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Abstract. While the worst-case computational properties of Allen’s

calculus for qualitative temporal reasoning have been analyzed quite

extensively, the determination of the empirical efficiency of algo-

rithms for solving the consistency problem in this calculus has re-

ceived only little research attention. In this paper, we will demonstrate

that using the ORD-Horn class in Ladkin and Reinefeld’s backtrack-

ing algorithm leads to performance improvements when deciding

consistency of hard instances in Allen’s calculus. For this purpose,

we prove that Ladkin and Reinefeld’s algorithm is complete when

using the ORD-Horn class, we identify phase transition regions of

the reasoning problem, and compare the improvements of ORD-Horn

with other heuristic methods when applied to instances in the phase

transition region. Finally, we give evidence that combining search

methods orthogonally can dramatically improve the performance of

the backtracking algorithm.

1 INTRODUCTION

Representation of qualitative temporal information and reasoning

with it is an integral part of many artificial intelligence tasks, such

as presentation planning [3], natural language understanding [16],

and diagnosis of technical systems [14]. Allen’s [1] interval calculus

is well suited for representing qualitative temporal relationships and

reasoning with it. In fact, it is used in all the applications mentioned

above.

While the worst-case computational properties of Allen’s calculus

and fragments of it have been quite extensively analyzed [6, 8, 13,

17, 19], design and empirical evaluation of reasoning algorithms

for Allen’s calculus has received much less research attention. In

this paper, we address the latter problem and analyze in how far

using the ORD-Horn subclass [13] of Allen’s relations can improve

the efficiency of existing reasoning algorithms. As it turns out, the

ORD-Horn class can significantly enhancethe performance in search-

intensive cases.2

Since reasoning in the full calculus is NP-hard [19], it is necessary

to employ some sort of exhaustive search method if one wants com-

plete reasoning in the full calculus. Ladkin and Reinefeld [9] have

proposed a backtracking algorithm that uses path-consistency as a

forward checking technique [7] during the backtrack search, which

results in pruning the search tree significantly compared with the algo-

rithm proposed by Allen [1]. As pointed out by Ladkin and Reinefeld

[9], this algorithm allows to instantiate disjunctive relations not only

by atomic relations but by any set of relations the path-consistency
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2 The C-programs that were used for the evaluation are avail-
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method is complete for, which can considerably reduce the branch-

ing factor in the backtrack search. However, if non-atomic relations

are used, it is not any longer obvious that the backtrack algorithm

is a complete reasoning method. As we show in Section 3, however,

Ladkin and Reinefeld’s suggestion is indeed correct.

Since the ORD-Horn subclassof the qualitative relations in Allen’s

calculus is the unique maximal set containing all atomic relations

such that path-consistency is sufficient for consistency [13], it would

seem that employing this set in the backtracking algorithm is clearly

advantageous over using other subclasses. However, the experiments

that have been performed so far [10, 18] do not seem to justify this

conjecture.

It may be the case, however, that in previous experiments the

authors missed generating hard instances or did not look for the right

performance indicators. In Section 5, we identify the phase transition

region [2] for reasoning in Allen’s calculus,which contains arbitrarily

hard instances. We use these problems to evaluate the usage of the

ORD-Horn class in Section 6 and demonstrate its advantage. Further,

we demonstrate in Section 7 that combining the ORD-Horn subclass

with other search heuristics in an orthogonal way can dramatically

improve the performance on van Beek and Manchak’s [18] hard

problem instances.

2 ALLEN’S CALCULUS

Allen’s [1] approach to reasoning about time3is based on the notion

of time intervals and binary relations on them. A time interval X

is an ordered pair (X�

;X

+

) such that X�

< X

+, where X� and

X

+ are interpreted as points on the real line. Given two concrete

time intervals, their relative positions can be described by exactly

one of the elements of the setA of thirteen atomic interval relations.

Atomic relations are, for example,�,�, �, and d, meaning that the

first interval equals, is before, is after, or is strictly inside the second

interval, respectively.

In order to express indefinite information, unions of the atomic in-

terval relations are used, which are written as sets of atomic relations.

The formula Xf�;dgY means, e.g., thatX equals Y or is inside Y .

