
Reasoning and Revision

in

Hybrid Representation Systems

Bernhard Nebel

Published 1990

by Springer-Verlag, Berlin, Heidelberg, New York

as LNAI 422

Reprinted June 1995

Note

This is a reprint version of the revised version of my dissertation published as

Lecture Notes in Arti�cial Intelligence, Vol. 422, by Springer-Verlag in 1990. I

created this version because the book is out of print since fall of 1994.

This reprint version is almost identical to the book. The page numbering is

di�erent, the format of the bibliography di�ers from the book and the reprint

version does not contain an author index. Otherwise the contents is the same,

however.

As a prospective reader, you should be warned that the thesis has been writ-

ten in 1988 and 1989, i.e., the technical contents does not re
ect the state of the

art. If you are interested in more recent results concerning the topics termino-

logical logics (or description logics, as it is called now) and belief revision, you

should search the proceedings of AAAI, ECAI, IJCAI, and KR and the Arti�cial

Intelligence journal.

In particular, a recent article of my research group at DFKI contains an ex-

tensive comparison of existing terminological systems and gives a lot of pointers

to the recent literature (J. Heinsohn, D. Kudenko, B. Nebel, H.-J. Pro�tlich, An

Empirical Analysis of Terminological Representation Systems, Arti�cial Intelli-

gence: 68(2): 367{397). For an extensive bibliography on description logics you

may want to try the following URL:

http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html

An extensive analysis of syntax-based approaches to belief revision can

be found in my paper \Syntax-Based Approaches to Belief Revision", in P.

G�ardenfors (Hrsg.), Belief Revision, Cambridge Tracts in Theoretical Compu-

ter Science 29, Cambridge University Press, Cambridge, UK, 1992, 52{88.

ii

Preface

The dynamic aspects of knowledge representation systems, namely, reasoning

with represented knowledge and revising represented knowledge, are the most

important aspects of such systems. In this book, these aspects are investigated

in the context of hybrid representation systems based on kl-one.

After a general introduction to knowledge representation, reasoning, and re-

vision, a typical member of the family of hybrid representation systems based

on kl-one is introduced and analyzed from a semantic and algorithmic point

of view. This analysis leads to new complexity results about subsumption de-

termination and a characterization of a proposed hybrid inference algorithm as

conditionally complete. Additionally, it is shown that so-called terminological

cycles can be integrated smoothly into the framework.

Based on the analysis of representation and reasoning in kl-one-based sy-

stems, the revision problem is investigated. A survey of some approaches to belief

revision leads to a reconstruction of symbol-level belief revision on the knowledge

level. A conceptual analysis of terminological revision demonstrates that belief

revision techniques developed for the revision of assertional knowledge are not

adequate for the revision of terminological knowledge. For this reason, a lite-

ral revision approach is adopted. Essentially, it amounts to minimal mutilations

in the literal description of de�nitions. Finally, implementation techniques for

terminological revision operations are described, and the interface problem for a

knowledge acquisition system is discussed.

This book is a revised version of my doctoral dissertation, accepted by the

University of Saarland in June 1989. I am indebted to my thesis advisor Wolfgang

Wahlster, who stimulated my interest in knowledge representation in the �rst

place while I was a member of the HAM-ANS project and who encouraged me

in the following years to carry out the research described here.

Additionally, I would like to express my thanks to all those people without

whom this book would not be what it is now. Foremost, there are my collea-

gues in the KIT-BACK project, Kai von Luck, Christof Peltason, and Albrecht

Schmiedel, with whom it was a pleasure to work and to discuss the issues des-

cribed in this book. In particular, Kai played a driving force by always asking

for the next chapter. Furthermore, I would like to thank Peter G�ardenfors for

making available the manuscript of his book and for his comments on some points

iii

concerning base revision; Otthein Herzog and Claus Rollinger for inviting me to

participate in the LILOG project; Bob MacGregor for a number of discussions and

suggestions, including the hint that realization must be easier than subsumption;

Bernd Mahr for comments on the semantics of cycles; Peter Patel-Schneider for

making the kandor system available and for discussions on semantics and com-

plexity; Klaus Schild for showing me that subsumption in general terminological

languages is undecidable; Jim Schmolze for pointing out that cycles are a serious

problem; J�org Siekmann, who was the second reader of the thesis, for asking the

right questions and giving some valuable hints; Gert Smolka for numerous helpful

discussions on semantic speci�cation, algorithms, and the relationship between

feature logic and kl-one; Norm Sondheimer for inviting me to ISI as a guest

researcher and for showing me how to use kl-two in a natural language system;

Jay Tucker for proof-reading various versions of the thesis (I take credit for any

remaining
aws, of course); Marc Vilain for discussions on realization algorithms;

and a number of other people too many to be listed here.

Most of the work was carried out while I was a member of the KIT-BACK

project at the Technical University of Berlin. The �nal version was written up

while I participated in the LILOG project as a guest researcher at the Scienti�c

Center IBM Germany, Institute for Knowledge-Based Systems, Stuttgart.

iv

Contents

I Representation, Reasoning and Revision { The

Idea 1

1 Introduction 2

1.1 A Dynamic View of Knowledge Bases : : : : : : : : : : : : : : : : 2

1.2 Hybrid Systems Based on KL-ONE : : : : : : : : : : : : : : : : : 3

1.3 An Introductory Example : 4

1.4 Outline : 7

2 Representation and Management of Knowledge 10

2.1 Knowledge and its Representation : : : : : : : : : : : : : : : : : : 10

2.1.1 Knowledge and Data : 12

2.1.2 The Knowledge Level : 13

2.1.3 The Knowledge Representation Hypothesis : : : : : : : : : 14

2.1.4 Three Approaches to Knowledge Representation : : : : : : 16

2.2 Knowledge Representation Formalisms : : : : : : : : : : : : : : : 17

2.2.1 Semantics of Representation Formalisms : : : : : : : : : : 18

2.2.2 Adequacy Criteria : 20

2.2.3 Hybrid Formalisms : 21

2.2.4 Formalizing a Body of Knowledge : : : : : : : : : : : : : : 22

2.3 Knowledge Representation Systems : : : : : : : : : : : : : : : : : 23

2.3.1 The Architecture of Knowledge-Based Systems : : : : : : : 23

2.3.2 Services of Knowledge Representation Systems : : : : : : : 25

2.3.3 Inferential Services : 26

2.3.4 Revision Services : 29

2.4 Knowledge Base Management Systems : : : : : : : : : : : : : : : 30

II Hybrid Representation and Reasoning 34

3 A Hybrid Representation Formalism 35

3.1 Object-Centered Representation : : : : : : : : : : : : : : : : : : : 36

3.1.1 Semantic Networks : 36

3.1.2 Frame Systems : 37

v

3.1.3 Structural Inheritance Networks : : : : : : : : : : : : : : : 39

3.1.4 Terminological Knowledge Representation : : : : : : : : : 43

3.2 The Terminological Formalism TF : : : : : : : : : : : : : : : : : 45

3.2.1 The Syntax of the Terminological Formalism : : : : : : : : 46

3.2.2 The Semantics of the Terminological Formalism : : : : : : 49

3.2.3 Relationships in Terminologies : : : : : : : : : : : : : : : : 52

3.2.4 Normal-Form Terminologies and Constructive Semantics : 53

3.2.5 Abstracting from Term Introductions : : : : : : : : : : : : 59

3.2.6 The Signi�cance of Term Introductions : : : : : : : : : : : 60

3.3 The Assertional Formalism AF : : : : : : : : : : : : : : : : : : : 62

3.3.1 Syntax and Semantics of AF : : : : : : : : : : : : : : : : : 64

3.3.2 Hybrid Entailment and Subsumption : : : : : : : : : : : : 66

3.4 Possible Extensions of the Formalisms : : : : : : : : : : : : : : : 68

3.4.1 Extending the Terminological Formalism : : : : : : : : : : 68

3.4.2 Attributive Descriptions : : : : : : : : : : : : : : : : : : : 70

3.4.3 Extending the Assertional Formalism : : : : : : : : : : : : 70

4 Reasoning in the Formalism 74

4.1 Computing Term-Subsumption : : : : : : : : : : : : : : : : : : : 75

4.1.1 An Algorithm for Subsumption Detection : : : : : : : : : 76

4.1.2 Properties of the Algorithm : : : : : : : : : : : : : : : : : 79

4.2 Analysis of the Term-Subsumption Problem : : : : : : : : : : : : 83

4.2.1 Decidability of Subsumption in NTF

T

: : : : : : : : : : : 83

4.2.2 Computational Complexity of Subsumption in NTF

T

: : : 90

4.2.3 Living with an Incomplete Reasoner : : : : : : : : : : : : 93

4.3 Subsumption in Terminologies Revisited : : : : : : : : : : : : : : 94

4.3.1 The Complexity of the Reduction to Term-Subsumption : 95

4.3.2 Complexity of Subsumption in Terminologies : : : : : : : : 96

4.3.3 E�ciency of Subsumption in Practice : : : : : : : : : : : : 100

4.4 Classi�cation : 101

4.4.1 Assert-Time versus Query-Time Inferences : : : : : : : : : 101

4.4.2 A Classi�cation Algorithm : : : : : : : : : : : : : : : : : : 103

4.4.3 Worst Cases in Classi�cation : : : : : : : : : : : : : : : : : 105

4.5 Hybrid Inferences : 106

4.5.1 Testing Instance Relationships : : : : : : : : : : : : : : : : 106

4.5.2 Realization = Propagation + Abstraction + Classi�cation 108

4.5.3 Model-Based Terminological Reasoning : : : : : : : : : : : 114

4.5.4 Model-Based Reasoning as the Limiting Case of Realization 118

4.6 Evaluation of the Inference Capabilities : : : : : : : : : : : : : : : 122

vi

5 Terminological Cycles 125

5.1 The Intuitions Behind Terminological Cycles : : : : : : : : : : : : 126

5.1.1 Recursively De�ned Finite Object Structures : : : : : : : : 127

5.1.2 In�nite Object Structures : : : : : : : : : : : : : : : : : : 128

5.1.3 Circular Object Structures : : : : : : : : : : : : : : : : : : 129

5.1.4 Primitiveness and Instance Recognition : : : : : : : : : : : 131

5.2 Semantics of Terminological Cycles : : : : : : : : : : : : : : : : : 131

5.2.1 Lattices and Fixed Points : : : : : : : : : : : : : : : : : : 132

5.2.2 Fixed Point Semantics : 134

5.2.3 Descriptive Semantics : 140

5.2.4 Evaluating the Semantics : : : : : : : : : : : : : : : : : : : 141

5.3 Consequences of the Descriptive Semantics : : : : : : : : : : : : : 143

5.3.1 Circular Roles : 144

5.3.2 Component-Circular Concepts : : : : : : : : : : : : : : : : 145

5.3.3 Restriction-Circular Concepts : : : : : : : : : : : : : : : : 146

5.3.4 Semantic and Syntactic Cycles : : : : : : : : : : : : : : : : 147

5.3.5 Finite, Cyclic Semantic Structures : : : : : : : : : : : : : : 150

5.4 Reasoning with Terminological Cycles : : : : : : : : : : : : : : : : 154

III Revision 157

6 Belief Revision 158

6.1 Problems in Belief Revision : 159

6.2 The Logic of Theory Change : 161

6.2.1 Expansion, Contraction, and Revision : : : : : : : : : : : : 161

6.2.2 Full Meet Contraction : 163

6.2.3 Maxichoice Contraction : : : : : : : : : : : : : : : : : : : 165

6.2.4 Partial Meet Contraction : : : : : : : : : : : : : : : : : : : 166

6.3 Changes of Finite Theory Bases : : : : : : : : : : : : : : : : : : : 167

6.3.1 Logical Data Bases and Diagnosis : : : : : : : : : : : : : : 168

6.3.2 Base Contraction is a Partial Meet Contraction : : : : : : 169

6.3.3 Epistemic Relevance and Reason Maintenance : : : : : : : 171

6.3.4 Representational and Computational Issues : : : : : : : : 174

6.4 Model-Theoretic Updates : 176

6.4.1 Minimal Perturbation of Models : : : : : : : : : : : : : : : 176

6.4.2 Nonminimal Model-Theoretic Updates : : : : : : : : : : : 178

6.5 Nonmonotonic Reasoning : 180

6.5.1 Circumscription : 181

6.5.2 Default Theories : 181

6.5.3 Default Theories, the Logic of Theory Change, and the

Knowledge Base Revision Problem : : : : : : : : : : : : : 183

6.6 Reason-Maintenance Techniques : : : : : : : : : : : : : : : : : : : 184

vii

6.6.1 Monotonic Data-Dependency Networks : : : : : : : : : : : 185

6.6.2 Nonmonotonic Data-Dependency Networks : : : : : : : : : 189

6.6.3 Justi�cation-Based Reason Maintenance : : : : : : : : : : 192

6.6.4 Assumption-Based Reason Maintenance : : : : : : : : : : 194

6.6.5 Utilizing Reason-Maintenance Techniques in Knowledge

Base Revision : 195

7 The Revision Problem in Terminological Systems 197

7.1 Terminologies in Flux : 197

7.1.1 Terminologies, Analytic Knowledge, and Revisions : : : : : 198

7.1.2 General Principles for Knowledge Base Revision : : : : : : 200

7.1.3 Problems in Revising a Terminology : : : : : : : : : : : : 202

7.2 Previous Solutions : 202

7.2.1 Network Editing Approaches : : : : : : : : : : : : : : : : : 203

7.2.2 Knowledge Base Editing : : : : : : : : : : : : : : : : : : : 204

7.2.3 Adding and Deleting De�nitions : : : : : : : : : : : : : : : 207

7.2.4 Modi�cations Viewed as Additions : : : : : : : : : : : : : 210

7.2.5 A Functional, Knowledge-Level Approach : : : : : : : : : 211

7.3 A Framework for Terminological Revision : : : : : : : : : : : : : : 213

7.3.1 Terminological Revision Viewed as Belief Revision : : : : : 214

7.3.2 Terminological Revision as Revision of Literal De�nitions : 215

7.3.3 Properties of the Literal Revision Approach : : : : : : : : 218

7.4 Revision in Hybrid Representation Systems : : : : : : : : : : : : : 222

8 Terminological Reason Maintenance 225

8.1 Incremental Classi�cation : 226

8.1.1 What Kind of Reason Maintenance Do We Need? : : : : : 227

8.1.2 Recording and Justifying Terminological Inferences : : : : 227

8.1.3 Redundancy and Functional Equivalence : : : : : : : : : : 229

8.2 Invariants of Revision Operations : : : : : : : : : : : : : : : : : : 230

8.2.1 Terminologies Related by Revision Operations : : : : : : : 231

8.2.2 Making a Primitive Concept De�ned : : : : : : : : : : : : 232

8.2.3 Adding an Expression to a Concept De�nition : : : : : : : 233

8.2.4 Exploiting the Invariants in Reclassi�cation : : : : : : : : 234

8.3 Supporting Knowledge Acquisition : : : : : : : : : : : : : : : : : 235

9 Summary and Outlook 239

9.1 Technical Contributions : 239

9.2 Open Problems : 241

A The Universal Term-Forming Formalism U 243

B Overview of Formalisms and Systems 245

viii

Bibliography 250

Index 275

ix

List of Figures

1.1 Informal Example of a Terminological Knowledge Base : : : : : : 5

1.2 Graphical Depiction of the Example Knowledge Base : : : : : : : 6

2.1 Architecture of Knowledge-Based Systems : : : : : : : : : : : : : 24

3.1 A Simple Concept Taxonomy : 42

3.2 Examples of Role Restrictions and Di�erentiations : : : : : : : : : 43

3.3 bnf De�nition of TF : 47

3.4 A Formal Terminology Using TF Syntax : : : : : : : : : : : : : : 49

3.5 bnf De�nition of NTF : 72

3.6 bnf De�nition of AF : 72

3.7 A Formal World Description Using AF Syntax : : : : : : : : : : : 73

4.1 Role-Chain Length Pruning : 85

4.2 Unfolding of Assertional Cycles : : : : : : : : : : : : : : : : : : : 86

4.3 Splitting of Shared Elements : 87

4.4 A Pathological Terminology Leading to an Exponential Explosion 95

4.5 A Worst-Case Terminology for Classi�cation : : : : : : : : : : : : 105

4.6 A Hybrid Inference Ignored by the Realization Algorithm : : : : : 113

5.1 Circular De�nition of Man and Male-human : : : : : : : : : : : : : 126

5.2 Recursive De�nition of Binary-tree : : : : : : : : : : : : : : : : : : 127

5.3 Some Object Structures Satisfying the De�nition of Binary-tree : : 127

5.4 Humans and Parents : 128

5.5 De�nition of Human and Parent Using Cycles : : : : : : : : : : : : 128

5.6 Object Structures Intended by the De�nition of Human : : : : : : 129

5.7 Circular De�nition of Car and Car-engine : : : : : : : : : : : : : : 130

5.8 Object Structures Intended by the De�nition of Car and Car-engine 130

5.9 Humans, Horses and Centaurs : 139

5.10 General Restriction-Circular Concepts : : : : : : : : : : : : : : : 147

5.11 Syntactic and Semantic Cycles : 149

6.1 A Simple Data-Dependency Network : : : : : : : : : : : : : : : : 186

6.2 A Cyclic Justi�cation Structure : : : : : : : : : : : : : : : : : : : 188

6.3 A Nonmonotonic Data-Dependency Network : : : : : : : : : : : : 191

x

6.4 Odd and Even Nonmonotonic Loops : : : : : : : : : : : : : : : : 192

7.1 A Missing Superconcept Relationship : : : : : : : : : : : : : : : : 206

7.2 Two Terminologies Equivalent on the Knowledge Level : : : : : : 213

xi

List of Tables

8.1 Invariants of Revision Operations : : : : : : : : : : : : : : : : : : 232

B.1 Complexity Results for Various Term-Forming Languages : : : : : 246

B.2 Features of Hybrid Systems Based on kl-one : : : : : : : : : : : 248

B.3 Features of Hybrid Systems Based on kl-one (continued) : : : : 249

xii

Part I

Representation, Reasoning and

Revision { The Idea

1

Chapter 1

Introduction

One of the key assumptions in Arti�cial Intelligence is that intelligent behavior

requires vast amounts of knowledge. Therefore, any computer system supposed

to exhibit some form of intelligent behavior has to provide means for representing

knowledge and drawing conclusions from it. This makes the study of knowledge

representation a central �eld in Arti�cial Intelligence.

Main research topics in knowledge representation are the development of for-

malisms capable for explicating knowledge and the design of systems which apply

the explicated knowledge inside of a computer e�ectively { systems which reason

with the represented knowledge. If knowledge were a static entity, there would

be nothing left to do. However, as it turns out, we are constantly confronted with

new discoveries (for example, of our own mistakes) and a changing world { thus,

the represented knowledge has to be revised.

1.1 A Dynamic View of Knowledge Bases

One view of knowledge representation focusses on the static aspects of represented

knowledge. This includes the question of what kind of formal language we should

use to represent a given body of knowledge and how we can assign meaning to

the expressions of the formal language. Although such questions are important,

it turns out that the real work begins after we have answered those questions.

If we have committed ourselves to a semantics of a knowledge representation

language, it usually turns out that what is stored explicitly in a knowledge base is

only a fraction of what is represented implicitly. In fact, if this were not the case,

we would not talk about knowledge representation but about data-structures.

In a nutshell, knowledge representation and reasoning are two sides of the same

coin. This introduces one of the dynamic aspects of knowledge bases. How do we

derive knowledge represented only implicitly, and how do we control the amount

of computational resources dedicated to this purpose? Although we are interested

in discovering all things implied by some body of knowledge stored in a knowledge

2

base, this turns out to be impossible in most cases. This is true even in cases

when we are only interested in some seemingly \simple" relationships. Half of

this book deals with the reason for this fact and how to characterize reasoning

processes in this context.

The other half is devoted to another aspect of the dynamics of knowledge

bases, namely, the way knowledge bases are changed. Supporting the revision of

knowledge bases is a crucial topic in building increasingly larger knowledge-based

systems. How important this issue is might become apparent upon considering

how much e�ort is spent in maintaining realistic knowledge bases, for instance, the

r1 knowledge base

[

Bachant and McDermott, 1984

]

. This problem, however, does

not only come up in systems when they are applied in real world situations. Even

systems in research environments are \su�ering" from large knowledge bases. For

example, the knowledge base used in the janus project

[

Sondheimer and Nebel,

1986

]

, contains 850 concepts and 150 relationships between concepts, and the

knowledge base used in the fame system contains over 1500 concepts with an

average of 25 relationships per concept

[

Mays et al., 1988

]

. However, this is just

the beginning. There is evidence for the fact that for any domain of expertise

70,000 � 20,000 chunks of knowledge are necessary

[

Reddy, 1988, p. 14

]

.

Clearly, such an amount of represented knowledge cannot be handled merely

by pencil, paper, and concentration. The usual answer is to employ some sort

of knowledge base editor, such as kreme

[

Abrett and Burstein, 1987

]

. These

systems usually directly manipulate the data-structures used to implement the

knowledge base. A more principled solution is, of course, to divide the task

of revising a knowledge base into a formal task which is concerned only with

formal manipulations of the expressions in the knowledge base { based on the

semantics of those expressions { and another task responsible for the interaction

with a human user. Such a distinction would open up the way to use the �rst

subtask for purposes other than just knowledge base editing { for instance, it

might be used inside a machine learning system { and it would also enhance our

understanding of the general process of revising knowledge bases.

1.2 Hybrid Systems Based on KL-ONE

The two problems sketched above will be investigated in the context of the family

of hybrid systems based on kl-one

[

Brachman and Schmolze, 1985

]

. This family

includes, for instance, kl-two

[

Vilain, 1985

]

, krypton

[

Brachman et al., 1985

]

,

and back

[

Nebel and von Luck, 1988

]

. Any such hybrid system consists of at

least two subsystems: a terminological representation system (the TBox) and an

assertional representation system (the ABox). The former subsystem is concerned

with representing the terminology and relationships between terms, the latter is

used to describe the world by making assertions.

All these systems employ representation formalisms with quite well-de�ned

3

semantics { a property which distinguishes them from many other representation

systems, such as krl

[

Bobrow and Winograd, 1977

]

, frl

[

Roberts and Goldstein,

1977

]

, kodiak

[

Wilensky, 1984

]

, and kee

[

IntelliCorp, 1985

]

. However, having a

well-de�ned semantics does not imply that the associated reasoning processes are

well-understood. Although much research e�ort has been devoted to this subject

in recent years, it turns out that there are still a number of unexplored areas and

ignored issues. Based on the experience I gained in the development of the back

system, these points will be analyzed, which will lead to some new and interesting

insights into the reasoning processes in hybrid systems based on kl-one.

While reasoning in kl-one-based systems has been investigated before, revi-

sion has usually been neglected in such systems. Patel-Schneider, for instance,

pointed out that in kandor, another member of the family mentioned, knowl-

edge base revision has been left out \: : :partly because its semantics are unclear

and partly because it is computationally expensive to perform"

[

Patel-Schneider,

1984, p. 15

]

.

One e�ort to integrate knowledge base revision in hybrid systems based on kl-

one is the kl-two system

[

Vilain, 1985

]

. kl-two consists of the terminological

representation system nikl

[

Moser, 1983

]

and the reason maintenance system

rup

[

McAllester, 1982

]

, which is used as the assertional component. This special

architecture permits revision of the assertional knowledge, but not the revision

of terminological knowledge.

My personal experience in both working with such a system

[

Sondheimer and

Nebel, 1986

]

and developing one

[

Nebel and von Luck, 1987

]

has convinced me,

however, that a theoretically clean and principled solution supporting revision of

assertional and terminological knowledge is needed.

1.3 An Introductory Example

In order to make things a little more concrete, a small, informal example might

be appropriate to demonstrate where reasoning and revision come into play and

how they are interrelated. Let us assume that the bureaucrats who manage your

research department throw away the old-fashioned relational database system

and put a brand-new advanced knowledge representation system in charge of

supporting the management of the department. This is perhaps an unexpected

use. Nevertheless, it seems worthwhile to consider such applications.

Assume that for the purpose of managing the department, it is necessary to

classify all projects which are currently running. Let us further assume that the

bureaucrats have introduced the terminology in Fig. 1.1.

Terms intended to describe classes of individuals (e.g. Small-team) will be cal-

led concepts (using the notions and terms introduced in

[

Brachman and Schmolze,

1

I will use this font when referring to symbols of a knowledge base in order to avoid confusion

between the formal meaning of a term and the ordinary meaning of the word.

4

A Man

1

is a

Human.

A Woman is a

Human.

No Man is a Woman, and vice versa.

A Team is (de�ned as) a

Set with at least 2 members which are all Humans.

A Small-team is (de�ned as) a

Team with at most 5 members.

A Modern-team is (de�ned as) a

Team with at most 4 members and

with at least 1 leader, which is a member, and

all leaders are Women.

Figure 1.1: Informal Example of a Terminological Knowledge Base

1985

]

). Concepts introduced with the phrase \a X is (de�ned as) a : : :" are cal-

led de�ned concepts. These concepts are introduced by giving all necessary and

su�cient conditions, i.e., any individual satisfying the associated description will

be considered as a member of the class the concept denotes. All other concepts

are called primitive concepts; the associated descriptions name only the necessary

conditions.

Terms intended to denote relationships between individuals (e.g. member) are

called roles.

2

Restrictions on roles are used to de�ne concepts. For instance,

the de�nition of Small-team means that an individual i is a member of the class

denoted by the concept Small-team if and only if the individual i belongs to the

class denoted by Team and if there are at most �ve other individuals being in the

member relationship to i.

A visualization of the relations between the terms of our small terminology

is given in Fig. 1.2. The similarity of this network to a special class of semantic

networks { structural inheritance networks

[

Brachman, 1977

]

{ is not incidental,

but intended. Terminological knowledge representation has its roots there.

Note that Fig. 1.2 does not simply depict the terminology in Fig. 1.1, but

shows a couple of inferred properties as well. For instance, the specialization

relationship { called subsumption { (depicted by a double-lined arrow) between

the concepts Small-team and Modern-team, which is only implicit in Fig. 1.1, is

made explicit in the graphical depiction. Furthermore, the role restrictions are

all completed according to obvious inheritance rules.

2

In order to distinguish roles and concepts lexically, role names are written in lowercase and

concept names are capitalized.

5

�

�

�

�

Modern-team

�

�

�

�

Small-team

�

�

�

�

Team

�

�

�

�

Set

�

�

�

�

�

Woman

�

�

�

�

�

Man

�

�

�

�

�

Human

�

�

�

@

@

�

�

@

@

�

�

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

�

�

P

P

g g �

disjoint

i

leader 1{4

-

i

member 2{4

�

�

�

�

�

�

�

�

�

�

��

6

di�

i

member 2{5

�

�

�

�

�

�

�

�

�3

i

member 2{1

-

Figure 1.2: Graphical Depiction of the Example Knowledge Base

While this gives us a �rst indication of where reasoning comes into play, the

role of reasoning becomes more obvious when propositions about entities in the

world are added. Assume that the knowledge base of our bureaucrats contains the

fact that the object TEAM-A

3

is a Modern-team with TOM, DICK, HARRY, and

KIM as members, and that they are all Men. Obviously, we have an inconsistency.

At least one of the membersmust be aWoman. Supposing that KIM is theWoman

{ and thus also the leader { we can infer that TEAM-A must be a Small-team,

although nobody speci�ed this explicitly. All this looks very easy and natural,

but, as we will see, specifying general inference algorithms which come to the

same conclusions presents considerable problems.

Ignoring these di�culties for a while, let us assume that the terminology has

to be changed. This might be necessary because the knowledge base contains an

error, because the knowledge base has to be adapted for new purposes, or because

laws have changed. For instance, the following revision requests are reasonable:

� Because the classi�cation scheme changes, a Small-team is rede�ned as a

Team with at most 3 members. Should this imply that a Modern-team is no

longer a Small-team?

� Somebody changes his mind about what a Modern-team is. He thinks that

3

Identi�ers denoting \real-world objects" are written in uppercase.

6

a Modern-team can have up to ten members. Should such a revision request

result in the automatic removal of the original restriction on the member

role?

� One of the more sexist bureaucrats changes the de�nition of Modern-team so

that all members have to be Men. What should be done with such a revision

operation? Obviously, no Modern-team could satisfy such a description

because at least one member has to be a Woman { the leader.

� For legal reasons, the distinction between Man and Woman is dropped.

Thus, the corresponding concepts are deleted. How should we update the

de�nition of Modern-Team?

� Since it becomes necessary to have information about children of employees,

we would like to add to the knowledge base the fact that all o�spring of

Humans are Humans as well. Does such a change make sense? Are circularly

de�ned concepts meaningful?

Some of the problems are obviously of a pragmatic nature, i.e., what intenti-

ons do revision requests have? Others are concerned solely with semantics and

reasoning, e.g. the last one. However, even if we are able to straighten out these

problems, there is still the problem of e�ciently maintaining the knowledge base

so that it re
ects the intended meaning. Moreover, there is the question of how

interactions between the revision of assertional and terminological knowledge

should be handled.

1.4 Outline

Chapter 2 contains a short excursion through the land of knowledge representa-

tion in order to provide a background for the following discussions. This includes

the introduction of some important notions and some lines of argumentation I

will rely on { arguments which could be summarized as the logical point of view.

We will also take a quick view of what is called Knowledge Base Management

Systems nowadays and relate our work to it.

Backed up with arguments from Chap. 2, representation and reasoning in

hybrid systems based on kl-one is investigated in Part II. Chapter 3 introduces

one particular hybrid knowledge representation formalism based on kl-one. A

brief historical account of terminological knowledge representation including an

intuitive approach to this kind of knowledge representation is followed by a formal

treatment. In particular, it is shown how to reduce the problem of determining

subsumption between concepts in a terminology to the problem of determining

subsumption between terms. Additionally, a simple assertional representation

formalism is introduced, a uni�ed model-theoretic semantics for the resulting

7

hybrid formalism is speci�ed, and possible inferences are sketched. The chapter

closes with a discussion of some conceivable extensions and relates terminological

formalisms to other, similar formalisms.

Having a knowledge representation formalism is one thing. Getting the com-

puter to reason with it is another thing. Chapter 4 is devoted to this subject.

Some implementation techniques are described, and the computational comple-

xity is analyzed, which reveals new insights about reasoning in such systems. In

Sect. 4.2, an analysis of the computational complexity of the subsumption problem

shows that a complete and computationally tractable subsumption algorithm for

the term-forming formalism introduced in Chap. 3 is impossible. Furthermore,

in Sect. 4.3 it is shown that subsumption in almost any terminological formalism

is intractable in the formal sense, but well-behaved in practice. In Sect. 4.5, an

interesting type of hybrid inferences which has been neglected by all other similar

systems based on kl-one is studied. Integrating this type of inference results

in a complete hybrid inference algorithm in the limiting case that canonical mo-

dels can be identi�ed { which enables us to the characterize the hybrid inference

algorithm as conditionally complete.

With these two chapters, we could close the discussion on representation and

reasoning in hybrid representation systems. However, terminological represen-

tation formalisms, as viewed so far, contain a semantic gap: Circular concept

introductions are not sanctioned because they create a number of problems from

a semantic and algorithmic point of view. Instead of subscribing to the traditio-

nal point of view in this matter, this semantic gap will be removed in Chap. 5

since terminological cycles often seem to be useful and, more importantly, may

easily be created when revising a terminological knowledge base. The intuitive

semantics of terminological cycles are studied, and di�erent formal semantics

are investigated. What I call descriptive semantics seems to cover our intuitions

best and, for this reason, will be adopted and used to derive an extension of the

basic inference algorithm.

Part III of the book tackles the revision problem. Chapter 6 introduces the

topic of belief revision. Current approaches to belief revision in the areas of

the dynamics of epistemic states, database theory, nonmonotonic reasoning, and

reason maintenance systems are surveyed. In the course of the study of these to-

pics, an interesting result concerning the relation between the revision of symbol-

level knowledge bases and knowledge-level knowledge bases will be presented in

Sect. 6.3. It is shown that the former can be reconstructed as belief revision

on the knowledge-level, taking into account the notion of epistemic relevance.

Based on this result, I will argue that, from a theoretical point of view, reason

maintenance need not to be integrated as a primitive notion into a theoretical

framework of belief revision. Nevertheless, on the implementational level, this

is an important notion. Surveying work done in the area of reason maintenance

systems, some points critical for revision of assertional knowledge are identi�ed.

Equipped with a thorough understanding of terminological knowledge repre-

8

sentation, the accompanying reasoning processes, and the theory of belief revision,

we are prepared to tackle the revision problem in terminological representation

systems. Chapter 7 starts o� with a discussion of principles any knowledge base

revision system should follow and a description of the conceptual problems in re-

vising terminological knowledge, followed by a survey of approaches to knowledge

base revision in terminological representation systems pursued so far. Re
ections

about the pragmatics of terminological knowledge bases �nally lead us to a speci-

�cation of a revision facility based on minimal changes of literal de�nitions. The

chapter closes with an outlook on revision in hybrid systems involving assertional

and terminological knowledge.

The techniques necessary to implement terminological revision operations e�-

ciently are described in Chap. 8. In essence, they amount to employing a reason-

maintenance system. However, because an approach based solely on such a sy-

stem would be too expensive in terms of computational costs, a balanced solution

is chosen which employs a data-dependency network as well as optimizations de-

rived from semantic properties of revision operations. Finally, we will discuss

how a knowledge acquisition system can make use of the knowledge base revision

facility.

9

Chapter 2

Representation and

Management of Knowledge

Knowledge, its representation and its management play a central role in Arti�cial

Intelligence. However, it cannot be said that the views and approaches in this �eld

are converging. As Brachman and Levesque

[

1985

]

pointed out in the introduction

of an anthology of papers on knowledge representation, there is no textbook

available on this subject, and, probably, it would be impossible to write one at

this point.

The following sections certainly cannot compensate for this de�ciency. Howe-

ver, what I will try to achieve is a presentation of my basic assumptions about

what knowledge representation amounts to. These assumptions can be roughly

characterized as the logical point of view. Additionally, in the last section, I will

brie
y relate my work to what is called Knowledge Base Management Systems.

2.1 Knowledge and its Representation

Research in Arti�cial Intelligence (henceforth AI) started o� by trying to identify

the general mechanisms responsible for intelligent behavior. One instance for this

line of research is the General Problem Solver

1

gps

[

Ernst and Newell, 1969

]

.

The main paradigm was that \One had not to `cheat' by `giving' the problem-

solver the solution in any sense" as Hayes

[

1974

]

characterized it. However, it

quickly became obvious that general and powerful methods are not enough to

get the desired result, namely, intelligent behavior. Almost all tasks a human

can perform which are considered to require intelligence are also based on a

huge amount of knowledge. For instance, understanding and producing natural

1

This system is not only an example of the mentioned paradigm, but also a very striking

instance of what D. McDermott

[

1976, p. 4

]

calls the fallacy of \wishful mnemonics": \: : : it

originally meant `General Problem Solver,' which caused everybody a lot of excitement and

distraction. It should have been called LFGNS { `Local-Feature-Guided Network Searcher'."

10

language heavily relies on knowledge accumulated during our life time, knowledge

about the language, about the structure of the world, social relationships etc.

Therefore, it seems to be inevitable that this knowledge must be utilized in some

way.

The most straightforward solution would be that the programmer of an AI

system just \programs the knowledge into the system," using an AI program-

ming language, such as lisp

[

Winston and Horn, 1981

]

or prolog

[

Clocksin

and Mellish, 1981

]

. The outcome of this e�ort would be a system based on the

knowledge of its programmer, a \knowledge-based" system. However, something

seems fundamentally wrong with this solution: we are giving up on generality.

Although the program might exhibit an interesting intelligent behavior in some

special �eld, we get no hints of how general the solution is, whether it can be

moved to other application areas, or how it relates to intelligence (whatever that

may be). We { and the system as well { may even be unable to explain which

knowledge is responsible for a particular system behavior. Thus, such an ap-

proach precludes the realization of something like an explanation facility for such

a system, a capability often explicitly required for complex systems

[

Wahlster,

1981

]

. Furthermore, there seems to be no di�erence from other programming

activities in computer science.

2

Of course, knowledge in AI is utilized in a di�erent way, and here knowl-

edge representation (henceforth KR, or simply representation) comes into play.

Knowledge is not just programmed into a system, but explicitly and declaratively

represented by using some kind of formal language { a KR formalism. Explicit

means that the system architecture contains an explicit knowledge base (hence-

forth KB), which, in turn, contains expressions of the KR formalism. These

expressions describe in a (more or less) declarative way the knowledge the sy-

stem relies on to solve a given problem. Only if these conditions are met, we call

a system knowledge-based

[

Brachman and Levesque, 1985, p. xiv

]

.

This characterization implies a couple of other properties a KB and a knowl-

edge-based system must possess. However, it also leaves some questions unans-

wered, namely:

� What is the relationship between knowledge and represented knowledge?

This includes a question of what the nature of knowledge is (from the point

of view of AI).

� What are the necessary properties of KR formalisms? Stated in another

way, is any formal language a KR formalism?

� What does declarativity mean, or, stated di�erently, where do expressions

get their meaning from?

2

Although such a view is possible

[

Stoyan, 1987

]

, I believe that there are a number of

di�erences, which hopefully become obvious in this chapter.

11

� What are the services a system manipulating represented knowledge should

provide?

� What are the appropriate techniques to implement a system dealing with

represented knowledge { a KR system?

2.1.1 Knowledge and Data

One way of approaching the question of what knowledge is might be to contrast

the notion of data as understood in the data-base �eld with knowledge as used in

AI. Wiederhold

[

1986, p. 79

]

characterizes the di�erence in the following way:

If we can trust an automatic process or clerk to collect the material

then we are talking about data. : : :

If we look for an expert to provide the material then we are talking

about knowledge. Knowledge includes abstraction and generalization

of voluminous data. : : :

This point of view, however, is in
uenced by the systems Wiederhold

[

1986,

p. 78

]

intends to describe, namely, information systems \to be used for decision-

making in enterprises". Furthermore, the characterization seems to be in
uenced

by one very prominent kind of AI systems: expert systems

[

Waterman, 1986

]

.

Even though it often might seem that AI consists mainly of research in this �eld,

in particular if AI is seen from the outside, representation of expert knowledge

is only one topic. For instance, AI and KR are very much concerned about

the representation of common-sense knowledge

[

Hobbs and Moore, 1985

]

, which,

apparently, is possessed not only by experts. Additionally, as Wiederhold himself

admits, the de�nition is only of a pragmatic nature. The distinction between

what knowledge is and what data is may change according to who is interpreting

the information.

