

2.2 Branching Plans

When an agent i is starting to generate a plan, the agent knows, of course,
its true destination α∗(i). The subjective view of the world is captured by the
tuple (α, β, i, α∗(i)), which we call subjective state of agent i. Given a subjective
state (α, β, i, α∗(i)), we call (α, β) the corresponding objective state. Using its
subjective state, agent i can plan to make movements that eventually will lead
to a goal state. Most probably, it will be necessary to plan for other agents to
move out of the way or to move to their destination. So, the planning agent has
to put itself into the shoes of another agent j: i must make a perspective shift
taking j’s view. Since i does not know the true destination of j, i must take all
possibilities into account and plan for all of them. In other words, i must plan
for j using all possible subjective states of j: sjv = (α, β, j, v) for v ∈ β(j). When
planning for each possible destination of j, the planning agent i must pretend
not to know the true destination of itself because it plans with the knowledge of
agent j, which is uncertain about i’s destinations.

All in all, a plan in the context of MAPF with destination uncertainty is no
longer a linear sequence, but a branching plan. Furthermore, it is not enough
to reach the true goal state, but the plan has to be successful for all possible
destinations of all the agents (except for the starting agent i, who knows its own
destination).

Such a branching plan corresponds roughly to what has been termed policy
in the more general context of implicitly coordinated epistemic planing [2,3]. In
order to illustrate the concept of a branching plan, let us consider the example in
Figure 1. Here square agent S knows that its destination is v3 (the solid square)

v1 v2

v3v4

Fig. 1. Small example with square agent (S) and circle agent (C)

and the circle agent C knows that its destination is v4 (the solid circle). However
both are unsure about the destinations of the other agent. So S knows that v1
and v4 are possible destinations for C. C in turns knows that v2 and v3 are
possible destinations for S.
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Let us now assume that square agent S moves first to v4. Now S puts itself
into the shoes of circle agent C and reasons about what C would do, if v1 is C’s
destination, and how C would continue if v4 is C’s destination. In the former
case, C moves to v1 and announces that it has reached its destination. In the
other case, it will also move to v1, offering S the possibility to move to its
destination, whether it is v2 or v3. After that, C could move to its destination.
All in all, a branching plan could look as depicted in Figure 2. In this plan,

(S, v1, v4)

C:

(C, v2, v1) (C, v2, v1)

S:

?v1 ?v4

(C,S) (S, v4, v3)

?v2

(S, v4, v3)

?v3

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

?v1

(C,S)

S:

(S, v4, v3) (S, v4, v3)

?v2 ?v3

(S, v3, v2) (S,S)

(S,S)

(S, v3, v2)

(S,S)

C:

(C, v1, v4)

?v4

(C,S)

(C,S)

?v1

Fig. 2. Branching plan

each perspective shift to another agent is followed by branching according to
the possible destinations of the agent. In general, we do not always require such
branching because the agent might decide to move independently of its own
destinations. One of the main results is then that all successful branching plans
need to branch only on so-called stepping stone situations [5, Theorem 5]. These
are configurations in which one agent has unblocked ways to all its possible
destinations, and for those destinations, there are successful subplans after that
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agent has reached it. For example, in Figure 2, after S’s initial movement from
v1 to v4, there is neither a stepping stone situation for C not for S. However,
after C had then moved from v2 to v1, C had created a stepping stone situation
for S. S can move now uninterrupted to v2, announce success and there is a
successful plan afterwards for C. In case v3 is the real destination, S can move
there and again there is a successful plan afterwards for C. From the fact that
a plan needs only to branch on stepping stones, it follows that these branching
plans need to have only polynomial depth.

2.3 Joint Execution Model

After all agents have planned, we have a family of plans (πi)i∈A. Joint execution
of this family of plans is then performed in an asynchronous, interleaved fashion.
From all the agents i that have as their first action one of their own moves, one
agent is chosen and its movement is executed. This is very similar to what
happens in real-time board games, such as Magic Maze. The player who acts
fastest carries out the action. For all the other agents the following happens:
Either the movement was anticipated and then the movement is removed from
the plan or the agent has to replan from the new situation. The interesting
question is, whether such an asynchronous, distributed execution is guaranteed
to eventually lead to the desired goal configuration and how many steps it takes
to reach the common goal.