Since there are 13 atomic relations, there are 213 possible unions of

atomic relations, which form the set of binary interval relations (de-

noted by r)—including the empty relation ; and the universal relation

A. The set of all binary interval relations 2A is denoted byA. This

set forms together with the operations intersection (r\ r0), relational

converse (r^), and relational composition (r � r0) an algebra, which

is called Allen’s interval algebra.

3 Because of lack of space, we only sketch the basic notions of Allen’s calculus.
For a complete description one should consult, e.g., [1, 8, 13, 17].
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A qualitative description of an interval configuration is usually

given as a set of formulae of the above form, or, equivalently, as a

temporal constraint graph with nodes as intervals and arcs labeled

with interval relations—the constraints. These graphs are often rep-

resented as matrices of size n� n for n intervals, where M
ij

2 A is

the constraint between the ith and jth interval. Usually it is assumed

(without loss of generality) that M
ii

= f�g and M
ji

= M

ij

^ .

The fundamental reasoning problem in this framework is to decide

whether a given qualitative description of an interval configuration is

satisfiable, i.e., whether there exists an assignment of real numbers to

all interval endpoints, such that all constraints in the corresponding

constraint graph are satisfied. This problem, called ISAT, is funda-

mental becauseall other interesting reasoning problems polynomially

reduce to it [6] and because it is one of the most important tasks in

practical applications [18].

The most often used method to determine satisfiability of a tem-

poral constraint graph is the path-consistency method,4which was

already proposed by Allen [1]. Essentially, it consists of computing

repeatedly

M

ij

 M

ij

\ (M

ik

�M

kj

) (1)

for all i; j; k until no more changes occur. Obviously, the restriction

on M

ij

does not remove any possible assignment, but only deletes

atomic relations that are not satisfiable in any way. This method—if

implemented in a sophisticated way—runs in O(n

3
) time, where n

is the number of intervals. In the following, a matrix that has been

“reduced” in this way is called path-consistent and is denoted by bM .

If bM
ij

= ; for some i; j, then it follows obviously that M is not

satisfiable. The converse implication is not valid, however [1]. Since

ISAT is NP-complete [19], it is very unlikely that any polynomial

algorithm can solve ISAT. However, there exist subsets of A such

that ISAT is a polynomial problem if only relations from these subsets

are used. These subsets are the continuous endpoint class C [14, 17],

the pointizable class P [8, 17], and the ORD-Horn class H [13],

which form a strict hierarchy. Interestingly, these classes lead also to

completeness of the path-consistency method.

3 THE BACKTRACKING ALGORITHM

If an application needs more expressiveness than is granted by the

above mentioned subclasses and if complete reasoning is required,

then some sort of backtracking search is necessary. The following

backtracking algorithm, which has been proposed by Ladkin and

Reinefeld [9], appears to be the most efficient version of such an

algorithm:

Input: Matrix C representing a temporal constraint graph

Result: true iff C is satisfiable

function consistent(C)

path-consistency(C)

if C contains empty relation

then return false

else

choose an unprocessed label C
ij

and split C
ij

into r1; . . . ; r
k

s.t. all r
l

2 Split

if no label can be split then return true

endif

for all labels r
l

(1 � l � k) do

4 An alternative method for a subset of Allen’s interval algebra has been
developed by Gerevini and Schubert [5].

C

ij

 r

l

if consistent(C) then return true

endif

endfor

return false

endif

endfunction

The procedure “path-consistency” transforms a matrix C to bC .

The set Split is a subset of A such that path-consistency is complete

for ISAT. The algorithm deviates slightly from the one published in

[9] in that it makes the choice of the constraint to be processed next

nondeterministic, but is otherwise identical.

When the algorithm is implemented, a number of design choices

are necessary that can influence the practical efficiency considerably

[18]. Some of these choices will be discussed in Section 6 below. The

choice of what subset of A to use for the set Split seems obvious,

however, namely, the largest such set, which is the ORD-Horn class

[13]. This subclass covers 10% of Allen’s interval algebra (compared

with 1% for C and 2% forP), and for this reason the ORD-Horn class

should reduce the branchingfactor in the backtracksearch much more

than any other class.Unfortunately, the reduction is less dramatic than

the previous figures suggest.Based on the assumption that the interval

relations are uniformly distributed, a straightforward computer-based

analysis gives the following average branching factors: A 6.5, C

3.551, P 2.955,H 2.533.