Wong and Mylopoulos

[

1977, p. 344

]

tried to characterize the di�erence indi-

rectly by specifying what is stored in knowledge bases and data bases. Knowledge

bases will

include large amounts of abstract knowledge : : : and a small amount

of (less interesting) concrete knowledge : : :

while data bases

were designed mostly for concrete knowledge, and the modelling me-

thods were inadequate for representing abstract knowledge.

Here again, we meet the distinction between raw data (by the way, what does

raw data really mean?) and abstractions. However, it is clearly spelled out that

both are considered as some kind of knowledge.

12

Obviously, it does not give a satisfying answer to our question. The only hint

we got is that data stored in data bases could be viewed as represented knowledge,

albeit a very limited sort. All in all, it does not seem that this small excursion

into the data-base �eld contributed to any deeper understanding of knowledge or

how it could be represented.

2.1.2 The Knowledge Level

If in AI the term represented knowledge is used, it most often refers to the ex-

pressions of a KR formalism. In addition to that, of course, there must be some

processes using the KR expressions which assign the (structural, internal) mea-

ning to the expressions

[

Barr and Feigenbaum, 1979, p. 143

]

:

We can say, metaphorically, that a book is a source of knowledge, but

without a reader, the book is just ink on paper. Similarly, we often

talk about of the list-and-pointer data structures in an AI data-base

as knowledge per se, when we really mean that they represent facts or

rules when used by a certain program to behave in a knowledgeable

way.

This leads to a totally di�erent perspective on knowledge and data than the one

in the last subsection, namely, something like

Knowledge = Data + Interpreter

This sounds simple and plausible, but it is quite misleading. Consider, for in-

stance, two di�erent Data/Interpreter pairs. Are they necessarily di�erent bodies

of knowledge? Even if they behave identically? Certainly not.

Knowledge does not seem to be describable in mechanical terms. It seems to

be a property we ascribe to an agent when it is acting. And this ascription is

not just arbitrary or accidental, but rather serves as an important abstraction

which permits the explanation of behavior. If we observe someone we consider as

a rational agent, we may explain the agent's actions in the following way

[

Newell,

1982, pp. 105

]

:

1. The rational agent has some knowledge about the environment and how it

could be a�ected by actions.

2. The rational agent has some goals (also a kind of knowledge).

3. Then the agent's actions are based on the knowledge and aimed at achieving

some of the goals.

This explanation does not give us any predictive power because we do not

know what will happen in the case of con
icting goals, when goals can be achie-

ved by di�erent actions, or in the case of inaccurate knowledge. It is more a

13

competence-like notion. Nevertheless, it permits us to characterize knowledge in

an important way

[

Newell, 1982, p. 105

]

:

Knowledge is to be characterized entirely functionally, in terms of

what it does, not structurally, in terms of physical objects with parti-

cular properties and relations. This still leaves open the requirement

for a physical structure that can �ll the functional role.

Newell

[

1982, p. 99

]

goes as far as postulating an additional computer system

level distinct from all other levels (as the symbol level, the register-transfer level,

etc.) { the knowledge level:

There exists a distinct computer system level, lying immediately above

the symbol level, which is characterized by knowledge as the medium

and the principle of rationality as the law of behavior.

Although this level has some very weird properties compared with other com-

puter system levels { it is only approximative, there exist no laws of composition,

etc., and therefore its existence may be arguable { it does give us the opportunity

to analyze knowledge at a very abstract level. Furthermore, KR systems can also

be analyzed at this level. Instead of going into the details of how knowledge

is represented symbolically in a particular KR system we may just view it on

the knowledge level and ask how it behaves on particular inputs. This enables

us, for instance, to compare such di�erent representation formalisms as semantic

networks as described in Sect. 3.1.1, frame systems as sketched in Sect. 3.1.2,

production-rule systems, relational data base system, etc. Certainly, we cannot

perform the comparison without an appropriate analytical tool. Newell

[

1982,

p. 121

]

suggests for that purpose logic:

Just as talking of programmer-less programming violates truth in

packaging, so does talking of non-logical analysis of knowledge.

If anybody has the feeling that, besides the fact that the term knowledge was

used very often above, the ideas sound very familiar and similar to abstract data

types

[

Liskov and Zilles, 1974

]

, he or she is not completely misled. As a matter of

fact, Levesque

[

1984a

]

describes KBs on the knowledge level in terms of abstract

data types using two operations: tell to add more knowledge to a KB and ask

to query the KB.

2.1.3 The Knowledge Representation Hypothesis

In agreeing with the above point of view, we may arrive at the question of how

it is possible to �nd a way to represent knowledge, this rather abstract object.

Although there is, or at least was, a broad diversity of opinions of what represen-

tation of knowledge amounts to, as Brachman and Smith

[

1980

]

concluded from

14

a questionnaire, there seems to be at least one common assumption, namely, that

\knowledge is representational." That means �rst, if we \know something," then

there is an object of our knowledge, i.e., we know something about some particu-

lar entity.

3

Second, this knowledge can be in some way symbolically encoded,

4

and if the knowledge is applied then the symbols are manipulated without regard

to the entities the symbols refer to. This point of view is spelled out by Brian C.

Smith

[

1982, p. 2

]

as the Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be comprised of

structural ingredients that a) we as external observers naturally take

to represent a propositional account of the knowledge the overall pro-

cess exhibits, and b) independent of such external semantical attri-

bution, play a formal but causal and essential role in engendering the

behavior that manifests that knowledge.

Whether we subscribe to this point of view in the strong version { any knowl-

edge is representational { or in a weak version { knowledge is possibly representa-

tional { or whether we deny both as, for example, Dreyfus

[

1981

]

does,

5

we have

to admit that

� AI and the paradigm of KR has some success. Expert systems, a now very

popular species of knowledge-based systems, proved that KR can be applied

successfully.

� If we want to build \smarter computer systems" { one goal of AI

[

Winston,

1984, p. 3

]

{ it seems that we really do not have a better hypothesis today

than Smith's.

� Even if the hypothesis may be wrong for the human as a whole, the analysis

of mind { another goal of AI { can rest on this hypothesis, provided that

some signi�cant aspect of thought can be understood in this way

[

Hauge-

land, 1985, pp. 246{254

]

.

To summarize, the knowledge representation hypothesis seems to be

reasonable.

6

If we accept the hypothesis as a base for further investigation (and

we will do so in the following), this yields some consequences. An important

3

Entity here is meant to be a very general category. It could be an existing object in the

world, relationships between objects, nonexistent objects, ideas, events, etc.

4

This is not a commitment to any particular kind of representation, e.g. propositional or

analogical, or whatever

[

Hayes, 1974; Levesque, 1986

]

, as Schefe

[

1982, p. 43

]

seems to assume.

5

Dreyfus denies that knowledge can be representational. He argues that intelligence instead

depends on skills acquired by practice and training and that this cannot be formalized.

6

Furthermore, no empirical evidence or arguments, in particular by connectionists

[

Rumel-

hart and McClelland, 1986

]

, show that the hypothesis is mistaken. On the contrary, it seems

likely that connectionism will have to adopt organizing principles that resemble the knowledge

representation hypothesis

[

Chandrasekaran et al., 1988

]

.

15

one is that KR is a kind of reconstruction of human knowledge.

7

We do not di-

rectly represent the human knowledge by a mapping from \objects of the mind"

to expressions of some KR formalism (in the �rst place), but instead we try to

establish a system which is functionally similar to human knowledge.

2.1.4 Three Approaches to Knowledge Representation

In the extreme, a KR formalism could be viewed as \mentalese" (as B. C. Smith

[

1982, p. 3

]

termed it), the language our mind uses. Of course, nobody holds this

view. We are just too far away from a complete understanding of what is going

on in our brain.

Nevertheless, in KR, as well in AI in general, there are at least two di�erent

intentions in working out solutions. One is to build performance systems, i.e.,

systems which act intelligently. In this case, only engineering principles are im-

portant in building a system (let us call it the engineering perspective). The other

intention is to get insights into the mind. Here, the physical structure of a process

is much more important for the realization of a solution than before. In fact, the

structure of the system is considered to be more important than the system's

being used for some purpose (this is usually called the cognitive perspective).

Examples of these two di�erent approaches are ham-rpm

[

von Hahn et al.,

1980

]

, a natural language system which was used to investigate the cognitive abili-

ties of an agent engaging in a natural language dialog, and ham-ans

[

Hoeppner

et al., 1983

]

, a natural language access system to di�erent background systems.

These two systems present also a good example for the fact that even though

the goals seem to be fundamentally di�erent both approaches are fertilizing each

other: ham-ans is the descendant of ham-rpm. Another good example of cross-

fertilization in the �eld of KR are production-rule systems. In the early days of

AI, they were used as a tool for demonstrating some cognitive properties; later

on, they were employed by expert systems

[

Davis and King, 1984

]

.

The reasons for this cross-fertilization are obvious. In trying to build an AI

performance system, we have to create at least a human-friendly interface, often

resulting in a human-like interface. In a natural language system, for instance,

we have to account for misunderstandings

[

McCoy, 1984

]

. Furthermore, instead

of interpreting a question literally, we had better infer the intention of the human

questioner and answer appropriately

[

Marburger and Wahlster, 1983

]

.

In research oriented around cognition, on the other hand, it is known that the

human mind does extraordinarily well on cognitive tasks, so that a good engi-

neering solution might show us the way to the structure we are looking for. An

example of this, at least partly, is the work of Winograd

[

1972

]

. Of course, an

7

An observation also mentioned by Schefe

[

1982

]

leading him to coin the term knowledge

reconstruction. We, however, will stick to the established terminology and will continue to use

the term knowledge representation.

16

e�cient solution is not enough. Often, timing considerations and the ability to

produce human-like failures are also important in evaluating a solution

[

Christal-

ler, 1985, pp. 9�

]

.

Returning to our subject { knowledge representation { we can identify ano-

ther perspective which does not �t into the scheme established so far. I would

like to call that the epistemological perspective

[

McCarthy and Hayes, 1969;

McCarthy, 1977

]

. The focus of research guided by this perspective is neither to

build performance systems nor to investigate cognitive structures, but to develop

a theory of common-sense knowledge and reasoning based on well-founded forma-

lization, which might just be viewed as pursuing the program Newell proposed in

his paper, namely, to analyze knowledge at the knowledge level. That does not

mean that this line of research ignores the other goals, or that it is useless for the

other perspectives. On the contrary, by formalizing the ideas which are used in

existing AI systems, we get a better understanding of what these systems really

do (or are supposed to do) { and this seems to be one important way to develop

AI as a scienti�c discipline

[

Hobbs and Moore, 1985, p. xxi

]

{ and it opens up

the opportunity, for instance, to analyze AI systems with respect to correctness

and computational complexity.

The research reported here is mostly motivated by goals of the latter perspec-

tive. This, however, is not the entire story. We are also aiming at developing the

appropriate implementation techniques (at the symbol level) and demonstrate

their feasibility by a running prototype. However, we will mostly ignore all issues

which could be summarized under the heading of \cognitive adequacy" of the

system structure.

2.2 Knowledge Representation Formalisms

While the characterization of knowledge as a competence-like notion in the last

section seems to be the most plausible one, of course, the \functional role" has

to be �lled by a \physical structure," as Newell termed it. The Knowledge Rep-

resentation Hypothesis tells us that this is possible.

What we need is some kind of formal language { a KR language

8

. Although

any formal language might be used for this purpose, we had better assign meaning

to expressions of such a language, in which case we will call the language a KR

formalism.

9

A set of well-formed expressions

10

of such a KR formalism, which is

intended to represent aspects of the world, will be called knowledge base.

8

Called scheme by Hayes

[

1974

]

.

9

I do not intend to give a broad survey of di�erent KR formalisms here, but rather to view KR

formalisms from a very abstract point of view. For an overview of particular KR formalisms,

the reader should consult

[

Mylopoulos and Levesque, 1984

]

or

[

Barr and Feigenbaum, 1979,

pp. 141{222

]

.

10

Hayes

[

1974

]

calls such expressions con�gurations.

17

Additionally, we need some kind of machinery which can make use of the

expressions in the KB { a KR system. Such a system has to ful�ll two tasks.

First, it has to interpret the KB and turn it into a body of knowledge { in terms

of the knowledge level { by inferring new expressions which are only implicit in

the expressions stored in the KB.Without this ability, a KR system would be just

a plain, unstructured memory.

11

We could only retrieve the expressions put into

the KB previously. The second task is to provide services to the outside world,

like e.g. tell and ask, which operate on the KB and make use of the inference

capabilities of the KR system.

Although we cannot have a KR system without a KR formalism (or at least

this is hard to conceive) and it does not seem to make much sense to talk about

a KR formalism if there is no system which makes use of it, we can, of course,

view them in isolation. A prerequisite is that we can talk about the meaning of

expressions in a KR formalism without resorting to a particular system which

uses the expressions.

2.2.1 Semantics of Representation Formalisms

We can, of course, manage explaining what the expressions of a KR formalism are

intended to mean by giving an informal description and some examples. Perhaps,

a running system can give even more insights. In fact, research in AI starts o�

using this experimental, engineering approach most of the time. However, staying

on the informal side has several drawbacks.

One disadvantage of the informal way is that it leads to numerous arguments

of the kind \: : : but my understanding of this example is di�erent : : :" Although

a corresponding KR system will give a de�nite answer when tried on the expres-

sion, this situation reveals that we did not really understand what the system

does and what expressions in the formalism mean. In scienti�c discourse, in par-

ticular, the lack of formal semantics is \a regrettable source of confusion and

misunderstanding"

[

Hayes, 1974, p. 64

]

{ and makes the comparison and analysis

of di�erent KR formalisms impossible.

Connected with this de�ciency is the fact that it is impossible to say whether

the KR system correctly implements the intended behavior. This might not be

disturbing if a KR system is used to simulate cognitive abilities, but cannot

be tolerated if a KR system is employed as a subsystem of a knowledge-based

system for some application. In this case, it is mandatory to be able to predict

the system's behavior. The only way to achieve that without resorting to the

actual program code is to employ some sort of formal semantics.

There are di�erent choices for assigning formal meaning to a KR formalism.

We may, for instance, explain the meaning of a KR formalism by referring to the

11

Note that even data base systems are more powerful by virtue of associated query languages

and the employment of the closed world assumption.

18

processes { possibly abstract ones { which operate on the expressions in the KB,

as for example is done in

[

Shapiro and Rapaport, 1986, p. 282

]

:

Arcs : : : only have meaning within the system, provided by node- and

path-based inference rules (which can be thought of as procedures that

operate on arcs).

However, this operational semantics is, of course, not a very enlightening ap-

proach. It does not explain why \arcs" have to be used at all or what they stand

for. Another similar approach is the \empirical semantics" described in

[

Reimer,

1985

]

and

[

Reimer, 1986

]

. Here, the well-formedness conditions for expressions

in a KB and operations on them are speci�ed with the aid of the formal speci-

�cation language meta-iv

[

Bj�rner, 1980

]

. Although this gives us a formal and

rigorous speci�cation of the KR system, it leaves open what the expressions in

the KB refer to. Both these approaches to formal semantics are internal in that

they refer to the formalism and to the system but not to the outside world.

As has been pointed out by many researchers in knowledge representation

[

Hayes, 1977; McDermott, 1978; Moore, 1982; Patel-Schneider, 1987b

]

, the only

satisfying approach to assigning meaning to KR formalisms is taking seriously the

ideas spelled out in Sect. 2.1.3, namely, that knowledge is about entities in the

world. That means expressions of a KR formalism should derive their meaning

in some way from reference to the external world; and the adequate tool for such

a task is Tarskian model theory

[

Tarski, 1935

]

.

The usual semantics for �rst-order predicate logic (see

[

Genesereth and Nils-

son, 1987

]

or any standard introductory text to logic) is the canonical example of

this kind of semantics. A structure is assumed, containing a set of objects, called

the domain or universe of discourse, functions on and relations over this domain,

plus an interpretation function which maps constants and variables into objects,

function symbols into functions, relation symbols into relations, and propositions

into truth values. Any such structure (usually called interpretation) satisfying a

set of propositions is called a model of this set of propositions, and, preferably,

the (aspect of the) world we intend to describe with a set of propositions should

be one of all the possible models.

As a matter of fact, it is this commitment to model-theoretic semantics which

makes up the essence of the logical point of view in knowledge representation. It

is neither a claim that a particular syntax has to be used to represent knowledge,

nor a consensus about a particular logic formalism, nor even a restriction to sound

inference rules

[

Israel, 1983

]

, but it is the idea that the meaning of a formalism

has to be derived by reference to the external world { by specifying an external

semantics.

This is not a mere philosophical position irrelevant for \real work," although

a large fraction of research in knowledge representation has seemed to get along

without bothering about logics or semantics.

12

On the contrary, logic proved

12

However, in recent years these issues appeared to be considered more important, as the

19

to be quite fruitful in the development of KR formalisms and systems. For

instance, the development of the netl system

[

Fahlman, 1979

]

{ a semantic

network system intended to run on a massively parallel computer { which started

o� using an operational semantics later turned to logic in order to eliminate some

serious de�ciencies

[

Touretzky, 1986

]

. The same holds true for the kl-one system

[

Brachman and Schmolze, 1985

]

, which evolved over the years from a set of loosely

coupled, intuitively justi�ed procedures

[

Brachman, 1977

]

to a formalism with a

well-de�ned semantics (as we will see in Sections 3.1.4 and 3.2) and formally

justi�ed inference procedures. In fact, in both cases the understanding of the

representation formalism was considerably strengthened by the formal semantics.

Of course, the logical point of view is not the only possible one. There are

a number of good arguments challenging this standpoint (the most important

papers are

[

Minsky, 1975

]

and a recent article by D. McDermott

[

1987a

]

). We

will, however, not go into the details of this discussion here (cf. Sect. 3.1.2).

Summarizing, the answer to one of the questions in Sect. 2.1 is that any

formal language may be used as a KR formalism as long as a suitable semantics

is assigned. This, of course, is not the entire story. There are also issues of

expressiveness, convenience, and other criteria.

2.2.2 Adequacy Criteria

The most important criterion a KR formalism should ful�ll is what McCarthy

and Hayes

[

1969, p. 466

]

call epistemological adequacy

13

. This means it should

be possible to represent all the aspects of the world we are interested in. This

is, of course, a matter of degree, dependent on the purpose we are using the KR

formalism for.

For example, a relational data base language

[

Date, 1981

]

is epistemologically

adequate to represent a library catalog, but we might run into problems if we

aim at representing concepts and relationships as in Sect. 1.3 with the same

language. Although one can map a language as used in Fig. 1.1 (after a suitable

formalization) into the language of relational data bases, it does not help very

much. The semantics of relational data base languages is totally di�erent from

the semantics of the informal concept description language. Thus, we may store

(in an abstract sense) concept descriptions using a relational data base language,

but we cannot represent concepts with such a language.

Although epistemological adequacy seems to be enough since anything we

want to represent can be represented, di�erent KR formalisms can o�er di�erent

degrees of convenience. Michie

[

1982

]

has coined the term human window in order

to describe this degree of convenience. KR formalisms located within the human

window are those which permit to use expressions mirroring the conceptualization

papers in the Knowledge Representation sections in proceedings of AI conferences prove.

13

Woods

[

1983, p. 22

]

calls it expressive adequacy.

20

of the domain in order to represent something. Of course, employing Tarskian

semantics helps a lot in staying inside the human window because the semantics

forces us to assign meaning to expressions and sub-expressions by referring to

the external world. Nevertheless, some facts may be expressed more easily and

more naturally in one language than in another.

14

For example, the fact that

a Small-team has at most 5 members is expressed easily in the informal concept

description language in Fig. 1.1, but requires a couple of quanti�ers and formulas

if expressed in �rst-order predicate logic.

Another criterion for a KR formalism is its heuristic adequacy

15

[

McCarthy

and Hayes, 1969, p. 466

]

{ its suitability to be used internally by a KR system

to solve problems. Again, this is a matter of degree, mainly dependent on the

algorithms the KR system uses. However, choosing the right formalism might

enhance the performance of a system considerably. This is in particular the case

if for a restricted problem domain a restricted KR formalism is chosen.

For example, �rst-order predicate logic is judged to be the epistemologically

most adequate formalism for a wide range of representation tasks by many rese-

archers

[

McCarthy, 1968; Hayes, 1977; Moore, 1982

]

. However, there are severe

computational problems. First-order predicate logic is only semi-decidable, and,

even for relatively simple cases, a theorem prover can spend a lot of time solving

a problem. On the other hand, a restricted formalism can be more manageable,

and problems which are hard to solve with the general formalism may turn out

to be easily computable

[

Levesque and Brachman, 1985, p. 67

]

. Of course, one

gives away general epistemological adequacy. However, we may aim at restoring

this property by combining di�erent formalisms { creating hybrid representation

formalisms.

2.2.3 Hybrid Formalisms

Although it would be desirable to develop one KR formalism which meets all

criteria { and in fact, some researchers are convinced that �rst-order predicate

logic is just that formalism

[

Kowalski, 1980

]

{ nowadays there seems to be a

consensus that it is almost impossible to ful�ll all goals simultaneously with one

formalism. Sometimes it is worthwhile to switch between di�erent KR formalisms

because of heuristic adequacy

[

Sloman, 1985

]

, as in the hybrid system cake

[

Rich,

1982; Rich, 1985

]

; sometimes the limited epistemological adequacy (which may

come together with high notational e�cacy) may suggest the combination of

di�erent subformalisms { making up a hybrid KR formalism.

The informal example given in the Introduction demonstrates the latter case.

14

Woods

[

1983, p. 23

]

uses the term conciseness of representation to describe this dimension

of a KR formalism.

15

This criteria is called computational e�ciency by Woods

[

1983, p. 22

]

, and he subsumes this

notion together with conciseness of representation and ease of modi�cation under the heading

notational e�cacy.

21

The language used in Fig. 1.1 is very well-suited for the representation of ter-

minological knowledge from the point of conciseness and heuristic adequacy but

limited in its expressiveness. In order to say something de�nite about the world,

we need an additional formalism to make assertions.

However, the mere combination of formalisms does not necessarily result in

a hybrid formalism. A kind of \glue" is needed in order to constitute a hybrid

formalism consisting of

� a representational theory (explaining what knowledge is to be represented

by what formalism) and

� a common semantics for the overall formalism (explaining in a semantically

sound manner the relationship between expressions of di�erent subforma-

lisms).

The representational theory should explain why there are di�erent subforma-

lisms, what their bene�ts are, and how they relate to each other. An answer

should at least refer to the adequacy criteria introduced above:

� Epistemological adequacy, i.e., that the subformalisms are necessary to

represent epistemologically di�erent kinds of knowledge (e.g. analytic and

synthetic knowledge).

� Heuristic adequacy, i.e., that the di�erent subformalisms permit represen-

tation of the same knowledge in di�erent ways for reasons of e�ciency.

A necessary precondition for gluing things together is that their shapes �t, a

fact which might be violated in designing a hybrid formalism, at least in the case

where the subformalisms are intended to represent epistemological di�erent kinds

of knowledge. For example, if one subformalism permitted de�nition of terms by

using time relationships but none of the other subformalisms referred to time at

all, the subformalisms would be in some sense unbalanced. This, however, can

be easily detected by inspecting the common semantics. However, there are also

more subtle ways in which subformalisms can be unbalanced { a point we will

return to in Sect. 4.6.

2.2.4 Formalizing a Body of Knowledge

Related to the problem of designing and implementing KR formalisms is the task

of formalizing a body of knowledge, for example, the common-sense knowledge

about
uids

[

Hayes, 1985

]

. It might seem that for a �rst attempt to formalize

a new idea a very general KR formalism, the most epistemologically adequate

formalism { say, �rst-order or higher-order predicate logic { would be a good

candidate. There are some tradeo�s, though. Hobbs summarizes the issues in-

volved as follows

[

Hobbs and Moore, 1985, p. xviii

]

:

22

If only a narrow set of options is exercised in an unconstrained lan-

guage, a more constrained language may be more natural and al-

low knowledge to be expressed more succinctly. In addition, special-

purpose notations may indicate more explicitly the special-purpose

deduction procedures that will use them. As Hayes admits, \idiosyn-

cratic notations may sometimes be useful for idiosyncratic subtheo-

ries." Our concern in this volume is for facts, not notation, but so-

metimes getting the facts right requires notational maneuvers.

While I would admit that it might be distracting to make the move from

a general to a special-purpose KR formalism too early, I also believe that the

enterprise of formalizing a given domain of knowledge is not worth the e�ort it

requires if we do not get more insights about the structure of the domain than

a collection of axioms; particularly so, if no insights about the computational

properties are gained.

This might sound a little overstated, and, in fact, I am not going to demand

such results instantaneously, but the ultimate goal is to get the computer reason

with the formalized knowledge, and this is impossible with unconstrained forma-

lisms (as higher-order predicate logics). In order to give a positive example, the

formalization of time as conducted by Allen

[

1983

]

and the analysis by others

[

Vilain and Kautz, 1986

]

represents a major leap in the right direction.

2.3 Knowledge Representation Systems

A KR system is in some sense the \materialization" of a KR formalism { it turns

the semantics of the KR formalism into computations. However, KR systems do

not exist in isolation. They are usually part of larger systems { of knowledge-based

systems.

2.3.1 The Architecture of Knowledge-Based Systems

Analyzing existing knowledge-based systems, we note that large fractions of these

systems do not have anything to do with \represented knowledge." For example,

in

[

Bobrow et al., 1986

]

it is reported that 30-50% of the program code in expert

systems is devoted to the user interface. Even if we ignore the user interface, we

notice that a KR system is usually only a subsystem of a larger system which

is implemented using conventional, procedural programming techniques.

16

There

are many reasons for this.

First of all, it is often more e�cient to express knowledge procedurally,

17

in

16

This does not mean that conventional programming languages are employed, but that the

algorithmic paradigm is used in implementing the system.

17

We could talk about \procedural knowledge representation" in this case. We will not do

so, however. It is just programming { no more, no less.

23

particular if the anticipated use is obvious, rather than to use a general, decla-

rative KR formalism. While this pays o� in terms of e�ciency and is often the

only way to create practical systems

[

Hoeppner et al., 1983

]

, it restricts the ways

the knowledge can be used, and it makes modi�cations di�cult.

Second, the theory about particular phenomena is often developed by expe-

rimenting, which may involve the formulation of this theory using procedural

schemes. Third, sometimes it is hard to �nd a declarative representation such

that it is possible to specify a clean semantics which allows the important in-

ferences to be drawn

[

McDermott, 1987a

]

. Most often, however, we will �nd

a mixture of both kinds of expressing knowledge. Special-purpose theories are

coded procedurally, but the parts which may often enough be changed and are

well-understood from a formal point of view are represented declaratively.

Thus, a KR system has to o�er services to the embedding knowledge-based

system in some way. Furthermore, for some people { usually called knowledge

engineers { it should be possible to manipulate the KB from the outside world

18

in order to \put knowledge into the KB." This could be done by directly manipu-

lating data structures, by using a special KB editor, or by employing a separate

knowledge acquisition system.

19

Summing up, the principal architecture of a

knowledge-based system looks like Fig. 2.1 { characterizing the situation comple-

tely from a conceptual point of view, abstracting away organizational matters.

j

@

@

�

�

�

�

@

@

User

j

@

@

�

�

�

�

@

@

Knowledge

Engineer

'

&

$

%

Knowledge-Based System

User

Interface

'

&

$

%

KR System

"!

KB

-� -� -�-�

Figure 2.1: Architecture of Knowledge-Based Systems

If a system has to perform such complex behavior as participating in a natural

language dialog, a couple of capabilities are required. For instance, it is necessary

18

Of course, knowledge engineer and user can be the same person.

19

This may result in embedding the knowledge-based system in the knowledge acquisition

system, as it is the case in the teiresias system

[

Davis, 1982, p. 233

]

.

24

to parse the input, to determine the meaning, to reason about the intentions of

the speaker, to determine an answer, and to verbalize this answer. Evidently,

the types of knowledge required for these tasks are quite diverse; actually, dif-

ferent domains are modeled (syntax, morphology, world-knowledge, knowledge

about the partner, etc.), and the bodies of knowledge are only loosely coupled.

For this reason, it makes sense to partition the knowledge into di�erent sub-KBs

which are usually called knowledge sources. Moreover, due to the di�ering re-

quirements for di�erent knowledge sources, diverse KR formalisms are usually

used

[

Hoeppner et al., 1983

]

{ resulting in a heterogeneous KR formalism. This

is quite di�erent from the notion of a hybrid KR formalism as introduced above.

In the case of hybrid representation formalism we require a strict connection bet-

ween the subformalisms by insisting on a common semantics, while in the case

of heterogeneous representation formalisms, this is not always intended.

Although these organizational issues are not trivial and many problems have

to be solved in this context

[

Bergmann and Paeseler, 1985

]

, we will abstract

away them here, i.e., we will assume a monolithic KR system and KB as depicted

in Fig. 2.1 { freeing us to analyze the problems of knowledge representation,

knowledge management, and computational properties of KR systems on a more

general level.

2.3.2 Services of Knowledge Representation Systems

One task a KR system has to ful�ll is the transformation of symbolic expressions

stored in a KB into a body of knowledge. However, a KR system is more than

a static deductive calculus. A KR system has to provide services which allow

accessing and maintaining the represented knowledge. This includes at least that

the system is able to \assimilate new information"

[

Levesque and Brachman,

1985, p. 47

]

.

Evidently, this is not enough. The world we are caught in is full of surprises,

and it may turn out for a knowledge representation system that some things

are di�erent from what it believed. Usually the term knowledge refers to correct

belief ; therefore, by de�nition, a system representing knowledge cannot be wrong.

Unfortunately, in reality any knowledge representation system can hold a wrong

belief because somebody did not tell the truth about the state of the world,

because some sensory data was inaccurate, or because something has changed

in the world.

20

Sometimes there may be a more subtle reason for believing false

propositions: it may be necessary to start o� with some assumptions only to later

discover that some of them were wrong.

Thus, besides drawing inferences and putting new knowledge into the KB, it is

necessary to modify the KB. This is most easily achieved by directly manipulating

20

For this reason, belief representation would be perhaps more appropriate, but I will follow

the standard AI usage.

25

the data structures which are used to implement the KR system; a solution used,

for instance, in the frame systems frl

[

Roberts and Goldstein, 1977

]

and krl.

There are some drawbacks to the easy way, though. Arbitrary modi�cations of

the data structures may blow up the entire system in the worst case, and in the

best case, it may lead to results which have nothing to do with the semantics of

the representation formalism { and then we might ask what all the fuss about

semantics is good for. For this reason, it is often argued that a KR system

should encapsulate the concrete implementational structures and provide only

operations to the outside world which are related to the semantics of the KR

formalism

[

Patel-Schneider, 1984; Brachman et al., 1983

]

). In fact, a functional

approach, hiding the implementation and focussing on the functionality, seems to

be the most preferable solution

[

Brachman et al., 1985, p. 532

]

:

The user should know, at some level not dependent on implementation

details, what questions the system is capable of answering, and what

operations are permitted that allow new information to be provided

to it. He needs to know how questions put to a knowledge base will

be answered strictly as a function of the information it contains, and

not dependent on how information is represented.

Thus, what is needed to manipulate a KB is at least a set of operations such

as tell, ask, forget. In order to start o� with something de�nite, we need,

furthermore, an operation like initkb, which yields an empty knowledge base.

The important point here is that the operations should be related to the semantics

of the KR formalism in a principled way.

As a matter of fact, as shown in

[

Levesque, 1984a

]

and

[

Brachman et al.,

1985

]

, this can be done quite elegantly on the knowledge level for most of these

operations. However, forget presents severe conceptual problems; problems we

will return to in Sect. 2.3.4.

2.3.3 Inferential Services

From a computational perspective, the capability of turning a KB into a body of

knowledge is the most interesting { and the most di�cult to accomplish { feature

of a KR system. Given a KR formalism with an appropriate semantics and a KB

containing expressions of the KR formalism, it is clear what the KB claims to be

true, namely, any proposition stored in the KB. For any nontrivial KR formalism,

however, there are signi�cantly more propositions entailed than explicitly stored.

For example, in the terminology given in Fig. 1.1 the concept Modern-team has

been de�ned without reference to the concept Small-team. Nevertheless, it is

obvious that the former is a specialization of the latter (see Fig. 1.2).

Precisely this task, �guring out what has been speci�ed only implicitly, can be

said to form the heart of a KR system: to perform inferences. In the general case,

26

this is nontrivial, often even noncomputable. Despite this fact, it is still useful to

stick to model-theoretic semantics. Even if it is possible to only partially solve

the problem, at least we know what is going on: it is clear what is claimed to

be true, and it is possible to characterize the inference algorithms supposed to

compute propositions entailed by a KB according to soundness and completeness,

i.e., to ensure that the inference algorithms compute only entailed propositions,

and check whether an algorithm is able to compute all entailed propositions,

respectively

[

McDermott, 1978

]

.

If we were interested in �rst-order predicate logic, resolution

[

Robinson, 1965

]

would be the technique employed to compute propositions entailed by a KB.

21

Algorithms based on this technique are sound and complete. However, the pro-

blem of deciding whether a given proposition is true or false according to a KB

is only semi-decidable. This means we only get an answer for all propositions

which are entailed by a KB. Propositions unrelated to a KB, however, can result

in in�nite computations.

For a subsystem which is supposed to provide services to another system,

it is unsatisfactory that it is impossible to predict whether the subsystem can

always answer a given question in �nite time. A way out could be to restrict

the expressiveness { the epistemological adequacy { of the KR formalism. For

instance, if only monadic predicates were allowed, the resulting calculus would

be decidable. Thus, there is an obvious tradeo� between expressiveness and

computational costs

[

Habel, 1983

]

.

Decidability is, of course, a desirable computational property, but it is not

enough. It means only that a given problem can be decided in �nite time by an

algorithm. This can still be more time than anyone is willing to spend waiting for

an answer, say a day, a year, or longer than our sun is expected to exist. And if

in the worst case such computations are exponentially time bounded, a relatively

small input can easily prohibit an answer in reasonable time. A more rigid and

practical measure is computational tractability

[

Garey and Johnson, 1979

]

, i.e.,

whether it is possible to decide a given problem in time bounded polynomially

by the length of the problem description.

Usually, in AI, computational complexity is not considered to be the bor-

derline where research stops. On the contrary, it is the line where interesting

research begins. E. Rich

[

1983, p. 104

]

, for instance, describes AI as \an attempt

to solve NP-complete problems in polynomial time,"

22

and, if so, why should

we be bothered by computational complexity? Rich's characterization of AI is

at least partially accurate, but the key to \solving" the hard problems is to ac-

cept approximations as solutions and, more importantly, to employ heuristics.

21

However, we will not pursue this line here. Readers interested in resolution techniques

should perhaps try

[

Genesereth and Nilsson, 1987

]

, which is a very readable and complete

introduction to the use of logic in AI and to associated implementation techniques.

22

Of course, Rich means intractable problems in general, not just the NP-complete ones. For

instance, playing board games, which is subject to AI research, is mostly PSPACE-hard.

27

Thus, if one utilized knowledge in order to solve the hard problem of applying

knowledge in order to solve the hard problems, then, at least, the application of

meta-knowledge (or meta

n

-knowledge) should be easy without requiring further

knowledge. Otherwise there would be an in�nite regress of heuristic knowledge.

Moreover, there are a number of knowledge types where application of meta-

knowledge does not seem to be possible { as argued in the eloquent article of

Levesque

[

1986

]

about this and related issues.

This means that computational complexity is an important issue in knowledge

representation. Unfortunately, however, even very restricted formalisms, such as

propositional logic, are already computationally intractable. The problem of de-

ciding whether a given formula in propositional logic is satis�able, i.e., whether

it is not always false, is NP-complete.

23

Two ways of dealing with this problem

have been proposed by Levesque and Brachman

[

1987

]

. First, one could restrict

the expressiveness of a given representation language, as exercised in that article.

Second, one could accept approximations as solutions, e.g., by limiting the infe-

rential power. In order to do this in a principled way, this limitation might be

justi�ed by an alternative, weaker semantics.

Levesque

[

1984b

]

and Patel-Schneider

[

1987b

]

pursued this second approach by

employing variants of four-valued logics

[

Belnap, 1977

]

. Although this seems to be

very promising in computational terms, a semantics for �rst-order predicate logic

which makes entailment decidable and (almost) tractable is also very weak and

thus does not support the obvious inferences one would like to draw (e.g. there are

neither tautologies nor inconsistencies, and modus ponens is not a valid inference).

This means that despite the fact that such a semantics gives a principled (model-

theoretic) account to incompleteness, it is nevertheless not very useful because it

is rather unintuitive. Moreover, in order to accomplish anything reasonable (pun

intended), domain-speci�c inferences or a deductively stronger system must be

used.

The main idea behind both approaches is \forging a powerful system out of

tractable parts"

[

Levesque and Brachman, 1987, p. 89

]

because \as responsible

computer scientists, we should not be providing a general inferential service if

all we can say about it is that by and large it will work satisfactorily"

[

Levesque

and Brachman, 1987

]

. In how far this goal is achievable, and what subtleties

are involved in designing e�cient inference algorithms will become more vivid in

Chap. 4, where these issues will be discussed in the context of a concrete KR

formalism.

23

This means that the problem can be solved by a polynomial time algorithm on a nonde-

terministic Turing Machine. However, no polynomial time algorithm is known for a realistic

processor, and almost nobody believes that there is one.

28

2.3.4 Revision Services

Inferring entailed propositions is the task necessary to support ask operations.

However, what is necessary to support tell and forget? Are they supposed

to work on the knowledge level (i.e., on all propositions which are entailed) or

simply on the set of expressions we put into the KB?

In Sect. 2.3.2, we argued in favor of the functional approach { the user should

know how questions will be answered as a function of the information a KB con-

tains and independently of its implementation. The easiest solution satisfying

this requirement would be to realize tell as a \store" operation and forget

as a \delete" operation { working on the set of expressions in the KB. Both

operations are well-de�ned and the user can predict the response of an ask ope-

ration without being forced to know anything about the implementation. From a

computational point of view, there exists only one problem. If the KR system per-

forms assert-time inferences, i.e., computes and stores inferred expressions when

a new expression is entered into the KB, it has to check which of the previously

inferred expressions are still valid after a forget operation.

