
Ignoring Irrelevant Facts and Operators

in Plan Generation

Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler

Institut f�ur Informatik,

Albert-Ludwigs-Universit�at,

D-79100 Freiburg, Germany

E-mail: hlast namei@informatik.uni-freiburg.de

Abstract. It is traditional wisdom that one should start from the goals

when generating a plan in order to focus the plan generation process on

potentially relevant actions. The graphplan system, however, which is

the most e�cient planning system nowadays, builds a \planning graph"

in a forward-chaining manner. Although this strategy seems to work

well, it may possibly lead to problems if the planning task description

contains irrelevant information. Although some irrelevant information

can be �ltered out by graphplan, most cases of irrelevance are not

noticed.

In this paper, we analyze the e�ects arising from \irrelevant" informa-

tion to planning task descriptions for di�erent types of planners. Based

on that, we propose a family of heuristics that select relevant information

by minimizing the number of initial facts that are used when approximat-

ing a plan by backchaining from the goals ignoring any conicts. These

heuristics, although not solution-preserving, turn out to be very useful

for guiding the planning process, as shown by applying the heuristics to

a large number of examples from the literature.

1 Introduction

It is traditional wisdom that one should start from the goals when generating a

plan in order to focus the plan generation process on potentially relevant actions.

The graphplan system [2], however, which is the most e�cient planning system

nowadays, builds a \planning graph" in a forward-chaining manner, applying all

actions that are possible. While graphplan works well on most of the examples

known from the literature, one might suspect that larger examples containing

information that is irrelevant for a particular task lead to performance prob-

lems. In fact, irrelevant information can lead to huge planning graphs even when

graphplan's feature for �ltering out irrelevant facts is used.

Although, at �rst sight, it might seem to be pathological to have task speci�-

cations that contain irrelevant information, this situation occurs naturally when

one wants to handle larger domains with varying and diverse goals. For instance,

in a robotics domain one may want the robot to transport things, to guide peo-

ple, to clean rooms, etc. In this case, one wants a domain description with all

the necessary operators and the static domain speci�cation. For a given goal

and initial state, most of the domain might be irrelevant, however. Further, even

the toy examples from the literature sometimes contain some form of \irrelevant

information," which, if removed, leads to better performance of the planning

process.

For traditional planning systems that perform a backward-chaining search

from the goal to the initial state, irrelevance is supposedly not a problem be-

cause such planning systems consider only actions that are relevant for solving

the planning problem. Planning systems that do forward-chaining from the initial

state may, however, run into performance problems. They probably explore pos-

sibilities that can never contribute to achieve the goal. However, when comparing

graphplan with a traditional backward-chaining planner, such as ucpop [11],

graphplan is so much faster than ucpop that graphplan's larger sensitivity

to irrelevance does not matter much. Nevertheless, \irrelevant information" can

be a serious problem for graphplan, as is shown below.

In order to bring the best of the two worlds together, one might think of

mixing the backward-chaining with the forward-chaining approach. The basic

idea for creating top-down expectations in a planning system is quite simple:

do backward-chaining from the goals to the initial facts using the operators and

ignoring any conicts between operator applications. This creates an AND-OR

tree, where the AND-nodes are the goals or the preconditions of an (instantiated)

operator and the OR-nodes are single ground atoms which can be generated by

di�erent (instantiated) operators. However, how long should we grow this tree

and what paths are relevant in this tree? Further, if we select paths in the

AND-OR tree, what should we do with the nodes on the selected paths? Finally,

how can we make sure that growing this tree does not result in an exponential

explosion?

In the graphplan system, these questions are answered as follows. Grow the

tree as long as new ground atoms are produced, consider all paths as relevant

and take all ground atoms on these paths as relevant. Finally, since a �xpoint

computation is used instead of creating the tree explicitly, the computational

costs are bounded polynomially in the number of ground atoms. While this is

an e�cient and safe strategy, since it does not exclude any solution, it is also

very weak. In almost all cases we considered, it does not lead to any reduction

in computational costs.