The main problem with the algorithm is, however, that it is not

obvious that it is complete if Split differs from the set of atomic

relations. In this case, it is possible that during the backtrack search a

constraint M
ij

that has been restricted to a relation from the set Split

is further constrained by the path-consistency procedure to a relation

that is not in Split. Hence, it is not obvious that all constraints belong

to the class Split for which path-consistency is complete when the

recursive function terminates, which may lead to incompleteness.

In order to show that the above backtracking algorithm is never-

theless complete, we need first some definitions. We write M � N

iff M
ij

� N

ij

for all i; j. Further we denote byM [i; j=r] the matrix

that is identical to M except that M [i; j=r]

ij

= r. The following

lemma is straightforward [11].

Lemma 1 bM �M ,
b

b

M =

b

M , and if M � N then bM � bN .

Now let �
k

denote the k-th choice of the backtracking algorithm,

i.e. the choice of the pair (i; j) and the selected relation r

l

. Then

M [�

k

] denotes the replacement of the constraintM
ij

by r
l

. Assuming

that C denotes the original temporal constraint graph, we define the

following sequences of matrices:

C

0
= C (2)

C

k

=

d

C

k�1
[�

k

] (3)

S

0
= C (4)

S

k

= S

k�1
[�

k

] (5)

In other words,Ck corresponds to the matrixC after the kth choice in

the backtracking algorithm and Sk reflects the first k choices without

having applied path-consistency.

Lemma 2 cCk

=

c

S

k , for all k.

Proof. �: We prove Ck

� S

k by induction, from which cCk

�

c

S

k

follows by Lemma 1. The hypothesis holds for k = 0 by definition.
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Assume that it holds for k. From that it follows by Lemma 1 that

c

C

k

� S

k and cCk

[�

k+1] � S

k

[�

k+1], since the k + 1th choice is

always a subset of the corresponding relation in cCk . By applying the

definition of C and S, we get Ck+1
� S

k+1 , as desired.

�: We prove cCk

�

c

S

k by induction. The hypothesis holds for

k = 0 by definition and Lemma 1. Assuming that it holds for k, it

follows that cCk

[�

k+1] �
c

S

k

[�

k+1] (*). Since Sk � S

k

[�

k+1], we

havecSk � d

S

k

[�

k+1]. Let �
k+1 be r

l

at (i; j). Clearly, d

S

k

[�

k+1]
ij

�

r

l

. Hence, alsocSk [�
k+1] �

d

S

k

[�

k+1]. From that and (*) it follows

that Ck+1
�

d

S

k+1, from which the the claim follows by applying

Lemma 1 twice.

In other words, if the recursive function terminates, the tempo-

ral constraint graph is equivalent to one which results from apply-

ing all choices (which select constraints from Split) and using path-

consistency in the end. Since soundness is obvious and completeness

follows from Lemma 2, the backtracking algorithm described above

is indeed sound and complete.

Theorem 3 The backtracking algorithm is sound and complete if

the set Split is a subclass of Allen’s interval algebra such that the

path-consistency algorithm is complete.

4 TEST INSTANCES AND MEASUREMENT
METHODS

In order to test empirically the usefulness of employing the ORD-

Horn class in the backtracking algorithm, some set of test instances

is necessary. Ideally, a set of “benchmark” instances that are repre-

sentative of problem instances that appear in practice should be used.

However, such a collection of large benchmark problems does not

exist for qualitative temporal reasoning problems [18]. The DNA se-

quencing instance from molecular biology that has been suggested

by van Beek and Manchak [18] is unfortunately not adequate for our

purposes because the structure of constraints leads to identical results

for P andH [18].

For these reasons, the only possibility to evaluate the usefulness

of the ORD-Horn class is to randomly generate temporal constraint

networks as in [9, 10, 18]. We use two models to generate constraint

networks, denoted by A(n; d; s) and S(n; d; s).