While this seems to be a reasonable solution, the functional approach as

described in

[

Levesque, 1984a

]

and

[

Brachman et al., 1985

]

aims for more. On

carefully rereading the quotation in Sect. 2.3.2, one will discover that the result

of KB operations should be a function of the information the KB contains, not

dependent on how information is represented. In other words, the KB operations

should operate on the knowledge level

[

Levesque and Brachman, 1986

]

{ not on

the symbol level as the solution sketched above.

A formalization of the knowledge level view could be, assuming a model-

theoretic semantics, the set of all models

[

Levesque, 1984a

]

. An alternative for-

malization could be to use the set of all true propositions

[

Diettrich, 1986

]

. Of

course, this is not an implementational model, but serves merely as an elegant

abstraction describing the competence of a KR system. If we are dealing with a

monotonic formalism and are only interested in tell and ask, everything works

out �ne. However, if we are interested in nonmonotonic formalisms, or if we

wanted the KB to forget something, we are in trouble.

24

The task of eliminating a theorem from an arbitrary logical theory is un-

derconstrained, i.e., there is no unique solution. And although it is possible to

analyze the nature of such operations

[

Alchourr�on et al., 1985

]

, it does not help

us to derive a general speci�cation for a forget operation in arbitrary logical

theories { pragmatics have to be taken into account. This can include minimality

criteria, the syntactic form of the stored propositions, the probable intentions,

etc. In particular, if we have a restricted formalism and if we are able to pin down

the intentions of a forget operation, we may be able to give an unambiguous,

intuitively plausible speci�cation of such an operation. However, we will most

24

See also Ullman's comment

[

Brodie and Mylopoulos, 1986b, p. 57

]

on the knowledge level

view.

29

likely have to take into account the symbol level.

Moreover, often enough it seems appropriate to modify not the consequences

of a set of expressions, but the expressions which led to the consequences in order

to realize a forget operation. If we think, for example, of a legal code, it seems

intuitively plausible to modify the code and not the consequences

[

Makinson,

1985

]

, and the same holds for other applications as well

[

Ginsberg, 1986

]

.

Thus, the claim made above that all operations should be performed only on

the knowledge level seems to be too strong. In fact, Newell intends to describe

only the potential for actions, not how knowledge gets manipulated. The notion

of knowledge as viewed by Newell and used in the functional approach is a static

and unstructured object

[

Newell, 1982, p. 101

]

:

However, in terms of structure, a body of knowledge is extremely sim-

ple compared to a memory de�ned at lower computer system levels.

There are no structural constraints to the knowledge in a body, either

in capacity (i.e., the amount of knowledge) or in how the knowledge

is held in the body. Indeed, there is no notion of how knowledge is

held (encoding is a notion of the symbol level, not knowledge level).

Also, there are not well-de�ned structural properties associated with

access and augmentation. Thus, it seems preferable to avoid calling

the body of knowledge a memory.

If we consider actions on knowledge, the abstraction is too coarse, as we have

seen. On the other hand, a pure symbol level account as proposed �rst also has

its de�ciencies. Assume we told a KB that (a ^ b) is true, and, later on, try to

convince the KB that it should forget about the truth of a. Shall we ignore this

request, or shall the proposition (a ^ b) be deleted?

Another point where the pure symbol level view seems inappropriate is that

a \symbol level"-tell operation is insensitive to its result. It does not matter

whether a tell operation leads to an inconsistent state of the KB. However,

what one would like to have is a consistency-preserving operation which perhaps

�rst changes the KB so that the new expression �ts in. These problems, and a

few more, will be the subject of Chap. 6.

2.4 Knowledge Base Management Systems

Some of the topics treated in this chapter may provoke the question whether

another �eld in computer science { data-base research { could contribute insights

and solutions to the problems described { or vice versa. As a matter of fact, a

quite fruitful exchange of ideas between both �elds has been taking place since

approximately 1980

[

Brodie and Zilles, 1980; Brodie et al., 1984; Brodie and

Mylopoulos, 1986b

]

.

30

The interest of data-base researchers in AI is driven mostly by the feeling

that conventional data base management systems (DBMS) are not expressive

enough and that they do not support the kind of processing one would like to

have in order to support the user. In short, data base management systems

should become more \intelligent." Conversely, AI researchers are interested in

\scaling up" KBs, in overcoming their space limitations by adapting techniques

developed in the data-base �eld in order to manage large amounts of knowledge.

The common vision is the development of a new generation of software systems,

Knowledge Base Management Systems (KBMS), which are similar to DBMS, but

manage knowledge instead of data.

However, though the problems being worked on in both �elds may seem simi-

lar at �rst sight { something is stored, accessed, and manipulated in a data base

or knowledge base { there are fundamental di�erences concerning requirements,

underlying assumptions, and expectations. Brodie and Mylopoulos

[

1986a

]

sum-

marized these di�erence in the following way:

Any knowledge representation language must be provided with a

(rich) semantic theory for relating an information base to its sub-

ject matter, while a data model requires an (e�ective) computational

theory for realizing information bases on physical machines.

Of course, these are not inconsistent, but only diverging goals. There does not

seem to be a genuine problem in envisioning a system which meets both goals.

And in fact, when implementing a KR system, one tries, of course, to realize an

e�cient system. The measures of success and the underlying assumptions are

di�erent, though.

For instance, since the amounts of data stored in a data base usually do not

�t into main memory, it is folklore in data-base research that the data has to be

stored on secondary storage media. Therefore, most algorithms and techniques

were developed with this assumption in mind. On the other hand, structures

stored in knowledge bases are usually assumed to be stored in the main memory

because otherwise the AI system would be too slow. Thus, approaches to utilize

a conventional DBMS as storage machinery for a knowledge base in order to

\scale up" cannot solve the problem by mapping one data-structure onto another

one (as in

[

H�arder et al., 1987

]

) because both requirements { speed and size {

have to be met, which requires a new generation of computers as well as new

data-management techniques and algorithms.

25

Besides the management of large amounts of data, there are other advantages

one gains by using a DBMS (sharing, security, recoverability, etc.). Therefore, one

might argue that even though data base management systems cannot be utilized

25

Moreover, as Wiederhold et al.

[

1987, p. 378

]

argue, there does not seem to be an urgent

need to pursue this line of research. He believes that \for all large AI systems the amount of

complex stored knowledge, by our de�nition, is quite modest : : : ."

31

directly in KR systems, at least some important techniques may be borrowed and

combined with KR technology in order to realize a KBMS. Again, one should be

aware of the fact that the underlying assumptions about the application environ-

ment are fundamentally di�erent. What is judged to be important for a data base

application may be super
uous or even a handicap in an AI application

[

Bobrow,

1986

]

.

In order to make this statement more vivid, let us envision a KBMS managing

concepts, assertions (as sketched in the Introduction), rules, and perhaps other

kinds of KR formalisms. Furthermore, let us assume that we have at hand all

the operations and techniques we usually get with a full-
edged DBMS (security,

concurrent access, transactions etc.). Such a system could, for example, be uti-

lized in the development of a knowledge-based system: the developers can share

the KB. However, if one member of the team changes, say, a concept de�nition,

the e�ect of this change has to be propagated through the entire KB (which may

take some time), and all other members of the team are suddenly faced with a

new concept de�nition which may change the behavior of the knowledge-based

system in unexpected ways. The problem is obvious: in a KB, the stored infor-

mation is usually highly interconnected, and, moreover, programs may depend

on a certain contents of the KB.

26

In order to avoid this problem, one could re-

strict updates in such a way that only one person can change the KB. However,

this would limit the
exibility considerably. Thus, another solution is necessary

here. For instance, the versioning method used in the loops system

[

Bobrow

and Ste�k, 1981

]

, which permits private updates, seems to be more appropriate.

What I am saying here is not that any exchange of ideas and techniques bet-

ween data-base research and AI is doomed to failure. However, a naive approach

in trying to transfer techniques based on implicit environmental and implemen-

tational assumptions or using existing software products, will probably result in

inappropriate solutions. There is no ready-made technology just sitting around

waiting to be integrated into a new generation of software systems. Instead, the

pragmatic foundations of the techniques have to be made explicit, and imple-

mentation techniques have to be tuned to support them, perhaps using open and

extensible system architectures as argued in

[

Carey and DeWitt, 1986

]

.

If we set aside the ideas of implementing a KBMS in the near future and of

\solving" KB problems with a DBMS, however, there are a number of important

issues { practical and theoretical { which can be, or have been already, subject

to research e�orts in both �elds.

More practical oriented approaches include

� the \enrichment" of the data-base query interface by a knowledge-based sy-

stem, for instance, a natural language dialog system

[

Nebel and Marburger,

26

Actually, in a data base context, a change of the data base schema, which can be seen as

similar to the change of a concept de�nition, can, for good reasons, only be performed by a

central institution.

32

1982; Marburger and Nebel, 1983

]

, which simpli�es the interaction. As a

matter of fact, for simple data bases, you can already buy such an interface

for your personal computer

[

Hendrix, 1986

]

;

� employment of a DBMS as one component of a KR system in order to store

simply-structured facts as described in

[

Wiederhold et al., 1987; Abarbanel

and Williams, 1987

]

;

� using ideas from KR in order to develop new data models

[

Mylopoulos et

al., 1980

]

;

� using KR systems to support query formulation

[

Tou et al., 1982; Patel-

Schneider et al., 1984

]

.

From a theoretical point of view, the semantics of data models and KR forma-

lisms, as well as the semantics of operations on data or knowledge, are a �eld on

which the approaches are converging and fertilizing each other. Although Brodie

and Mylopoulos

[

1986a

]

make a distinction between knowledge bases and data

bases along the line that the former is more concerned with (external) semantics

and the latter is more concerned with e�ciency, e�ciency is, of course, an issue in

KR (a point we discussed in Sect. 2.3.3), and semantics of data models is subject

to theoretical analysis in the data-base �eld as well

[

Reiter, 1984

]

.

Brachman and Levesque

[

1986

]

propose to analyze both kinds of systems

under a unifying view, which should be the knowledge level view, abstracting

from implementational issues (the symbol level) and from the system engineering

level (presentation and organization). The idea behind this proposal is that if

we gain an understanding of a system on the knowledge level, we actually know

what is going to be represented by the system. As was pointed out in Sect. 2.3.4,

this view is too constrained if we want to do more than telling and asking. It

is still useful to stick to this notion, however, because it provides a unifying view

on both �elds and a yardstick for describing systems, even if they depart from

the knowledge level

[

Diettrich, 1986

]

.

The research described here could be understood precisely in this way. The

knowledge level properties of a hypothetical system are analyzed, and the com-

putational properties are derived from this view. In addition, problems which

cannot be solved solely on the knowledge level will be analyzed on this level and

the solutions will be related to it.

33

Part II

Hybrid Representation and

Reasoning

34

Chapter 3

A Hybrid Representation

Formalism

When designing a knowledge-based system, it is good practice to distinguish bet-

ween di�erent kinds of knowledge. One important kind is terminological knowl-

edge { knowledge about (technical) vocabulary

[

Brachman and Levesque, 1982

]

,

a kind of knowledge which appears to be representable naturally by using object-

centered KR formalisms. Factoring out terminological knowledge and devising

a separate KR formalism for it makes explicit the di�erent nature of this kind

of knowledge, leads to e�cient techniques for dealing with the special-purpose

inferences necessary

[

Levesque and Brachman, 1985

]

, and enables us to impose

organizational principles on the knowledge base, which may help to maintain the

overall knowledge base

[

Swartout and Neches, 1986

]

. Of course, all this implies

that other KR formalisms have to be employed in order to represent more than

just mere terminological knowledge. Thus, we are going for hybrid representation

formalisms.

In the following, a brief historical account of object-centered knowledge re-

presentations { semantic networks and frame systems { is given,

1

including an

introduction to terminological knowledge representation. Based on the intuitive

understanding gained, one particular terminological representation formalism is

described in detail and provided with a model-theoretic semantics. Additional to

the terminological formalism, a simple assertional representation language is in-

troduced, resulting in a hybrid KR formalism. Finally, some possible extensions

are discussed.

1

I will not give a complete history of research concerning semantic networks and frames.

Only some in
uential papers and a few examples are mentioned, as far as they are relevant to

the development of terminological knowledge representation. For a more complete historical

account of research concerning semantic networks, the reader should consult

[

Sowa, 1987

]

or

the older, but still very readable paper by Brachman

[

Brachman, 1977

]

. A concise description

of research related to frames can be found in

[

Maida, 1987

]

.

35

3.1 Object-Centered Representation

The idea of organizing knowledge around objects { representing knowledge in an

object-centered way { is not unique to terminological knowledge representation.

It has a long history in AI. Tracing this idea back to its origin, we �nd seman-

tic networks and frames. However, although the ideas developed in this context

appear to be similar to the ones underlying terminological knowledge representa-

tion, there are notable di�erences. The most important one is that terminological

formalisms focus on the representation of de�nitional knowledge.

3.1.1 Semantic Networks

The introduction of semantic networks is usually attributed to Quillian

[

1966

]

,

although projects in machine translation and natural language understanding

seem to have already used similar structures in the 1950's (e.g.

[

Richens, 1958

]

,

[

Masterman, 1962

]

). Quillian aimed in his Ph.D. thesis

[

Quillian, 1966

]

(of which

[

Quillian, 1967

]

is a concise summary) at developing a \semantic memory," a data

structure for storing word meanings which can be used for simulating human-like

language behavior. The goal was to \constitute a theory of how human memory

for semantic and other conceptual material may be formatted, organized and

used"

[

Quillian, 1967, p. 410

]

.

Almost all techniques later used in semantic network systems were already

present. The most prominent one is the usage of nodes to represent conceptual

entities (such as concepts and words), which are interconnected by links repre-

senting the conceptual relationships. Also, the idea of organizing concepts in a

concept taxonomy can be found in his work. However, the accompanying notion

of inheritance of properties from superconcept to subconcept nodes was not men-

tioned, but spelled out later

[

Collins and Quillian, 1970

]

. The general inference

technique used is what has come to be called spreading activation search: Based

on the assumption that the meaning of a concept is determined by all concepts

which can be reached directly or indirectly by traversing links, two concepts are

contrasted and compared by determining the set of concepts which can be reached

by both concepts.

Inspired by Quillian's ideas, a number of systems were implemented employ-

ing semantic networks as the principal KR formalism, e.g. the computer-aided

instruction system scholar

[

Carbonell, 1970

]

, a natural language understanding

system

[

Simmons, 1973

]

, and a system learning concepts of physical structures

from examples

[

Winston, 1975b

]

.

The reason for the popularity of semantic networks was probably the intui-

tive appeal semantic networks convey. It seems natural to organize concepts in a

hierarchy connecting the concepts by di�erent links which represent relationships,

for instance, linguistic, physical, or conceptual relationships, between them: A

semantic network is almost a direct representation of the \concept space." Mo-

36

reover, semantic networks lend themselves to a straight-forward implementation

as a list and pointer data-structure.

The intuitive appeal, however, has a severe disadvantage. One may be temp-

ted to represent fundamentally di�erent aspects with one and the same construct:

a link between two concepts. Woods' in
uential paper

[

Woods, 1975

]

criticized

just this tendency prevalent in almost all semantic network systems of those

days. These systems usually did not distinguish between structural and assertio-

nal links, confused nodes denoting classes and nodes denoting individuals and,

connected with this de�ciency, were unable to di�erentiate between possible va-

lues and actual values. Moreover, the assertional impact of nodes were unclear {

to what degree nodes imply the existence of corresponding objects in the world.

Summarizing,Woods called for a semantics of semantic networks, which had been

neglected in the early systems. Furthermore, Woods demanded logical adequacy

of semantic networks { the ability to \precisely, formally, and unambiguously re-

present any particular interpretation a human listener may place on a sentence"

[

Woods, 1975, p. 45

]

. Hayes

[

1977

]

reinforced the point of demanding semantics

of semantic networks by criticizing the tendency of specifying the meaning of

network structures by a \pretend-it's-English" interpretation.

Later semantic network formalisms, for example, Shapiro's sneps

[

Shapiro,

1979

]

, Hendrix's partitioned semantic networks

[

Hendrix, 1979

]

, and a formalism

developed by Schubert et al.

[

1979

]

accounted for this criticism by extending the

expressive power and by supplying semantics in form of translations to logic for

some of their primitive operators.

sneps uses a fairly nonstandard kind of logic, though. Maida and Shapiro

claim that, in fact, no standard (model-theoretic) semantics can be supplied for

this logic because their formalism does not obey Frege's Principle of Compositio-

nality

[

Maida and Shapiro, 1982, p. 301

]

. Hendrix's partitioned networks, on the

other hand, can be regarded as a notational variant of extended standard logic.

He uses partitions to group together nodes in order to represent belief space,

negation, quanti�er scopes, etc. Finally, the formalism and system developed by

Schubert et al. is explicitly announced to be a notational variant of �rst-order

logic (despite the fact that they go beyond �rst-order logic by including modals

and higher-order constructs), with the network structure used to support certain

inferences.

3.1.2 Frame Systems

While semantic network researchers were struggling with expressiveness and se-

mantics, a new idea about how knowledge should be represented and structured

was launched by Minsky

[

1975

]

. He proposes organizing knowledge into chunks

called frames. These frames are supposed to capture the essence of stereotypical

situations, e.g. being in a living room or going out for dinner, by clustering all re-

levant information for these situations together. This includes information about

37

how to use the frame, information about expectations (which may turn out to

be wrong), information about what to do if expectations are not con�rmed, etc.

This means, in particular, that a great deal of procedurally expressed knowledge

should be part of the frames. Collections of such frames are to be organized in

frame-systems in which the frames are interconnected.

The processes working on such frame-systems are supposed to match a frame

to a speci�c situation, to use default values to �ll unspeci�ed aspects, to recover

from unsuccessful matches by trying another frame which uses information stored

in the �rst frame, perhaps by choosing another perspective, which might be a

transformation of the original frame, and so on.

If this brief summary of the paper sounds a little bit vague and imprecise, it

correctly reproduces the general tone of the paper, as Minsky himself admits in

his paper. Despite the fact that this paper was a �rst approach to the idea of what

frames could be, Minsky explicitly argued in favor of staying
exible and nonfor-

mal. In fact, in an appendix to

[

Minsky, 1975

]

, Minsky claimed that formal logic

is the wrong tool for knowledge representation. Reasons include organizational

matters (knowledge is distributed among independent axioms), control matters

(deduction does not have a focus of interest), monotonicity of logic, and, most

importantly, the notion of consistency. He argued that consistency is not even

desirable in a knowledge base: humans can very well do without consistency.

Details which had been left out in

[

Minsky, 1975

]

were later �lled in by rep-

resentation systems which were inspired by Minsky's ideas { the most prominent

of those are frl

[

Roberts and Goldstein, 1977

]

and krl

[

Bobrow and Winograd,

1977

]

.

krl was one of the most ambitious projects in this direction. It aimed at

a synthesis between the positions of declarativists and proceduralists

[

Winograd,

1975

]

and addressed almost every representational problem discussed in the lite-

rature. The net result is a very complex language with an overwhelmingly rich

repertoire of representational primitives and unlimited
exibility. For instance,

it contains a multi-processing architecture for which the actual scheduling pro-

cedures have to be provided by the user. The same strategy was taken for the

basic inference procedure { matching. The user has to provide and modify these

procedures.

Though this
exibility might be seen as an advantage, it creates, of course,

confusion and arbitrariness. This is even more true for the large set of repre-

sentational primitives, which were never given any precise meaning, not even

intuitively, as Lehnert and Wilks

[

1979

]

reported.

frl is a more modest system sticking only to the \well-understood" features

of the frame theory. A frame in frl is a cluster of slots, which in turn contain

facets, whereby some slots and facets have a standard meaning (realized by sy-

stem operations), while nonstandard slots and facets must have their \meaning"

provided by the user in form of lisp functions. frl supports (as does krl, of

course) the organization of frames in hierarchies with inheritance of properties,

38

default values, and procedural attachment, as well as a couple of retrieval opera-

tions. In order to realize a knowledge-based system, the user has to supply a large

number of lisp functions in the form of attached procedures and as extensions

to the basic interpreter.

As mentioned in Sect. 2.3.1, it seems unavoidable to use the conventional

procedural paradigm to build a knowledge-based system, and in this context, it

seems preferable to associate the knowledge representation formalism as closely

as possible with the procedural part, as can be accomplished with procedural

attachment. However, in the representation languages mentioned, procedural

attachment can be used to manipulate the implementational data-structures wi-

thout any restriction, which in light of what has been pointed out in Sect. 2.3

does not seem to be the ideal solution.

Ignoring this arbitrariness of meaning created by procedural attachment in

KR systems based on frames, Hayes

[

1980

]

challenged the entire frame theory

from a logical point of view. He demonstrated how important notions of the

theory, such as perspectives, defaults, and perhaps even re
exive reasoning, could

be reconstructed in logic { giving an answer to Minsky's polemic against logic in

[

Minsky, 1975

]

. In particular, it becomes evident that the notion of consistency,

which Minsky claimed to be super
uous and undesirable, is vital for any kind of

reasoning. If it were not possible to detect an inconsistent state of knowledge, it

would not be possible to pin down wrong beliefs. Finally, Hayes concludes that

the main contribution of the frame theory was not on the representational, but

on the implementational level.

While Hayes' analysis demonstrates neatly that even seemingly \nonlogical"

ideas can be subject to logical analysis, he probably underestimated somewhat the

contribution of the frame theory to the representational level. Frames are simply

a good way to organize (some kinds of) knowledge.

2

For instance, the develop-

ment of object-oriented programming languages, like Smalltalk-80

[

Goldberg and

Robson, 1983

]

, loops

[

Bobrow and Ste�k, 1981

]

, and the Flavor system

[

Weinreb

and Moon, 1981

]

, was heavily in
uenced by the frame idea. In fact, there is a

strong resemblance between frames and object-oriented programming languages,

as shown in

[

Nebel, 1985

]

.

3.1.3 Structural Inheritance Networks

Besides providing the convenience of structuring knowledge and associating pro-

cedurally expressed knowledge via procedural attachment, frames also addressed

more clearly than semantic networks the distinction between structural and other

relationships, as Brachman

[

1977

]

notes while analyzing past e�orts in designing

semantic network systems. He points out that the underlying assumptions about

2

See also

[

Nilsson, 1980, Chap. 9

]

, where it is shown how to organize deduction around

object-centered representations.

39

representational primitives are quite diverse. In detail, Brachman identi�es four

di�erent levels on which semantic networks have been used, namely:

� the implementational level, on which networks are viewed as data-struc-

tures, with pointers and lists as primitives.

� the logical level, on which logical operators and predicates are primitives,

turning the semantic networks into a notational variant of (some) logic (an

example is the above cited work of Hendrix

[

1979

]

).

� the conceptual level, which focuses on semantic (in the linguistic sense)

and conceptual relationships. The primitives on this level are e.g. case

relationships and primitive actions and objects (e.g. the work by Schank

and others on conceptual dependency-graphs

[

Schank, 1973

]

).

� the linguistic level, on which arbitrary words and expressions are used as the

primitives, and which is therefore highly language-dependent (for instance

the representation system owl

[

Szolovits et al., 1977

]

).

It is, of course, possible to analyze a given semantic network on all of these

levels simultaneously. What should be avoided, however, is confusing the levels

and applying operations of one level on another: In a semantic network formalism,

each level should be neutral with respect to the next higher level

[

Brachman, 1977,

p. 32

]

. For instance, the primitives on the conceptual level should not imply a

commitment to any particular natural language.

Additionally, Brachman argues that one important level is missing { the epi-

stemological level

3

, an intermediate layer between the logical and conceptual level.

On this level, intensional descriptions are formed and interrelated. For instance,

the concept-specialization relation as well as the related notion of inheritance

belong to this level.

Consequently, Brachman proposes a formalism { structural inheritance net-

works { to capture this level by using a small set of \epistemological" primitives.

Main building blocks of this formalism are concepts which are described by their

superconcepts, by roles { possible relationships to other concepts { and by struc-

tural descriptions, which account for relationships between roles. This means

that concepts are not viewed as atomic entities, but as complex descriptions,

which is a point of view leading to a more rigorous treatment of inheritance than

usually found in semantic networks. In a structural inheritance network, not

only are properties inherited, but inheritance accounts for the entire structure of

a concept.

3

The term \epistemological" might be a little bit misleading because there is no direct

connection to the usual understanding of epistemology. \Structural" or \descriptional" would

perhaps be more appropriate.

40

Concepts come in two
avors: generic concepts intended to denote classes of

individuals, and individual concepts intended to denote individuals.

4

The for-

mer kind of concepts can in turn be divided into de�ned concepts and primitive

concepts.

5

The meaning of de�ned concepts is completely determined by its des-

cription, while the meaning of primitive concepts can only partially be determined

from the description. The latter kind of concepts accounts for what is called na-

tural kind: concepts which cannot be exhaustively described, for instance, animal

species.

Concepts can be organized in a concept taxonomy, as shown in Fig. 3.1. All

concepts marked with an asterisk, like Plant, Animal, and Mineral, are primitive

concepts. The only de�ned concept in this �gure is Woman, which is de�ned by

being a specialization of Female-Animal and Human. Finally, there is an indivi-

dual concept Mary, depicted as an oval �lled with horizontal lines, which is not a

specialization, but an individuation { depicted by a di�erent kind of arrow { of

the generic concept Woman. Individual concepts do not denote general subclas-

ses of the class denoted by the superconcept as usual, but singleton subclasses.

Individual concepts can only be leaves in such hierarchies.

6

Furthermore, individual concepts do not have any assertional impact but are

only used to describe potential individuals. There is no implied claim that they

really exist. Thus, in order to say something de�nite, we would have to employ

some assertional machinery { a point we will return to in Sect. 3.1.4. For the

time being, however, we will neglect all issues connected with individuals and

assertions.

An important assumption in interpreting such a structural inheritance net-

work is that the meaning of a concept is derived only from the meaning of its

superconcepts and the information associated with the concept. Thus, the mea-

ning of Female-Animal is determined only by its primitiveness and its supercon-

cept Animal. The fact that Woman is a subconcept of Female-Animal does not

add anything to the meaning of Female-Animal.

In addition to describing concepts by means of superconcepts, we can also use

roles for this process. Roles

7

can be viewed as potential relationships between

individuals of the class denoted by the concept and other individuals in the world.

4

In the following, I will use a somewhat simpli�ed version of the notions and pictorial symbols

introduced in

[

Brachman and Schmolze, 1985

]

instead of the slightly di�erent presentation in

[

Brachman, 1977

]

.

5

Primitive concepts have also been called starred andmagical concepts

[

Schmolze and Brach-

man, 1982, pp. 259{263

]

.

6

It is conceivable that an individual concept is subconcept of another individual concept.

This would amount to a more accurate description of an individual. However, at this point

[

Brachman and Schmolze, 1985

]

is not very precise.

7

In

[

Brachman and Schmolze, 1985

]

, roles are further subdivided into so-called generic role-

sets, individual roles, and particular role-sets. We will ignore this distinction here because the

latter two kinds of roles appear only in the context of individual concepts.

41

�

�

�

�

THING

�

�

�

�

�

Plant

�

�

�

�

�

Animal

�

�

�

�

�

Mineral

�

�

�

�

�

Male-Animal

�

�

�

�

�

Female-Animal

�

�

�

�

�

Human

�

�

�

�

�

Woman

�

�

�

�

Mary

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

�

�

@

@

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

A

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

�

�

@

@

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

A

A

�

�

�

�

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

�

�

@

@

Figure 3.1: A Simple Concept Taxonomy

By restricting and di�erentiating roles, concepts can be described. The class

of individuals permitted as role �llers can be restricted by a value restriction and

the number of possible role �llers may be restricted using a number restriction.

An example of the introduction of concepts using role restrictions is shown in

Fig. 3.2, which is a literal depiction of part of the terminology given in Fig. 1.1.

Figure 3.2 tells us the following: A Team is something which has a role member

(symbolized by an encircled square with the attached name), and this role has

to be �lled by at least two Humans (depicted by the attached number restriction

and the arrow pointing from the role to the concept Human, respectively). A

Small-team is de�ned as a Team, with at most �ve members (depicted by the

restr link and the number restriction on the restricted role). In the de�nition of

Modern-team, there is not only a number restriction applied to the member role,

but a di�erentiation (symbolized by the di� link) of this role. The leader role is

42

�

�

�

�

Team

�

�

�

�

�

Human

�

�

�

�

�

Small-team

�

�

�

�

Modern-team

�

�

�

�

Woman

�

�

�

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B

B

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

�

�

P

P

i -

member (min 2)

i

�

�

�

�

�

�

�

�

�

�

�

�

�

restr

(max 5)

i

C

C

C

C

C

C

C

C

C

C

C

C

C

restr

(max 4)

i -

leader (min 1)

6

di�

Figure 3.2: Examples of Role Restrictions and Di�erentiations

also restricted by number and value restrictions.

If we would now go on and combine the restrictions according to apparent

inheritance rules and would rearrange the concept taxonomy such that it re
ects

all implicitly speci�ed specialization relations, we would end up with Fig. 1.2.

Besides the above methods of de�ning concepts, there are a few more which con-

cern relationships between roles and some others which concern the individuation

process, but we will ignore them here.

3.1.4 Terminological Knowledge Representation

A �rst implementation of structural inheritance networks was klone

[

Brachman,

1978

]

(the name was later changed to kl-one), which evolved over the years and

sparked o� substantial research e�orts in the form of applications, theoretical

work, and the development of similar systems, documented by several workshops

(e.g.

[

Schmolze and Brachman, 1982

]

,

[

Moore, 1986

]

and

[

Kobsa, 1988

]

).

What are the essential ideas behind kl-one? And what lead to the fact that

(according to

[

Brachman and Schmolze, 1985, p.173

]

):

kl-one has achieved a status a�orded to few e�orts in the brief hi-

story of Arti�cial Intelligence: over a signi�cant period of time (at

least six years) and over a large number of projects it has served as

the foundation for some very basic research in knowledge representa-

tion, and at the same time has provided representational support in

a number of implemented AI systems.

43

Let us �rst mention some points which are not responsible for the success

of kl-one. Although kl-one started o� as a network formalism, this is not

considered to be essential. As a matter of fact, krypton

[

Brachman et al., 1983

]

and kandor

[

Patel-Schneider, 1984

]

, two descendants of kl-one, are described

as \frame-based systems." The reason for this change of view is that structural

inheritance networks appear to be very similar in structure to frames, in particular

when transformed to a linear, textual notation. There is only little resemblance

to the frame theory proposed by Minsky

[

1975

]

, however. Patel-Schneider goes

even one step further. He calls the kl-one-like formalism he investigates in

[

Patel-Schneider, 1989a

]

a \terminological logic."

Another nonessential in the kl-one paradigm is the particular set of \episte-

mological" primitives introduced in

[

Brachman, 1977

]

or the one given in the �nal

description of kl-one

[

Brachman and Schmolze, 1985

]

. Nobody is claiming that

these form the ultimate set of such primitives, necessary and su�cient to describe

everything. Rather, di�erent systems use di�erent sets of these primitives, a fact

which most often is motivated by arguments of computational complexity and

requirements of the application.

The main reason behind its success is probably that kl-one does not att-

empt to give answers to every conceivable representational requirement, but that

it addresses only very speci�c areas, namely, most prominently, how to de�ne

concepts. kl-one comes, in this respect, closer to the original idea of semantic

networks as proposed by Quillian

[

1966

]

than other semantic networks, which

were often designed to represent \everything." Moreover, kl-one leaves out all

features which run counter to the notion of de�nition, namely defaults and can-

cellation of properties, i.e. ways to suppress parts of a description used to de�ne

a concept { which actually would destroy the entire idea of forming composite

descriptions and de�ning concepts

[

Brachman, 1985

]

. This does not mean that

defaults should not be represented, but only that they should not be used in the

\representational kernel."

It is precisely this concentration on the representation of de�nitional knowl-

edge which makes up the core idea of kl-one. The most important consequence

of this is the capability to reason about the relationships between concepts ba-

sed only on the description of the concept { the kind of reasoning we used in

the Introduction to come to the conclusion that the concept Modern-team is a

subconcept of Small-team.

While this idea was probably already present in the design of structural in-

heritance networks

[

Brachman, 1977

]

, it was not an issue in the �rst papers.

A �rst, principled approach to exploiting this kind of reasoning { we will call

it terminological reasoning in the following { was made in the consul project

[

Kaczmarek et al., 1983

]

, and led to the development of a terminological reaso-

ner, called classi�er

[

Lipkis, 1982; Schmolze and Lipkis, 1983

]

, which is able to

place a new concept in the \right place" in the concept taxonomy. The classi�er

was used in conjunction with mapping rules to recognize natural language user

44

requests and to redescribe them in terms of executable commands.

The development of the classi�er was based on the intuitive meaning of the

kl-one formalism, which was quite clear for a large part of the formalism. Howe-

ver, of course, there was the question of how much was covered and whether the

classi�er was correct. Attempts made to reconstruct logically the representation

constructs in kl-one, as done in

[

Schmolze and Israel, 1983

]

, revealed that rea-

soning by the classi�er was sound, but incomplete { a topic we will return to in

the next chapter. Furthermore, the reconstruction in logic shed more light on the

entire formalism, showing that a number of notions were idiosyncratic (e.g. \lo-

cal roles") and that others were totally obscure

[

Schmolze and Brachman, 1982,

p. 8{17

]

.

In essence, it resulted in a change of the view on kl-one spelled out in

[

Schmolze and Brachman, 1982, p. 8{17

]

,

[

Brachman and Levesque, 1982

]

, and

[

Brachman et al., 1983

]

. Instead of asking, \What structures should the system

maintain for the user?" the interest shifted to functionality: \What exactly

should the system do for the user?"

[

Brachman et al., 1983, p. 68

]

. Viewing

kl-one from this angle, it can be divided into two components. First, there is

a terminological component used to make de�nitions and to reason about the

relationships between these de�nitions: the TBox. Second, there is another com-

ponent to make assertions, the part we almost completely left out of our des-

cription: the ABox. And while the former component is very well developed in

kl-one, the \treatment of the ABox in kl-one has been super�cial and hapha-

zard"

[

Schmolze and Brachman, 1982, p. 9

]

. In fact, the few things which have

been written about assertions and individuality (e.g.

[

Schmolze and Brachman,

1982, p. 18{22, pp. 23{31

]

and some sections in

[

Brachman and Schmolze, 1985

]

)

show that there was only a vague understanding and a large number of unresolved

issues.

Taking all this into account, Brachman and Levesque proposed to complement

the terminological competence of a TBox { the capability to represent terminolo-

gical knowledge and to reason with it { with assertional competence of some sort

[

Brachman and Levesque, 1982

]

. We will follow this suggestion in this chapter.

3.2 The Terminological Formalism TF

As mentioned in the last section, kl-one is not the only, but was simply the �rst

system to embody the idea of terminological knowledge representation. The most

prominent descendants are krypton

[

Brachman et al., 1985

]

and nikl

[

Moser,

1983; Schmolze, 1989a

]

. Additionally, a large number of projects adopted the key

ideas and implemented similar systems. The following list is probably incomplete,

but demonstrates the level of research activity in this area: KloneTalk

[

Fikes,

1982

]

, knet

[

Freeman et al., 1983

]

, kandor

[

Patel-Schneider, 1984

]

, back

[

von

Luck et al., 1985; von Luck et al., 1987

]

, meson

[

Edelmann and Owsnicki, 1986

]

,

45

quirk

[

Bergmann and Gerlach, 1987

]

, loom

[

MacGregor and Bates, 1987

]

, k-

rep

[

Mays et al., 1987

]

, sphinx

[

Han et al., 1987

]

, procne

[

Frixione et al., 1988

]

,

TermLog

[

Donini and Lenzerini, 1988

]

, krapfen

[

D'Aloisi et al., 1988

]

, sb-one

[

Kobsa, 1989

]

, classic

[

Borgida et al., 1989

]

. All of these systems are inspired

by the work done in the context of kl-one and employ as part of their system a

terminological knowledge representation formalism. Although these formalisms

appear to be di�erent on the surface, the underlying notions and operations are,

of course, similar. Thus, we may pick just an arbitrary one to proceed.

3.2.1 The Syntax of the Terminological Formalism

In order to have something to build on, we need a concrete representation lan-

guage. Of course, we could use the graphical notation of kl-one or any of the

textual notations used in the diverse systems, e.g. the one used in the back sy-

stem. However, we will use a notation (which will be called TF in the following)

similar to the one introduced in

[

Brachman and Levesque, 1984

]

because it is

more concise and and more straightforward than others I know of.

8

The syntax

of the formalism is given in bnf notation in Fig. 3.3.

A formal terminology is a sequence of restriction declarations and term in-

troductions. For reasons of notational convenience, terminologies are sometimes

also viewed as sets of term introductions. A structural property we would take

for granted in a terminology, namely, that a term is only introduced once, cannot

be expressed in the bnf de�nition but will be assumed in the following.

Following the ideas outlined in Sections 3.1.3 and 3.1.4, we have two basic

kinds of terms { roles and concepts { which can be combined using a few term-

forming operators resulting in new roles and concepts. A new concept can be

formed by the following concept-forming operations:

� Concept conjunction by using the \and" operator. An example of the use of

this operator is (and Man Student), which could be used when introducing

a new atomic concept Male-student.

� Value restriction by using the \all" operator. An example would be (all

leader Woman), stating that the leader role can only be �lled with Women.

� Number restriction by using the \atleast" or \atmost" operator. These

operators state that a role must have at least or at most a certain number

of role �llers as, for instance, in (atleast 2 members).

8

Reasons for not using the back syntax introduced in

[

von Luck et al., 1987

]

are that it is

very verbose compared to the formalism introduced here.

46

hterminologyi ::= fhterm-introductioni j hrestrictionig

�

hterm-introductioni ::= hconcept-introductioni j

hrole-introductioni

hconcept-introductioni ::= hatomic-concepti

:

= hconcepti j

hatomic-concepti

:

� hconcepti j

hatomic-concepti

:

� Anything

hrole-introductioni ::= hatomic-rolei

:

= hrolei j

hatomic-rolei

:

� hrolei j

hatomic-rolei

:

� anyrelation

hconcepti ::= hatomic-concepti j

(and hconcepti

+

) j

(all hrolei hconcepti) j

(atleast hnumberi hrolei) j

(atmost hnumberi hrolei)

hrolei ::= hatomic-rolei

hrestrictioni ::= (disjoint hatomic-concepti hatomic-concepti)

hnumberi ::= hnon-negative-integeri

hatomic-rolei ::= hidenti�eri

hatomic-concepti ::= hidenti�eri

Figure 3.3: bnf De�nition of TF

Because we are interested not only in forming a variety of concept terms, but

also in introducing new concepts,

9

there are two concept introduction operators.