A heuristic guiding the planning process should be e�cient and solution

preserving, i.e., it should not exclude possible solutions. Since determining rel-

evant information in planning is usually as hard as planning itself, satisfying

both requirements probably leads to quite weak heuristics as in the case of the

graphplan system. We propose a heuristic based on minimizing the use of ini-

tial facts when backchaining from the goals to the initial facts, which is similar to

McDermott's greedy regression graph heuristic. Based on that, we determine the

information which is most likely relevant for the planning process. This heuris-

tic is not solution preserving, but it is computationally very e�cient and turns

out to be quite e�ective for a large number of domains. Further, for McDer-

mott's [9,10] grid world examples and for a number of examples used by Kautz

and Selman [7], our heuristics proved to be very e�ective, reducing graphplan's

planning time signi�cantly.

The rest of the paper is structured as follows. The next section discusses

the notion of \relevance" and \irrelevance" in plan generation. In Section 3, we

then show the e�ects \irrelevant information" can have on di�erent planning

systems. A family of heuristics to determine potentially useful information from

the description of a planning task is described in Section 4, and the empirical

results of applying these heuristics to a large number of examples are given in

Section 5. In Section 6 we discuss the results and conclude.

2 What is \Irrelevant" in Plan Generation?

Sometimes it is intuitively obvious that a planning task description contains

irrelevant information. For example, if in a strips [5] blocks-worlds planning

task the blocks can have a color, then the colors are irrelevant { provided the

goal description does not mention colors or if there are no operators to paint

blocks.

There are more subtle cases, however. For example, if a block can be painted

while the robot holds it and if the goal description contains information that

the color of the block should be the same as in the initial state. Of course, the

painting operation is irrelevant. However, it is not obvious how to detect this in

a domain-independent way.

An even more subtle case is a blocks-world planning task with a number

of additional blocks sitting on the table which are not mentioned in the goal

description. These blocks are clearly irrelevant for �nding a plan of stacking the

relevant blocks, but they are considered by plan generation systems, leading to

serious performance problems.

Trying to make the notions of relevance and irrelevance more concrete, one

notes that there are at least two levels on which we can discuss these notions.

First of all, there is the external level. A planning task description may contain

type information, initial facts, and operators that are not needed for a solution.

1

Secondly, we can consider the internal level of the planning system. Here, we

can consider ground operators or ground facts as relevant or irrelevant. In the

following, we refer to operators, type information, initial facts, other ground

facts, and instantiated operators as pieces of information.

Regardless of the level and the type of information, one can distinguish be-

tween di�erent degrees of irrelevance. First of all, a piece of information may

never be part of any solution for a given planning task, i.e., it is completely

irrelevant. Secondly, a piece of information may appear in some plans, but it is

not necessary for generating a plan. We call this solution irrelevance. If plan

length is an issue, one can de�ne the notion of solution-length irrelevance in a

similar way. Unfortunately, however, these \semantic" notions of irrelevance are

1

The goal description is, of course, never irrelevant!

computationally as hard as planning itself, at least for the case of propositional

strips, which is PSPACE-complete [3,1].

Theorem 1. For propositional strips, deciding complete irrelevance and so-

lution irrelevance of a piece of information in a planning task description is

PSPACE-complete under polynomial Turing-reductions.

2

Proof sketch. Membership in PSPACE follows from the following simple facts.

A fact or operator is solution-irrelevant, if its removal does not change the plan

existence property, which is in PSPACE, i.e., two calls to an oracle deciding plan

existence su�ce to decide solution irrelevance. Further, a fact or operator is

completely irrelevant if adding something to the planning task that makes the

fact or operator necessary for achieving the goals changes the plan existence

property.

PSPACE-hardness of solution irrelevance follows, since by adding an operator

or fact to a planning task description that must be used in any plan, we can

decide plan existence of the original problem by deciding solution irrelevance of

the new piece of information in the modi�ed problem.

PSPACE-hardness of complete irrelevance follows because plan existence can

be decided by deciding complete irrelevance of all facts or operators.

Approaching the notion of irrelevance from a more syntactic point of view,

we consider the process of chaining between ground facts. We say that a fact

' generates i� there is an operator o that can be instantiated to a (type-

consistent) ground operator g in a way such that ' is a precondition of g and

is an add-e�ect of g. Based on this de�nition we say that '

0

is reachable by

backchaining from '

n

i� there exists a sequence of facts '

0

; '

1

; : : : ; '

n

such

that '

i

generates '

i+1

. Similarly, '

n

is reachable by forward-chaining from

'

0

i� '

0

is reachable by backchaining from '

n

.