3 Exploiting Observations while Executing

As has been shown, under some reasonable conditions it is possible to guarantee
success, provided that there is at least one agent which is able to come up with
a plan initially [5]. However, there are also situations which look easily solvable,
but it turns out that our notion of implicit coordination does not capture this.
One such example is shown in Figure 3. The square agent wants to go v4 and
knows that the circle agent wants to go either to v2 or to v5. Similarly, the circle
agent wants to go to v2 and knows that the square agent wants to go either to
v1 or to v4.

v1 v2 v3 v4 v5

v6

Fig. 3. MAPF/DU instance that is only solvable using inferences about observations

If the square agent tries to solve the instance, it will try to create a stepping
stone situation [5, Sect. 3.2] for the other agent. The only possible way to do
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that appears to be to move to v6. Now the circle agent can move to both possi-
ble destinations. Unfortunately, after moving to v2, the circle agent cannot any
longer guarantee that the square agent can reach both of its possible destina-
tions. Specifically, the square agent is blocked from reaching v1. So, the move of
the square agent to v6 does not create a stepping stone for the circle agent. As
is easy to see, all other movements of the square agents do not create a stepping
stone either. Since the situation is completely symmetric, also the circle agent is
unable to create a stepping stone.

If we try to explain movements by assuming that the other agents act ratio-
nally, we may assume that they always try to come up with shortest possible
plans. Therefore, if the circle agents observes the square agent moving to v6, the
circle agent may rightly conclude that v1 cannot be the actual destination of the
square agent. Because if it were, then the square agent would have moved there
directly announcing success, which would have led to an overall shorter plan.
So, for the remaining part of the plan both agents can assume that v1 is not
the actual destination of the square agent. This implies that the circle agent can
safely move to either v2 or v5 and afterwards the square agent can move to the
only possible destination, namely v4, which then solves the previously unsolvable
instance.

Below we will discuss how to generalize this kind of reasoning.

3.1 Safe Abduction

Abduction is the inference to the best explanation, given an observation and
a background theory. This is apparently what we are using when drawing the
above conclusion that v1 is not the destination of the square agent. In general,
abduction is an “unsafe” inference in that the best explanation is not necessarily
the correct one. For instance, often the best explanation for the malfunctioning
of a device is based on a single-failure assumption, which might nevertheless not
be the right explanation.

In our context, incorrect explanations could easily lead to situations, where
destinations are no longer accessible, turning a solvable instance into an unsolv-
able one. In order to avoid that we will only accept explanations that are safe in
the sense that they do not exclude a destination that is still be possible. Using
the criterion of aiming for shortest plans, it may, however, still be possible to
infer meaningful information.

3.2 Observations and Explanations

So what should count as an observation that needs an explanation? As in the
example above, a meaningful observation is a sequence of movements by one
agent i starting at a node v ending at node v′ without interruptions by other
agents. In the example, this would be the movements of the square agent from
v2 over v3 to v6. In this example, one might also could consider the movement
from v2 to v3 as one observation.
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In order to explain an observation, we take all possible destinations of the
moving agent i into account and generate shortest plans for each of these desti-
nations v∗i,1, . . . , v

∗
i,k, starting with movements of agent i at node v not using the

prefix from v to v′. Call these plans πi,j . In creating these plans one has to take
into account that the other agents do not know the destinations of that agent.
Similarly, create shortest plans that include the prefix from v to v′ and call these
plans π′i,j . Note that all these sub-plans may also use safe abduction!

Assuming that |π| denotes the execution cost of plan π, we now compare
the plans for all destinations vi,j . If |πi,j | < |π′i,,j |,1 we conclude that agent i
cannot rationally try to reach destination v∗i,j moving from v to v′. In fact, all
agents observing this behavior can conclude this and agent i (and everybody
else) is aware that everybody else knows that. In other words, after agent i
moved from v to v′, it is common knowledge that agent i is trying to reach
one of the destinations vi,j such that |π′i,j | ≤ |πi,,j |. Note that we included all
destinations v∗i,j with |π′i,j | = |πi,,j |, since there is no reason do dismiss v∗i,j after
having reached v′.

One important prerequisite for this kind of inference to be correct is, however,
that agents indeed always generate a shortest plan. And this does not only con-
cern the overall plan, where we measure the length as the longest trace through
the branching plan. Instead, this should be true also for each sub-plan at each
point, where a perspective shift happens. This is something we currently do not
require from our plans when giving success guarantees. Furthermore, we explic-
itly do not require to branch at each point where a perspective shift happens.
However, it is, of course, possible to make that a requirement.

The most interesting feature of using this kind of inference is that it also
can make instances solvable that were unsolvable before. For the example in
Figure 3, we showed that no stepping stone exists, so that it cannot be solved
by an implicitly coordinated branching plan. However, using the notion of safe
abduction, C can come up with the plan of moving to v6. Now this is definitely
not a prefix of an optimal plan for solving this instance when v5 is C’s destination.
On the other hand, there exists no plan at all to solve the instance when v2 is
the destination, i.e., plan length is infinite. In other words, everybody can safely
assume that C does not have v5 as a destination. Using this assumption, the
instance can then be easily solved.