The �rst one \

:

= " introduces a new atomic concept as a de�ned concept which

gets the meaning of the concept on the right hand side. The second introduction

operator \

:

� " introduces an atomic concept as a primitive concept, i.e. it is more

specialized than the concept on the right hand side { without saying in what

sense it is more special.

A unique feature in terminological formalisms is the facility to introduce new

atomic roles as well

[

Brachman and Schmolze, 1985, p. 185

]

{ called role di�e-

rentiation in Sect. 3.1.3. This permits us to represent hierarchical relationships

between roles, such as the fact that leader is a specialization of the member role.

9

Which corresponds to creating and naming a concept node in a structural inheritance

network.

47

Similar to concept-forming operators, role-forming operators could be intro-

duced, for example, inverse roles, range restricted roles, or role composition. Ho-

wever, because we are not mainly interested in designing a \most general termi-

nological formalism" here, we will not do so (but cf. Sect. 3.4). As it will turn

out, TF as speci�ed in Fig. 3.3 will give us enough puzzles to solve.

10

In order to have a handle for introducing top-level primitive concept and roles,

two prede�ned terms are provided: Anything and anyrelation, which are intended

to denote the class of all things and all relationships, respectively. However, in

order to keep things simple, these two terms may appear only as isolated terms

on the right hand side of primitive introductions. The main reason to restrict

the usage of anyrelation is that the meaning of the terms (all anyrelation C) and

(atleast 10 anyrelation) is quite weird and that these terms present severe problems

from an algorithmic point of view. Furthermore, since I do not see any real use

for anyrelation and Anything, except for introducing top-level primitive terms, I

think that this restriction is justi�ed.

Finally, there is a disjointness operator which states that any individual be-

longing to the class denoted by the concept appearing as the �rst argument in

the \disjoint" restriction cannot be a member of the class denoted by the concept

appearing as the second argument. For instance, no Man is a Woman. This re-

striction operator does not really �t into the language because it does not describe

a concept, but it restricts the interpretation of a terminology. However, I regard

it as a necessary ingredient for any useful terminological formalism. For this

reason, I adopted the scheme used in

[

Brachman et al., 1983

]

to state disjoint-

ness explicitly { with a certain restriction. Disjointness declarations will have

an e�ect only if both concepts are primitive. Otherwise the declaration will be

ignored. The reason for this convention is that declaring two de�ned concepts as

disjoint is counter-intuitive. Either they are completely de�ned by the respective

term introductions, and then it should follow from the de�nition whether they

are disjoint or not, or they are not completely de�ned. However, in this case,

they contain an unde�ned part and should be introduced as primitive concepts.

Using the TF syntax, we can reformulate our informal example used in the

Introduction as shown in Fig. 3.4. Most of it is a straightforward transcription

based on the intuitive meaning of TF . There are some points to note, howe-

ver. First, as suggested above, all terms left unspeci�ed in Fig. 1.1 (e.g. Human

and member) are now explicitly introduced as primitive subconcepts or primitive

10

Compared with back

[

von Luck et al., 1987; Peltason et al., 1987

]

, TF contains almost

all operators which are relevant for the expressiveness of the terminological formalism. Root

concepts

[

von Luck et al., 1987, p. 29

]

and attribute sets

[

von Luck et al., 1987, p. 28

]

can be

\simulated" within TF using the \disjoint" operator. The restricted form of role-value-maps

used in back

[

von Luck et al., 1987, p. 30

]

and the possibility of restricting the range of primitive

subroles

[

von Luck et al., 1987, p. 31

]

could be added to TF without any complications. The

only problematical point may be the domain restriction of primitive subroles. Compared with

the subset of kl-one investigated in

[

Schmolze and Israel, 1983

]

, we miss role-value-maps.

48

Human

:

� Anything

Man

:

� Human

Woman

:

� Human

(disjoint Man Woman)

Set

:

� Anything

member

:

� anyrelation

Team

:

= (and Set (all member Human) (atleast 2 member))

Small-team

:

= (and Team (atmost 5 member))

leader

:

� member

Modern-team

:

= (and Team (atmost 4 member)

(atleast 1 leader) (all leader Woman))

Figure 3.4: A Formal Terminology Using TF Syntax

subroles of Anything or anyrelation, respectively.

Second, the leader role is now globally introduced as a primitive subrole of

member, and not locally \inside" of a concept de�nition as in Fig. 1.1. This does

not change the meaning of any of the concepts, but shows that roles are entities

which are independent of concepts. This is in contrast to the view held in kl-

one. This new perspective on roles, viewing them as \�rst-class citizens," has

been called the \enlightened" view of roles in

[

Kaczmarek et al., 1986

]

and is a

necessary consequence of the logical reconstruction of kl-one.

3.2.2 The Semantics of the Terminological Formalism

As discussed in Sect. 2.2.1, the intuitive meaning of a KR formalism should be

backed up with a formal semantics, preferably with a model-theoretic semantics.

One way to do this, though indirectly, is providing a translation into �rst-order

predicate logic, perhaps employing a restricted form of lambda calculus, as exer-

cised in

[

Schmolze and Israel, 1983

]

and

[

von Luck et al., 1988

]

. Such a solution

has the advantage that we could utilize proof procedures of �rst-order predicate

logic. For the analysis of computational properties in Chap. 4 and the explora-

tion of di�erent kinds of semantics in Chap. 5, however, a direct model-theoretic

semantics proves to be more useful. Actually, I believe that without such a

model-theoretic semantics the analysis in the next two chapters would be almost

impossible.

The main idea in a model-theoretic semantics for terminological representa-

tion formalisms is that there is a set of things we are interested in { the domain D

and that each concept and each role denotes a set of objects (a subset of D) and

a set of object pairs (a subset of D �D), respectively

[

Brachman and Levesque,

49

1984

]

. These sets are called extensions of the concepts or roles. Of course, we

cannot know or determine the actual extensions of any concepts or roles. Howe-

ver, using the relationships between terms �xed by a terminology, we can analyze

the necessary relationships between the extensions of terms in a terminology. For

example, the idea that anything which is called a Modern-team is a Small-team

as well { that Modern-team is subsumed by Small-team { should be mirrored in a

model-theoretic semantics by a set inclusion relationship between the extensions

of both of these concepts, regardless of the actual extensions.

In order to formalize this idea, the notion of an extension function E will be

introduced which maps terms to their extensions, respecting the intuitive rules

about term-forming operators spelled out in the previous subsection. For the

purpose of formally de�ning the extension function, we have to refer to certain

subsets of TF de�ned below.

De�nition 3.1 (Notation: Subsets of TF) We will refer to the following

subsets of TF :

N

C

: the set of atomic concepts,

N

R

: the set of atomic roles,

N : the set of atomic terms with N = N

C

[N

R

and N

C

\N

R

= ;,

TF

C

: the set of concepts,

TF

R

: the set of roles,

TF

T

: the set of terms with TF

T

= TF

C

[TF

R

.

In the following, the letter a will be used to denote atomic terms, t and u to

denote arbitrary terms, and c and r to denote concepts and roles, respectively.

Furthermore, for notational convenience we will often view terminologies not as

sequences but as sets. Based on these conventions, the notion of an extension

function can be de�ned as follows.

De�nition 3.2 (Extension Function) Let D, the domain, be any set, and let

E be a function:

E:

(

TF

C

! 2

D

TF

R

! 2

D�D

:

E is an extension function i�

E[(and c

1

: : : c

n

)] =

n

\

i=1

E[c

i

] (3.1)

E[(all r c)] = fx 2 Dj 8y : hx; yi 2 E[r]) y 2 E[c]g (3.2)

E[(atleast n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E[r]gk � ng (3.3)

50

E[(atmost n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E[r]gk � ng (3.4)

E[Anything] = D (3.5)

E[anyrelation] = D �D: (3.6)

In order to formalize the e�ects of the term introduction operators, the possi-

ble extension functions as characterized by the above de�nition have to be further

restricted. For instance, the introduction of Woman as a primitive subconcept

of Human in Fig. 3.4 should exclude all extension functions which do not satisfy

that E[Woman] � E[Human]. An extension function E over a domain D which

respects all term introductions and also the \disjoint" restrictions will be called

semantic structure of a terminology.

De�nition 3.3 (Semantic Structure of a Terminology) Let T be a termi-

nology according to the bnf de�nition in Fig. 3.3 such that each atomic term is

introduced only once. Let D and E be de�ned as above. Then E is called extension

function with respect to T and hD; Ei is called semantic structure of T i� for

a 2 N , c

1

; c

2

2 N

C

and primitive, and t 2 TF

T

:

E[a] = E[t] for all (a

:

= t) 2 T (3.7)

E[a] � E[t] for all (a

:

� t) 2 T (3.8)

E[c

1

] \ E[c

2

] = ; for all (disjoint c

1

c

2

) 2 T : (3.9)

Although everything de�ned so far makes perfect sense, we will put another

syntactic restriction on the form of terminologies. A common intuition about

terminologies is that the meaning of a concept \can be completely understood

in terms of the meaning of its parts and the way these are composed"

[

Schmolze

and Brachman, 1982, p. 11

]

. However, this can only be achieved if the term

introductions are \well-founded," i.e. if there are no de�nitional cycles, such as

Human

:

� (and Mammal (all o�spring Human)).

Trying to understand the meaning of Human, we will inevitably end up trying

to �gure what the meaning of Human could be { in other words, this term in-

troduction runs counter to the intuition spelled out above. More generally, each

terminological cycle as de�ned below violates this intuition.

De�nition 3.4 (Terminological Cycle) An atomic term a directly uses an

atomic term a

0

in a terminology T i� the right hand side of the introduction of

a mentions a

0

. An atomic term a

0

uses an atomic term a

n

in T i� there is a

chain of atomic terms a

0

; a

1

; : : : a

n

, such that a

i

directly uses a

i+1

, 0 � i � n� 1.

A terminology T is said to contain a terminological cycle i� some atomic term

uses itself in T .

51

Since such terminological cycles are counter-intuitive and, moreover, com-

plicate the semantics and create severe problems when designing an inference

algorithm, their use is prohibited in almost all terminological representation sy-

stems. For the rest of this chapter and in the next chapter, we will follow this

traditional treatment, but we will return to this problem in Chap. 5.

3.2.3 Relationships in Terminologies

Recalling our argument from the beginning of the previous subsection that sub-

sumption between terms should be mirrored as a necessary set inclusion between

extensions of terms, we can now precisely say what is meant by that.

De�nition 3.5 (Subsumption in a Terminology) A term t is subsumed by

a term t

0

in a terminology T , written t �

T

t

0

, i� for every semantic structure

hD; Ei of T it holds that E[t] � E[t

0

].

Note that subsumption in a terminology is is a transitive and re
exive relation

on TF

T

because of the set-theoretic semantics.

11

Proposition 3.1 For any �xed terminology T and any terms t, t

0

, and t

00

:

1. t �

T

t

2. If t �

T

t

0

and t

0

�

T

t

00

, then t �

T

t

00

With the formal de�nition of what is represented in a terminology we can

not only say what it means that one term is subsumed by another one, but can

formally de�ne a number of other relations as well. Of course, we will not get

out more than we put in. In the context of a terminology, this means we can

only reason about analytic relationships { relationships which hold because of

the way the terms are de�ned. For instance, whether there is a Modern-team

in the world is not something a terminology is able to represent. Relationships

and properties which can be reasoned about in terminologies are, in addition

to subsumption, equivalence, disjointness, and incoherence. Two terms are, for

instance, equivalent if they always denote the same set of objects.

De�nition 3.6 (Equivalence) Two terms t; t

0

are equivalent in a terminology

T , written t �

T

t

0

, i� for every semantic structure hD; Ei of T it holds that

E[t] = E[t

0

].

Similarly, two terms are said to be disjoint, if it is impossible to describe

anything by both terms simultaneously.

11

Moreover, as is easy to see, the quotient set of TF

T

w.r.t. to equivalence of terms is a

partial ordering which forms together with the \and" operator a semi lower lattice on the set

of concepts.

52

De�nition 3.7 (Disjointness) Two terms t; t

0

are disjoint in a terminology T

i� for every semantic structure hD; Ei of T it holds that E[t] \ E[t

0

] = ;.

Finally, we will call a term incoherent if it can never be used in describing an

object { if it has a necessarily empty extension.

De�nition 3.8 (Incoherence) A term t is called incoherent in a terminology

T i� for every semantic structure hD; Ei of T it holds that E[t] = ;.

For instance, the concept term (and (atleast 1 r) (atmost 0 r)), for any role r, is

an incoherent concept. According to Def. 3.2, it has a necessarily empty extension

in every terminology, and will be denoted by the special atomic concept Nothing.

Actually, disjointness and incoherency are notions which can only be applied to

concepts in TF . Roles never become incoherent and no pair of roles can be

disjoint.

Obviously, the relations and properties de�ned above are closely related to

subsumption { they can be easily reduced to it by applying the de�nitions above.

Proposition 3.2 Let T be a terminology and t; t

0

two terms. Then the following

relationships hold:

1. t and t

0

are equivalent in T i� t �

T

t

0

and t

0

�

T

t,

2. t is incoherent in T i� t �

T

Nothing, and

3. t and t

0

are disjoint in T i� (and t t

0

) �

T

Nothing.

Similarly, subsumption can be reduced to equivalence.

Proposition 3.3 Given a terminology T and two term t; t

0

:

t �

T

t

0

i� t �

T

(and t t

0

):

Furthermore, if we had a general concept-negation operator, it would be pos-

sible to reduce subsumption to disjointness.

3.2.4 Normal-Form Terminologies and Constructive Se-

mantics

With the de�nitions in the previous two subsections, the semantics of termino-

logical formalisms is completely speci�ed. However, instead of stopping here, I

will try to simplify matters. First, it is shown how to translate terminologies

formulated using TF syntax into so-called normal-form terminologies which are

equivalent in meaning to the original terminology, but which make symbolically

53

explicit most of the restrictions imposed on the semantic structure of a termi-

nology. Second, exploiting the fact that terminological cycles were excluded, it

becomes possible to construct semantic structures instead of merely describing

them.

The �rst of the simpli�cations can be accomplished by noting that the restric-

tions (3.8) and (3.9) on E in Def. 3.3 can be expressed symbolically by adding

some terms to the right hand side of a term introduction. Instead of introdu-

cing a concept primitively, we can equivalently introduce it as a de�ned concept

if the primitive part of the concept's meaning is added explicitly to the de�ning

term. For this purpose, a new syntactic category, called primitive component, will

be used. Primitive components are similar to atomic terms. However, they are

completely unde�ned in the terminology. Names for these primitive components

will be generated by overlining the corresponding atomic term. For instance, the

introduction of Human in Fig. 3.4 could be expressed as

Human

:

= (and Anything Human).

The introduction of primitive roles can be done in a similar way. However, a

new role-forming operator is necessary for this purpose, namely, a role conjunction

operator \androle". Employing this operator, the introduction of the leader role

in Fig. 3.4 could be rephrased as

leader

:

= (androle member leader).

Finally, the semantics of the disjointness restriction (3.9) could be expressed

symbolically, if we had a restricted form of concept negation, namely, atomic

concept-negation of primitive components. Assuming that such an operator,

written \a-not", is at our disposal, the restriction that Man and Woman are

disjoint concepts could be expressed by adding to one of the concept introductions

the negated primitive component of the other concept, e.g.:

Man

:

= (and Human Man)

Woman

:

= (and Human Woman (a-not Man)).

The resulting formalism, which will be called NTF , is de�ned in Fig. 3.5.

Summarizing, by adding a new syntactic category { primitive components {

and two term-forming operators { role conjunction and atomic concept negation

{ we can get rid of \

:

� " and \disjoint". Furthermore, Anything and anyrelation

can be avoided as well since top-level primitive terms can now be introduced by

reference to the corresponding primitive component.

Similarly to TF , conventions for referring to subsets of NTF are introduced

as follows.

De�nition 3.9 (Notation: Subsets of NTF) N

C

, N

R

, and N are the set of

atomic concepts, roles, and terms, respectively. Furthermore, the following sub-

sets of NTF will be used:

54

N

C

: the set of primitive concept components,

N

R

: the set of primitive role components,

N : the set of primitive components with N = N

C

[N

R

, N

C

\ N

R

= ;, and

N \N = ;,

N

b

: the set of base terms = N [N .

NTF

C

: the set of concepts,

NTF

R

: the set of roles,

NTF

T

: the set of terms = NTF

C

[NTF

R

.

As sketched above, it is possible to transform any terminology formulated in

TF into { what will be called { a normal-form terminology by employing some

simple transformation rules.

De�nition 3.10 (Transformation to Normal-Form Terminologies)

Let T be a terminology using TF syntax. Then the normal-form terminology

T

N

is derived from T by the following rules:

1. If c 2 N

C

, then

(a) if (c

:

= t) 2 T , then (c

:

= t) 2 T

N

,

(b) if (c

:

� t) 2 T , then (c

:

= (and t c P)) 2 T

N

,

(c) otherwise, (c

:

= (and c P)) 2 T

N

,

with P empty if (disjoint c : : :) 62 T and P = (a-not c

i

) : : : (a-not c

i

) if

(disjoint c c

i

); : : : ; (disjoint c c

j

) 2 T with c

i

: : : c

j

primitive concepts.

2. If r 2 N

R

, then

(a) if (r

:

= t) 2 T , then (r

:

= t) 2 T

N

,

(b) if (r

:

� t) 2 T , then (r

:

= (androle t r)) 2 T

N

,

(c) otherwise, (r

:

= r) 2 T

N

.

3. All occurrences of Anything and anyrelation are deleted in T

N

.

Analyzing the complexity of the transformation, we note that the transfor-

mation is very simple.

Proposition 3.4 The transformation from T to T

N

can be performed in linear

time. The size of a normal-form terminology T

N

derived from T is at most double

the size of T .

55

Similarly to the de�nitions in the last subsection, we can now de�ne extension

functions and semantic structures for NTF terminologies.

De�nition 3.11 (NTF Extension Function) Let D be a set and E a function.

E is a (NTF) extension function i�

E[(and c

1

: : : c

n

)] =

n

\

i=1

E[c

i

] (3.10)

E[(all r c)] = fx 2 Dj 8y : hx; yi 2 E[r]) y 2 E[c]g (3.11)

E[(atleast n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E[r]gk � ng (3.12)

E[(atmost n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E[r]gk � ng (3.13)

E[(a-not c)] = D n P[c] (3.14)

E[(androle r

1

: : : r

n

)] =

n

\

i=1

E[r

i

]: (3.15)

De�nition 3.12 (NTF Semantic Structure) Let T

N

be a normal-form ter-

minology. Then hD; Ei is a semantic structure of T

N

i� for a 2 N ; t 2 NTF

T

E[a] = E[t] for all (a

:

= t) 2 T

N

: (3.16)

Comparing these de�nitions with Def. 3.2 and Def. 3.3, we see that they are

indeed equivalent in the sense that the resulting semantic structures for a given

TF -terminology T are (almost) identical to the semantic structures of a NTF -

terminology T

N

derived from T .

Theorem 3.1 (Equivalence of Semantic Structures) Let T be a termino-

logy, and let T

N

be the derived normal-form terminology. Then, for any semantic

structure hD; Ei of T there exists a semantic structure hD

0

; E

0

i of T

N

, and vice

versa, such that for any term t 2 TF

T

:

E[t] = E

0

[t]: (3.17)

Proof: Assume hD; Ei is a semantic structure of T . Then set D

0

= D, E

0

[a] =

E[a], and E

0

[a] = E[a] for every atomic term a 2 N . Applying the equations of

Def. 3.11, E

0

can be extended to a NTF extension function such that Eq. (3.17)

is valid. Now, since the equations in Def. 3.3 are satis�ed for T , Eq. (3.16) must

be satis�ed for T

N

because

1. for de�ned atomic terms the equations are identical,

2. for primitive terms without a disjointness restriction, E[a] � E[t] implies

E

0

[a] = E

0

[t] \ E

0

[a],

56

3. for primitive terms with disjointness restrictions, E[a] � E[t], E[a

0

] � E[t

0

]

together with E[a] \ E[a

0

] = ; implies E

0

[a] = E

0

[t] \ E

0

[a] \ (D n E

0

[a

0

]),

E

0

[a

0

] = E

0

[t

0

] \ E

0

[a

0

].

Conversely, let us assume that hD

0

; E

0

i is a semantic structure of T

N

. Then

set D = D

0

, E[t] = E

0

[t] for all t 2 TF

T

, and apply Eq. (3.5) and Eq. (3.6). E is

obviously a TF extension function that satis�es Eq. (3.17). Furthermore,

1. Eq. (3.7) is trivially satis�ed,

2. Eq. (3.8) is satis�ed because E

0

[a] = E

0

[t] \ E

0

[a] implies E[a] � E[t],

3. and Eq. (3.9) is satis�ed because E

0

[a] = E

0

[t] \ E

0

[a] \ (D n E

0

[a

0

]) and

E

0

[a

0

] = E

0

[t]\ E

0

[a

0

], implies E[a] \ E[a

0

] = ;.

Thus, hD; Ei is a semantic structure of T .

Since the semantic structures are identical, the subsumption relation is iden-

tical as well.

Corollary 3.1 (Equivalence of Subsumption) Let T be a TF-terminology

and let T

N

be the derived normal-form terminology. Then for any two concept or

role terms t; t

0

2 TF

T

t �

T

t

0

i� t �

T

N

t

0

:

Theorem 3.1 and Corollary 3.1 give a formal characterization of the status of

primitive terms in terminological formalism { a point which was the topic of a

number of discussions in the kl-one community. For instance, in

[

Schmolze and

Brachman, 1982, p. 11

]

, R. Bobrow suggested that primitive concepts should be

treated in the way we did it in TF , while Israel favored the idea that primitive

concepts should have no structure at all, i.e. they should be equivalent to what I

have called primitive components. The reason behind the latter proposal being

that only \purely linguistic" knowledge should be represented in a terminological

knowledge base, excluding statements such as \Women are Humans," which ap-

parently express some contingent truth about our world.

12

As the theorem above

shows, these two points of view are compatible with each other in the sense that a

terminology containing de�ned and primitive concepts can be translated into one

which contains only de�ned concepts and primitive components without chan-

ging the relevant semantic structure of a terminology, providing us with identical

subsumption relations.

12

This point of view is also held in krypton

[

Brachman et al., 1985

]

, where a concept is

either completely de�ned, or it is completely unde�ned { i.e. there is nothing speci�ed about a

primitive concept.

57

While it is more convenient to have the opportunity to introduce primitive

terms as is possible in TF , terminologies formulated using NTF are easier to

analyze from a formal point of view. For this reason, in the following, normal-

form terminologies will be the subject of investigation when the formal properties

of terminologies are analyzed.

One such property is the fact that it is not only possible to describe semantic

structures, but that such structures can be explicitly constructed { provided the

terminology is cycle-free. This will be done by assuming a primitive assignment

{ an arbitrary assignment of extensions to primitive components.

De�nition 3.13 (Primitive Assignment) A primitive assignment is any

function P such that:

P:

(

N

C

! 2

D

N

R

! 2

D�D

:

Based on this assignment, the extensions of all other terms can be construc-

ted, i.e., the extension function w.r.t. to a terminology can be de�ned in terms

of the primitive assignment and the semantics of the term-forming and term-

introduction operators. This means we can formulate a constructive version of

the semantics given in De�nitions 3.11 and 3.12. Before we do so, however, let

us de�ne what we mean by the level of a term in a terminology.

De�nition 3.14 (Level of a Term) The level of a term in a terminology, writ-

ten level(a;T), is de�ned as

level(t;T) =

8

>

>

>

>

<

>

>

>

>

:

0 if t 2 N ;

max

�

flevel(a;T)j a 2 N

b

occurring in tg

�

if t 62 N

b

;

i+ 1 if (t

:

= u) 2 T

and level(u) = i:

Theorem 3.2 (Constructive Semantics) Let T

N

be a cycle-free NTF-termi-

nology. Then any primitive assignment can be inductively extended to a unique

extension function w.r.t. T

N

.

Proof: First note that a level assignment following the de�nition above is well-

de�ned for all cycle-free terminologies.

Now the extension of a base term a of level i is constructed in the following

way. For i = 0, we set E[a] = P[a]. For i > 0, assume that for all base

terms of level i� 1 the extension has been constructed. Using these extensions,

compute the extension of a by applying Eq. (3.10){(3.15) to the r.h.s. of the

term introduction of a. Then Eq. (3.16) is satis�ed for the introduction of a.

Moreover, E[a] cannot con
ict with the extension of any other atomic term of the

same or lower level. Since this holds for all levels, the construction never leads

to a con
ict and, thus, de�nes an extension function w.r.t. to T

N

.

58

Intuitively, this theorem tells us that terminologies are never inconsistent,

even if they contain incoherent concepts, because it is always possible to generate

semantic structures by starting with an arbitrary primitive assignment.

3.2.5 Abstracting from Term Introductions

In analyzing the proof above, one may note that the facility of introducing terms

is not crucial for the (formal) expressiveness of the language. Term introductions

are something like macro de�nitions, and we can do very well without them. In

particular, it is possible to reduce subsumption in a terminology to subsumption

between terms.

In order to see this, note that the extension of a concept or role s does not

change if a subterm t of s is replaced by another term t

0

, provided that t �

T

t

0

. Since it holds that any atomic term in a normal-form terminology T

N

is

equivalent to its de�ning term in T

N

, it is possible to replace any atomic term

by its de�ning term. Furthermore, since we assumed that terminologies do not

contain any terminological cycles, the repeated replacement of atomic terms by

their de�ning terms results in terms which contain only primitive components

and no atomic terms (henceforth p-terms). Formally, let us de�ne a function exp

which recursively replaces all atomic terms in an expression by their de�nitions:

exp(t;T

N

)

def

=

8

>

<

>

:

exp(u;T

N

) if t 2 N and (t

:

= u) 2 T

N

;

(op exp(t

1

) : : : exp(t

n

)) if t = (op t

1

: : : t

n

);

t otherwise.

By using similar arguments as in the proof of Theorem 3.2, it is easy to see

that exp always terminates, provided that T

N

is cycle-free. Moreover, by the

comments made above, it should be clear that exp is extension-preserving, i.e.,

exp does not change the meaning of a term in a terminology.

Proposition 3.5 Let T

N

be a cycle-free normal-form terminology, and let t be

an arbitrary NTF

T

term. Then for any semantic structure hD; Ei of T

N

:

E[t] = E[exp(t;T

N

)]:

In a sense, exp realizes something similar to what is usually called inheritance

in semantic networks. Substituting the de�ning term t of an atomic concept a

for the appearance of the atom a in a top-level \and" term amounts to adding

the restrictions mentioned in the de�nition of a to this \and" term { to \inherit"

the restrictions from a. However, exp does more. It also performs \inheritance"

for all concepts mentioned in the value restrictions.

The most interesting point about exp is that it allows us to abstract from a

terminology when determining subsumption. Since the p-terms generated by exp

contain no atomic terms, the semantic structure of the terminology is irrelevant

59

for their extensions, and by that, for subsumption between p-terms. In order

to capture this formally, let us denote the empty terminology { the terminology

which contains no term introductions { by ;. Since subsumption in the empty

terminology plays a prominent role in the following, a special name is invented

for it.

De�nition 3.15 (Term-Subsumption) Let t; t

0

2 NTF

T

. If t �

;

t

0

, we will

also write t � t

0

and call � term-subsumption.

Theorem 3.3 (Reduction to Term-Subsumption) Given a cycle-free ter-

minology T , for all terms t and t

0

:

t �

T

t

0

i� exp(t;T

N

) � exp(t

0

;T

N

):

Proof: First of all, we know by Corollary 3.1 that t �

T

t

0

implies t �

T

N

t

0

.

Furthermore, because of Prop. 3.5 and the fact that any semantic structure of

T

N

is also a semantic structure of ;, the \only if" direction follows.

For the \if" direction assume that t �

T

N

t

0

, but exp(t;T

N

) 6� exp(t

0

;T

N

),

i.e., there exists a semantic structure hD; Ei of ; such that E[exp(t;T

N

)] 6�

E[exp(t

0

;T

N

)]. Taking the primitive assignment P of E (the restriction of E

to primitive terms), we know by Theorem 3.2 that there must be an extension

function E

0

w.r.t. T

N

that extends P. Furthermore, since the extension of the two

p-terms must be the same in hD; Ei and hD; E

0

i, the above assumption cannot be

right. Finally, since subsumption in a terminology T and its derived normal-form

terminology T

N

is equivalent, the \if" direction holds, as well.

This theorem shows that for a formal analysis of terminological represen-

tation formalisms it su�ces to analyze the underlying term-forming formalism.

In particular, it demonstrates that restrictions imposed on semantic structures

can be equivalently formulated by extending the vocabulary and describing the

structures. For instance, the disjointness restriction on primitive concepts can be

expressed by using atomic negation. From an algorithmic point of view, it shows

that determination of subsumption in an arbitrary terminology can be reduced to

determination of subsumption in the empty terminology, to term-subsumption.

3.2.6 The Signi�cance of Term Introductions

Although for the purpose of analyzing the formal properties of subsumption it is

possible to abstract completely from terminologies, as we have seen above, the

facility of introducing terms is, of course, crucial for a terminological formalism

if it should be used in a representation system. First of all, the atomic parts

in p-terms are arti�cially constructed entities { namely, the unde�ned parts of

a concept { entities we are usually not interested in. Second, from a point of

notational convenience, the ability to introduce \abbreviations" and to specify

60

restrictions at the most general concept is important for any knowledge represen-

tation language which is aimed at describing conceptual entities. Finally, when

we use a terminology in an AI system, we usually \attach" a certain pragmatic

property to atomic terms.

There is a particular mode of reasoning { classi�cation-based reasoning

[

Kacz-

marek et al., 1986

]

{ which makes use of the fact that there is a di�erence between

atomic concepts explicitly introduced and concepts which are constructible. This

kind of reasoning uses a concept introduction as something like a \conceptual

coat rack"

[

Woods, 1983

]

in the following way. A new concept term c which

evolved during the processing in the system is compared with all atomic concepts

in a terminology, and the set of concepts most accurately describing c { the set

of immediate subsumers of c is returned. These may then be used in order to

trigger some action, as in the consul system

[

Kaczmarek et al., 1983

]

, to select a

plan, as in the ees system

[

Neches et al., 1985

]

, or to select the most appropriate

lexeme for a given concept to be verbalized, as in the janus system

[

Sondhei-

mer and Nebel, 1986

]

. Formally, we may de�ne immediate subsumption between

atomic terms as follows.

De�nition 3.16 (Immediate Subsumption) Let T be a terminology with N

being the set of atomic terms introduced in T . Then, a concept term c 2 TF

C

is

immediately subsumed by an atomic concept term a 2 N

C

in T , written c <

T

a,

i�

c �

T

a and 8b 2 N

C

: If c �

T

b then (a �

T

b or b 6�

T

a):

However, in

[

Brachman et al., 1983

]

, it is argued that the capability to distin-

guish between concepts which have been explicitly introduced and those which

could be constructed is not part of the functionality of a terminological reaso-

ner. On the contrary, relying on the fact that there is something special about

introduced concepts is judged as drawing \unwarranted inferences."

This point of view, though possible to hold, rules out most of the applicati-

ons of terminological reasoners, as is admitted in

[

Brachman et al., 1983

]

. For

example, the psi-klone parser

[

Bobrow and Webber, 1980

]

, the consul system

[

Kaczmarek et al., 1983

]

, and the rabbit information retrieval system

[

Tou et al.,

1982

]

all rely on the distinction between introduced and constructible concepts

(see p. 417 in the revised version of

[

Brachman et al., 1983

]

). The same holds

for the natural language access system to expert systems xtra

[

Allgayer and

Reddig, 1986

]

, an attempt to represent knowledge about drugs and their e�ects

for use in an information retrieval system

[

Schmiedel et al., 1986

]

, applications

in representing design knowledge

[

Peltason, 1987

]

, and an information retrieval

application for TTL circuits

[

Corella, 1987

]

. All of these systems make inferences

in one way or another based on the presence or absence of concepts. There seems

to be an \assertion : : : that the domain includes a certain second-order entity (a

`kind'), represented by the concept" (p. 417 in the revised version of

[

Brachman

et al., 1983

]

).

61

If we reconsider what a terminological representation system should do for us,

we may come to the conclusion that it is indeed essential that such a reasoner

is able to represent the second-order property that a particular concept is of

interest to the user. As a matter of fact, if we think of a natural language

generation system, we expect that such a system can \verbalize" a particular

state of a�airs using the vocabulary we provided. In other words, it should

be capable of accessing the concepts explicitly introduced. This is, of course, an

unwarranted inference in the sense that the model-theoretic semantics as speci�ed

in De�nitions 3.2 and 3.3 cannot tell the di�erence between introduced atomic

concepts and unintroduced concepts. Moreover, it is also nonmonotonic in the

sense that new concept introductions may invalidate immediate subsumption

relationships. However, as we have seen in Def. 3.16, there is no real problem in

de�ning this notion, even though it is second-order.

13

Summing up, when we analyze the formal properties of terminologies with

respect to subsumption and related relations, we can and should abstract from

the facility of introducing terms and the ability to distinguish between atomic

and nonatomic concepts. Demanding, however, that this abstraction should be

carried over to a representation system seems to be too strong { it would make

such a representation system useless in most cases.

3.3 The Assertional Formalism AF

Sometimes, it is enough to have a terminological formalism such as described

above. For example, Corella

[

1987

]

implemented a TTL-device catalog system

which is able to answer questions like \List the edge-triggered
ip-
ops" using

only the terminological subsystem of the hybrid representation system kandor

[

Patel-Schneider, 1984

]

. Of course, Corella had to adopt the view spelled out

above { that the introduction of a concept has a second-order assertional impact.

But this seemed more acceptable than to view speci�cations of TTL-devices as

individuals in the world. In particular, it makes it possible to give concise ans-

wers by returning abstract characterizations instead of enumerating all device

identi�cations matching a speci�cation.

Often, however, an application requires that we can say something about

objects in the world. In a presentation planning system as described in

[

Arens

et al., 1988

]

), for instance, the objects to be presented to the user have to be

represented in the system. In a computer con�guration application, as described

in

[

Owsnicki-Klewe, 1988

]

, individual components have to be represented.

As mentioned already, assertional capabilities were only very poorly developed

in kl-one. In order to assert something, an individual concept had �rst to

be created, which then could be related to a nexus { a proxy of a real-world

13

This does not cause any formal problems, however. We quantify only over a �nite set of

concepts.

62

object { using a description wire. The problem with this approach was that

the semantics of individual concepts and nexuses were never fully worked out,

and, thus, appeared to be rather obscure and useless in the end

[

Schmolze and

Brachman, 1982, pp. 23{31

]

.

Accounting for this de�ciency, krypton

[

Brachman et al., 1985

]

combines

a terminological representation system { a TBox { with a full-
edged theorem

prover for �rst-order logic

[

Stickel, 1985

]

as its assertional component, i.e. as its

ABox. Although such an ABox seems to be optimal because of its assertional

competence, its expressive power

[

Brachman and Levesque, 1982

]

, there are some

problems. First, there are some constructs in terminological formalisms which do

not �t quite so well into the framework of �rst-order logic, in particular general

number-restrictions

[

Pigman, 1984a, p. 24

]

. For this reason, the terminological

formalism employed in krypton is not very elaborate. Second, a switch has

to be provided \to limit how long the system should try a proof before giving

up" because the inferential power of the ABox can easily lead to unreasonably

long proofs

[

Pigman, 1984a, p. 22

]

. All in all, krypton can be regarded as

an interesting experiment in combining knowledge representation and theorem

proving techniques. However, it was not used for any application and probably

never will be because it \is very large and cumbersome and is `sort of unusable

in its current state,' " as Brachman put it

[

Moore, 1986, p. 7

]

. Another, more

recent e�ort aiming into the same direction and addressing some of the problems

mentioned is the L

LILOG

formalism

[

Pletat and von Luck, 1990

]

, which integrates a

rich terminological formalism and �rst-order predicate logic with some extensions

for the modularization of the knowledge base.

A more modest approach is the kl-two system

[

Vilain, 1985

]

using nikl

[

Moser, 1983

]

as the TBox and penni { a version of rup

[

McAllester, 1982

]

{

as its ABox. rup is a reason-maintenance system (see Sect. 6.6.3) supporting

reasoning in variable-free predicate logic with equality, i.e. the system does not

only support knowledge base revision in the ABox in a principled way, but is more

e�cient than krypton because of its limited expressiveness. However, there are

short-comings as well. The TBox, called nikl and the ABox do not match very

well. There are a couple of constructs in nikl which do not have the expected

e�ects on the ABox, most prominently, the number restriction. Cardinalities of

sets are not handled in rup because di�erent constants do not denote di�erent

objects, and even though it would be theoretically possible to express such facts

by a set of negated equations, the implemented system cannot control or use such

information for (hybrid) reasoning. And it is not only this point where reasoning

is incomplete. There are a large number of other \inferential gaps," and it is hard

to tell what the system will infer and what it will miss. Although this might

seem to be a serious defect, it does often not matter too much, particularly

so, when missing inferences will not result in malfunctions and only a small

number of options are exercised, as it was the case when applying kl-two in a

natural language generation system

[

Nebel and Sondheimer, 1986

]

, turning �rst-

63

order predicate logic statements into English sentences using the nigel sentence

generator

[

Mann and Matthiessen, 1983

]

.

While in the two cases mentioned existing assertional reasoners were employed

in creating a hybrid system, there is another class of hybrid systems using special-

purpose ABoxes for dedicated applications. quark

[

Poesio, 1988a

]

, for instance,

the ABox for quirk

[

Bergmann and Gerlach, 1987

]

was designed with a natural

language dialog application in mind. For this reason, it supports the representa-

tion of time

[

Poesio, 1988b

]

, belief contexts, and employs a style of representation

suggested by J. Hobbs

[

1985

]

, called ontological promiscuity. However, the main

e�ort has been put in designing a formalism for storing the desired facts with less

e�ort devoted to inferences.