Using these notions, one can distinguish between goal irrelevance and initial-

state irrelevance. A piece of information is goal irrelevant if it cannot be

reached by backchaining from the goals, and a piece of information is initial-

state irrelevant if it cannot be reached by forward-chaining from the ini-

tial state. Both notions imply complete irrelevance and are easily computable.

Graphplan can �lter out both kinds of irrelevant information. Initial-state ir-

relevant information is �ltered out in building the planning graph, goal irrelevant

information can be �ltered out by using an option that leads to computing the

ground facts reachable by backchaining from the goals. However, as pointed out

above, these notions are also very weak and do not cover the more subtle cases

mentioned in the beginning of this section.

3 Empirical E�ects of Irrelevance

As mentioned in the Introduction, one would expect that traditional backward-

chaining planners will have less di�culties with solution-irrelevant pieces of in-

2

Using an appropriate de�nition for solution-length, one could prove the same for

solution-length irrelevance.

formation than the graphplan system. In order to test this hypothesis, we set

up two sets of modi�ed blocks-world planning tasks.

In the �rst set, we added colors and a paint operation to the blocks world,

where the paint operation has three parameters, namely the block, its previous

color, and its new color. Further, painting can only be performed if the robot

holds the block. Finally, we specify in the initial conditions that all blocks are

white and require in the goal description that they are still white. In the sec-

ond set of examples, we took ordinary blocks-world planning tasks and added

superuous blocks that sit on the table and are clear. In both sets we varied the

number of relevant blocks and the number of irrelevant details, i.e., colors and

superuous blocks.

The results

3

shown in Fig. 1 seem to con�rm the hypothesis that backward-

chaining planners such as ucpop

4

are not as much a�ected as graphplan by

solution-irrelevant information.

5

The number of colors in a planning task descrip-

tion does not seem to a�ect the search process of ucpop at all, while the colors

seem to present a problem for graphplan. Further, the e�ect of superuous

blocks for ucpop is much less dramatic than for the graphplan-system.

0

2

4

6

8

10

12

0 5 10 15 20 25 30

C
P

U
 s

ec
s

No. of colors

Graphplan
UCPOP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6 7 8 9

C
P

U
 s

ec
s

No. of additional blocks

Graphplan
UCPOP

Fig. 1. CPU time for stacking 2 blocks when colors or other blocks are present

These results are quite interesting in themselves because they demonstrate

that there are cases where ucpop can outperform graphplan. Having a closer

look at graphplan, one notes that the increase of runtime is mainly caused by

the e�ort to generate the planning graph. In other words, the conjecture that

creating a planning graph in a forward-chaining manner can lead to performance

problems in the presence of irrelevant information seems to be justi�ed. However,

if we vary the number of relevant pieces of information as well, the picture

changes. In Fig. 2, the x-axis measures the number of relevant blocks (note the

log-scale for the CPU time).

3

These and the following results were obtained by a single trial for each data point

on a SPARCstation 4/110 with 64MB main memory.

4

In all our experiments, we used the zlifo search strategy [6].

5

Note that the colors are not goal-irrelevant because colors are mentioned in the goal

description. For this reason, graphplan cannot detect their irrelevance.

0.1

1

10

100

1000

10000

2 3 4 5

C
P

U
 s

ec
s

Height of goal stack

Graphplan with 0 colors
Graphplan with 10 colors

UCPOP with 0 colors
UCPOP with 10 colors

0.1

1

10

100

1000

10000

2 3 4 5

C
P

U
 s

ec
s

Height of goal stack

Graphplan with 0 additional blocks
Graphplan with 3 additional blocks

UCPOP with 0 additional blocks
UCPOP with 3 additional blocks

Fig. 2. CPU time for stacking n blocks when colors or other blocks are present

Although graphplan seems to be a�ected by irrelevance in our examples

much more than ucpop, graphplan is so much faster that this does not mat-

ter. Nevertheless, graphplan's sensitivity to irrelevance can be quite serious.