For A(n; d; s), random instances are generated as follows:

1. A graph with n nodes and an average degree of d for each node

is generated. This is accomplished by selecting nd=2 out of the

n(n � 1)=2 possible edges using a uniform distribution.

2. If there is no edge between the ith and jth node, we set M
ij

=

M

ji

= A.

3. Otherwise a non-null constraint is selected according to the param-

eter s, such that the average size of all non-universal constraints

is s. This is accomplished by selecting one of the atomic relations

with uniform distribution and out of the remaining 12 relations

each one with probability (s� 1)=13.

ForS(n; d; s), the random instancesare generated as inA(n; d; s),

but in a post-processing step the instances are made satisfiable by

adding atomic relations that result from the description of a randomly

generated scenario, i.e., these instances are always satisfiable. This

model was proposed by van Beek and Manchak [18], and they re-

ported that a large fraction of instances generated by S(100;25; 6:5)

are very hard, sometimes requiring more than half a day of CPU time

on a Sun 4/20.

Using these random models, we analyze the effect of varying the

parameters and evaluate the runtime efficiency of different implemen-

tations of the backtracking algorithm. As the performance indicator

we use CPU time on a SparcStation 20. Although this indicator is

more dependent on the particular implementation and platform than

indicators such as the number of compositions performed or the num-

ber of search nodes explored, it gives a more realistic picture of the

effect of applying different search techniques.

5 PHASE TRANSITIONS FOR REASONING IN
ALLEN’S CALCULUS

Cheesemanet al [2] conjectured that “all NP-complete problems have

at least one order parameter and the hard to solve problems are around

a critical value of this order parameter. This critical value (a phase

transition) separates one region from another, such as overconstrained

and underconstrained regions of the problem space.” Instances in the

phase transition are obviously particularly well suited for testing

algorithms on search intensive instances.

Ladkin and Reinefeld [10] observed that reasoning in Allen’s cal-

culus has a phase transition in the range 6 � c�n � 15 for c � 0:5,

where c is the ratio of non-universal constraints to all possible con-

straints and n is the number of intervals. This phase transition is,

however, not independent of the instance size, and for this reason

does not allow to generate arbitrarily hard instances.

Our conjecture was that the average degreeof the constraint graph

is a critical order parameter that can lead to a size-independent

phase-transition. As Figure 1 demonstrates,5this is indeed the case

for A(n; d; 6:5).

Probability of satisfiability for label size 6.5

5
10

15 10
15

20
25

30
35

40
45

50

50

100

average degree

nodes

Probability (%)

Figure 1. Probability of satisfiability for A(n; d; 6:5)

The probability that the instance is satisfiable drops from 1 to 0

around d = 9:5. For other values of s and other distributions of

constraints, we observed a similar behavior (see full paper [12]). The

general picture was that with higher values of s the phase transition

moves to higher values of d.

As expected, hard instances appear around the phase transition,

meaning that the median value of CPU time peaks around the phase

transition. Similarly, the mean value has a peak there, as shown in

Figure 2 (the solid line marks the phase transition).

6 USING THE ORD-HORN CLASS

Comparing the backtracking algorithm for Split = H andSplit = P

in the phase transition region shows that the ORD-Horn class provides

5 Each data point in this and the following graphs is based on 500 randomly
generated instances.
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Mean CPU time for label size 6.5
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Figure 2. CPU time for A(n; d; 6:5)

a significant performance enhancement in some cases (Figure 3).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 15 20 25 30 35 40 45 50 55

C
P

U
 s

e
c

nodes

Mean CPU time for label size 6.5 and degree 9.5

pointizable
ORD-Horn

Figure 3. Comparison betweenP andH

This means that contrary to previous observations, it can pay off

for search intensive cases to use the ORD-Horn subclass instead of

the pointizable subclass. One question might be, however, where

the performance enhancements came from. As Figure 4 shows, the

median CPU time value is almost identical for usingH andP and the

main differences appear in the very hard instances. For this reason,

the main value of using the ORD-Horn subclass seems to be that it

reduces the runtime of extreme cases.