Contrasting this approach, there are a number of systems which could be cha-

racterized as expressively limited, but computationally e�cient and inferentially

almost complete as we will see Sect. 4.2. Examples are kandor

[

Patel-Schneider,

1984

]

, meson

[

Edelmann and Owsnicki, 1986

]

, classic

[

Borgida et al., 1989

]

, and

back

[

Nebel and von Luck, 1988

]

. All these systems use an expressively limited

TBox { employing a formalism very similar to TF{ and an ABox which is similar

in expressive power to a relational database, an approach we will follow here.

3.3.1 Syntax and Semantics of AF

The syntax of the assertional formalism, which we will callAF, is given in Fig. 3.6.

A world description is a sequence of object and relation descriptions.

With an object description we can assert that a certain object belongs to the

extension of an atomic concept { that the object is an instance of the concept.

With a relation description we are able to assert that an object has certain role

�llers of a certain role or that a role is �lled with a certain number of role �llers

without identifying them.

In order to give an example, Fig. 3.7 displays a world description using con-

cepts and roles from the \team" terminology. This small example demonstrates

that even though AF is a rather restricted formalism, there are some interesting

inferences one can draw if the world description is interpreted in combination

with a terminology. For instance, we can conclude that MARY must be an in-

stance of Woman because she is the leader of the team. Moreover, we see that all

members of TEAM-A are known.

Although the meaning of AF appears to be obvious, some points should be

made explicit. For example, nothing has been said so far about whether di�erent

object names are assumed to denote di�erent individuals in the world or whether

only the explicitly given descriptions hold and nothing else { two properties of

world descriptions usually assumed in the database world. The �rst is called

the unique name assumption (UNA), the second closed world assumption (CWA)

[

Reiter, 1984

]

.

In the context of a KR system, the closed world assumption is not very realistic

64

in conceiving a system which is incrementally creating an image of its environment

{ a partial description of the world. Most likely, it will never reach a state of a

complete description of the world, and it even seems not very desirable to attempt

that. For example, if we assume a concept Human with a role parent, then we

would have to specify the role �llers of this role for any individual which is a

Human. And if these role �llers are Humans themselves, the role �llers would

have to be speci�ed until we reach the �rst Humans { in face of the fact that all

this may be rather super
uous. Most likely, we are only interested in describing

at most one or two generations and not the entire race.

The unique name assumption seems to be more natural. In fact, without

it we could not reason about cardinalities and completeness of descriptions { a

capability which seems desirable, in particular, if the number restrictions in TF

and the limited, numeric quanti�ers in AF should be more than mere comments.

Note that in the example above, I already made this assumption when inferring

that all members of the TEAM-A are known.

Summarizing, AF allows stating nondisjunctive, variable-free, positive prop-

ositions about the world, including a limited form of numeric quanti�cation over

role �llers, and employing the UNA but not the CWA. Although this means

that AF is not very expressive, it su�ces for supporting applications such as

information retrieval systems similar to argon

[

Patel-Schneider et al., 1984

]

,

and is able to support computer con�guration tasks as described in

[

Owsnicki-

Klewe, 1988

]

.

Before we now go on and investigate the combined representational power

of our TBox and ABox, we will specify the meaning of AF formally and inde-

pendently of TF by saying what a model of a world description is supposed to

be.

De�nition 3.17 (Model of a World Description) Let D, the domain, be an

arbitrary set. Let N

O

;N

C

;N

R

be sets of objects, atomic concepts, and atomic

roles, respectively. Let I, the interpretation function, be a function

I:

8

>

<

>

:

N

O

! D

N

C

! 2

D

N

R

! 2

D�D

:

being injective on N

O

. A pair M = hD;Ii, called interpretation, satis�es a

description �, written j=

M

�, under the following conditions:

j=

M

(c o) i� I[o] 2 I[c]

j=

M

(r o p) i� hI[o];I[p]i 2 I[r]

j=

M

(r o (atleast n)) i� kfhI[o]; xi 2 I[r]gk � n

j=

M

(r o (atmost n)) i� kfhI[o]; xi 2 I[r]gk � n:

An interpretation is a model of a world description W, written j=

M

W i� it

satis�es all descriptions in W.

65

It is now easy to say what it means that some description is entailed by a

world description, written W j= �, namely, any description which is satis�ed by

all models of the world description. This means in particular, that a world des-

cription without any model, an inconsistent world description, entails everything

(expressible in AF).

3.3.2 Hybrid Entailment and Subsumption

Interpreting a terminology and a world description in combination means that

we have to somehow relate the models of a world description and the semantic

structure of a terminology. While we may view the semantic structure of a

terminology as possible structures induced by the way we have organized our

vocabulary, world descriptions are partial descriptions of how the world actually

is supposed to be. However, such partial descriptions should, of course, respect

the relationships laid down in a terminology. Respecting a terminology means, for

a world description, that the models we really intend to have are simultaneously

semantic structures of a terminology.

De�nition 3.18 (Models Respecting a Terminology) A model hD;Ii of a

world description W is said to respect the terminology T i� there is a semantic

structure hD; Ei of T such that the restrictions of I and E to atomic concepts

and roles, Ij

N

and Ej

N

, are identical, i.e. Ij

N

= Ej

N

.

Using the set of models respecting a terminology, we can say which descrip-

tions are entailed by both a world descriptions and a terminology, as is spelled

out in the next de�nition.

De�nition 3.19 (Hybrid Entailment) Let W be a world description and T

be a terminology. Then we say an object or relation description � is hybridly

entailed by W and T i� all models of W respecting T satisfy �, written W j=

T

�.

Since this de�nition is quite abstract, it might be worthwhile to make things

a little bit more concrete and characterize possible classes of entailment relation-

ships. First, there is the obvious class induced by the subsumption relationships.

That is, if we have an object description (c o) and there is another concept b in

T such that c �

T

b, then we know immediately that (b o). The same holds for

roles, of course.

However, it can get more complicated. As an example take Fig. 3.7 and

assume that instead of (Modern-team TEAM-A) we have (Team TEAM-A). Taking

the by now familiar \team" terminology from Fig. 3.4 into account, we see that

(Small-team TEAM-A) is entailed because of the number restriction on the member

role. Furthermore, HARRY must be a Human because all members of Teams are.

66

If we look on the interaction between TF and AF from the other side, i.e.

whether a world description can in
uence the relationships induced by the se-

mantic structure of a terminology, we see that this kind of interaction is much

simpler. Except for the case that the world description is inconsistent w.r.t. a

terminology, i.e. there are no models respecting the terminology, the relation-

ships between term extensions are not changed. In order to put that formally,

let us de�ne what we mean by semantic structures respecting a world and hybrid

subsumption.

De�nition 3.20 (Hybrid Subsumption) A semantic structure hD; Ei of a ter-

minology is said to respect a world description W i� there is a model hD;Ii of

W such that Ej

N

= Ij

N

. Furthermore, a term t is hybridly subsumed by t

0

in T

and W, written t �

W

T

t

0

, i� for all semantic structures hD; Ei of T that respect

W it holds that E[t] � E[t

0

].

Hybrid subsumption is, however, identical with normal subsumption in a ter-

minology (except for world descriptions that are inconsistent w.r.t. a termino-

logy).

Proposition 3.6 For any terminology T and any world description W such that

there exists a model of W respecting T , it holds for all t; t

0

2 TF

T

:

t �

T

t

0

i� t �

W

T

t

0

:

Proof: The \only if" direction is obvious. For the other direction let us assume

that there are only semantic structures hD; Ei of T respectingW such that E[t] �

E[t

0

], but at least one semantic structure hD

0

; E

0

i of T with E

0

[t] 6� E

0

[t

0

]. Fix

one semantic structure respecting W hD

0

; E

0

i with hD

0

;I

0

i the corresponding

model of W. Now we can construct a new model hD

�

;I

�

i respecting T with

D

�

= D

0

]D

0

and I

�

= I]E

0

j

N

and a semantic structure hD

�

; E

�

i = hD

�

; (E

0

]E

0

)i,

which obviously respectsW. However, in this semantic structure the assumption

E

�

[t] � E

�

[t

0

] does not hold. Thus, the assumption must be wrong.

Summing up, AF is not only very limited in its expressiveness, but it also

guarantees a limited form of interaction between both formalisms. When rea-

soning with the hybrid formalism we can be sure that necessary set-inclusion

relationships between concept extensions can be completely decided in the ter-

minology. Technically speaking, TF/AF is a conservative extension of TF . This

is in contrast to such formalisms as krypton

[

Brachman et al., 1985

]

, where

the interactions are much more complex { a fact leading to quite complex proof

procedures.

67

3.4 Possible Extensions of the Formalisms

There may be the question of why the particular formalisms presented here have

been chosen. Are they somehow special? And which other options do we have?

The main reason behind choosing AF and TF is that they are idealizations of

the formalisms used in the back system, a system in whose development I have

participated over the last few years. As we will see in the next chapter, the

formalism is not special in the sense that it is possible to specify a complete and

tractable inference algorithm. However, this is a property it shares with almost

all other formalisms in this family. Despite this fact, though, the formalism is

balanced in the sense that all obvious inferences are drawn and that no construct

is ignored by the inference algorithms (see also Sect. 4.6). Nevertheless, it might

be interesting to get an idea how the formalisms could be extended and how it

relates to other, similar formalisms.

3.4.1 Extending the Terminological Formalism

As mentioned in Sect. 3.2.1, there are a variety of term-forming operators which

could be added to TF .

14

We sketched already some of the conceivable role-

forming operators which can be found in some terminological representation sy-

stems. Inverse roles (\inv") are just the inverse relation a role stands for. For

instance, a begetter role could be de�ned as being the inverse role of the o�spring

role. Composite roles (\comp") are role chains formed by composing roles, much

like relations can be composed. As an example, a grandchild role could be de-

�ned by composing the child role with itself. Range restricted roles (\range")

are formed by specifying a restriction on the range of a role, such as de�ning

daughter to be an o�spring with a range restriction of Women. Finally, one could

add operators for the disjunction (\orrole") and complement of roles (\notrole"),

or even for the transitive closure of roles (\trans"), as was done in the almost

universal \terminological logic" U Patel-Schneider presented in

[

Patel-Schneider,

1987a

]

{ which in a sense gives the upper bound for the expressiveness of any

terminological representation language.

Coming to concept-forming operators, there are only a few which have been

spared. Besides the obvious extension of using concept-complement (\not") and

concept-disjunction operators (\or"), there are two operators which state relati-

onships between role �llers of di�erent roles. The �rst one, the so-called role-

value-map (\rvm"), can be used to restrict the role-�ller set of one role to being

a subset of another role-�ller set. For instance, assuming that a Biography is de-

�ned as something with a author role and a subject role, an Autobiography could

be de�ned by specifying that the role-�ller set of both of these roles are identical.

The other operator, the structural description (\sd") is more complex. It can be

14

A more formal description of the term-forming operators described here can be found in

Appendix A.

68

used to specify the existence of another object such that some role-�ller sets of

that object are related to role-�ller sets of the original object.

Other proposals for extending terminological formalisms are not aimed at

enhancing the expressive power by including more term-forming operators, but

by permitting other primitives than roles and concepts. One such extension,

already sketched in Sect. 3.2.1, is to allow for attribute values in the formalism.

Values such as male and female, which in our setting are either concepts or objects,

are seen as constant values, but are usable in the process of de�ning concepts.

In back, for instance, sets of attribute values can be used to de�ne attribute

sets { concepts de�ned by their extensions { which may then be used in value

restrictions

[

von Luck et al., 1987

]

. In kandor, domain objects, strings, and

integers can be used in a concept de�nition. However, none of these extensions

enhance the principal expressive power. They are simply convenient, but may

also be realized by using only term-forming operators, as long as the associated

theories are not imported as well.

A more radical proposal to extend terminological formalisms was made by

Schefe

[

1987

]

. He criticized the object-centered view terminological formalisms

imply. For instance, in the de�nition of the Team concept we were forced to

assume that there are objects which are Teams and somehow loosely connected

by the member relation to other objects, which are Humans. Schefe argued that

this is an \inadequate representation," because there is no distinction between

objects which really exist in the world and objects which exist only by virtue of a

collection of other objects. Accounting for this de�ciency, he proposed to include

sets and n-ary relations as special kinds of term-forming operators.

However, if the distinction between \system aggregations" (as it is called in

[

Schefe, 1987

]

) and atomic objects is Schefe's only concern, there would be the

solution to use disjointness restrictions to express this. In fact, these fundamental

distinctions are usually represented in a prominent place; namely, in the basic

ontological part of a terminological knowledge base which is shared across dif-

ferent applications. An example of this is the \Upper Structure"

[

Mann et al.,

1985

]

developed for the janus system.

It is probably the notational inconvenience associated with the fact that any

n-ary relation has to be expressed as a unary predicate plus n binary relati-

ons that bothered Schefe. Schmolze

[

1989b

]

addresses this issue by his system

nary

[KANDOR]

, which is an extension of kandor supporting n-ary relations.

While such an extension seems to a good idea at �rst sight { because of the

notational convenience and some extra inferences concerning identity of indivi-

duals { it also has some drawbacks. In particular, it is not possible to de�ne

subconcepts by adding extra roles and restrictions on them not mentioned at

the superconcept. Furthermore, from a philosophical point of view, it is often

more convenient to conceive relations as objects, for example when representing

sentence-meanings

[

Davidson, 1967

]

. Thus, it seems arguable whether such an

extension is really useful.

69

3.4.2 Attributive Descriptions

Taking a broader perspective, we note that there are a number of other forma-

lisms closely related to terminological formalisms (or, more accurately, to the

underlying term-forming formalisms), for instance, feature terms

[

Kasper and

Rounds, 1986

]

{ used in uni�cation grammars { and -terms as introduced by

A��t-Kaci

[

1986

]

. All of these formalisms aim at describing sets of objects by spe-

cifying restrictions on attributes the objects may have, similar to terminological

formalisms { a fact leading to the characterization of all of these formalisms as

attributive concept description formalisms

[

Nebel and Smolka, 1990

]

.

Although feature terms and -terms were not provided with a general model-

theoretic semantics originally, a reconstruction of these formalisms in a more

general setting as feature logic by Smolka

[

1988

]

, including a model-theoretic

semantics, revealed that there is indeed only one simple di�erence between them

and terminological formalisms. In feature logic, features { which correspond to

roles in terminological formalisms { are assumed to be functional. This means,

the interpretation of any feature is not a relation, as in terminological languages,

but a function. For this reason, there is also less emphasis on de�ning features,

but they are usually assumed to be primitive. However, the counter-part to

role-value-maps, called agreement in feature logic, is usually heavily exploited.

Despite this similarity between terminological formalisms and feature logic,

it turns out that the computational services provided by terminological repre-

sentation systems and uni�cation-based parsing systems are quite di�erent. In

the former kind of systems we are usually interested in relationships between

concepts (e.g., subsumption and disjointness), while in the latter kind of systems

constraints in a domain of so-called feature graphs are solved (see also

[

Nebel and

Smolka, 1990

]

). Nevertheless, it is possible to apply theoretical results achieved

in one approach to the other because of the same underlying model-theoretic

semantics. For instance, Schmidt-Schau�'

[

1989

]

undecidability result for sub-

sumption in term-forming languages containing role-value-maps shows that the

move from single-valued features to multi-valued features in a feature logic would

be extremely expensive. Conversely, it is possible to apply the quasi-linear algo-

rithm developed for the uni�cation of feature terms containing agreements (i.e.,

role-value maps over single-valued roles) in terminological representation systems,

as done, for example, in the classic system

[

Borgida et al., 1989

]

.

3.4.3 Extending the Assertional Formalism

Considering how to extend AF, we note that there are a large number of options.

For instance, krypton and kl-two employ assertional formalisms which are

considerably more expressive than AF. However, as already mentioned, with

that comes also the problem of controlling the amount of reasoning in krypton

and the problem of unprincipled inferential gaps in kl-two.

70

The ABox of back was designed to be slightly more powerful than in AF

allowing special kinds of disjunctions and local closed world assumption on role

�llers

[

von Luck, 1986

]

. In applications, however, this additional expressive power

did not seem to be of great value { which was a reason to restrict the expressiven-

ess at this point because the processing is considerably simpli�ed and because it

opens up the opportunity to use a relational DBMS to store assertions

[

Peltason

et al., 1989

]

.

Patel-Schneider

[

1987a; 1987b

]

explored an inferentially very weak version of

�rst-order predicate logic to be used as an ABox for which a complete inference

algorithm would be tractable, provided some conditions on the structures of the

formulas are met. As already pointed out in Sect. 2.3.3, such an approach does

guarantee completeness, but almost no interesting inferences can be achieved.

A better solution is perhaps to leave the ABox as it is and to add new \Boxes"

as also suggested in

[

Brachman and Levesque, 1987, pp. 36�

]

. Recalling the

arguments from Sect. 2.2.3, it seems to be worthwhile to devise special-purpose

KR formalisms for di�erent representational needs.

One such box could be a \universal box," a place where universal, but nonde-

�nitional knowledge could be represented. This includes, for instance, universal

implications like \every featherless biped is a human." Such an extension has

been already incorporated into loom

[

MacGregor and Bates, 1987

]

and meson

[

Owsnicki-Klewe, 1988

]

. The \procedural" nature of such rules has been formally

characterized by Schild

[

1989

]

.

Following this line, there are a number of other extensions which are concei-

vable. For example, a box for representing default knowledge, another one for

representing time, etc. The important point is that the formalisms have to be

combined in a sensible way in order to make up a hybrid formalism and to al-

low for sound inferences { a task which requires some substantial research e�ort

[

Frisch, 1988

]

.

71

hterminologyi ::= hterm-introductioni

�

hterm-introductioni ::= hconcept-introductioni j

hrole-introductioni

hconcept-introductioni ::= hatomic-concepti

:

= hconcepti

hrole-introductioni ::= hatomic-rolei

:

= hrolei

hconcepti ::= hatomic-concepti j

hprimitive-concept-componenti j

(a-not

hprimitive-concept-componenti) j

(and hconcepti

+

) j

(all hrolei hconcepti) j

(atleast hnumberi hrolei) j

(atmost hnumberi hrolei)

hrolei ::= hatomic-rolei

hprimitive-role-componenti j

(androle hrolei

+

)

hnumberi ::= hnon-negative-integeri

hatomic-rolei ::= hidenti�eri

hatomic-concepti ::= hidenti�eri

hprimitive-concept-componenti ::= hidenti�eri

hprimitive-role-componenti ::= hidenti�eri

Figure 3.5: bnf De�nition of NTF

hworld-descriptioni ::= (hobject-descriptioni j hrelation-descriptioni)

�

hobject-descriptioni ::= (hatomic-concepti hobjecti)

hrelation-descriptioni ::= (hatomic-rolei hobjecti hobjecti) j

(hatomic-rolei hobjecti (atleast hnumberi)) j

(hatomic-rolei hobjecti (atmost hnumberi))

Figure 3.6: bnf De�nition of AF

72

(Modern-team TEAM-A)

(Man DICK)

(Human MARY)

(member TEAM-A DICK)

(member TEAM-A HARRY)

(leader TEAM-A MARY)

(member TEAM-A (atmost 3))

Figure 3.7: A Formal World Description Using AF Syntax

73

Chapter 4

Reasoning in the Formalism

Knowing what a knowledge representation formalism is supposed to mean is a

necessary prerequisite for any serious attempt of representing knowledge. Howe-

ver, although the semantics of a representation formalism tells us what is entailed

by a given knowledge base, it does not give us a hint how to derive implicit facts.

If we want a computer to reason with the representation formalism, we need

inference algorithms which compute entailed facts.

We will start o� by describing an algorithm for testing term-subsumption,

which is an extension of the algorithm presented in

[

Schmolze and Israel, 1983

]

.

Similar to that algorithm, our own is e�cient and sound but incomplete, i.e., it

misses certain subsumption relationships. Although this sounds distressing, there

is unfortunately no easy way to achieve completeness. Subsumption in NTF

T

,

though decidable, is a very hard problem { a co-NP-hard one, as will be shown in

Sect. 4.2. Interestingly, this result also applies to another terminological reasoner

which has been conjectured to be complete and tractable, namely, the kandor

system

[

Patel-Schneider, 1984

]

. Instead of specifying a complete algorithm, it will

be argued that sometimes it may be better to live with an e�cient but incomplete

reasoner which uncovers all obvious subsumption relationships.

As we have seen in Sect. 3.2.5, subsumption in a terminology can be easily re-

duced to term-subsumption. Thus, when knowing a way to compute (incomplete)

term-subsumption, subsumption in a terminology can be computed (incomple-

tely), as well. However, there is the question of whether the computational

complexity of term-subsumption carries over to subsumption in a terminology.

As it turns out, this is not the case. In Sect. 4.3 we will see that subsumption in

a terminology is computationally much harder than term-subsumption { theore-

tically. However, it seems to be the case that the worst-case behavior occurs only

seldomly in practice.

Subsumption is the basic terminological relation on which all other ones can

be based, as has been shown in Sect. 3.2.2. If we want to build a practical system,

however, it does not su�ce to check subsumption on demand. It is necessary to

compute subsumption in advance for reasons of pragmatics and e�ciency. The

74

common technique to deal with this topic is called classi�cation { an issue we

will deal with in Sect. 4.4.

After that, we will tackle the problem of hybrid inferences in Sect. 4.5, concen-

trating on the problem of checking whether an object is an instance of a concept.

In analyzing this problem, it turns out that most systems described in the lite-

rature missed an important class of inferences. As in the case of subsumption, it

pays to compute these relationships in advance { using a technique called realiza-

tion. Furthermore, it will be shown that although the basic inference algorithm

{ subsumption { is incomplete, realization is complete under certain conditions.

Finally, in Sect. 4.6, we will evaluate the inference algorithms in the light of

the claims we made in Chap. 2 and come to the conclusion that because of the

balanced expressiveness of the formalisms, the inference capabilities are balanced

as well.

4.1 Computing Term-Subsumption

In determining subsumption between two concepts c and c

0

in a terminology, the

relation between the extensions of the two concepts is symbolically evaluated.

This amounts to

1. transforming (the relevant part of) a terminology into the corresponding

normal-form terminology (as described in Sect. 3.2.4) and expanding terms

into p-terms (as speci�ed in Sect. 3.2.5),

2. propagating constraints and recognizing inconsistencies, and

3. comparing structurally the resulting expressions.

Determining subsumption between roles follows the same line. However, it is

considerably easier because roles are very simply structured in TF .

In this section, we will abstract from step 1 above and consider subsumption

between p-terms only. For reasons of simplicity, primitive components will not

be overlined. Rather all names will be assumed to denote primitive components.

Moreover, we will often talk about concepts and roles where we actually mean

p-concepts and p-roles.

Adopting this perspective, two points should be noted, however. First, when

we apply an algorithm developed for subsumption determination between p-terms

to the problem of subsumption determination between terms in a terminology,

we have to assure that exp does not create expressions which are \too large" (a

point we will return to in Sect. 4.3). Second, we should be aware of the fact that

the equivalence between subsumption in a terminology and subsumption over p-

terms depends on a syntactical property of the terminology { it must not contain

any terminological cycles. If a terminology contains a cycle, exp may go into an

in�nite loop { which gives us another argument against terminological cycles.

75

4.1.1 An Algorithm for Subsumption Detection

Following the ideas sketched out above, we shall now specify an algorithm inten-

ded to check subsumption between p-terms.

1

Algorithm 4.1 (tsub) tsub is a function de�ned as follows:

tsub: (NTF

C

2

[NTF

R

2

) ! ftrue, falseg

tsub(t; u) 7! compare(norm(t);norm(u))

with norm, and compare as de�ned below.

norm transforms an arbitrary p-term into a normalized p-term. Such a nor-

malized p-term contains no \and" expression embedded in another \and" expres-

sion (and the same holds for \androle" expressions), value restrictions for the

same role are collected, and incoherent subexpressions are detected and marked

as such.

Algorithm 4.2 (norm) norm is de�ned as:

norm:NTF

T

! NTF

T

The input expression is transformed by rules (N1){(N8) given below. These

transformations are applied to the input expression and all its subexpressions,

taking into account the commutativity of the \and" operator, until no further

transformations are applicable.

(N1) If an \androle" expression is part of another \androle" expression, it is

spliced into the surrounding expression, i.e.,

(androle : : : (androle r

i

: : : r

j

) : : :) 7! (androle : : : r

i

: : : r

j

: : :)

(N2) If an \and" expression is part of another \and" expression, it is spliced

into the surrounding expression, i.e.,

(and : : : (and c

i

: : : c

j

) : : :) 7! (and : : : c

i

: : : c

j

: : :)

(N3) All value restrictions which are not \and" expressions are converted

into \and" expressions, i.e., if c 6= (and : : :)

(all r c) 7! (all r (and c))

1

The following formal description of the tsub algorithm resembles to a large extent the

algorithm used in the back classi�er

[

von Luck et al., 1987, pp. 70{79

]

.

76

(N4) If an \and" expression contains two \all" restrictions on the same role,

the value restrictions are combined, i.e.,

(and : : : (all r (and c

1

: : : c

i

)) : : : (all r (and c

i+1

: : : c

n

)) : : :)

7! (and : : : (all r (and c

1

: : : c

i

c

i+1

: : : c

n

)) : : :)

(N5) If an \and" expression contains a primitive components and its negation

then the \and" expression is replaced by the special concept Nothing,

i.e.,

(and : : : c : : : (a-not c) : : :) 7! Nothing

(N6) If an \and" expression contains \atleast" and \atmost" restrictions with

con
icting number restrictions, then the \and" expression is replaced

by the special concept Nothing. More formally, if tsub(r

1

; r

2

) and

n

1

< n

2

, then

(and : : : (atmost n

1

r

1

) : : : (atleast n

2

r

2

) : : :) 7! Nothing

(N7) If an \and" expression contains a value restriction identical to Nothing

on a role and an \atleast" restriction on a subrole of that role, then the

entire \and" expression is replaced by Nothing, i.e., if tsub(r

1

; r

2

) and

n

2

> 0, then

(and : : : (all r

1

Nothing) : : : (atleast n

2

r

2

) : : :) 7! Nothing

(N8) Value restrictions of Nothing are replaced by an \atmost" restriction

on the same role with the number 0, i.e.,

(all r Nothing) 7! (atmost 0 r)

Obviously, all transformations performed by norm are extension-preserving.

Proposition 4.1 For all p-terms t 2 NTF

T

and all extension functions E:

E[t] = E[norm(t)]

Based on the result of norm, compare compares the resulting expressions

structurally.

Algorithm 4.3 (compare) compare is de�ned as:

compare: (NTF

C

2

[NTF

R

2

)! ftrue,falseg

compare(t; u) computes its results by the following rules:

77

(C1) If u = Nothing

then return true.

(C2) If t = (and t

1

: : : t

n

) or t = (androle t

1

: : : t

n

)

then test compare(t

i

; u) for all i : 1 � i � n.

(C3) If t is a positive or negated primitive component, then

(a) if u is a positive or negated primitive component

then test t = u.

(b) if u = (and u

1

: : : u

n

) or u = (androle u

1

: : : u

n

)

then test t = u

i

for some i : 1 � i � n.

(c) return false otherwise.

(C4) If t = (all r

t

c

t

), then

(a) if u = (all r

u

c

u

)

then test compare(c

t

; c

u

) ^ compare(r

u

; r

t

).

(b) if u = (atmost 0 r

u

)

then test compare(r

u

; r

t

).

(c) if u = (and u

1

: : : u

n

)

then test compare(t; u

i

) for some i : 1 � i � n.

(d) return false otherwise.

(C5) If t = (atleast n

t

r

t

), then

(a) if u = (atleast n

u

r

u

)

then test compare(r

t

; r

u

) ^ n

t

� n

u

.

(b) if u = (and u

1

: : : u

n

)

then test compare(t; u

i

) for some i : 1 � i � n.

(c) return false otherwise.

(C6) If t = (atmost n

t

r

t

), then

(a) if u = (atmost n

u

r

u

)

then test compare(r

u

; r

t

) ^ n

t

� n

u

.

(b) if u = (and u

1

: : : u

n

)

then test compare(t; u

i

) for some i : 1 � i � n.

(c) return false otherwise.

For most of the rules in the compare algorithm, it should be obvious that

compare returns true only if t subsumes u according to Def. 3.15, i.e. that

compare is sound.

78

Proposition 4.2 For any two p-terms, t and u it holds that:

compare(t; u) only if u � t (4.1)

Proof: Assume that compare(t; u) = true, i.e., all of the tests applied to t and

u and their corresponding subexpressions returned true. Then E[t] � E[u] for

all extension functions E according to Def. 3.11, hence u � t. This is obvious

for (C1) and can be shown by straightforward structural induction for the other

rules. The only nonobvious cases are (C4a), (C4b), and (C6a). In order to see

that (C4a) is a sound rule note that for all extension function E, it holds that

E[c

t

] � E[c

u

] ^ E[r

t

] � E[r

u

]) E[(all r

t

c

t

)] � E[(all r

t

c

u

)] � E[(all r

u

c

u

)]:

Furthermore, (C4b) is sound because of the above observation and

(atmost r 0) �

;

(all r Nothing):

Finally, (C6a) is sound because

n

t

� n

u

^ E[r

t

] � E[r

u

]) E[(atmostn

t

r

t

)] � E[(atmostn

u

r

t

)] � E[(atmostn

u

r

u

)]

for every extension function E.

4.1.2 Properties of the Algorithm

Comparing tsub with the algorithm described in

[

Schmolze and Israel, 1983

]

,

we note that tsub detects and handles concept descriptions which are obviously

incoherent ((N5){(N8), (C1), and the second test in (C4)) { a point completely

ignored in

[

Schmolze and Israel, 1983

]

. As is easy to see, tsub is sound with

respect to the subsumption relation.

Theorem 4.1 (Soundness of tsub) For any two p-terms, t and u it holds

that:

tsub(t; u) only if u � t (4.2)

Proof: Immediate by Prop. 4.1 and Prop. 4.2.

From the speci�cation of the algorithm it is easy to see that tsub is well-

behaved in the sense that the subset of the subsumption relation computed is

re
exive and transitive. This means that although we do not know (yet) whether

tsub detects all subsumption relationships, the subset it computes has similar

properties as the subsumption relation (see Prop. 3.1).

Proposition 4.3 For all t; u; v 2 NTF

T

, it holds that:

79

1. tsub(t; t)

2. if tsub(t; u) and tsub(u; v), then tsub(t; v).

Additionally, tsub always returns a result, i.e., it terminates on all p-terms.

Instead of proving this here, a stronger result will be proven, namely, that tsub

has polynomial time complexity.

Theorem 4.2 (Complexity of tsub) Let t and u be two p-terms and let jtj

denote the length of t. Then tsub runs in O((jtj+ juj)

2

) time on t and u.

2

Proof: If the arguments of tsub are p-roles, then norm needs only one scan for

each input expression. Hence, the time to execute norm on roles is O(jtj+ juj).

The running time of compare on roles is determined by (C1), (C2), and (C3).

If we assume that both arguments are \androle" expressions, then

1. (C2) leads to jtj recursive calls of compare with a primitive component as

the �rst argument and an \androle" expression as the second argument.

2. (C3b) leads to juj recursive calls of compare with both arguments as po-

sitive or negated primitive components.

3. (C3a) can be executed in constant time.

Hence, compare, and by that tsub, can be executed in O(jtj � juj) time if both

arguments are roles.

In the case when the arguments are concepts, the analysis is more complex.

First, we give an approximation for the running time of norm. (N1), (N2), (N3),

and (N8) require O(jtj + juj) comparison and substitution steps each. (N4) and

(N5) requireO(jtj

2

+juj

2

) comparisons each. (N6) and (N7) require that we check

every pair of \atmost/atleast" or \all/atleast" restrictions, respectively. Assume

that there are n and m number and value restrictions in t and u, respectively.

Then O(n

2

+m

2

) tsub calls with the respective role expressions are necessary.

Let t

i

be the ith subexpression in t and u

j

be the jth subexpression in u. Then

the overall time to execute (N6) and (N7) is

O((

n

X

i=1

n

X

j=1

jt

i

j � jt

j

j) + (

m

X

j=1

m

X

j=1

ju

i

j � ju

j

j)) � O(jtj

2

+ juj

2

)

Hence, the time to execute norm on concept expressions is in the worst case

linearly proportional to (jtj

2

+ juj

2

).

2

Actually, it is possible do to better than that. Employing sophisticated implementation

techniques for locating role restrictions and primitive components in a p-term can reduce the

complexity. We will be satis�ed with the polynomial complexity here, however.

80

Finally, the running time of compare for concept expressions has to be deter-

mined, which will be done by induction over the depth of nested \all" expressions.

Assume �rst that we do not have any \all" expressions. Without loss of

generality, we will assume that both t and u are \and" expressions having n and

m subexpressions. Similar to the analysis of the execution time of compare on

roles, we have:

1. (C2) leads to n recursive calls of compare with an \and" expression as its

second parameter and an expression which is not an \and" expression as its

�rst parameter.

2. Depending on the type of the �rst parameter, (C1), (C3), (C5), or (C6)

applies. If the second parameter is not Nothing, (C3), (C5), or (C6) leads

to m recursive calls of compare with parameters which are not \and"

expressions.

3. Depending on the type of the parameters, either direct comparisons (C3a)

are performed requiring constant time, or role subsumption tests are neces-

sary ((C5a) and (C6a)), which require O(jt

i

j � ju

j

j) time.

Summing up, the execution time of compare on concepts without \all" expres-

sions is

O(

n

X

i=1

m

X

j=1

jt

i

j � ju

j

j) = O((

n

X

i=1

jt

i

j)� (

m

X

j=1

ju

j

j))

= O(jtj � juj)

Now assume that compare runs in O(jtj � juj) time for expressions with a

nesting depth of k for \all" expressions. Then the same holds for expressions

with a nesting depth of k + 1 because of an argument about the running time

similar to the one we made for the subsumption of roles in \atleast" and \atmost"

expressions.

Combining the approximations for the di�erent steps and cases leads to the

stated time complexity O((jtj+ juj)

2

).

Although tsub is more extensive than the algorithm presented in

[

Schmolze

and Israel, 1983

]

in that it checks for obviously incoherent concepts, it is nevert-

heless incomplete. For instance, if we consider the two p-terms below, we see that

tsub misses the subsumption relation between them:

(and (all r A)

(all (androle r q) B))

(all (androle r q) (and A B))

81

It can be inferred that the \all" restriction of the role (androle r q) in the �rst con-

cept expression is (and A B), but compare and norm ignore this fact. Actually,

this defect could be repaired by performing inheritance of value restrictions for

subroles in norm. However, this would a�ect the computational complexity {

norm might create expressions which are not bounded linearly by the length of

the input expressions!

In any case, there are more severe reasons for the incompleteness of tsub

{ reasons which have to do with interactions of number restrictions between

subroles which have disjoint value restrictions. Consider, for example, the two

following concept expressions:

(atleast 3 r)

(and (all (androle r p) A)

(all (androle r q) (a-not A))

(atleast 2 (androle r p))

(atleast 2 (androle r q)))

Here, we can infer from the disjointness of the value restrictions of the roles

(androle r p) and (androle r q) that there must be at least 4 role-�ller for role r in

the second concept expression, and for this reason the second concept expression is

subsumed by the �rst one. compare misses this fact, however. This means that

a complete subsumption algorithm has to take the disjointness of restrictions on

subroles into account, otherwise it would miss certain subsumption relationships.

We therefore have to take care of pairs of disjoint value restrictions (if we are

going for a complete algorithm). This still seems to be manageable in polynomial

time, because there are \only" O((jtj + juj)

2

) such pairs. Taking a second look

at the problem, however, we detect that there are even more complex cases, as

exempli�ed by the next three concept expressions:

(and (all (androle r q) A)

(atleast 1 (androle r q)))

(and (all (androle r p) (a-not A))

(atleast 1 (androle r p)))

(atmost 1 r)

The concepts above are not pairwise disjoint. The conjunction of the three con-

cepts, however, is an incoherent concept. Assuming that these descriptions serve

as arguments to \all" restrictions of subroles, the computation of the actual \at-

least" restrictions for the superrole becomes even more complicated. In the ge-

neral case, the subsets of subroles leading to incoherent \all" restrictions have to

82

be determined and then the \atleast" restriction for the superrole has to be com-

puted by a minimization process.

3

However, instead of continuing the re
ection

about how to repair the algorithm by trying to account for \missed inferences,"

it seems more promising to analyze subsumption from a more general point of

view.

4.2 Analysis of the Term-Subsumption Pro-

blem

Abstracting from the algorithm presented in the previous section, we will inve-

stigate the computational properties of the subsumption problem. What are the

computational costs implied by this problem?

4.2.1 Decidability of Subsumption in NTF

T

The common opinion in research concerning terminological knowledge represen-

tation was that subsumption determination is decidable for most, if not all, \re-

asonable" term-forming formalisms. Recently, however, it turned out that this is

wrong.

Schild

[

1988

]

shows that a sublanguage of the \universal terminological logic"

U presented in

[

Patel-Schneider, 1987a

]

su�ces to describe the behavior of any

Turing Machine. This sublanguage, called R, contains only the role-forming

operators role-conjunction (\androle"), role-negation (\notrole"), role-composition

(\comp"), and the special self-role { the identity role.

4

While Schild's result �nally

answers the question raised by Patel-Schneider

[

1987a

]

of whether U is decidable

or not, it has no immediate consequences. The role-negation operator was never

considered a reasonable operator for any term-forming formalism. However, the

undecidability result for R is a �rst hint that terminological reasoning is more

di�cult than believed and that the combination of other term-forming operators

may lead to a similar result.

As a matter of fact, Patel-Schneider

[

1989b

]

shows, using some of the tech-

niques of Schild's proof, that a subset of the term-forming formalism underlying

nikl

[

Moser, 1983

]

is undecidable with respect to subsumption. In addition to

the concept-forming operators in NTF

T

, Patel-Schneider uses the role-forming

operator range-restricted role (\range") and the concept-forming operator role-

value-map (\rvm") applied to composed roles. In this language, subsumption

can be reduced to the Post's Correspondence Problem, which is known to be

undecidable.

3

Note that these problems are independent from the restricted \a-not" operator. Even

without it, it would be possible to force disjointness on role-�llers by using con
icting number

restrictions.

4

For the syntax and semantics of these operators see Appendix A.

83

Independently from Schild and Patel-Schneider, Schmidt-Schau�

[

1989

]

proves

that the generalization of feature logic to term-forming formalisms { by genera-

lizing features to roles { leads to undecidability of subsumption. As a side-e�ect,

he proves that an an even smaller subset of nikl (and also kl-one) is undecida-

ble. Only concept conjunction, value restriction, and role-value-maps stating the

identity of role-�ller sets are necessary to achieve undecidability.