For example, a blocks-world planning task with eight blocks and ten colors can-

not be solved by graphplan without recompiling the planning system using a

larger data structure for storing nodes in the planning graph. Further, in the

examples with irrelevant blocks, the memory requirements grow with number of

blocks regardless of whether the blocks are relevant or not. Since those memory

requirements are so severe that they can �ll up the memory of ordinary worksta-

tions with 64 MB even for planning tasks containing only 15 blocks, any attempt

to reduce memory consumption is worthwhile. Finally, the runtime requirements

grow with the total number of blocks. In fact, 15 blocks seemed to be the max-

imum number of blocks graphplan could handle in one hour for our example

set. So, removing any single irrelevant block can help in making a planning task

practically solvable.

4 Selecting Relevant Information by Backchaining and

Minimizing the Use of Initial Facts

As sketched above, one can straight-forwardly create top-down expectations in

the planning process by backchaining from the goals creating an AND-OR-tree,

where the AND-nodes are sets of ground facts (goals or the preconditions of

an action) and the OR-nodes are single ground facts that can be generated by

di�erent operators. We call such a tree a fact-generation tree.

An OR-node of a fact-generation tree is considered to be solved if it is an

initial fact or if one of its immediate children is solved. An AND-node is solved

if all of its children are solved. The entire fact-generation tree is solved if the

AND-node corresponding to the goals is solved. The fact-generation tree can be

grown until it is solved or a preset depth is reached without a solution.

This is a very crude approximation to the planning process because the state

of the world and delete-e�ects of operators are completely ignored. However,

it provides us with a straight-forward and sound method for deciding that a

planning task cannot be solved in d steps (where non-conicting steps can be

executed in parallel as in graphplan). In fact, we used this method to debug

our planning task speci�cations, which often turned out to be unsolvable because

of trivial typing errors.

Proposition 2. If a fact-generation tree of depth d does not have a solution,

then there does not exist any b(d � 1)=2c-step plan to solve the corresponding

planning task.

Although the method is straight-forward, it is not by itself computationally

e�cient. Since the tree grows exponentially with its depth, memory and runtime

costs can be quite high even for moderate branching and depth. Memoizing the

results for each ground fact together with the level in the tree and reusing the

result if the new search node is as close to the leave nodes as the memoized

results makes the process more e�cient.

6

With memoizing, every ground fact

will be created at most once per OR-level in the search tree, restricting the

number of explored nodes polynomially in the depth of the tree and the size of

the instantiated planning task description.

Proposition 3. Creating a fact-generation tree of depth d can be done in time

polynomial in d � n �m, where n is the number of ground facts and m is the

number of ground operators.

While it su�ces to propagate the values true and false in a fact-generation

tree in order to detect unsolvability, we need more sophisticated ways to compute

a solution if we want to compute the pieces of information that are probably

relevant for the planning process. The idea is to determine a minimum set of

initial facts (i.e., a set with a minimal number of elements) that are necessary

to solve the fact-generation tree. Since there are in general di�erent ways to

generate a fact, we determine for every AND- and OR-node the set of sets of

initial facts that could be used to generate this particular node. We call these

sets of sets possibility sets.

In order to illustrate this idea, we present a small arti�cial example. Strips-

operators will be written as

N : P ; A=D;

where N is the name of the operator, P is the set of preconditions, A is the

set of add-e�ects, and D is the set of delete-e�ects. We use the following set of

operators:

O1 : fa; bg; fx; zg = fag

O2 : fb; cg; fxg = ;

O3 : fcg; fyg = fcg

Further, we assume that fa; b; cg is the set of initial facts and fx; yg is the

set of goals. Then, as demonstrated in Fig. 3, the possibility set for the goals

is ffa; b; cg; fb; cgg, and the minimum set of initial facts that solves the fact-

generation tree is fb; cg.

6

This means, we e�ectively create a directed graph instead of a tree.

x y

x y

O1 O2 O3

ba b c c

a b c

{{a,b}} {{b,c}} {{c}}

{{a,b}, {b,c}} {{c}}

{{a,b,c}, {b,c}}

or

and

and and

Fig. 3. Example for computing a minimum set of initial facts that can be used to solve

the fact-generation tree

The computation of such possibility sets is computationally expensive, how-

ever. At each AND-node, the elements of the possibility set result from com-

puting the union over all choices of picking elements from the possibility sets of

the OR-nodes immediately below the AND-node. For example, the possibility

set of the AND-node x y in Fig. 3 is obtained by computing fa; bg [fcg and

fb; cg [fcg. In general, we may get a possibility set at an AND-node with a

number of elements that is the product of the cardinalities of the sets at the

OR-nodes immediately below the AND-node. This implies that the number of

elements of these sets can grow exponentially with the breadth and depth of

the fact-generation tree. Further, there does not seem to be an easy way out

here. The problem of computing a minimum set of initial facts solving the fact-

generation tree is a computationally hard problem.