However, it turns out that sometimes the agent might not have the right
option to act in order to signal that a possible destination can be excluded. Let
us reconsider the example from above but place C initially into cell v6. Now
the problem is that the only way to signal that v5 is not C’s destination is to
do nothing. However, doing nothing cannot be observed in our asynchronous
execution model. The way out here could be to introduce an observable wait
action, which induces also execution costs. Then no successful shortest sub-plan
for a particular destination could contain this action. On the other hand, if
there does not exist a plan for a possible destination where the agent moves
first, a wait action does not matter, because plan length is infinite in any case.

1 If no plan can be found, then we assume infinitely large execution costs.
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In our modified example, where C is initially in cell v6, there exists a plan for
C’s destination v5 with C moving first, hence a wait action could not be part
of a shortest plan. For C’s destination v2 on the other hand, there does not
exist any plan with C moving first. So, a wait action is appropriate here. So, a
wait action can signal that only those destinations remain for which there exists
no plan initially; in our example, this would mean that v2 must be the actual
destination.

Actually, an alternative to a wait action might be to make one move and then
return to the original location. This would also signal that only those destinations
are possible for which there is no initial plan where the agent moves first.

In any case, regardless of whether we use a wait action or a back and forth
movement, we seem to violate the requirement set out earlier, namely that plans
should by cycle-free, which in the case of branching plans translates into the
requirement that no objective state should be visited twice on a possible exe-
cution trace. However, the movement is made in order to change the common
knowledge (see below) and in so far, no cycle is created.

3.3 Forward Induction

During the MAPF/DU planning process, common knowledge over all possible
destinations is maintained using the possible destination function β, i.e., β(i)
is the commonly known set of all possible destinations for agent i. This set is
reduced to the empty set whenever agent i makes a success announcement. If
we use safe abduction as described above, we can reduce the set of possible
destinations β(i) to all those that are still possible according to the definition
in the previous subsection. Interestingly, since this is common knowledge, this
reduction can be propagated to the entire sub-plan following i’s movement (or
inaction).

In order to illustrate that this can even proceed over more than one stage, let
us consider a more complex example, where we add a third agent T , the triangle
agent (Figure 4).

v1 v2 v3 v4 v5 v6 v7 v8

v9

v10

Fig. 4. More complex example

Here, T could start by moving to v4, signalling that v10 is not its destination.
The only way for C would be to move to v10 (in order to help T later on), in
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order to allow T to move to its possible destination. Not that at this point
we are not entitled to make the inference that v7 is not the destination of C,
because C could not have moved there announcing success with the guarantee
that the remaining problem could be solved. If T ’s goal were v8, it could move
there and the rest would be easy for C and S. However, instead it moves to v9
signalling that v8 is not its destination. Now it is common knowledge that v1 is
T ’s destination. However C and S do not have knowledge about their respective
destinations. S would unblock the way for T by moving to v6, and T could move
to v1, announcing success. C cannot make any meaningful move, so S has to
move, either to v2 or v3, in order to allow for C either to move to its destination
v7, or to signal that this not C’s destination. Now C could execute a wait action
in order to signal that v7 is not C’s destination. So, S could happily move to v6
and announce success, after which C could easily finish.

3.4 Computational Complexity

From a computational complexity point, most probably nothing changes. The
construction in the proof of Theorem 11 of the original paper [5] still works. In
particular, forward induction is of no help and not a hindrance in deciding the
constructed MAPF/DU instance. For proving PSPACE membership, one has to
prove a generalized stepping stone theorem. A generalized stepping stone is now
a state such that either the agent can reach all possible destinations, announce
success and the solvability of the simplified problem can be guaranteed (as usual),
or the movements of the agent end in a state such that we can safely abduct and
can at least eliminate one possible destination. With that, polynomial depth of
the branching plan follows and then one could easily guess and check all traces
iteratively. One has to guess also the depth of plans (which subsequently have
to be verified) in order to allow for the verification of safe abductions.

4 Outlook

Although the complexity probably does not change, algorithmically things be-
come more involved. In fact, one might want to consider only special cases of safe
abduction inferences in order to reduce computational overhead. For example,
one might only consider situations when success announcements are possible and
ignored, as in the above examples. Otherwise the computational burden might
be too high. In particular, it remains unclear whether we could reduce the worst
case execution costs, which are what we are interested in when proving success
guarantees.

An interesting question then comes up related to the omniscience problem. If
an agent does something that another agent can take as a signal, then the other
agent actually has to recognize that as a signal, otherwise the plan of the acting
agent might not work out. In other words, all agents have to use the same level
of reasoning.
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All in all, the ideas spelled out here might hopefully serve as a starting point
for defining a notion of implicit coordination that also takes into account the
observation about actions of the other agents. Hopefully, this might also lead to
generalizing these ideas to more general settings such as epistemic planning with
monotonic uncertainty reduction or even general epistemic planning.
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