Compared with the three languages for which undecidability of subsumption

has been proven, NTF

T

appears to be quite simple and, hence, probably deci-

dable. However, instead of relying on mere intuition, we will give some formal

arguments to justify this claim.

For roles, subsumption is trivially decidable. For concepts, it is the case that a

concept de�nition can impose only very simple structures on a domain { concept

de�nitions say something only about a �nite local context of the domain elements

which belong to the extensions of the concepts. As we will see, it is always possible

to �nd a semantic structure of a certain �nite size, given an arbitrary semantic

structure, without destroying an important property, namely, non-inclusion of

concept-extensions. Based on that, it is easy to see that it su�ces to inspect

only a certain �nite number of semantic structures with �nite domains. Provided

it can be shown that one concept extension is a subset of another one in all

these �nite semantic structures, it must be a subset in all semantic structures.

Otherwise, we would have a contradiction. In order to prove this claim, let us

�rst de�ne what we mean by a non-inclusion situation.

De�nition 4.1 (Non-Inclusion Situation) Let c

in

and c

out

be two p-concepts

and D, P, E as de�ned in Sect. 3.2.4 Furthermore, assume d 2 D. Then

(c

in

; c

out

;D;P; E; d) is called a non-inclusion situation i� d 2 E[c

in

] and d 62

E[c

out

].

Starting o� with arbitrary non-inclusion situations, we will identify step by

step non-inclusion situations which are simpler and smaller, aiming for non-

inclusion situations which contain a domain of bounded size. The �rst simpli�ca-

tion is aimed at restricting the length of role chains in the semantic structure to

a number dependent on the concepts we consider. For this purpose, let us de�ne

what we mean by the relevant role-chain length of a concept.

De�nition 4.2 (Relevant Role-Chain Length of a Concept)

The relevant role-chain length of a p-concept c is the maximum nesting depth

of \all" expressions plus one, written as rlength(c).

De�nition 4.3 (Notation: Relation Composition) The composition of two

relations R;S, written R � S, is a relation, such that

hx; yi 2 R � S i� 9z : hx; zi 2 R ^ hz; yi 2 S

84

Lemma 4.1 Let (c

in

; c

out

;D;P; E; d) be a non-inclusion situation and assume

that N

C

and N

R

are the sets of primitive concept and role components used in c

in

and c

out

. Furthermore, let l = max(rlength(c

in

); rlength(c

out

)). Then there exists

a non-inclusion situation (c

in

; c

out

;D

0

;P

0

; E

0

; d) such that:

8e 2 D

0

: hd; ei 2 (E

0

[r

1

] � : : : � E

0

[r

i

]); r

1

; : : : ; r

i

2 NTF

R

; 0 � i � l (4.3)

Proof: De�ne D

0

as

D

0

= fx 2 Dj hd; xi 2 (P[rp

1

] � : : : � P[rp

i

]); 0 � i � l; rp

1

; : : : rp

i

2 N

R

g

De�ne P

0

for all primitive concept components cp 2 N

C

as

P

0

[cp] = P[cp] \ D

0

and for all primitive role components rp 2 N

R

as

P

0

[rp] = fhx; yi 2 P[rp]j hd; xi 2 (P[rp

1

] � : : : � P[rp

i

])g

with 0 � i � l�1 and rp

1

; : : : rp

i

2 N

R

. Use P

0

to create a new extension function

E

0

on the domain D

0

. Then for the domain element d 2 D

0

, we have d 2 E

0

[c

in

]

and d 62 E

0

[c

out

] because we have removed only elements and pairs which do

not contribute to the determination of whether d belongs to the extension of c

in

and c

out

according to the rules in Def. 3.11. Moreover, because of the way we

constructed P

0

, (4.3) holds as well.

A visualization of the e�ect of the transformation in Lemma 4.1 is given in

Figure 4.1, where nodes stand for domain elements and edges represent role-

relationships (without specifying primitive assignments).

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

B

A

C D

E

F

G

H

@

@

@

@R

@

@

@

@I

-

�

�

�

��

-

@

@

@

@R

@

@

@

@I

�

�

�

��

-

@

@

@

@R

?

H

H

H

H�

�

�

�

H

H

H

H�

�

�

�

H

H

H

H�

�

�

�

H

H�

�

H

H�

�

H

H�

�

H

H�

�

H

H�

�

Figure 4.1: Role-Chain Length Pruning

Assuming a maximum relevant role-chain length of 3 and the domain element

A as the one which should stay in the extension of c

in

and should not become

85

part of the extension of c

out

, then the domain elements F, G, and H, as well as

the pairs hE;Di, hE;Fi, hE;Gi, hE;Hi, and hF;Gi can be deleted. This simpli�es

the semantic structure considerably, but it may be still too large and too struc-

tured. As a next step, assertional cycles such as (hA;Bi, hB;Ai) are removed by

\unfolding" them.

De�nition 4.4 (Assertional Cycle) Assume D, P over N

C

[N

R

, and E as

above. Then hD; Ei contains an assertional cycle i� there is a domain element

e 2 D and a nonempty chain of role expressions r

1

; : : : ; r

n

2 NTF

R

such that

he; ei 2 (E[r

1

] � : : : � E[r

n

])

Lemma 4.2 Let (c

in

; c

out

;D;P; E; d) be a non-inclusion situation. Then there

exists a non-inclusion situation (c

in

; c

out

;D

0

;P

0

; E

0

; d) such that hD

0

; E

0

i contains

no assertional cycle.

Proof Sketch: Let l = max(rlength(c

in

); rlength(c

out

)). Applying Lemma 4.1,

we know that there exists a non-inclusion situation such that (4.3) holds. Howe-

ver, there can be chains of role relationships between two elements e; f which are

longer than l because of assertional cycles.

From Def. 3.11, we know that only chains of length l are relevant for the

determination of the inclusion in concept extensions. Additionally, we know that

identity of elements comes only into play for \atleast" and \atmost" restrictions.

This means that assertional cycles can be \unfolded" by copying elements and

pairs with their respective primitive assignments to a length of l. This does

not change any instance relationships for the element d, i.e., we know that a

noninclusion situation with the desired property exists.

Applying this transformation to Figure 4.1 results in a semantic structure as

visualized by Figure 4.2.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

B

A

C D

EA'C'

B'

@

@

@

@I

-

�

�

�

��

-

?

�

�

�

�	@

@

@

@I

�

Figure 4.2: Unfolding of Assertional Cycles

Such semantic structures correspond to (possibly in�nite) directed, acyclic

graphs. Evidently, we can transform such an semantic structure to a structure

which corresponds to a directed tree by \splitting" shared elements, such as C in

86

Figure 4.2, and copying the rest of the structure. Again, this has no e�ect on the

instance relationships of the domain element d in our non-inclusion situation.

Lemma 4.3 Let (c

in

; c

out

;D;P; E; d) be a non-inclusion situation. Then there

exists a non-inclusion situation (c

in

; c

out

;D

0

;P

0

; E

0

; d) such that for any two dif-

ferent lists of role expressions r

1

1

; : : : ; r

n

1

, r

1

2

; : : : ; r

n

2

with n

1

; n

2

> 0:

8x; y 2 D

0

: hd; xi 2 (E

0

[r

1

1

] � : : : � E

0

[r

n

1

])^

hd; yi 2 (E

0

[r

1

2

] � : : : � E

0

[r

n

2

])) x 6= y

(4.4)

Proof Sketch: Applying Lemma 4.1 and Lemma 4.2, we know that there is a

non-inclusion situation with a semantic structure which corresponds to a directed,

acyclic graph with all paths of �nite length. If this semantic structure violates

(4.4), then there must exist an extension function E

0

which satis�es (4.4) because

of similar arguments as used in the proof of Lemma 4.2.

Applying the above transformations to Figure 4.2 yields Figure 4.3.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

B

A C

C" D" D

EA'C'

B'

@

@

@

@I

- �

�

�

��

- -

?

�

�

�

�	@

@

@

@I

�

Figure 4.3: Splitting of Shared Elements

The three lemmas above tell us that we can reduce an arbitrary semantic

structure to a semantic structure which corresponds to a directed tree of �nite

depth without changing the non-inclusion relationship between the extensions of

concepts. However, the tree-like semantic structure can still be arbitrarily, even

in�nitely large. There could be an element in the domain which is connected

to in�nitely many other domain elements by role-relationships. However, only a

�nite number of them are relevant for the non-inclusion situation.

De�nition 4.5 (Relevant Breadth of a Concept)

The relevant breadth of a p-concept c is the sum of all numbers used in number-

restriction expressions plus one multiplied by kN

R

k, written rbreadth(c).

Lemma 4.4 Let (c

in

; c

out

;D;P; E; d) be a non-inclusion situation, and let b =

max(rbreadth(c

in

); rbreadth(c

out

)). Let R be the set of di�erent p-roles used in

c

in

and c

out

. Then there exists a non-inclusion situation (c

in

; c

out

;D

0

;P

0

; E

0

; d)

such that:

8x 2 D

0

: k

[

r2R

fy 2 D

0

j hx; yi 2 E

0

[r]gk � b (4.5)

87

Proof: Let (c

in

; c

out

;D

�

;P

�

; E

�

; d) be a non-inclusion situation identi�ed by

Lemma 4.3. Assume that P

�

is minimal with respect to roles, i.e., for all pairs in

the primitive assignment of a primitive role component rp: hx; yi 2 P

�

[rp] if and

only if for some p-role r 2 R with r � rp we have hx; yi 2 E

�

[r].

Now assume that (4.5) does not hold. Let us �rst consider the case that d

is responsible for this fact, i.e., d has more than b role �llers. This means there

must be some primitive role component rp with

kfx 2 D

0

j hd; xi 2 P

�

[rp]gk >

b

kN

R

k

(4.6)

There can be three di�erent reasons for the fact that d 62 E

�

[c

out

], namely

1. c

out

contains an \atmost" expression on a role r with r � rp. In this case, we

can delete all pairs hd; xi 2 P

�

[rp] except for b=kN

R

k pairs without changing

the fact that d 62 E

�

[c

out

]. This is so because the maximum number of an

\atmost" restriction is less than b=kN

R

k

2. c

out

contains an \all" expression on a role r with r � rp with a value

restriction of cr, and there is an element e with hd; ei 2 E

�

[r] but e 62 E

�

[cr].

Here we can delete all pairs from P

�

[rp] except for hd; ei without changing

the fact that d 62 E

�

[c

out

].

3. Any other reason why we have d 62 E

�

[c

out

].

Then there exists another primitive assignment P

0

and extension function

E

0

which contains only b=kN

R

k pairs of all pairs hd; xi from P

�

[rp] and which

also contains the pairs mentioned in the case analysis above. This semantic

structure preserves d 62 E

0

[c

out

] because it contains all pairs necessary to invalidate

d 2 E

0

[c

out

]. It also preserves d 2 E

0

[c

in

] because the maximum possible number

of \atleast" restrictions (added up over subroles) is b=kN

R

k � 1. If there are

still other atomic roles with more than b=kN

R

k role-�llers, we apply the entire

procedure again. Finally, we delete all elements from D

�

which cannot be reached

by role-chains from d, resulting in D

0

.

This results in

b �

X

rp2N

R

kfx 2 D

0

j hd; xi 2 P

0

[rp]gk

� k

[

rp2N

R

fx 2 D

0

j hd; xi 2 P

0

[rp]gk

� k

[

r2R

fx 2 D

0

j hd; xi 2 E

0

[r]gk

which is the desired property for d.

Now consider the case that for some element e with hd; ei 2 E

0

[r], e has more

than b role-�llers. If e satis�es every \all" restriction in c

out

on r and superroles of

88

r, then we may obviously delete all but b role-�llers following the same strategy

as above. If e is responsible for the fact that d 62 E

0

[c

out

] because it violates

some \all" restrictions, then the same case analysis as above applies and some

role-�llers have to be marked as non-deletable, but the same strategy can be

applied leading to at most b �llers. The procedure can be applied recursively

along role-chains. Thus, there exists a non-inclusion situation with the property

desired.

Taking all the above results together, it is always possible to �nd a semantic

structure of a certain �nite size depending on the terms under consideration such

that non-inclusion of concept extensions is preserved.

De�nition 4.6 (Relevant Size of a Concept) The relevant size of a p-

concept c is de�ned as:

rsize(c)

def

= rbreadth(c)

rlength(c)+1

Using this de�nition, we can summarize all the above lemmas:

Lemma 4.5 Let (c

in

; c

out

;D;P; E; d) be an arbitrary non-inclusion situation, and

let s = max(rsize(c

in

); rsize(c

out

)). Then there exists another non-inclusion situa-

tion (c

in

; c

out

;D

0

;P

0

; E

0

; d) such that kD

0

k � s.

Proof: Follows immediately from Lemmas 4.1{4.4 and the fact that a tree of

depth d with a maximum degree of b has less than b

d+1

nodes (for b > 1).

This enables us to prove the desired statement:

Theorem 4.3 Term-subsumption in NTF

T

is decidable.

Proof: For roles, the theorem is trivial. Hence, let us focus on concepts. Let us

assume two p-concepts c

1

, c

2

, and let s = max(rsize(c

1

); rsize(c

2

)). Now c

1

� c

2

can be decided by checking whether E[c

1

] � E[c

2

] for all semantic structures

hD; Ei generated by P, with kDk � s, of which we have only a �nite number.

If the extension of c

1

is a subset of the extension of c

2

in all of these �nite

semantic structures, then this holds for all semantic structures because otherwise

Lemma 4.5 would be contradicted.

Because subsumption in a terminology is reducible to term-subsumption (Theo-

rem 3.3), the following corollary is immediate.

Corollary 4.1 Subsumption in cycle-free TF terminologies is decidable.

89

4.2.2 Computational Complexity of Subsumption inNTF

T

Having shown that subsumption in NTF

T

is decidable does not imply that it is

a trivial problem. As we have seen in the proof, extensions of a concept a�ect

a number of elements exponentially proportional to the size of a concept in the

general case. Moreover, there seems to be no easy way to avoid some combina-

torial analysis. The examples given in the end of Sect. 4.1.2 demonstrate that

we have to identify incoherent sets of value-restrictions and minimize the respec-

tive \atleast" restrictions, which seems to be feasible only by testing di�erent

combinations if we cannot �nd a more clever way.

As it turns out, it is indeed impossible to avoid a combinatorial analysis.

Subsumption in NTF

T

is a co-NP-hard problem

5

[

Nebel, 1988

]

. In order to prove

this, the complement of a known NP-complete problem is transformed into a

special-case subsumption problem, namely,

c

?

� (atleast 3 r)

with c a p-concept containing a set of \atleast" restrictions on subroles of r. The

transformation is performed such that a solution to the special-case subsumption

problem also applies to the co-NP-complete problem.

A natural candidate for the proof is the problem of set splitting, also known

as hypergraph-2-colorability.

De�nition 4.7 (Set Splitting Problem) Given a collection C of subsets of a

�nite set S, is there a partition of S into two subsets S

1

and S

2

{ a set splitting

{ such that no subset in C is entirely contained in either S

1

or S

2

?

The following theorem is taken from

[

Garey and Johnson, 1979, p. 221

]

. The

proof is published in

[

Lovasz, 1973

]

.

Theorem 4.4 The set-splitting problem is NP-complete.

Now we will show how to reduce the complement of set-splitting to subsump-

tion in NTF

T

.

Lemma 4.6 Given an instance of the set-splitting problem, it is possible to ge-

nerate a p-concept c

split

such that

c

split

� (atleast 3 r)

if and only if there is no set-splitting.

5

A problem is co-NP-hard if the complementary problem is NP-hard, i.e. if the complemen-

tary problem is at least as hard as a NP-complete problem.

90

Proof: Given an instance of the set splitting problem with

S = fs

1

; s

2

; : : : ; s

n

g

C = fC

1

; C

2

; : : : ; C

m

g

with each C

i

having the form

C

i

= fs

f(i;1)

; s

f(i;2)

; : : : ; s

f(i;kC

i

k)

g

and letting g be a function such that

g(i; j) =

(

k if s

j

2 C

i

and f(i; k) = j

0 otherwise

then c

split

has the form:

c

split

= (and (atleast 1 (androle r p

1

))

(all (androle r p

1

) �(s

1

))

(atleast 1 (androle r p

2

))

(all (androle r p

2

) �(s

2

))

.

.

.

(atleast 1 (androle r p

n

))

(all (androle r p

n

) �(s

n

)))

The transformation function � is now speci�ed in such a way that for each

set C

i

, the conjunction of all �(s

f(i;k)

), 1 < k < kC

i

k, forms an incoherent

concept. This means the corresponding subroles cannot be �lled with the same

element. On the other hand, each subset of the subroles with the property that

the corresponding subset of S does not contain a set C

i

can have the same role-

�ller. For this purpose, we assume m di�erent roles q

i

corresponding to the sets

C

i

, and n � m roles t

i;j

and concepts d

i;j

which encode the appearance of an

element s

j

in C

i

:

�(s

j

) = (and (atmost kC

1

k � 1 q

1

)

(atleast 1 (androle q

1

t

1;g(1;j)

))

(all (androle q

1

t

1;g(1;j)

) d

1;g(1;j)

)

.

.

.

(atmost kC

m

k � 1 q

m

)

(atleast 1 (androle q

m

t

m;g(m;j)

))

(all (androle q

m

t

m;g(m;j)

) d

m;g(m;j)

))

Now the d

i;j

are speci�ed such that the conjunctions of d

i;j

and d

i;k

for all pairs

of di�erent j and k, j 6= 0, k 6= 0, are incoherent, employing another set of roles

91

u

i

corresponding to the C

i

's:

6

d

i;0

= (atleast 0 u

i

)

d

i;k

= (and (atleast k u

i

) (atmost k u

i

)); 1 � k � kC

i

k

This means that a conjunction of �(s

j

)'s is incoherent if and only if for some

role q

i

, we have more than kC

i

k � 1 di�erent \atleast" restrictions on subroles of

q

i

, i.e., on roles such as (androle q

i

t

j;k

).

The entire construction leads to the following result: If role r of concept c

split

can be �lled with two (or less) role-�llers, then there is a set splitting. On the

other hand, if more than two role-�llers are necessary, then there cannot be a set

splitting. This means that the special subsumption problem given above can be

used to solve the complement of the set splitting problem.

Because the construction of c

split

in the proof of the above lemma can be per-

formed in time polynomially proportional to the size of the problem description,

and because subsumption solves the complement of the original NP-complete

problem, it is evident that subsumption in NTF

T

is co-NP-hard.

7

However, we

can make the point even stronger.

When a problem involving numbers (in our case the \atleast" and \atmost"

restrictions) has been proven to be (co-)NP-hard, there might still be the possibi-

lity that the problem is tractable in a weak sense { solvable by an algorithm with

pseudo-polynomial complexity

[

Garey and Johnson, 1979, pp. 91{92

]

. A problem

has pseudo-polynomial complexity if it can be solved in time polynomially pro-

portional to the numbers appearing in the problem description. The well-known

knapsack problem, for instance, has this property. In our case, however, even this

possibility of weak tractability can be ruled out because in the transformation

all numbers are bounded by the length of the problem description of the original

problem (the cardinalities of the C

i

's).

Theorem 4.5 Subsumption in NTF

T

is co-NP-hard in the strong sense.

Evidently, this result does not only apply to NTF

T

, but to all term-forming

formalisms containing NTF

T

as a subset, e.g. the subset of kl-one described

in

[

Schmolze and Israel, 1983

]

. Moreover, it applies to all languages which can

express the same relationships as the ones used in the proof. In analyzing the

transformation, we may note that the full expressive power ofNTF

T

was not used.

For top-level roles, only \atleast" and \atmost" restrictions were needed. For

subroles, only the \atleast" and \all" operators were used, and only for describing

6

We could, of course, use the \a-not" operator instead. However, the construction shows

that even without restricted concept-negation the desired result can be achieved.

7

It is not obvious whether the problem is co-NP-complete or not because in the general case

the relevant size of concept extensions is exponential in the size of the concepts.

92

that the superroles are �lled with at least a certain number of role-�llers of a

certain concept.

In particular, the term-forming formalism used in kandor

[

Patel-Schneider,

1984

]

can be characterized in this sense since it contains, besides the concept-

forming operators of NTF

T

, a special three-argument \c-atleast" operator with

the meaning that there are at least a speci�ed number of role-�llers for the given

role of a particular concept. Formally, this operator has the following semantics:

E[(c-atleast n r c)]

def

= fx 2 Dj kfy 2 Djhx; yi 2 E[r]g \ E[c]k � ng (4.7)

This concept-forming operator can obviously be substituted for the use of \at-

least" and \all" on subroles of a certain role in the proof above { which leads to

the following corollary:

Corollary 4.2 Subsumption in kandor is co-NP-hard in the strong sense.

Thus, the conjecture of tractability for complete subsumption determination

in kandor in

[

Patel-Schneider, 1984, p. 16

]

does not hold. Even the weaker

conjecture in

[

Patel-Schneider, 1986, p. 345

]

, where a pseudo-polynomial com-

plexity is conjectured, is wrong. As it turns out, the algorithm implemented in

kandor is an incomplete one. It fails to detect subsumption relationships when

confronted with concepts similar to the ones used in the proof.

4.2.3 Living with an Incomplete Reasoner

Levesque and Brachman

[

1984; 1987

]

show that another term-forming formalism,

called FL, has the same property as NTF

T

{ subsumption determination is co-

NP-hard. FL contains the concept-forming operators \and," \all," and \some."

The two former operators are the same as in NTF

T

, while the \some" operator

corresponds to (atleast 1 : : :) in NTF

T

. Additionally, there is a role-forming

operator \range" { range-restricted role { creating a role by restricting its range,

which turns out to be quite powerful. With the \range" operator, subsumption

is co-NP-hard { without it, it is polynomial. Together with Theorem 4.5 and Co-

rollary 4.2, this demonstrates that any term-forming formalism with a reasonable

expressive power implies the intractability of complete subsumption.

This sounds rather disturbing, but terminological formalisms are undoubtedly

a very useful class of knowledge representation formalisms. Furthermore, we

know that almost all representation formalisms used in Arti�cial Intelligence are

intractable or even undecidable. Therefore, in practical systems, tractable but

incomplete algorithms are often used, for example, in the reason maintenance

system rup

[

McAllester, 1982

]

, in Allen's temporal reasoner

[

Allen, 1983

]

, in the

terminological representation system nikl

[

Kaczmarek et al., 1986

]

, and in the

set reasoning facility serf

[

Wellman and Simmons, 1988

]

.

93

If, however, completeness is a goal one cannot dispense with, expressive power

has to be severely restricted. In our case, one solution would be to sacri�ce all

operators that state relationships between roles, i.e., primitive subrole introduc-

tion { a solution chosen, for instance, by the designers of the meson system

[

Edelmann and Owsnicki, 1986

]

.

Another way out of this dilemma, pursued by Patel-Schneider

[

1989a

]

, could

be to use a di�erent semantics based on a four-valued logic, for which a complete

and tractable subsumption algorithm even for very expressive term-forming for-

malisms can be speci�ed. This solution provides a sound algorithm for standard

semantics and gives a precise account { a model theoretic one { of incomple-

teness with respect to standard semantics. This meets all the demands for a

representation formalism D. McDermott

[

1978

]

required. However, this solution

has, because of the weak semantics, the disadvantage that a lot of inferences

cannot be drawn even though they might be \obvious." These missed inferences

are of the \nonstructural" kind, involving reasoning similar to tertium non datur

and modus ponens. In particular, incoherent concepts cannot be detected.

We are thus confronted with a tradeo� between weak semantics with a com-

plete subsumption algorithm, which misses a lot of inferences we intuitively would

take for granted, and, on the other hand, strong semantics and an incomplete al-

gorithm, which might miss inferences we never expected but which are implied

by the semantics. From a pragmatic point of view, it seems more worthwhile

to choose the latter alternative sometimes, for example, in natural language ge-

neration

[

Sondheimer and Nebel, 1986

]

. Even though it is possible that we will

miss an inference granted by the semantics { although this is not very likely in

the normal case { it would not result in a disaster. The same seems to be true

for other applications as well. The inferences which are computed can then only

be characterized by an axiomatic or procedural account. Nevertheless, we will

follow this more pragmatically oriented way.

In conclusion, it is, of course, an unsatisfying (and surprising) state of a�airs

that the deductive power of a mechanized (i.e., tractable) reasoner cannot be

described cleanly by means of model theoretic semantics without either tolerating

incompleteness or ignoring some intuitively \obvious" inferences.

4.3 Subsumption in Terminologies Revisited

Equipped with an e�cient (but incomplete) term-subsumption algorithm, it

seems reasonable to expect that the original problem, namely, subsumption in

a terminology, can be solved e�ciently, as well. Actually, this seems to be a

hidden assumption in all research concerning terminological reasoning. When

computational complexity of a terminological representation system is analyzed,

then this is done only for term-subsumption. For instance, Brachman et al.

[

1985, p. 533

]

justify the design of the terminological formalism used in kryp-

94

ton partly by arguments of computational complexity of term-subsumption. The

range operator mentioned above was omitted because it leads to intractability of

term-subsumption.

Similarly, the tractability proofs or claims about kandor

[

Patel-Schneider,

1984

]

, classic

[

Borgida et al., 1989

]

, and the four-valued terminological forma-

lism developed by Patel-Schneider

[

1989a

]

are { implicitly or explicitly { relative

to term-subsumption. However, since in terminological representation systems

we are not interested in term-subsumption but in subsumption between concepts

de�ned in a terminology, the reduction from subsumption in a terminology to

term-subsumption deserves some attention.

4.3.1 The Complexity of the Reduction to Term-

Subsumption

Although the reduction to term-subsumption is conceptually simple, it can be

computationally expensive. The function exp de�ned in Sect. 3.2.5 can lead to

expressions which are not polynomially bounded by the size of a terminology.

Consider, for example, the somewhat weird terminology in Figure 4.4.

C

1

:

= (and (all r

1

C

0

) (all r

2

C

0

) : : : (all r

m

C

0

))

C

2

:

= (and (all r

1

C

1

) (all r

2

C

1

) : : : (all r

m

C

1

))

.

.

.

C

n

:

= (and (all r

1

C

n�1

) (all r

2

C

n�1

) : : : (all r

m

C

n�1

))

Figure 4.4: A Pathological Terminology Leading to an Exponential Explosion

This terminology has a length of O(n �m). If we apply exp to C

n

, we see

that the resulting p-concept would have a length of O(m

n

). This means that the

running time of, for instance, tsub(exp(C

n

;T

N

);exp(C

n

;T

N

)) is exponential in

the size of T

N

.

This situation seems to resemble the problem in �rst-order term-uni�cation,

where the string representation of a uni�ed term can be exponential in the size

of the original terms. Thus, one might hope that techniques similar to the ones

used to design linear uni�cation algorithms

[

Paterson andWegman, 1978; Martelli

and Montanari, 1982

]

could be helpful. Unfortunately, this hope turns out to be

unjusti�ed. Subsumption in a terminology is inherently intractable. Even for

a minimal terminological formalism that contains only \

:

= ," \and," and \all,"

subsumption is already co-NP-complete, as we will see below (see also

[

Nebel,

1990

]

).

95

4.3.2 Complexity of Subsumption in Terminologies

The claim above will be proved by reducing the co-NP-complete problem of deci-

ding whether two nondeterministic �nite state automatons that accept �nite lan-

guages are equivalent to equivalence of concepts in a terminology (see Def. 3.6).

Since equivalence can be reduced to subsumption in linear time (Prop. 3.2), co-

NP-hardness of subsumption follows. Additionally, we will show that subsump-

tion in our minimal terminological formalism, which will be called MINI, is in

co-NP and, hence, subsumption is co-NP-complete.

For MINI, we assume all the de�nitions made in Sect. 3.2.4 with the appro-

priate restrictions to the language under consideration. Since MINI does not

contain disjointness restrictions and primitive introductions, all MINI termino-

logies are already in normal form. All roles and all atomic concept not de�ned

in the terminology will be considered as primitive components.

First of all, a simple transformation from MINI-concepts to sets of MINI-

concepts, called unfolding, is de�ned.

De�nition 4.8 (Concept Unfolding) unfold is a function from concept

terms to sets of concept terms:

unfold(and c

1

: : : c

n

) =

n

[

i=1

unfold(c

i

)

unfold(all r c) = f(all r d)jd 2 unfold(c)g

unfold(a) = fag otherwise.

The expanded and unfolded form of a concept unfold(exp(c;T)) is called

completely unfolded concept, written cunfold(c;T).

Proposition 4.4 Let T be a cycle-freeMINI-terminology and let c be a concept

term. Furthermore, if S = fc

1

; : : : ; c

n

g is a set of concept terms, then let (and S)

denote the concept term (and c

1

: : : c

n

). Then for all semantic structures of T :

E[c] = E[(and cunfold(c;T))]

A concept term of the form \(all r

1

(all r

2

(: : : (all r

n

a))))," a a primi-

tive concept component, will be called linear concept, written (all p a) with

p = (r

1

; r

2

; : : : r

n

). For n = 0, i.e. p = (), the convention (all p a) = a will

be adopted.

Using the completely unfolded form of a concept, equivalence of concepts

in a terminology can be decided using a simple syntactic criterion, namely, set

equivalence of completely unfolded concepts.

Lemma 4.7 Let T be a cycle-freeMINI-terminology, and let c; c

0

be two concept

terms. Then

c �

T

c

0

i� cunfold(c;T) = cunfold(c

0

;T)

96

Proof: The \if" direction follows immediately from Prop. 4.4.

For the converse direction note that all elements of a completely unfolded

concept are linear concepts. Assume that (all p a) 2 cunfold(c;T) and that

(all p a) 62 cunfold(c

0

;T). Now we construct a primitive assignment such that

the corresponding extension function w.r.t. T has the property that for a parti-

cular element d

0

2 D, we have d

0

62 E[c] but d

0

2 E[c

0

].

Let p = (r

1

; r

2

; : : : r

n

). Then set D = fd

0

; d

1

; d

2

; : : : d

n

g. Set P[b] = D for

all primitive concept components b 2 N

C

except for a. Set P[a] = D n fd

n

g.

Set P[r

i

] = fhd

i�1

; d

i

ig for all roles r

i

; 1 � i � n. Constructing a semantic

structure using Theorem 3.2 leads then to d

0

62 E[(all p a)] because d

n

62 E[a].

Furthermore, since (all p a) 2 cunfold(c;T), d

0

cannot be in the extension of

(and cunfold(c;T)). Hence, by Prop. 4.4, d

0

62 E[c].

On the other hand, d

0

2 E[(all p

0

a

0

)] for all p

0

6= p or a

0

6= a. This is easily

seen when one considers the fact that d 2 E[(all r c)] if there is no x 2 D with

hd; xi 2 E[r]. Thus, we have d

0

2 E[c

0

] and by that and the above arguments, it

follows that c 6�

T

c

0

.

Now, we will show that equivalence of automatons can be reduced to concept

equivalence. The automatons we will consider are de�ned next.

De�nition 4.9 (Nondeterministic Finite State Automaton) A nondeter-

ministic �nite state automaton (NDFA) is a tuple A = (�;Q; �; q

0

;F) where �

is a set of input symbols (denoted by s), Q is a set of states (denoted by q), � is

a total function from ��Q to 2

Q

, q

0

2 Q is the initial state, and F � Q is the

set of �nal or accepting states.

A state q

0

2 Q is reachable from another state q by a word w = s

1

s

2

: : : s

n

i� there exists a sequence of states q

1

; q

2

; : : : q

n+1

with q = q

1

, q

0

= q

n+1

, and

q

i+1

2 �(q

i

; s

i

), 1 � i � n. The set of words w such that some �nal state q

0

2 F

is reachable from q

0

by w is called the language accepted by A and denoted by

L(A).

The reader might have noticed that we consider only \�-free" NDFAs. Ho-

wever, this does not a�ect generality. Furthermore, the de�nition is the same

as the one given in

[

Garey and Johnson, 1979, p. 265

]

, from which the following

theorem is taken.

Theorem 4.6 Let A

1

andA

2

be two NDFAs. Then the decision whether L(A

1

) 6=

L(A

2

) is PSPACE-complete in the general case and NP-complete if the accepted

languages are �nite.

We are interested in the special case that the automatons accept �nite lan-

guages because such automatons can be easily transformed into cycle-free auto-

matons. In order to do so, redundancies are removed. A state q 2 Q is said to be

redundant i� q is not reachable from q

0

by any word, or if q cannot reach a �nal

97

state by any word. A NDFA is nonredundant i� it does not contain redundant

states. Furthermore, a NDFA is acyclic i� no state can reach itself by a nonempty

word.

Proposition 4.5 For any NDFA A an equivalent nonredundant NDFA A

0

can

be identi�ed in polynomial time.

Proof: It is possible to mark all states reachable from q

0

in polynomial time.

Similarly, all states that can reach a �nal state can be marked in polynomial

time. Taking the intersection of the two sets of marked states results in the set of

all nonredundant states. Restricting the automaton to this set results obviously

in an equivalent automaton that is nonredundant.

Since a language of a NDFA cannot be in�nite if the NDFA does not contain a

cycle over nonredundant states, and since every cycle using nonredundant states

leads to an in�nite language, the next proposition is immediate.

Proposition 4.6 Let A be an nonredundant NDFA. Then L(A) is �nite if and

only if A is acyclic.

Thus, it su�ces to consider acyclic, nonredundant NDFAs (ANDFAs) in

the following, for which a translation to terminologies is given. Actually,

ANDFAs are seen as cycle-free terminologies. Given two ANDFAs fA

i

=

(�;Q

i

; �

i

; q

i

0

;F

i

)g

i=1;2

with Q

1

\ Q

2

= ;, a terminology T

A

is constructed in

the following way:

N

R

= �

N

C

= Q

1

[Q

2

N

C

= fFg

(q

:

= (and S

q

)) 2 T

A

:

with

S

q

= f(all s q

0

)j q

0

2 �

i

(q; s); i = 1; 2g [fFj q 2 F

1

[F

2

g

Note that T

A

is indeed a legal, cycle-free MINI-terminology. Every atomic

concept q has a nonempty de�nition because the ANDFAs are nonredundant. For

this reason, q is either a �nal state, which implies F 2 S

q

, or there is another state

q

0

reachable from q by s, and then we have (all s q

0

) 2 S

q

, or both. Furthermore,

T

A

is cycle-free because ANDFAs are acyclic.

Lemma 4.8 Let T

A

be a terminology generated from two ANDFAs fA

1

;A

2

g.

Then

w 2 L(A

i

) i� (all w F) 2 cunfold(q

i

0

;T

A

):

98

Proof: Assume that w = s

1

s

2

: : : s

n

is accepted byA

i

. Then there is a sequence of

states q

0

; q

1

; : : : q

n

with q

0

= q

i

0

, q

n

2 F

i

, and q

j+1

2 �

i

(q

j

; s

j+1

), for 0 � j � n�1.

Because of the way T

A

was constructed and by induction over the length of w,

it follows that (all (s

j+1

; s

j+2

; : : : s

n

) F) 2 cunfold(q

j

;T

A

), with q

0

= q

i

0

, for

0 � j � n� 1. For this reason (all (s

1

; s

2

; : : : s

n

) F) 2 cunfold(q

i

0

;T

A

).

Conversely, assume that (all w F) 2 cunfold(q

i

0

;T

A

). Then, because of the

way T

A

was set up and by induction over the length of w, a state q 2 F

i

is

reachable from q

i

0

by w in A

i

, that is, w 2 L(A

i

).

Now, the reduction from automaton equivalence to concept equivalence is

almost immediate.

Lemma 4.9 Concept equivalence in MINI-terminologies is co-NP-hard.

Proof: By Lemma 4.8 and Lemma 4.7, it is immediate that

q

1

0

�

T

q

2

0

i� L(A

1

) = L(A

2

)

Furthermore, since any NDFA can be transformed into an equivalent nonred-

undant NDFA in polynomial time (Prop. 4.5), since nonredundant NDFAs that

accept �nite languages are acyclic (Prop. 4.6), and since T

A

can be constructed

in time linear in the size of the ANDFAs, by Theorem 4.6 we know that none-

quivalence of concepts in MINI-terminologies is NP-hard. Thus, equivalence is

co-NP-hard.

Using Lemma 4.7, it is also easy to see that concept equivalence in MINI-

terminologies is in co-NP.

Lemma 4.10 Concept equivalence in MINI-terminologies is in co-NP.

Proof: Nonequivalence of concepts can be decided by guessing a linear concept

and checking whether this linear concept is an element of one of the completely

unfolded concepts and not in the other completely unfolded concept. The guess is

obviously polynomially bounded. The test can also be performed in polynomial

time by computing only this part of the completely unfolded concept which is

relevant, i.e., expansion and unfolding proceeds along the role-chain of the guessed

linear concept. Thus, nonequivalence is in NP, and equivalence is in co-NP.

Summarizing these results, we get the next theorem.

Theorem 4.7 Concept equivalence in MINI-terminologies is co-NP-complete.

Since equivalence and subsumption are reducible to each other in linear time

(see Prop. 3.2 and Prop 3.3), the corollary is immediate.

Corollary 4.3 Subsumption in MINI-terminologies is co-NP-complete.

99

4.3.3 E�ciency of Subsumption in Practice

The above result means that the goal of \forging a powerful system out of trac-

table parts"

[

Levesque and Brachman, 1987, p. 89

]

cannot be achieved in the

area of terminological representation systems. krypton

[

Brachman et al., 1985

]

meson

[

Edelmann and Owsnicki, 1986

]

, classic

[

Borgida et al., 1989

]

, and Patel-

Schneider's

[

1989a

]

speci�cation of a terminological system using a four-valued

semantics, although tractable with respect to term-subsumption, are worst-case

intractable with respect to subsumption in a terminology.

However, this fact has not been noticed for a long time. The reason for this is

probably that worst cases show up in practice with a very low frequency. In this

respect and with regard to the structure of the problem, our result is very similar

to a result about the complexity of type inference in core ml, which had been

believed to be linear. Only recently, it has been shown

[

Kanellakis and Mitchell,

1989

]

that the problem is PSPACE-hard.

Looking for an explanation of why subsumption in terminologies is usually

well-behaved, one notes that the the maximum level of an atomic term in a ter-

minology (see Def. 3.14) { the depth of a terminology { leads to the combinatorial

explosion. Let us denote the depth of a terminology by depth(T).