Theorem 4. Computing a minimum set of initial facts that solves a fact-

generation tree is NP-hard for propositional strips.

Proof sketch. Follows by a straight-forward reduction of the hitting set problem

to the problem at hand.

Since the computation of minimum sets of initial facts that are necessary for

solving the fact-generation tree is intended to be a heuristic for determining the

relevance of pieces of information, we are not forced to compute all elements of

a possibility set, however. Further, even non-optimal sets of initial facts can be

useful. For this reason, we use a crude approximation. At every node we store

only the 10 smallest sets computed so far.

Having computed the (approximation of a) possibility set for the goals, there

is the question of what to do with the result. First of all, we must decide what

to do in case the possibility set has more than one element. Di�erent methods

are conceivable:

1. use the union over all elements in the possibility set,

2. use the union over all set-inclusion minimal sets,

3. use the union over all minimum sets, or

4. pick a minimum set.

Running the heuristic on all the graphplan examples and some other exam-

ples revealed that most of the time the fourth method, which we call one-best-

set method, is a good choice. Sometimes, however, this led to longer plans than

necessary, because resources that could have been used were removed. Worse

yet, in the rocket examples it unfortunately removes one rocket so that the plan-

ning task becomes unsolvable. In those cases, the third method, which we call

all-best-sets method, proved to be a safe way out. Finally, for some of Mc-

Dermott's grid world examples, we had to use the �rst method, called all-sets

method.

Secondly, we must decide what we want to do with this set of probably

relevant initial facts. Since the creation of a fact-generation tree is only a very

crude approximation of the planning process, initial facts that are necessary for

solving the planning task might have been missed. We used three methods of

selecting \probably relevant" pieces of information with an increasing degree of

restriction:

1. Consider all objects mentioned in the set of probably relevant initial facts as

relevant and �lter out initial facts that contain irrelevant objects.

2. Consider only the initial facts in the set of probably relevant initial facts as

relevant.

3. Consider only those ground operators as relevant that appear in the fact-

generation tree and can be generated by the set of probably relevant initial

facts.

These methods can be justi�ed as follows. In domains containing a graph that

has to be traversed (e.g., McDermott's [9] Manhattan world), where undirected

edges are represented by pairs of initial facts, often only the �rst method is

useful. The second method is useful if the fact-generation tree is similar to a

�nal plan in that it makes use of all the relevant initial facts. The third method

is useful if in building the fact-generation tree all ground operators are used that

are necessary for the real plan.

It turned out that for di�erent planning domains di�erent strategies are ef-

fective. In the blocks-world domain, for example, a solved fact-generation tree

often contains all the necessary ground operators to solve the planning task. In

general, it seems to be a good meta-heuristic to try the third strategy �rst, since

if it is unsuccessful, graphplan fails fast. Then one should try the second and

then the �rst strategy. Since determining the set of \probably relevant initial

facts" is also only approximate, this sequence should be interleaved with the

one best set and all best sets strategies described above. In case, we do not get

a solution in this way, one may still run the planner on the original problem.

In this way, we get (theoretical) completeness although the family of heuristics

itself is not solution preserving (see also [4]).

5 Empirical Results

We implemented the family of heuristics described above as a C-program that

can be used as a �lter for graphplan,

7

and tested them on a large set of

examples. Applying our heuristics to the examples in Section 3 revealed that

they e�ectively remove the irrelevant information in our blocks-world planning

tasks. The CPU time of graphplan on the problems and the CPU time of the

heuristics combined with graphplan are shown in Fig. 4.