The results described above were achieved by using all techniques

described in [18] and varying only the set Split. So the question arises

how changing the set Split in our backtracking algorithm compares

to other design decisions. We varied the following design decisions

in order to answer this question:

ORD-Horn/pointizable: The subclass used for the set Split.

static/dynamic: Constraints are processed according to a heuristic

evaluation of their constrainedness which is determined statically

before the backtracking starts or dynamically during the search.

local/global: The evaluation of the constrainedness is based on a

local heuristic weight criterion or on a global heuristic criterion

[18].

queue/no queue: The path-consistency procedure uses a weighted

queue scheme for the constraints to be processed next [18] or the

scheme described in [9], which uses no queue.

As it turns out, the improvement of using H instead of P is small
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ORD-Horn - 50%

Figure 4. Comparison by percentiles

compared with the improvements achievable by other means (Fig-

ure 5).
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Figure 5. Using ORD-Horn and other design choices

The two lower curves in Figure 5 correspond to the curves in

Figures 3. The results show that node ordering and the heuristic

evaluation of constrainednesscan have a much more significanteffect

on the efficiency than the choice of the tractable subset used for the

set Split in the algorithm.

7 THE POWER OF ORTHOGONALLY
COMBINED STRATEGIES

Van Beek and Manchak [18] usedS(n; d; 6:5)-instances for evaluat-

ing different strategies. They noted that in particular S(100;25; 6:5)

leads to a large fraction of extraordinarily hard instances. Interest-

ingly, the median value of the CPU time does not vary much when

varying the average degree. However, around d = 25 very hard in-

stances occur that are several orders of magnitude harder to solve

than the typical instances, a phenomenon similar to what Gent and

Walsh have also observed for kSAT in the satisfiable region [4].

When comparing ORD-Horn with the pointizable subclass on

S(100; 25;6:5), van Beek and Manchak did not observe any sig-

nificant performance difference, which our experiments confirmed.

However, it is, of course, not evident that the same instances are

solved by all methods.

As a matter of fact, it turns out that by using different search

methods, different instances get solved. Based on this observation,
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we ran 16 different search strategies resulting from combining the

four possible candidates A; C;P;H for the split-set Split, with dy-

namic and static constraint ordering and local and global evaluation

of the constrainedness.While the application of just one method using

ORD-Horn, static ordering and global evaluation on 500 generated

instances with a time limit of 1800 sec per instance solved only 85%,

using all of the 16 methods with a time limit of 20 sec on each method

resulted in 99% solved instances. Further, in 40% of all cases one of

the H-methods gave the fastest response, in 22% of all cases one of

the P-methods was the fastest, and the C andA-methods contributed

with 19%.

In Figure 6, the results of this experiment are displayed, plotting

the percentage of solved instances against the maximal CPU time

necessary to solve one instance. The line for the combined strategies

results from multiplying the minimum CPU time to solve a particular

instance by one method with 16, which would be the actual costs if

all methods were applied in parallel.
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Figure 6. The effect of combining strategies orthogonally

One should note that the combination of different search strategies

is completely orthogonal and does not require any communication,

which makes it very well suited for parallel implementations.

8 CONCLUSIONS AND OUTLOOK

We showed that using the ORD-Horn subclass in the backtracking

algorithm proposed by Ladkin and Reinefeld [9] leads to a complete

reasoning algorithm and has—as conjectured in [13]—the effect of

enhancing search efficiency. On instances in the phase transition,

which we have identified in this paper, the ORD-Horn subclass leads

to an additional performance enhancement over the already highly

optimized version [18] of Ladkin and Reinefeld’s [9] backtracking

algorithm. For the hard satisfiable problems described in [18], the

benefit of using the ORD-Horn class is not directly observable. How-

ever, when combining it orthogonally with other search strategies

one notes that by using ORD-Horn some instances become solvable

which are not solvable otherwise.

An interesting question is, whether the orthogonal combination of

search strategies as described above can also lead to a better perfor-

mance in the phase transition region. Another interesting question is,

whether local search methods similar to GSAT [15] can be applied

to temporal reasoning. A direct application of GSAT, however, does

not seem to be promising because translations from Allen’s calculus

to propositional logic lead to a cubic blowup [13].
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