Assuming that j(a

:

= t)j denotes the size of a concept introduction and that

kMk denotes the cardinality of the setM , the following parameters are important:

n = depth(T);

m = max

�

fj(a

:

= t)j

�

�

� (a

:

= t) 2 T g

�

;

s = m� kT k:

Now, it is easy to see that the size of expressions exp(c;T) is at most O(m

n

).

Thus, in all cases such that n � log

m

s, which is a reasonable assumption, the

expanded concept descriptions have a size of O(s). In these cases, a polynomial

term-subsumption algorithm guarantees polynomial subsumption determination

in the terminology.

The interesting point about this observation is that sometimes complete al-

gorithms are feasible although the problem in general is intractable, namely,

if the worst cases do only seldomly occur in practice. Furthermore, although

this strategy works probably only for a very limited number of intractable pro-

blems (e.g., subsumption in MINI and type inference in core ml) without

considerable problems, often there is no freedom regarding expressiveness or

semantics (as discussed in the previous section). Changing the rules of the

game can lead to uselessness of a representation formalism.

8

For instance, uni-

8

This is a point also noted by Doyle and Patil

[

1989

]

about the restricted language approach

in terminological knowledge representation.

100

�cation grammars rely heavily on disjunctive feature terms

9

in order to re-

present ambiguity of natural language expressions. Although reasoning with

such disjunctive feature terms is worst-case intractable, nobody wants to give

them up|they are simply necessary for the particular kind of problem one

wants to solve. The challenge then is to identify the structure of normal ca-

ses and to design algorithms that deal with these normal cases

[

Kasper, 1987;

D�orre and Eisele, 1989

]

|which are informally characterized by the fact that hu-

mans can deal with them e�ortlessly.

Summarizing, after discovering that a representation formalism leads to in-

tractable reasoning problems, it may be worthwhile to analyze how the represen-

tation formalism is used. If it turns out, that the cases occurring in practice can

be handled by a polynomial algorithm, although reasoning in general is intracta-

ble (see also

[

Levesque, 1988

]

), then it seems better to support these normal cases

than to restrict the language or to weaken the semantics. Actually, it may be

interesting to reevaluate the intractability results for term-subsumption in light

of this observation.

4.4 Classi�cation

As we saw in Sect. 3.2.2, all properties and relationships in a terminology can be

reduced to subsumption { perhaps taking into account the set of explicitly intro-

duced atomic terms in order to determine immediate subsumers (see Sect. 3.2.6).

Thus, we are done with specifying a subsumption algorithm { in principle. Ho-

wever, there are a number of reasons to go beyond subsumption which have to

do with pragmatics and e�ciency considerations.

4.4.1 Assert-Time versus Query-Time Inferences

While it is possible to implement a knowledge representation system by storing

all explicitly given propositions (in our case, term introductions) and drawing

inferences (in our case, determining subsumption relationships) only on demand

at query time, other strategies are possible. For instance, it may pay to cache

computed results in order to avoid recomputations. A more radical solution is

to precompute a large number of all possible inferences when a proposition is

entered into the system { to perform inferences at assert time in order to allow

for quicker responses at query time. Actually, this strategy may not only reduce

the response time for single queries, but may lead to a net e�ciency improvement

when the time needed for query-time and assert-time inferences is summed up

[

Rollinger, 1980

]

.

9

Similarities and di�erences between concept terms and feature terms have been discussed

in Section 3.4.2.

101

In order to speed up responses, almost all terminological representation sy-

stems follow the strategy of computing the most important inferences at assert

time. The most important inference is what was called immediate subsumption

in Sect. 3.2.6 { determining the immediate subsumers of a new term. This is

needed, for example, to implement classi�cation-based reasoning as sketched in

Sect. 3.2.6. Without any caching or assert-time inferences, the determination of

immediate subsumers could be implemented by determining the set of all sub-

sumers �ltering out all those concepts for which an intermediate concept can be

found, which requires O(n

2

) tsub operations, n being the number of introduced

concepts. If, however, a terminology is processed in advance and the immediate

subsumption relation between all atomic terms { the concept taxonomy and the

role taxonomy { is precomputed, then the determination of immediate subsumers

for a new term can be done by virtually inserting the concept into the concept

taxonomy, which amounts to inserting an element into a partial order. The worst

case complexity for such an operation is O(n), with an average case complexity

which is much better.

Having the immediate subsumption relation, it is also possible to determine

subsumption between atomic concepts by simply traversing the graph instead of

expanding, normalizing, and comparing concept expressions.

10

Furthermore, precomputation of subsumption (or immediate subsumption)

can avoid recomputations when determining subsumption. In order to see the

importance of this fact, note that although straightforward subsumption deter-

mination in the terminology displayed in Fig. 4.4 requires exponential time, it is

possible to do better than that. The exponential explosion is unnecessary and

can be avoided if tsub works by caching intermediate results from the bottom

up.

Summarizing, to speed up responses for often-used queries types and to avoid

expensive recomputations, it is worthwhile to compute some of the relationships

in a terminology in advance.

Finally, there are also pragmatic reasons to precompute the immediate sub-

sumption relation. If terminological knowledge about a domain is represented,

the knowledge engineer responsible for representing this knowledge usually has

a vague idea how the terms relate to each other. If the representation system is

able to compute these relationships when a new term is entered (or after an en-

tire terminology has been entered), then a visualization of these relationships can

greatly increase the comprehensibility of a terminology and provides the knowl-

edge engineer with an opportunity to check his intuitions about the domain with

the computed concept taxonomy

[

Kindermann and Quantz, 1988

]

.

10

It also may pay to precompute the subsumption relation { the re
exive, transitive closure of

the immediate subsumption relation. This is done, for example, in loom (MacGregor, personal

communication, 1988).

102

4.4.2 A Classi�cation Algorithm

The technique to deal with the problems described above is called classi�cation

[

Lipkis, 1982; Schmolze and Lipkis, 1983

]

. In essence, it amounts to maintaining

directed acyclic graphs re
ecting the immediate subsumption relationships bet-

ween concepts and between roles { the role taxonomy and the concept taxonomy

{ by placing each new term at the \right place" in one of the graphs. Examples

for concept taxonomies are Figure 1.2 and 3.1. Inserting a new role in a role

taxonomy is a trivial task in TF . Inserting a concept in a concept taxonomy

requires some e�ort, however. The details are given below.

Algorithm 4.4 (classify) Assume a concept taxonomy represented as a direc-

ted, acyclic graph re
ecting the immediate subsumption relationships as com-

puted by tsub. Then a concept is inserted into the taxonomy by carrying out

the following steps:

(Cl1) The de�ning expression is converted into an expressions containing a

top-level \and" expression without embedded \and" expressions, and

all atomic concept in this top-level \and" expression are expanded by

replacing de�ned concepts by their normal-form de�ning expressions.

We do not expand any value restrictions or roles, however.

(Cl2) The resulting concept expression is transformed according to the rules

of norm.

(Cl3) If a value restriction is a nonatomic concept, then an anonymous ato-

mic concept is created with the original value restriction as its de�ning

expression.

(Cl4) The anonymous concepts generated in step (Cl3) and the atomic va-

lue restrictions of the concept are classi�ed, i.e., classify is applied

recursively.

(Cl5) The taxonomy is traversed in order to �nd the place where the new

concept belongs { below all immediate subsumers and above all imme-

diate subsumees. Comparisons with concepts already in the taxonomy

follow the rules of compare, except that subsumption between value

restrictions and roles is determined by using the taxonomy instead of

calling compare recursively.

(Cl6) Finally, the concept is inserted at the place determined in step (Cl5).

If the new concept is equivalent to a concept already in the taxonomy,

this means that both are to be merged into one concept.

103

This informal sketch of an algorithm captures the essence of classi�cation,

but there are some details which have to be worked out. First, there are some

problems with anonymous concepts generated in step (Cl3). If we generated an-

onymous atomic concepts for all nonatomic value restriction and classi�ed them

regardless of whether they are literally equivalent (ignoring the order of subex-

pressions in \and" expressions), we may end up classifying a large number of

concepts which are equivalent. In fact, it is easy to construct a terminology si-

milar to Figure 4.4 where all value restrictions are nonatomic, thus leading to

exponentially many classi�cation operations. The solution is to compare the de-

�ning expression of an anonymous concept with the de�ning expression of all

already introduced anonymous concepts (ignoring the order of subexpressions in

\and" expressions) before invoking classi�cation.

The second problem with generated anonymous concepts is that if they are

inserted into the taxonomy, we may blur the distinction between explicitly in-

troduced concepts and constructible ones. Thus, anonymous concepts should be

treated in a special way in order to make them distinguishable from introduced

concepts, e.g. by marking them.

11

Finally, there is the problem of traversing the taxonomy to �nd the place

where to insert a new concept c in an e�cient way. The most simple-minded

strategy would compare the new concept with all concepts already in the termi-

nology, resulting in 2n comparisons (n being the number of concepts already in

the taxonomy). A better solution is, of course, starting at the most general con-

cept Anything, descending downwards, and stopping when a concept x is found

such that x subsumes c, but all immediate subsumees of x do not subsume c.

Clearly, x is one of the new immediate subsumers of c.

In order to �nd the set of immediate subsumees of c, it does not su�ce to

search in the subtaxonomies of the immediate subsumers of c, but rather it is

necessary to start from the leaves and to search upwards, trying to �nd concepts

y which are subsumed by c such that all immediate subsumers of y are not

subsumed by c.

Although the worst case complexity (in terms of subsumption tests) is still

O(n), the average case can be expected to be much better. It is possible to

utilize even more optimizations in order to reduce the number of necessary tsub

operations so that in most cases only a small percentage of all concepts in a

taxonomy have to be checked

[

MacGregor, 1988

]

. However, we will not delve

deeper into this issue.

11

Most terminological representation systems, however, do not care whether a concept is

introduced by the user or created for internal usage by the classi�er. This leads to the question

of what the semantic status of the immediate subsumption relation re
ected by the concept

taxonomy is.

104

4.4.3 Worst Cases in Classi�cation

Although, the worst-case computational costs of the classi�cation algorithm are,

of course, the same as for straightforward subsumption determination, it is di�-

cult to �nd a terminology which blows up the classi�cation algorithm. In order to

give an impression what such a beast might look like, Fig. 4.5 gives a worst-case

example.

12

C

0

:

= (and (all r

1

C

1

) (all r

2

(and C

1

C

2

)))

C

1

:

= (and (all r

1

C

2

) (all r

2

(and C

2

C

4

)))

.

.

.

C

i

:

=

(

(and (all r

1

C

i+1

) (all r

2

(and C

i+1

C

2i

))) if 2i � n;

(and (all r

1

C

i+1

) (all r

2

C

i+1

)) otherwise.

.

.

.

C

n

:

= Primitive

Figure 4.5: A Worst-Case Terminology for Classi�cation

If a classi�cation algorithm as described in the previous subsection is con-

fronted with the terminology in Fig. 4.5, it has to generate exponentially many

anonymous concepts. However, this terminology does not look very natural.

More generally, it is the case that all terminologies I have seen so far are well-

behaved in the sense that the classi�er is not forced to introduce a large number

of anonymous concepts. Furthermore, a similar approximation as the one given

in Sect. 4.3.3 applies to classi�cation. Let

a = kT k;

r = kN

R

k;

l = max

�

frlength(exp(a;T))

�

�

� a 2 N

C

; g

�

;

then in the worst case O(a� r

l

) anonymous concepts are generated. That means

that under the plausible assumption that l � log

r

a, \only" O(a

2

) new atomic

concepts are generated. This means that if we use classi�cation instead of exp

and tsub, the requirements for polynomial subsumption determination are less

strict. It is not the depth of a terminology, but the maximum relevant role-chain

length that appears as the exponent.

12

Note that this example can even blow up classi�ers which are deliberately designed to be

incomplete in their reasoning, e.g. nikl

[

Kaczmarek et al., 1986

]

, back

[

von Luck et al., 1987

]

,

loom

[

MacGregor and Bates, 1987

]

, and sb-one

[

Kobsa, 1989

]

. The only requirement is that

the equivalence (and (all r c) (all r c

0

)) �

T

(all r (and c c`)) is handled completely.

105

4.5 Hybrid Inferences

If we have a hybrid formalism, we not only need inference algorithms for the

separate subformalisms, but also have to account for the connection between both

formalisms. In our case, we have already described what inference algorithms for

TF look like. Inferences for AF viewed in isolation are almost trivial. What is

interesting, however, is how to infer hybridly entailed propositions as de�ned in

Sect. 3.3.2 { how to perform hybrid inferences.

In this section we will concentrate on how to compute whether a given ob-

ject necessarily belongs to the extension of a concept { whether the object is an

instance of the concept. As we will see, there are reasons similar to the ones dis-

cussed above for performing assert-time inferences. In order to detect inconsistent

world descriptions and for reasons of e�ciency, it is worthwhile to determine at

assert-time the set of concepts which describe an object most accurately. Moreo-

ver, we will show that this can be done completely, provided the world description

is \detailed" enough.

4.5.1 Testing Instance Relationships

One basic inference task in a system employing a hybrid representation formalism

as described in the previous chapter is to test whether a given object o is an

instance of a concept c. In terms of Sect. 3.3.2 this means to test whether the

object description (c o), c an atomic concept, is hybridly entailed by a terminology

T and a world description W.

The simplest case is that the world description W contains an object des-

cription (d o) such that d �

T

c. We then immediately know that (c o) holds.

However, even if we do not �nd such an object description, it is still possible

that the object o is an instance of c. For example, if there are two object des-

criptions of o in W such that the conjunction of the respective atomic concepts

is subsumed by c, then (c o) is, of course, entailed. Moreover, role-�llers of o

for some role { i.e., relation descriptions having o as their �rst argument { may

also be taken into account in order to determine whether o belongs necessarily

the extension of c. Summarizing these ideas, an instance testing algorithm which

tests whether an object is an instance of a concept relative to a terminology and

a world description could be sketched as follows.

Algorithm 4.5 (cinst) Let N

O

be the set of objects, and N

C

the set of atomic

concepts used in a world description. Then cinst is de�ned as:

cinst:N

C

� TF �N

O

�AF ! ftrue,falseg

cinst computes whether the object o is an instance of the concept c relative to

a world description W and a terminology T by carrying out the following steps:

106

(I1) Collect all object descriptions of the form (x

i

o) from W, set x =

(and x

1

: : : x

n

), and test tsub(exp(c;T);exp(x;T)). If this test suc-

ceeds, return true.

(I2) If the test failed because a positive or negated primitive component

which is part of c is missing from x, then return false.

(I3) If the test failed because an \atmost" restriction on a role r is too large

or missing from x, then collect all relation descriptions (r

i

o(atmostn

i

))

fromW such that r �

T

r

i

, add them to x, and test again for subsump-

tion. If the test fails for the same reason, return false. Otherwise

continue.

(I4) If the test failed because an \atleast" number on a role r restriction is

too small or missing from x, count the role-�llers for r and subroles of

r, collect all relation descriptions of the form (r

i

o (atleast n

i

)) fromW

with r

i

�

T

r, add them to x, and test again for subsumption. If the

test fails for the same reason, return false. Otherwise continue.

(I5) If the test failed because of a missing subsumption relationship between

value restrictions on a role r, then check whether all role-�llers of object

o for role r are known (by counting the role-�llers and checking the

number against relevant \atmost" restrictions). If they are, try to

show that all role-�llers are instances of the value restriction concept

mentioned in c by invoking the instance test recursively. Otherwise

return false.

Note that we assumed that the subsumption algorithm as described in

Sect. 4.1.1 has to be extended in a way such that it returns the part of a concept

expression for which subsumption has not been established. Otherwise, we would

have been forced to collect all available information for an object beforehand,

which would be very ine�cient.

All the tests in the algorithm above test for the instance relationships by ap-

plying the concept de�nitions as \recognition schemata" { a method also used in

the implementations of the hybrid representation systems kandor and kl-two

[

Vilain, 1983; Vilain, 1985

]

. As can be veri�ed easily by applying the de�nitions

in Chap. 3, this method leads to sound inferences.

However, the \recognition" mode of testing does not take all of the \propo-

sitional force" of a world description into account. A relation description of the

form (r q o) asserts something not only about the object q but also about the

object o { a point neglected in kandor and the kl-two version described in

the literature.

13

Given that q is an instance of concept c, the object o must be

13

This de�ciency has since been removed from kl-two (Vilain, personal communication,

1987).

107

an instance of the value-restriction concept of role r mentioned in the concept

de�nition of c { a fact veri�able by checking the de�nitions in Chap. 3.

This fact could be utilized by adding the following step to the algorithm

described above:

(I6) Assume that we have to check whether the object o is in the extension

of concept c. Assume further that the algorithm above was able to

verify that o could be in the extension of c, provided that we can

show that some positive or negated primitive components, value and

number restrictions could be proven to hold as well. Let us call this

\rest"-concept b. Then we set up a subgoal of trying to show that q

is in the extension of (all r b) for an object q such that the relation

description (r q o) is in W.

In order to make this kind of reasoning clearer, let us analyze a small example.

Assuming again our \team" terminology, let us try to test whether MARY as

described in Figure 3.7 in Sect. 3.3.1 is a Woman. The object description (Human

MARY) does not help very much. There are also no relation descriptions having

MARY has its �rst argument. However, MARY is a role-�ller for the leader role

of TEAM-A. Thus, if we can show that TEAM-A is in the extension of (all leader

Woman),MARY would indeed by aWoman. As it turns out, TEAM-A is aModern-

team, a concept which is subsumed by the previous concept expression, and, thus,

we are done.

As should be obvious, this kind of reasoning is very complex. It can involve

very long chains of objects connected by relation descriptions. However, fortu-

nately, the length of these chains is bounded. As should be evident, (I5) should

be called recursively at most l times, l being the relevant role-chain length of the

concept we test. Similarly, (I6) should be called onlym times,m being the length

of the maximum relevant role-chain length of all concepts in a terminology.

4.5.2 Realization = Propagation + Abstraction + Clas-

si�cation

As in the case of subsumption determination, there are good reasons to use assert-

time inferences for the determination of instance relationships. First, it enables us

to detect at the earliest possible time. Second, if we are interested in retrieving

all objects which satisfy a certain description, it would be an advantage if we

already knew the set of most speci�c concepts for every object { the msc.

More speci�cally, if a hybrid representation system is used as a kernel of

an information retrieval system, such as argon

[

Patel-Schneider et al., 1984

]

,

the individual objects are indexed by the msc, i.e., lists of instances of every

atomic concepts are maintained. Queries in such an information retrieval system

are just concept expressions (or logical expressions using concepts) which get

108

classi�ed into the concept taxonomy. Using the immediate subsumers of the

query concept, a set of candidate objects which may be instances of the query

concept can then be retrieved by looking up the lists of objects stored at those

immediate subsumers of the query concept. The set of immediate subsumees can

be used to determine the set of all objects which are known to be instances of

the query concept. Only the objects lying in the set-di�erence of those two sets

have to be tested to see whether they are instances of the query concepts. Such

an approach to information retrieval has the advantage of having a
exible and

uniform language for data de�nition (the terminology) and queries (the query

concept expression). Furthermore, indexing is done very naturally in a semantic

way.

Although the computation of mscs could be implemented by applying the in-

stance recognition algorithm (incl. (I6)) described in the previous subsection for

all possible pairs of atomic concepts and objects, there are clearly more e�cient

ways. First, step (I6) can be performed in a forward-chaining manner by propa-

gating value-restriction constraints to role-�llers. This avoids recomputation of

(I6) for an object with more than one role-�ller. Additionally, it allows checking

whether the symbolic restrictions expressed as value-restrictions are really satis-

�ed by the role-�llers. Second, the most specialized concept expression describing

an object can be maintained incrementally for every object. For this purpose, we

need the notion of a generalization of two concepts, which is de�ned below.

De�nition 4.10 (Generalization of Concepts) The generalization of two

normalized p-concepts c

1

, c

2

, written gen(c

1

; c

2

), is de�ned as c

1

if c

2

= Nothing,

as c

2

if c

1

= Nothing, or otherwise as an \and" expression containing the following

subexpressions:

� all positive and negated primitive concept components appearing in both c

1

and c

2

.

� restrictions of the form (atleast n r), if in both c

1

and c

2

there are \atleast"

restrictions on r. Let m

i

be the maximum of all \atleast" restrictions on r

in c

i

. Then n is set to min(m

1

;m

2

).

� restrictions of the form (atmostnr) , if in both c

1

and c

2

there are \atmost"

restrictions on r. Let m

i

be the minimum of all \atmost" restrictions on r

in c

i

. Then n is set to max(m

1

;m

2

).

� restrictions of the form (all r v) for all roles r such that \all" restrictions

on r appear in both c

1

and c

2

. The concept v is de�ned recursively as the

generalization of the value restrictions in the original expressions.

The general technique for determining mscs, which is very similar to clas-

si�cation, is called realization { a term coined by Mark

[

1982

]

. A realization

algorithm similar to the one implemented in the back system could be described

as follows (see also

[

Nebel and von Luck, 1988

]

).

109

Algorithm 4.6 (realize) Assume a terminology T and a world description

W. Assume further that for each object in the world description an abstraction

is maintained which is the \most specialized concept expression" the object is an

instance of. If a new world description W

0

is generated by adding a new object

or relation description � to W, then:

(R1) If � = (r o p), then take all object descriptions of o, look up the value

restrictions (computed by the classi�cation algorithm) for r and any

superroles in the concepts used to describe o, and propagate the value

restrictions to p by adding the value restrictions as an \internal" object

description on p.

If � = (c o), then propagate all computed value restrictions mentioned

in c on a role r or one of its superroles to all objects p if the relation

description (r o p) is in the world description of W.

If such a propagation leads to new internal object descriptions, then

apply (R1) recursively.

(R2) If a new object description (c o) or a new relation description (r o : : :)

has been entered or if a role-�ller of object o for some role has been

assigned a new abstraction, then compute a new abstraction for o. This

abstraction is built

14

by taking the conjunction of

� all concepts mentioned in object descriptions of o, entered or ge-

nerated in step (R1),

� \atleast" restrictions for all roles r for which there are relation-

descriptions of the form (s o : : :) or (s o (atleast : : :)) with

s �

T

r, by counting distinct role �llers and using explicit \at-

least" relation-descriptions.

� \atmost" restrictions for all roles r for which there are relation-

descriptions of the form (t o (atmost : : :)) with r �

T

t.

� \all" restrictions for all roles r for which all role-�llers are known.

This can be checked by counting the role-�llers for r and its sub-

roles and comparing this number with the relevant \atmost" re-

strictions computed above or derived from object descriptions of

o. The value restrictions are generalizations of the abstractions

of the role-�llers for the role r and its subroles. \all" restrictions

which are nested deeper than the maximum relevant role-chain

length of all concepts in T can be omitted.

14

Actually, the process of building an abstraction can be thought of as two separate steps.

The �rst one { completion { computes all consequences derived from role-relationships, i.e.,

subrole declarations and role-value-maps, while the second one creates the concept expression

[

Nebel and von Luck, 1987

]

.

110

(R3) Finally, the abstractions created in step (R2) are classi�ed into the

concept taxonomy. The immediate subsumers of the abstractions form

the new mscs.

Comparing this forward chaining inference algorithm with the backward-

chaining algorithm in the Sect. 4.5.1, we note that step (R1) corresponds to

step (I6) (the step omitted in kandor and kl-two) and (R2) corresponds to

(I1){(I5). (R3) comprises all the subsumption tests in (I1){(I6). However, rea-

lize does more than cinst. By propagating value restrictions in step (R1) and

using them to build the abstraction in step (R2), the classi�cation step (R3) is

able to detect inconsistent world descriptions { a point neglected in cinst.

Furthermore, in contrast to cinst, the realization algorithm does not require

any extension of the basic inference algorithms for subsumption and classi�ca-

tion, but realization can make use of these algorithms by calling classify as a

subroutine. From a conceptual point of view, this sounds quite elegant. Howe-

ver, as pointed out by MacGregor

[

1988

]

, this kind of processing is unfeasible

for terminological formalisms containing role-value-maps and range-restricted ro-

les. The abstractions generated in step (R2) are much too �ne-grained in this

case. Instead of always creating a complete abstraction, MacGregor proposes

building an initial abstraction and testing whether role-�llers are instances of

value-restrictions on demand. Such a mix of backward and forward-chaining in-

ference techniques avoids the pitfall of creating too �ne-grained abstractions and

is more e�cient than a pure forward-chaining inference algorithm such as the

one described above. However, we will not pursue this issue further, but rather

analyze the general properties of the realization algorithm described above.

From the structure of the algorithm, it should be clear that realization can

be computationally expensive. In step (R1), propagation can proceed along role-

chains which are as long as the relevant role-chain length of the atomic concept

used in the object description. Furthermore, all role-�llers for the respective role

and its subroles are subject to the propagation of value restrictions. Thus, the

input of one object description may a�ect a number of other objects proportional

to the number of role-�llers for a role at one object to the power of the rele-

vant role-chain length of the atomic concept used in the object description. In

step (R2), we have to compute new abstractions for all objects which received

a value restriction concept by propagation. Recursively, all objects which have

role-�llers that got a new abstraction have to be treated in the same way { a

process which may in the worst case proceed along role-chains which are as long

as the maximum relevant role-chain length of all introduced concepts in a termi-

nology. Finally, in step (R3), the classify procedure has to be applied for all

objects with new abstractions.

Summing up, the cost of the realization algorithm is dominated by steps (R1)

and (R2). If we denote the maximum number of role-�llers in the world descrip-

tion of one object for all roles with n, the maximum number of objects which

111

\share" a role-�ller with m, and the maximum relevant role-chain length of all

concepts in the terminology with l, then the worst case complexity is O(n

l

�m

l

)

classi�cation steps.

In practical applications, however, this theoretical worst-case behavior does

not seem to play a role. First, the relevant role-chain length of concepts and the

number of role-�llers are usually small. Second, there are a number of natural

optimizations which speed up the realization process considerably:

� If a value restriction is propagated to a role-�ller and the propagated value-

restriction is already subsumed by the abstraction of the role-�ller, further

propagations are not necessary.

� If a role-�ller of some object gets a new abstraction, the abstraction for the

object has to be recomputed only if all role-�llers for the corresponding role

are known.

� It is not necessary to completely recompute abstractions, but it su�ces to

add the new parts conjunctively to the old abstraction. For this reason,

classi�cation does not need to start at Anything. It can use the old set of

most specialized concepts, the old msc, as a starting point when determi-

ning the right place in the concept taxonomy.

� Abstractions do not need full classi�cation. It is enough to compute the

set of immediate subsumers if we are interested in the msc only. This

also means that we do not need to insert the abstraction into the concept

taxonomy. It su�ces to maintain the msc.

Moreover, if no assertional cycles are present in the world description and if no

object can be reached by two di�erent role-chains from another object, then the

number of recomputations of an abstraction is bounded by the number of objects

in the world description. This means that although realization is exponential

with respect to the complexity of the concept (the size of the p-concept) used in

the object description, it is (almost) linearly proportional to the size of the world

description.

As regards soundness and completeness, it should be obvious from the argu-

ments made above that steps (R1){(R3) are sound. Completeness, on the other

hand, is a goal we already gave up in Sect. 4.2.2 when we discovered that com-

plete subsumption is too expensive. However, it might be interesting to get an

idea of how complete or incomplete realization is.

The �rst thing we note is that realization inherits the incompleteness of clas-

si�cation and subsumption. This means that if a object description (c o) is part

of a world description and c �

T

d, but tsub misses this relationship, then rea-

lization will not discover that o is an instance of d. Moreover, realization itself

112

(Modern-team TEAM-A)

(Man TOM)

(Man DICK)

(Human MARY)

(member Modern-team TOM)

(member Modern-team DICK)

(member Modern-team MARY)

(member Modern-team (atmost 3))

j=

T

(Woman MARY) ?

Figure 4.6: A Hybrid Inference Ignored by the Realization Algorithm

adds new sources of incompleteness. The abstraction in step (R2) may ignore

some information which is important, as is exempli�ed in Figure 4.6.

Assuming again our \team" terminology, the object description (WomanMARY)

follows from the world description in Figure 4.6 because MARY is the only mem-

ber which could be a Woman and thus is the required leader of the Modern-team.

All other members are Men and, for this reason, are not quali�ed for the leader

position. However, the abstraction process does not do any reasoning by case

and thus does not �ll the leader role with MARY. Hence, there is no way to detect

that MARY is a Woman. However, this kind of reasoning was left out on purpose

because it leads to exponential explosions if a number of such cases have to be

analyzed. Similar to subsumption, where no reasoning by case is done and only

structural relationships and easily detectable incoherencies are dealt with, only

these properties are computed in realization so as to avoid puzzle mode reasoning

[

Levesque, 1988

]

.

Nevertheless, although we miss the fact that MARY is aWoman and the leader

of TEAM-A, this fact is implicit in the world description and will be detected if

we add more information to the world description. If the object description (Man

MARY) and the relation description (leader TEAM-A MARY) are added to the

world description in Figure 4.6, then, by the propagation of value restrictions

in step (R1), MARY would be asserted to be a Woman, and would thus be an

impossible object, being a Woman and a Man at the same time. Generalizing this

example, one could expect that the more speci�c we are in the world description,

the more complete the realization algorithm will be { perhaps leading to a limiting

case where realize completely infers all entailed propositions.

113

4.5.3 Model-Based Terminological Reasoning

The reason why instance recognition and subsumption is very hard, even in a

simple hybrid formalism like TF/AF , is that we always have to take into account

all possible models and all possible semantic structures. If we focus on only a

single model, things are suddenly very simple. Consider a �nite semantic struc-

ture hD; Ei of a terminology T and a generating primitive assignment P. Then

for every d 2 D and every concept c it is easy to determine whether d 2 E[c] by

considering only D and P. Such a procedure { which we will call instance test

on a model { can be speci�ed as follows.

Algorithm 4.7 (minst) Let hD; Ei be a �nite semantic structure of a normal-

form terminology T

N

. Let P be the corresponding primitive assignment. Then

the test whether an object d 2 D is an instance of the concept c in the semantic

structure hD; Ei proceeds as follows:

(M1) If c is an atomic concept, test whether d is an element of exp(c) by

calling minst recursively.

(M2) If c is a primitive concept component, then check whether d 2 P[c].

(M3) If c = (a-not p), then check d 62 P[p].

(M4) If c = (and c

1

: : : c

n

), then test whether d is an instance of all c

i

's by

applying minst recursively.

(M5) If c = (all r v), then check for all objects x such that hd; xi 2 E[r]

whether x is an instance of v by applying the test recursively, where

E[r] is easily computed by taking the intersection of the extensions of

all primitive role components in r.

(M6) If c = (atleast n r), then check kfhd; xij hd; xi 2 E[r]gk � n.

(M7) If c = (atmost n r), then check kfhd; xij hd; xi 2 E[r]gk � n.

Inspecting Def. 3.11, it is easy to see that minst is an algorithmic realization

of the equations for the extension function on concepts. We left out the part on

roles here because they are trivial.

Instead of minst as described above, an equivalent procedure, based on ab-

stractions of objects as described in Sect. 4.5.2 and on the tsub algorithm as

described in Sect. 4.1.1, is also conceivable. For this purpose, let us formally

de�ne what we mean by an abstraction of a domain object.

114

De�nition 4.11 (Abstraction of a Domain Object) Let hD; Ei be a �nite

semantic structure of a terminology T and P be a corresponding primitive as-

signment. Then an abstraction of degree 0 of a domain object d, written

abs

0

(d;D;P), is a normalized p-concept of the following form:

(and p

1

: : : p

l

(a-not q

1

) : : : (a-not q

m

)

(atleast k

1

r

1

) : : : (atleast k

n

r

n

)

(atmost k

1

r

1

) : : : (atmost k

n

r

n

))

with p

i

primitive concept components such that d 2 P[p

i

], 1 � i � l, q

i

primitive

components such that d 62 P[q

i

], 1 � i � m,

15

and r

i

p-roles corresponding to

all atomic roles used in T , and k

i

the number of role-�llers of d for the roles r

i

,

1 � i � n.

An abstraction of degree n, written abs

n

(d;D;P), has the form:

(and abs

0

(d;D;P) (all r

1

gen

1

) : : : (all r

m

gen

m

))

with gen

i

; 1 � i � m being generalizations (as de�ned in Def. 4.10) of

abs

n�1

(e;D;P) for all e such that hd; ei 2 E[r

i

].

Because of the way the abstraction of an object d is constructed, it is evi-

dent that d is always an instance of the abstraction, as spelled out in the next

proposition.

Proposition 4.7 Let hD; Ei be a �nite semantic structure of a terminology T

with a corresponding primitive assignment P. Then it holds for any n that

d 2 E[abs

n

(d;D;P)]

More generally, an abstraction of a lower degree always subsumes an abstrac-

tion of a higher degree for the same object, and because increasing the degree

amounts to adding more restrictions to the concept expression, subsumption bet-

ween abstractions of di�erent degrees for the same object is always detected by

tsub.

Proposition 4.8 Let hD; Ei be a �nite semantic structure of a terminology T

with a corresponding primitive assignment P. Then it holds for any n and m

with n � m that

tsub(abs

m

(d;D;P); abs

n

(d;D;P))

15

Actually, it su�ce to collect negated primitive components for primitive components used

as disjointness markers.

115

Since abstractions of domain objects specify restrictions on all roles exhaus-

tively, a generalization of two abstractions contains enough structure so that the

generalization is subsumed by an arbitrary concept if and only if the two ab-

stractions are subsumed by the concept. Furthermore, tsub always detects such

subsumption relationships!

Lemma 4.11 Let hD; Ei be a �nite semantic structure of a terminology T with

a corresponding primitive assignment P. Let d; e 2 D, and let a

1

= abs

n

(d;D;P)

and a

2

= abs

n

(e;D;P); n � 0. Then for any concept c

tsub(exp(c;T); a

1

) ^ tsub(exp(c;T); a

2

) i� tsub(exp(c;T); gen(a

1

; a

2

))

Proof: Assuming that tsub returns that c subsumes the generalization of a

1

and a

2

, then, of course, it returns true for the subsumption tests between c and

a

1

and c and a

2

because the a

i

s have stronger restrictions on all roles than the

generalization.

For the other direction, we will use induction on n. Let us �rst assume that a

1

and a

2

are abstractions of degree 0. Then in order to have tsub to return true,

the tests in (C3), (C5), and (C6) have to be successful. Because the generalization

of a

1

and a

2

contains all those positive and negated primitive components which

have been tested in step (C3), and conforms to the number restrictions for all

roles r which have number restrictions in c, the generalization of abstractions of

degree 0 will be detected to be subsumed by the tsub algorithm.

Now let us assume that the lemma holds for all abstractions of degree k. Let

a

1

and a

2

be two abstractions of degree k + 1 and assume that tsub detects

that both are subsumed by c. That means in particular that value restrictions

on any role r in c subsume all value restrictions on the role r in both a

1

and a

2

and that tsub has detected this. Because of the induction hypothesis, the value

restriction of any role r in c subsumes the generalization of the value restriction on

r in both a

1

and a

2

. Thus, taking into account the de�nition of the generalization,

c subsumes the generalization of a

1

and a

2

.

Using this lemma, we can prove that abstraction and incomplete subsump-

tion are su�cient to test for instance relationships in one model, i.e., they are

equivalent to minst as speci�ed in the beginning of this section.

Theorem 4.8 Let hD; Ei be a �nite semantic structure of a terminology T

with a corresponding primitive assignment P. Let c be a concept with

rlength(exp(c;T)) = n. Then

tsub(exp(c;T); abs

n�1

(d;D;P)) i� d 2 E[c]

Proof: If tsub detects that c subsumes the abstraction of d, then d must evi-

dently be an instance of c because of Prop. 4.7 and the soundness of tsub.

116

For the other direction, we will use induction over the relevant role-chain

length of c. Assume rlength(exp(c;T)) = 1. Now, if d is an instance of c, then

minst must have been successful on the normalized p-concept, i.e., all positive

and negated primitive components in the normalized p-concept of c are satis�ed

and all number restrictions on roles are satis�ed. Consider now abs

0

(d;D;P).

It contains all positive and negated primitive components p and (a-not q) such

that d 2 P[p] and d 62 P[q], respectively. That means all of the tests in the

�rst subcase of (C3) in the compare algorithm will succeed. Moreover, all tests

concerning \atleast" restrictions on a role r (�rst subcase of (C5)) will succeed

because the abstraction of d contains a number restriction on r which is at least

as strong as the one in c. And the same holds for \atmost" restriction because of

the same argument.

Now assume the lemma holds for all concepts with a relevant role-chain length

of k. Assume further we have a concept c with rlength(exp(c;T)) = k + 1 such

that d 2 E[c]. Because of the arguments made above, the tests (C3), (C5), and

(C6) succeed. Moreover, we know that the value restrictions on any role r in c

subsume the abstractions of all role-�llers e for role r of object d, and tsub detects

this subsumption relationship because of the induction hypothesis. Because of

Lemma 4.11 test (C4) will also succeed.

Another view of the fact that abstraction and incomplete subsumption su�ce

to realize an instance test on models is that the tsub algorithm is a complete al-

gorithm if the second parameter is an abstraction of some object in some semantic

structure.

Corollary 4.4 Let hD; Ei be a �nite semantic structure of a terminology T

with a corresponding primitive assignment P. Let c be a concept, and let a

n

=

abs

n

(d;D;P) for some d 2 D and some natural number n � rlength(exp(c;T))�

1. Then

tsub(exp(c;T); a

n

) i� a

n

� exp(c;T)

Proof: Because tsub is sound, the right hand side follows from the left hand

side.

For the other direction, assume that c subsumes a

n

, but tsubmisses this fact.

Let m = rlength(exp(c;T)).

If m � 1 = n, then the we have the following relationships in the semantic

structure hD; Ei mentioned in the theorem: d 2 E[a

n

] � E[c]. This, however,

leads to an immediate contradiction by Theorem 4.8.

If m � 1 < n, then there exists another abstraction a

m�1

of degree m � 1

such that d 2 E[a

n

] � E[a

m�1

] � E[c]. Since we have tsub(a

m�1

; a

n

) by

Prop. 4.8, tsub(exp(c;T); a

m�1

) by Theorem 4.8, and tsub(exp(c;T); a

n

) bec-

ause of Prop. 4.3, we again have a contradiction.

117

4.5.4 Model-Based Reasoning as the Limiting Case of

Realization

Although the results above sound quite interesting, they do not apply directly to

our case. In general, a world description has a large number of models respecting

a terminology. Thus, hybrid reasoning in general cannot be based on a single

model. However, it may be possible to give a characterization when we can base

our reasoning on one model. Trying to do this, let us focus on world descriptions

which are quite explicit about role relationships { world descriptions we will call

role-closed.