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10

C
P

U
 s

ec
s

Height of goal stack

Graphplan with 0 colors
Graphplan with 10 colors

Graphplan with 10 colors using heuristic

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10

C
P

U
 s

ec
s

Height of goal stack

Graphplan with 0 additional blocks
Graphplan with 3 additional blocks

Graphplan with 3 additional blocks using heuristic

Fig. 4. Graphplan CPU time for stacking n blocks when colors or other blocks are

present and when using the heuristic

In order to get an idea of how the heuristics behave on di�erent domains, we

ran them on the graphplan examples. Runtime is not an issue here, because

all problem are solved in a few seconds. More interesting is the question whether

the heuristics are solution-length preserving or solution preserving. An answer to

this question is given in Table 1.

In 55% of all examples, it was feasible to use the ground operators that appear

in the fact-generation tree basing the selection on the one-best-set method. If

the all-best-sets method is used, 86% of the examples could be solved. In case

of the logistics and mblocks domains, however, basing the selection on one best

set leads to longer plans, because useful resources are removed. In the rockets

domain, the removal of one of the rockets leads to unsolvability.

8

Even worse is

the tsp domain. Here, we have to base the selection of relevant information on the

objects that appear in the set of probably relevant initial facts. The reason is that

the undirected edges in the graph are represented by two ground facts, standing

for two directed edges. In building the fact-generation tree, however, often only

one of those facts is used, i.e., we only traverse the edge in one direction, while

in the �nal plan we must also use the other direction.

More interesting planning tasks are, of course, those that are hard for graph-

plan. One such set of hard tasks is the test set that has been used to demonstrate

7

The program can be obtained from the authors.

8

If in the planning task description one could distinguish between usable resources

and the initial state information, the heuristic would have a much better way to

decide what is relevant.

Table 1. Solution- and solution-length preserving properties of the di�erent heuristics

for di�erent domains. An \S" means that the particular heuristic did not change the

solution-existence property for all the examples considered, an \L" means that the plans

have the same length. If the letter is in parentheses, it means that some examples did

not have the property.

select select select

ground operators initial facts objects

one all best one all best one all best

Domain best set sets best set sets best set sets

blocks (L) (L) L L L L

�xit L L L L L L

fridge L L L L L L

link S S S S S S

logistics S L S L S L

mblocks S S L S L

monkey L L L L L L

rocket (L) (L) L

tsp L L

the performance of satplan [7]. The results for applying our heuristics are given

in Table 2.

Table 2. Time steps and actions of generated plan and CPU time on a Sun Ultra 1/170

needed for plan generation on satplan examples. \{" indicates that no solution was

found.

graphplan graphplan with heuristic graphplan with heuristic

selecting ground operators selecting initial facts

one best set all best sets one best set all best sets

time CPU time CPU time CPU time CPU time CPU

Task /act. secs /act. secs /act. secs /act. secs /act. secs

rocket ext.a 7/34 107 { 0.2 { 0.2 8/27 0.4 7/34 108

rocket ext.b 7/30 498 { 0.2 { 0.3 10/29 17 7/30 499

logistics.a 11/54 1954 13/51 928 11/54 1654 13/51 3355 11/54 1955

logistics.b 13/45 767 15/42 218 13/45 655 15/42 707 13/45 768

bw large.a 12/12 1.8 12/12 0.8 12/12 0.8 12/12 0.9 12/12 0.9

bw large.b 18/18 319 18/18 26 18/18 26 18/18 44 18/18 44

Although the planning tasks descriptions were not intentionally designed to

have irrelevant information in it, it turned out that the bw large examples contain

irrelevant facts. Further, also the logistics and rocket ext examples contain more

initial facts than necessary to generate a solution. However, in these cases the

facts correspond to resources which, if removed, lead to longer plans. In any

case, applying the heuristics seems to pay o� on this set of examples. If too

much information is removed, graphplan is very fast in detecting this. Further,

overall planning time is reduced in almost all cases.

Another interesting planning task is McDermott's [9] Manhattan world

example.

9

Graphplan cannot handle it because the memory requirements are

too high. Even on an SunUltra I workstation with 1 GB memory, graphplan

could not �nd a plan and failed with a memory overow after 24 CPU hours. Ap-

plying our heuristic to the Manhattan world example (using one-best-sets with

relevant objects for �ltering) returned a reduced planning task after 14 CPU

seconds on a Sun Ultra 1/170 . Running graphplan on this reduced task re-

sulted in a plan with length 40 after another 12 CPU seconds.

10

McDermott [10]

reported that his unpop planner needs 16 CPU minutes on average to �nd a

plan with an average length of 52.

11

We also ran our heuristics on the Sokoban

examples suggested by J. Eckerle and adapted by McDermott [10] with similar

results.

6 Discussion and Conclusion

Starting from the observation that the graphplan system is highly sensitive to

irrelevant information in the planning task description, we developed a family

of heuristics aimed at identifying relevant information. These heuristics are very

similar to McDermott's [9] greedy regression graph heuristic. Minor di�erences

are that AND-nodes are completely instantiated in our case while they may

contain variables in McDermott's system. Further, McDermott uses best-�rst

search or discrepancy-search, while we used a simple iterative deepening search.

One main di�erence is that we base our selection on minimum sets of initial facts

necessary to solve the fact-generation tree, while McDermott bases his selection

on the minimal number of actions. The most striking di�erence is, however,

that we run our heuristic once before planning starts, while McDermott uses his

heuristic each time before extending the plan by an action. Nevertheless, our

approach results in quite reliable predictions most of the time.

Despite its simplicity, the heuristics turned out to be very useful. In many

domains, the most constraining heuristic gives solution-preserving results and

reduces planning time considerably. Further, the heuristic enables graphplan

to �nd plans for McDermott's grid world examples.

Although we used the heuristic only in combination with graphplan, it can,

of course, be combined with any other planner based on the strips formalism

such as satplan [7]. We already extended the heuristics to deal with conditional

9

We used a representation of the domain tailored to graphplan, e.g., the conditional

operators are transformed to a set of unconditional operators. Further the grid is

encoded as a graph so that our heuristic can identify probably relevant objects.

10

McDermott [9] claimed that 43 steps is the optimum for the example, but in fact

only 40 steps are necessary.

11

McDermott's results were obtained on a SPARCstation 2, which is approximately

15 times slower than a Sun Ultra 1/170.

operators and integrated it in our extension of the graphplan-planner [8] with

promising results.

Acknowledgements

We would like to thank Alfonso Gerevini and the anonymous reviewers for com-

ments on an earlier version of this paper.

References

1. C. B�ackstr�om. Equivalence and tractability results for SAS

+

planning. In B. Nebel,

W. Swartout, and C. Rich, editors, Principles of Knowledge Representation and

Reasoning: Proceedings of the 3rd International Conference (KR-92), pages 126{

137, Cambridge, MA, Oct. 1992. Morgan Kaufmann.

2. A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.

Arti�cial Intelligence, 90(1-2):279{298, 1997.

3. T. Bylander. The computational complexity of propositional STRIPS planning.

Arti�cial Intelligence, 69(1{2):165{204, 1994.

4. T. A. Estlin and R. J. Mooney. Multi-strategy learning of search control for partial

order planning. In Proceedings of the 13th National Conference of the American

Association for Arti�cial Intelligence (AAAI-96), Portland, OR, July 1996. MIT

Press.

5. R. E. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.

6. A. Gerevini and L. Schubert. Accelerating partial-order planners: Some techniques

for e�ective search control and pruning. Journal of Arti�cial Intelligence Research,

5:95{137, 1996.

7. H. A. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,

and stochastic search. In Proceedings of the 13th National Conference of the Amer-

ican Association for Arti�cial Intelligence (AAAI-96), pages 1194{1201, Portland,

OR, July 1996. MIT Press.

8. J. Koehler, B. Nebel, J. Ho�mann, and Y. Dimopoulos. Extending planning graphs

to an ADL subset. In Proc. European Conference on Planning 1997, Toulouse,

France, September 1997.

9. D. McDermott. A heuristic estimator for means-ends analysis in planning. In

Proceedings of the 3rd International Conference on Arti�cial Intelligence Planning

Systems (AIPS-96), pages 142{149. AAAI Press, Menlo Park, 1996.

10. D. McDermott. Using regression-match graphs to control search in planning.

Manuscript submitted for publication, 1997.

11. J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order planner

for ADL. In B. Nebel, W. Swartout, and C. Rich, editors, Principles of Knowledge

Representation and Reasoning: Proceedings of the 3rd International Conference

(KR-92), pages 103{114, Cambridge, MA, Oct. 1992. Morgan Kaufmann.