De�nition 4.12 (Role-Closed World Description)

A world-description W is a role-closed w.r.t. a set of atomic roles R i� for

every atomic role r 2 R and every two objects o; p appearing in W, the world

description either contains a relation description (r o p) or the addition of such

a relation description eliminates all possible models of W.

This de�nition implies that a role-closed world description is either inconsi-

stent, or we have for every object o and every role r 2 R a relation description of

the form (r o (atmost n)), with n being the number of role �llers of o for role r.

That means our description is quite explicit. Interpreting such a world descrip-

tion using a terminology, the only propositions which do not follow immediately

from the world description alone are object descriptions. In order to compute

those, let us �rst de�ne what we mean by a generalized world description.

De�nition 4.13 (Generalized World Description)

A generalized world description W is a world description which uses not only

atomic concepts in object descriptions, but also arbitrary concept expressions.

The de�nitions for models and models respecting a terminology, as well as hybrid

entailment are to be extended in the obvious way by considering not only atomic

roles and concepts but also arbitrary term expressions.

Based on this de�nition, role-closed world descriptions will be transformed

to equivalent generalized world description where only primitive concept com-

ponents are used in object descriptions.

De�nition 4.14 (Value Restriction Propagation) Let W be a generalized

world description and T be a terminology. Let prop

T

be a function transforming

an arbitrary W into W

0

by applying the following rules:

1. For all object descriptions (c o), let x = norm(exp(c;T)).

2. Remove (c o) from W.

3. Add (c

i

o) for every positive or negated primitive component c

i

appearing as

a subexpression in the top-level \and" expression of x.

118

4. Add (r

i

o (atmost n

i

)) for every (atmost r

i

n

i

) appearing in the top-level

\and" expression of x.

5. Add (r

i

o (atleast n

i

)) for every (atleast r

i

n

i

) appearing in the top-level

\and" expression of x.

6. Add (v

i

p) for every object p with (s o p) in W and (all r

i

v

i

) is a subexpres-

sion of the top-level \and" expression of x with s �

T

r

i

.

This de�nition is obviously the formal counterpart of the propagation

step (R1) in realize. Unlike in (R1), however, the original object description is

deleted. In general, this would amount to a loss of information. However, in world

descriptions which are role-closed w.r.t. the atomic roles used in a terminology,

nothing is lost.

Lemma 4.12 LetW be a generalized world description which is role-closed w.r.t.

the atomic roles used in a terminology T . Then it holds that

W j=

T

� i� prop

T

(W) j=

T

�

Proof: Inspecting the equations of Def. 3.11, we see that all the transformations

in Def. 4.14 never lead to the elimination of models respecting a terminology

regardless of whether the world description is role-closed or not. That means we

have W j=

T

� if prop

T

(W) j=

T

�.

For the other direction, assume the world description is role-closed w.r.t. the

atomic roles used in T . Although the original object description (c o) is deleted,

we see by inspecting the equations in Def. 3.11 that all semantic structures of

T which are models of W

0

must have o as an instance of c. Thus, for world

descriptions role-closed w.r.t. the set of atomic roles used in T , the other direction

is valid as well.

If we take an arbitrary role-closed world description and apply the propaga-

tion function as often as the maximum relevant role-chain length of all concepts

in the terminology under consideration, then we obviously get a generalized world

description such that only primitive concept components are used in object de-

scriptions. Such a world description is very similar to a primitive assignment

P as de�ned in Def. 3.13. Inspecting such a world description, it is possible to

determine easily whether it is consistent w.r.t. the terminology.

Lemma 4.13 LetW be a world description which is role-closed w.r.t. the atomic

roles used in a terminology T . Let l be the maximum relevant role-chain length

of all concepts de�ned in T , and set W

0

= prop

l

T

(W). Then W

0

has a model

respecting T i� in W

0

1. there are no pairs of object descriptions (p o), ((a-not p) o),

119

2. there are no pairs of relation descriptions (s o (atleast n)),

(r o (atmostm)), with m > n and s �

T

r, and

3. there are no relation descriptions (s o p), if W

0

does not contain (r o p) with

s �

T

r.

Proof: From Lemma 4.12, we know that the models ofW andW

0

(w.r.t. atomic

terms) respecting T are the same. Furthermore, we know that a violation of

conditions 1 and 2 leads to the fact that there cannot be any model respecting

T . If condition 3 is violated, then we get the same result since (r o p) is entailed

by all models respecting T , but this violates the \atmost" relation-description on

r being in W

0

because W

0

is role-closed w.r.t. T .

For the other direction, assume that all of the conditions mentioned in the

lemma are satis�ed. Because prop is applied l times, the resulting generalized

world description W

0

contains only object descriptions with positive or negated

primitive concept components. Using these and the relation description as a star-

ting point, a semantic structure of T could be created by applying the equations

in Def. 3.11. Thus, W

0

has a model respecting T , and because of Lemma 4.12,

W has a model respecting T .

Applying this result to realize, it is evident that realize would detect all

inconsistencies in this case. However, this is not the entire story. Role-closed

world descriptions do not only allow for detection of inconsistencies, but also

permit the derivation of all entailed propositions because they have canonical

models, which can be computed easily.

De�nition 4.15 (Canonical Model) A model of a world description W re-

specting a terminology M = hD;Ii is a canonical model i� for all descriptions

�:

j=

M

� i� W j=

T

�

As should be obvious, most of the models of a world description are not ca-

nonical, and often enough there is even none. For instance, the world description

in Figure 4.6 does not have such a model. In order to characterize such models,

let us de�ne the notion of a model ordering.

De�nition 4.16 (Model Ordering) Let W be a world description, T a termi-

nology, N

O

a set of objects, N

R

a set of atomic roles, and N

C

a set of atomic

concepts. A model of a world description hD;Ii respecting T is contained in ano-

ther model hD

0

;I

0

i respecting T , written hD;Ii v hD

0

;I

0

i i� there is an injective

function h such that:

1. h:D ! D

0

2. h(I[o]) = I

0

[o] 8o 2 N

O

120

3. fh(x) 2 D

0

j x 2 I[c]g � I

0

[c] 8c 2 N

C

4. fhh(x); h(y)i 2 D �Dj hx; yi 2 I[r]g � I

0

[r] 8r 2 N

R

De�nition 4.17 (Unique Minimal Model) A model hD;Ii is a minimal mo-

del of W respecting T i� for all other models hD

0

;I

0

i we have either hD;Ii v

hD

0

;I

0

i or hD

0

;I

0

i 6v hD;Ii. It is a unique minimal model (modulo rena-

ming) i� it is minimal and for all other minimal models hD

0

;I

0

i it holds that

hD;Ii v hD

0

;I

0

i.

Although unique minimal models are not canonical models, the converse

holds. Since a canonical model satis�es all descriptions entailed by a world des-

cription, it evidently has a minimal domain and minimal extensions of concepts

and roles. The converse relationship does not hold because a model hD

0

;I

0

i inclu-

ding a unique minimal model hD;Ii may support more role-relationships, leading

to the fact that some relation descriptions using \atmost" are satis�ed in hD;Ii,

but not in hD

0

;I

0

i.

Lemma 4.14 A unique minimal model hD;Ii of W respecting T is a canonical

model i� for any model hD

0

;I

0

i:

8o; p 2 N

O

; r 2 N

R

: hI

0

[o];I

0

[p]i 2 I

0

[r]) hI[o];I[p]i 2 I[r] (4.8)

Proof: Since a unique minimal model satis�es object descriptions and relation

descriptions of the form (c o) and (r o (atleast n)), if and only if they are entailed,

the only problematic point are the relation descriptions using \atmost" restric-

tions. Condition (4.8), however, guarantees that satisfaction in hD;Ii implies

entailment.

Theorem 4.9 Let W be a world description which is role-closed w.r.t. the ato-

mic roles appearing in T . Let l be the maximum relevant role-chain length in

T . Let N

C

, N

R

, and N

O

be the sets of atomic concepts, atomic roles and ob-

jects appearing in T and W. Then W has a canonical model constructible from

prop

l

T

(W), or W is inconsistent.

Proof: IfW

0

, and thus W, is not inconsistent, de�ne a partial model hD

0

;I

0

i by

the following rules:

D

0

def

= foj o is an object in W

0

g

I

0

[o]

def

= o 8o 2 D

0

I

0

[r]

def

= fho; pij (r o p) appears in W

0

g

I

0

[c]

def

= foj (c o) appears in W

0

and c 2 N

C

g

121

Use this partial model as a primitive assignment for the normal-form terminology

T

N

and create a complete model which assigns values to I

0

for all possible concept

expressions by applying the equations in Def. 3.11. This model respects T because

of the way it is constructed. Moreover, it is a unique minimal one w.r.t. N

C

, N

R

and N

O

, since it covers only the objects and role-relationships mentioned in W

0

,

and the concepts are constructed deterministically from these and the primitive

assignments. I

0

is also a canonical model, because condition (4.8) is satis�ed by

the role-completeness restriction.

This characterization of role-closed world descriptions shows that they are

similar to what Levesque

[

1986

]

has called vivid knowledge bases { a kind of

representation permitting tractable inference algorithms because they are cano-

nical models of themselves. Although this is not the case with role-closed world

descriptions, they can be mapped to a vivid representation by applying prop.

Combining this result and Theorem 4.8, we see that realize is a complete infe-

rence algorithm for role-closed world descriptions.

Theorem 4.10 Let W be a world description role-closed w.r.t. the atomic roles

used in a terminology T . Then

1. W is inconsistent w.r.t. T i� some abstraction computed by realize is

Nothing{ the concept with a necessarily empty extension.

2. W j=

T

(c o) i� W is inconsistent with respect to T or the abstraction a of

o computed by realize is subsumed by c and it holds that tsub(exp(c;T),

a).

Proof: Proposition 1 holds because of Lemma 4.13 and the way realize com-

putes abstractions.

Proposition 2 holds because of the following arguments. If W is inconsistent

w.r.t. T , everything is entailed. Thus, let us assume that W is consistent w.r.t.

T . By Theorem 4.9 we know that there is a canonical model which can be

easily constructed from prop

l

T

. Moreover, this construction uses a subset of

the transformations of the of the realize algorithm. Thus, since we showed

in Theorem 4.8 that reasoning of realize on a single model is complete, the

proposition follows.

4.6 Evaluation of the Inference Capabilities

From the analysis of the inferential capabilities of realize in the previous sec-

tion, two important conclusions can be drawn. First, it shows that realize

converges towards completeness with the limiting case of role-closed world des-

criptions resulting in a complete inference algorithm { realize is conditionally

122

complete. This characterizes the algorithm much better than the mere statement

that it is sound { which in the extreme case could mean that it does nothing at

all. Moreover, it shows that the algorithm is not only more complete than the

hybrid inference algorithms used in kl-two and kandor, but also that it is of

a di�erent quality.

Second, in information retrieval applications such as argon, where it seems to

be crucial that inference algorithms are complete (as argued in

[

Patel-Schneider,

1984

]

), completeness can be guaranteed for world descriptions of a certain form.

Although we have proven this only for the formalisms TF/AF, it seems possi-

ble to extend the result to formalisms such as the one used in kandor { the

representation kernel of argon. Classi�cation of a query-concept (as described

in the beginning of Sect. 4.5.2) would still miss some subsumption relationship.

However, by Theorem 4.10, we would be able to retrieve all instances of the

query-concept.

In general, it can be said that when we sacri�ce completeness, we should

not do so arbitrarily. On the contrary, we should be very careful in deciding

which kinds of inferences we support and which ones we ignore. Otherwise, there

may be situations where one subformalism allows expressing something which

obviously should have some impact on another subformalism according to the

common semantics, but the system does not realize this because its reasoning is

incomplete in this aspect. This \black hole" might be there because the inferred

propositions cannot be expressed or because one subformalism is not heuristically

adequate for this aspect. In any case, the subformalisms of the system appear

to be unbalanced. Although the term balancedness is a little bit vague, it can

be captured by the following principle of balancedness in hybrid representation

systems:

If a representation construct in a subformalism of a hybrid formalism

suggests that its usage has some impact on knowledge represented

in another subformalism (according to the common semantics), then

this should be realized by the system.

An example for a system with unbalanced subformalisms is kl-two

[

Vilain,

1985

]

: While it is possible to de�ne concepts with a very rich terminological lan-

guage, only a fraction of it is used for hybrid reasoning. In particular, the number

restrictions used in the terminological component has only a very limited impact

on the assertional component because the latter is not heuristically adequate to

deal with cardinalities (as discussed in Sect. 3.3).

In contrast to kl-two, the described abstract system, which resembles the

back system to a large extent, is designed to allow for balanced inference capa-

bilities. Any construct in the terminological language has some impact on the

assertional formalism and vice versa and although the inference capabilities are

incomplete, at least they are balanced in their ignorance. Furthermore, any ex-

pression used in one subformalism which should have an impact according to the

123

semantics will eventually have this e�ect when more assertions are added to the

world description.

124

Chapter 5

Terminological Cycles

As noted in Sect. 3.2.2, terminological cycles (see Def. 3.4) are counter-intuitive.

Furthermore, as pointed out in Sect. 4.1.1, terminological cycles may result in an

in�nite recursion of the subsumption algorithm. For these reasons, we demanded

that terminologies be cycle-free. Skimming through the relevant literature reveals

that this treatment of terminological cycles is common in research concerning

terminological formalisms:

� \we should be careful to avoid circular de�nitions"

[

Brachman et al., 1985,

p. 534

]

� \In the �rst mode, if the classi�er discovers a cycle, it simply declares

the concept classi�ed and warns the user about the existence of a cycle."

[

Kaczmarek et al., 1986, p. 982

]

� \Loom has taken an opposite position { cyclic de�nitions are illegal in

Loom."

[

MacGregor and Bates, 1987, p. 6

]

� \Two properties that must be met by any set of de�nitions in this [termi-

nological] logic are that all de�nitions in the set must be unique and that

there be no circular de�nitions."

[

Patel-Schneider, 1987a, p. 100

]

� \Independent of the user's intention, the cyclic de�nition �rst does not seem

to do any harm within the network. Considering the classi�cation process,

however, it becomes obvious that the subsumption relation between both

concepts cannot be determined, the classi�er will go astray."

[

von Luck et

al., 1987, p. 69

]

There are two reasons for not following this lead

[

Nebel, 1987

]

. First, ter-

minological cycles can be useful. Some terms can be introduced only by using

a terminological cycle. Second, when we envision a system which views a ter-

minological knowledge base as an abstract object which has to be changed, a

point of view we will take in Chap. 7, it would be rather arbitrary to permit only

125

operations which do not result in terminological cycles. In fact, it would be quite

di�cult to express such a restriction in an abstract speci�cation and to explain

it to a user.

In the next section, we will analyze why terminological cycles could be useful

and what kind of intuitive semantics is implied. These ideas will then be used in

Sect. 5.2 to judge how much a formal semantics can capture.

As it turns out, the style of semantics introduced in Chap. 3 { which will be

called descriptive semantics { seems to come closest to the intuitive understan-

ding of terminological cycles. Therefore, we will adopt this style of semantics

and analyze the formal meaning of terminological cycles in Sect. 5.3 using the

descriptive semantics. Finally, in Sect. 5.4, we will discuss how to extend the

basic inference algorithms described in Chap. 4.

5.1 The Intuitions Behind Terminological Cy-

cles

Basically, there are two kinds of terminological cycles { one which is obviously

meaningful and another one which violates the requirement that concept hier-

archies should not contain cycles. The latter kind of terminological cycles is

exempli�ed by Fig. 5.1.

Human

:

� Anything

Man

:

= (and Human Male-human)

Male-human

:

= (and Human Man)

Figure 5.1: Circular De�nition of Man and Male-human

Man is introduced by using Male-human as a component in an \and" expres-

sion, suggesting that Man is a specialization of Male-Human. In turn, Male-human

is introduced by using Man as a component in an \and" expression, suggesting

that Male-Human is a specialization of Man. This is obviously a modeling-error.

We might simply prohibit the use of such concept introductions. However, if

we view a terminological knowledge base as an abstract object on which some

modi�cation operations can be carried out, we have to take special care to detect

such situations and reject operations intended to introduce cycles. This makes

the speci�cation of such a system complicated and clumsy. Therefore, if the

semantics of the representation language could give us a sensible answer as to

what such \de�nitions" could possibly mean, this would be much more elegant.

Besides the meaningless kind of cycles, there are cycles which are obviously

meaningful and which often appear when modeling a domain. What kind of

126

intuition is implied by these cycles will be the subject of the next subsections.

5.1.1 Recursively De�ned Finite Object Structures

Usually, if we de�ne something, we do not refer to the term which is to be de�ned.

One exception is a recursive de�nition. In recursive de�nitions, the term de�ned

is used in the de�nition, informally speaking, with the hope that any time the

de�nition is applied, the objects denoted get simpler until we reach a �nal state

which does not require further application of the de�nition. For example, a binary

tree can be de�ned elegantly in this way. Using TF , we might be tempted to

describe a binary tree as in Fig. 5.2.

branch

:

� anyrelation

Tree

:

� (all branch Tree)

Binary-tree

:

= (and Tree (atmost 2 branch) (all branch Binary-tree))

Figure 5.2: Recursive De�nition of Binary-tree

This concept de�nition looks perfectly reasonable and has a clear intuitive

semantics. Apparently, something like binary trees are denoted by the concept

de�nition. Object structures which could be part of the extension of Binary-tree

are displayed in Fig. 5.3.

��

��

A

�

�

�

�*

H

H

H

Hj

��

��

B

��

��

C

-

��

��

D

��

��

E

�

�

�

�*

H

H

H

Hj

��

��

F

H

H

H

Hj

��

��

G

�

�

�

�*

��

��

H

Figure 5.3: Some Object Structures Satisfying the De�nition of Binary-tree

Let us assume that all circles in Fig. 5.3 are Tree objects and that the arrows

represent branch relationships between those objects. Then we can infer that

objects B and D are Binary-trees since they do not have any role-�llers. For this

reason, C and thus A are Binary-trees, as well. By the same line of reasoning,

we can conclude that E, F, G, and H are Binary-trees. Thus, our de�nition does

not denote what we intended but something similar, namely, directed acyclic

graphs (dags) with degree two. Note, however, that this result depends on the

assumption that E, F, and G are Trees, but because Tree is a primitive concept,

127

we are not forced to assume that. This means that if the concept Tree indeed

denotes only trees, then Binary-tree denotes only trees with degree two. In any

case, in this example, we are aiming for recursively de�ned, noncyclic, �nite

object structures.

5.1.2 In�nite Object Structures

There are, of course, other situations where one would like to refer back to the

term one is de�ning but which cannot be categorized as describing recursively

de�ned �nite structures. In order to motivate such de�nitions, let us consider

Fig. 5.4.

o�spring

:

� anyrelation

Human

:

� Anything

Parent

:

= (and Human (atleast 1 o�spring) (all o�spring Human))

Figure 5.4: Humans and Parents

There are two things in this terminology which appear to be unnatural. First,

the value restriction on the o�spring role is set in the de�nition of Parent, in spite

of the fact that it \belongs" to Human. Stating it the other way around, is it

conceivable that there is a Human who has a Non-human o�spring? And if so,

would that amount to excluding her or him from the class of Parents? Second,

it seems to be impossible to state that Humans have exactly two begetters which

are Humans. In order to account for this { and ignoring any of the interesting

science �ction literature on this subject { we may de�ne Human and Parents as

in Fig. 5.5.

o�spring

:

� anyrelation

begetter

:

� anyrelation

Human

:

= (and (all o�spring Human) (all begetter Human)

(atleast 2 begetter) (atmost 2 begetter))

parent

:

= (and Human (atleast 1 o�spring))

Figure 5.5: De�nition of Human and Parent Using Cycles

In this terminology, I have included not only the necessary condition that

o�springs of Humans are Humans but have also added another necessary condition,

namely, that a Human must have two begetters who are themselves Humans. This

128

kind of concept introduction might raise the question of the origin of human

beings. Because of space limitations, however, we will not discuss this subject

further. For a common sense view of the world, at least, the de�nition seems

reasonable. I have even dared to go one step further: I think there is reason to

believe that the conditions on Human are su�cient! This sounds a little strange

at �rst but can be defended by the argument that an entity can be recognized as

a Human when the entity has two begetters which are known to be Humans.

��

��

A

�

�

�

�*

��

��

��

�

H

H

H

Hj

HH

HH

HH

Y

��

��

B

�

�

�

�:

��

��

��
9

X

X

X

Xz

XX

XX

XXy

��

��

C

�

�

�

�:

��

��

��
9

X

X

X

Xz

XX

XX

XXy

��

��

D

-

�

-

�

��

��

E

-

�

-

�

��

��

F

-

�

-

�

��

��

G

-

�

-

�

Figure 5.6: Object Structures Intended by the De�nition of Human

Obviously, this time we used the circular concept introduction to denote some-

thing di�erent than in the last example. In Fig. 5.5 we have an in�nite structure

in mind { an in�nite chain connected by the begetter and o�spring relationships

as shown in Fig. 5.6 (the begetter relationship is depicted by a solid arrow, the

o�spring relationship by a dashed one). However, as in the Binary-tree examples,

there are structures possible which satisfy the structural conditions in the de�-

nition but which are not intended. For instance, there may be objects which are

not o�springs of their begetters. Even worse, one could think of objects which are

their own begetters. Such strange semantic structures could be eliminated only

with a more powerful terminological language.

5.1.3 Circular Object Structures

A third kind of circular concept introductions stresses the idea that it may be

impossible to de�ne a concept by referring to already de�ned terms, but possible

to de�ne two concepts by referring each to the other. In other words, we are

aiming at describing cyclic object structures.

This idea is exempli�ed in Fig. 5.7 by the introductions of Car and Car-engine.

The intended object structures are depicted in Fig. 5.8. Note, however, that ob-

ject structures are conceivable which do not follow this pattern, e.g. in�nite chains

of Car objects and Car-engine objects connected by the appropriate relationships.

I know that if I really insisted that this example is reasonable and has to be

part of any knowledge engineer's basic skills in modeling terminological knowl-

129

sub-part

:

� anyrelation

engine-part

:

� sub-part

is-part-of

:

� anyrelation

is-engine-part-of

:

� is-part-of

Vehicle

:

� Anything

Engine

:

� Anything

Car

:

= (and Vehicle

(all engine-part Car-engine)

(atleast 1 engine-part))

Car-engine

:

= (and Engine

(all is-engine-part-of Car)

(atleast 1 is-engine-part-of))

Figure 5.7: Circular De�nition of Car and Car-engine

��

��

A

��

��

B

��

��

C

��

��

D

'$

?

'$

?

&%

6

&%

6

Figure 5.8: Object Structures Intended by the De�nition of Car and Car-engine

edge, then I probably would loose some credibility. Therefore, I will defend this

kind of terminological modeling only with a pragmatic argument.

Although concept introductions such as those in Fig. 5.7 are not really \well-

founded," they can be exploited by the realization process (as described in Sect. 4.5.2).

Thus, in some sense such cycles convey meaning. For instance, if it is known that

A is a Car and a role �ller of the engine-part role for A is B, then we can conclude

that B must be a Car-engine. Obviously, this game also works the other way

around. Thus, this kind of cycle permits a special and interesting mode of hybrid

reasoning.

130

5.1.4 Primitiveness and Instance Recognition

One may argue that introducing all the concepts in the last three subsections

primitively would be in some sense \cleaner" because some sort of \base" for

the de�nition is provided. However, even if we insisted on introducing all the

above concepts as primitive concepts, the cycles would not vanish. We would

still have to explain what they mean and how a knowledge representation system

should handle them. And, in this context, it appears to be arbitrary to restrict

an explanation to primitive concepts.

Furthermore, with de�ned concepts, instance recognition in the realization

process is a little bit more powerful. For example, the introduction of Human in

Fig. 5.5 as a de�ned concept allows us to recognize any entity with only Human

o�springs and with two begetters who are Humans as an instance of Human. This

obvious inference would not be sanctioned if Human were a primitive concept.

Finally, I believe that a su�cient condition for a Human is that their begetters

are Humans.

Two things, however, have to be investigated in this context. Are we really

getting only sensible inferences, i.e., are unexpected, counter-intuitive conclusi-

ons excluded? Before we can answer this question, we have to explain what the

(formal) semantics of such terms are. Next, knowing what can be derived and im-

plementing the inferences are two di�erent things. Therefore, the second problem

we are faced with is: What are the algorithms for implementing the semantics

correctly? All these problems will be investigated in the following sections.

5.2 Semantics of Terminological Cycles

As already pointed out in Sect. 3.2.2, the constructive semantics introduced by

Theorem 3.2 gives up on terminological cycles because the \level" function on

terms is not well-de�ned. This means that we cannot extend a primitive assi-

gnment to a unique extension function w.r.t. the terminology.

For example, if we try to construct an extension for the term Binary-tree in

Fig. 5.2, we get the following de�ning expression for E at the point Binary-tree:

E[Binary-tree] = P[Tree] \ (5.1)

fx 2 Dj kfy 2 Djhx; yi 2 P[branch]gk � 2g \

fx 2 Dj 8y : hx; yi 2 P[branch]) y 2 E[Binary-tree]g

In order to determine a value for E[Binary-tree], we could choose di�erent

methods. One way would be to keep inserting the right hand expression for the

term E[Binary-tree] into the right hand side until we are dead { perhaps giving

our children directions how to proceed. A more promising way out would be to

view the de�nition of the extension as an equation we have to solve. However,

131

can we be sure that there is always a solution? Furthermore, what should we do

if there is more than one solution?

Basically, there are two ways out of this dilemma. Either we accept all soluti-

ons as valid semantic structures, i.e., we adopt the view inherent in the noncon-

structive de�nition of semantic structures in Def. 3.12, or we select a particular

semantic structure. The latter approach can be realized by employing some sort

of �xed point semantics, as is done in the semantics for programming languages

[

Stoy, 1977

]

. The main idea behind such an approach is that we view de�nitions

as above as an attempt to solve the following equation:

x = f(x) (5.2)

This means we are interested in points where the function f maps the argument to

itself { the �xed points of f . In programming language semantics, we are usually

interested in the least �xed point because in the space of functions the least �xed

point is the partial function giving results for terminating computations and being

unde�ned for endless computations. In our case, the least �xed point amounts

to something similar. It is the least semantic structure w.r.t. a given primitive

assignment P, i.e., a subset of all possible semantic structures w.r.t. P.

Applied to our example (5.1), we would look for the least �xed point of

f

Binary-tree

, if this function is de�ned as:

f

Binary-tree

: 2

D

! 2

D

f

Binary-tree

(X) 7! P[Tree] \

fx 2 Dj kfy 2 Djhx; yi 2 P[branch]gk � 2g \

fx 2 Dj 8y : hx; yi 2 P[branch]) y 2 Xg

Assuming that the least �xed point always exists and that the function �x is a

function yielding the least �xed points of functions, then the extension of Binary-

tree could be de�ned as:

E[Binary-tree]

def

= �x(f

Binary-tree

) (5.3)

5.2.1 Lattices and Fixed Points

In order to apply the technique sketched above, we need some prerequisites. We

have to make sure that a least �xed point exists, and we should have an idea what

it looks like. For these reasons, let us brie
y recall some basic facts about the

theory of �xed points (leaving out any proofs). For a more complete treatment,

the reader is referred to

[

Stoy, 1977, Chap. 6

]

, for instance.

Assuming familiarity with the notions of partial orderings (we will denote by

v), lower and upper bounds (written as a v X and X v a), greatest lower and

least upper bounds (written as

u

X and

t

X), let us recall what we mean by a

lattice:

132

De�nition 5.1 (Lattice) A partially ordered set D is a lattice i� for any �nite,

nonempty set X � D:

u

X 2 D and

t

X 2 D

Notice that the de�nition of lattice does not say that every subset must have

a greatest lower bound and a least upper bound. Nothing has been said about

empty and in�nite sets so far.

De�nition 5.2 (Complete Lattice) A lattice D is a complete lattice i� every

subset of D has a greatest lower bound and a least upper bound.

Actually, as can be shown, it su�ces to have either least upper bounds or

greatest lower bounds. The other direction can be derived easily. Moreover, the

de�nition of complete lattices implies that there is a greatest and a least element

in D. The greatest element, written > (pronounced top) is equal to

t

D and

u

;.

The least element ? (pronounced bottom) is equal to

u

D and

t

;.

Now let us turn to functions on lattices specifying necessary and su�cient

conditions for the existence of least �xed points.

De�nition 5.3 (Monotonic Function) Let D and D

0

be two partially ordered

set. Then the function f :D ! D

0

is monotonic i�

8a; b 2 D : a v b) f(a) v f(b)

Although monotonicity on complete lattices is enough to guarantee the exi-

stence of a least �xed point, as we will see below in Theorem 5.1, it does not

su�ce to derive an explicit formula describing it. There are additional conditions

required for this purpose, namely, that the function is continuous. To de�ne this

notion, we �rst have to say what we mean by a directed set.

De�nition 5.4 (Directed Set) A set X is directed i� every �nite subset of X

has an upper bound in X, i.e.

8S � X;S �nite : 9x 2 X : S v x

De�nition 5.5 (Continuous Function) Let D and D

0

be two complete latti-

ces. Then a function f :D ! D

0

is continuous i� for all directed sets X � D

f(

G

X) =

G

ff(x)j x 2 Xg

With all these de�nitions, we can �nally specify when a �xed point exists and

what it looks like, following

[

Tarski, 1955

]

.

Theorem 5.1 Let D be a complete lattice, and let f be a monotonic function

from D to D; then

133

1. f has at least one �xed point in D;

2. the set of �xed points of f is a complete lattice;

3. if f is continuous, then its least �xed point �x(f) is:

�x(f) =

1

G

i=0

f

i

(?)

5.2.2 Fixed Point Semantics

Using Theorem 5.1, we could now try to determine the least �xed point of

f

Binary-tree

. However, this procedure of de�ning the extension function E for par-

ticular points is not a general solution. Terminological cycles can involve more

than one concept, as the concepts Car and Car-engine in Fig. 5.7 demonstrate.

This means we have to determine the least �xed point for a system of functional

equations.

In order to start this adventure, let us introduce the notion of a valuation

function V. By that we mean any function from concepts to subsets of a domain

D and from roles to subsets of D �D, i.e.

V:

(

NTF

C

! 2

D

NTF

R

! 2

D�D

The set of all such valuation functions will be denoted by �.

Next, we will de�ne a completion function � which takes a valuation V and

computes a new valuation V

0

based on a given primitive assignment. The value

for each point of V

0

is determined by applying the equations in Def. 3.11 and 3.12.

De�nition 5.6 (Completion Function) Let T , T

N

, D, and P be de�ned as

in Sect. 3.2.4. Then the completion function � is a mapping from valuations to

valuations, mapping V to V

0

using the following rules:

V

0

[a]

def

= V[t] if (a

:

= t) 2 T

N

(5.4)

V

0

[a]

def

= P[a] if a 2 N (5.5)

V

0

[(a-not c)]

def

= D n P[c] (5.6)

V

0

[(and c

1

: : : c

n

)]

def

=

T

n

i=1

V[c

i

] (5.7)

V

0

[(all r c)]

def

= fx 2 Dj 8y : hx; yi 2 V[r]) y 2 V[c]g (5.8)

V

0

[(atleast n r)]

def

= fx 2 Dj kfy 2 Djhx; yi 2 V[r]gk � ng (5.9)

V

0

[(atmost n r)]

def

= fx 2 Dj kfy 2 Djhx; yi 2 V[r]gk � ng (5.10)

V

0

[(androle r

1

: : : r

n

)]

def

=

T

n

i=1

V[r

i

] (5.11)

134

A �xed point of � is then a valuation function V such that V = �(V), i.e.,

applying the equations in Def. 5.6 does not change anything in the valuation.

Interpreting such \stable" valuations as extension functions, we see that the sy-

stem of equations generated by a terminology is satis�ed. The least such �xed

point w.r.t. a given primitive assignment would then be an extension function

which is included in all other possible extension functions w.r.t. to this primitive

assignment. We have to make sure, however, that the least �xed point always

exists.

First of all, it should be evident that � forms a complete lattice if we de�ne

v in the following way:

V v V

0

def

, 8x 2 NTF

T

: V[x] � V

0

[x] (5.12)

Set intersection and set union on corresponding values are the greatest lower

bounds and least upper bounds. The bottom element is the valuation yielding

the empty set for all arguments, and the top element is the valuation returning

the entire domain D for every concept and D � D for every role. Thus, one

prerequisite is met. � is a function on complete lattices.

Unfortunately, � is not monotonic. In order to demonstrate this, let us assume

the terminology of Fig. 5.2. Furthermore, we choose the following values for D

and P:

D = fa; b; c; dg

P[branch] = fha; bi; ha; ci; ha; dig

Now assume two valuations V and V

0

with all values being ;, except:

V[(atmost 2 branch)] = fa; b; c; dg

V[branch] = fha; bi; ha; cig

V

0

[(atmost 2 branch)] = fa; b; c; dg

V

0

[branch] = fha; bi; ha; ci; ha; dig

Thus, we have V v V

0

. As can be seen easily, we also have �(V) 6v �(V

0

).

The reason is that by rule (5.10) in Def. 5.6, the object a is excluded from

�(V

0

)[(atmost 2 branch)] while it can stay in �(V)[(atmost 2 branch)]. In general,

a new role-relationship can invalidate the membership of an object in a concept

valuation. Using this observation, we can easily construct a terminology such that

� does not have a least �xed point (by employing circular role introductions).

Instead of giving up at this point, let us reconsider Def. 5.6. It is evident that

valuations for roles are independent from valuations for concepts. Thus, � can

determine new valuations for roles even if rules (5.6){(5.10) are ignored. Moreo-

ver, the remaining rules lead to a monotonic behavior of �. Therefore, in order to

135

get monotonic functions, we may choose the solution of �rst determining the least

�xed point of a role completion function �

R

and then using that to determine the

least �xed point of a concept completion function �

C

relative to the least �xed

point of �

R

. This still has the intuitive appeal that we get only least extensions of

roles and least extensions of concepts relative to the least role extension. Howe-

ver, this demonstrates that we are in trouble if role extensions depend on concept

extensions, as would be the case with the \range" operator. If a terminological

cycle involves a role and a concept, then the two-step determination of least �xed

points will not work.

For this purpose, let us split the valuation function into two parts, a concept

valuation V

R

and a role valuation V

C

with

V

R

:NTF

R

! D �D

V

C

:NTF

C

! D

V = V

R

[V

C

The respective sets of valuation functions are denoted by �

R

and �

C

, which

obviously form complete lattices again. The bottom elements will be denoted by

?

�

R

and ?

�

C

.

De�nition 5.7 (Role and Concept Completion Functions) Assume all

sets and functions as introduced in Def. 5.6. Then the role completion function

�

R

is a function:

�

R

: �

C

! [�

R

! �

R

]

�

R

(V

C

)(V

R

) 7! �(V

C

[V

R

) restricted to roles

Similarly, the concept completion function �

C

is de�ned as:

�

C

: �

R

! [�

C

! �

C

]

�

C

(V

R

)(V

C

) 7! �(V

C

[V

R

) restricted to concepts

These functions have the properties desired. �

R

(V

C

) and �

C

(V

R

) are mono-

tonic for any �xed V

C

and V

R

on the respective domains �

R

and �

C

. Moreover,

the functions are continuous if we assume that all role-�ller sets are �nite|

which can be done without changing any relevant subsumption relationships (see

Lemma 4.4).

Theorem 5.2 �

R

(V

C

) for �xed V

C

and �

C

(V

R

) for �xed V

R

are monotonic and

continuous.

Proof: The monotonicity of both functions can be easily veri�ed by checking the

rules in Def. 5.6.

136

Thus, let us prove continuity. Let us �rst show that �

R

(V

C

) is continuous

on �

R

for any V

C

. This means we have to show that any directed set � � �

R

satis�es the equation:

�

R

(V

C

)(

G

�) =

G

f�

R

(V

C

)(�)j � 2 �g (5.13)

Because of monotonicity we have

�

R

(V

C

)(

G

�) w

G

f�

R

(V

C

)(�)j � 2 �g (5.14)

In order to show the other direction, let us assume the contrary, i.e.

�

R

(V

C

)(

G

�) 6v

G

f�

R

(V

C

)(�)j � 2 �g (5.15)

This means for the two role valuation functions

V

R

= �

R

(V

C

)(

G

�)

V

0

R

=

G

f�

R

(V

C

)(�)j � 2 �g

there is at least one role r such that hx; yi 2 V

R

[r] but hx; yi 62 V

0

R

[r]. However,

the reason for hx; yi being an element of V

R

[r] is that there are a �nite number

of roles r

i

such that hx; yi 2 (

F

�)[r

i

] and the rules (5.4), (5.5), and (5.11). This,

however, means that there is a �nite subset f�

j

g � � such that hx; yi 2 �

j

[r

i

].

Now, since � is a directed set, we know that there is an element �

0

2 � such

that �

0

w f�

j

g, i.e., we have hx; yi 2 �

0

[r

i

] for all r

i

. By that, however, we know

that hx; yi 2 �

R

(V

C

)(�

0

)[r] and thus hx; yi 2 V

0

R

[r], which is a contradiction of

our assumption (5.15). Hence (5.13) holds, and �

R

(V

C

) is continuous on �

R

for

any V

C

.

Obviously, the same line of arguments can be used to show that �

C

(V

R

) is

continuous on �

C

for any �xed V

R

.

Following the ideas spelled out above, we may obtain a least �xed point

semantic structure of a terminology by a two-step process, as spelled out in the

next de�nition.

De�nition 5.8 (Least Fixed Point Semantic Structure) Let T be a termi-

nology, T

N

the derived normal-form terminology, D a set, and P the primitive

assignment. Then the least �xed point extension function E

l

is de�ned as:

E

l

def

= �x(�

R

(?

�

C

)) [�x(�

C

(�x(�

R

(?

�

C

))))

The pair hD; E

l

i is the least �xed point semantic structure of T .

The notion of subsumption employing a �xed point semantics is, of course,

the same as before (see Def. 3.5) { except that we now refer to all least �xed point

semantic structure of a terminology. The question of whether we carried over

the intuitive appeal of the constructive semantics is answered by the following

proposition.

137

Proposition 5.1 For any terminology T without terminological cycles, subsump-

tion w.r.t. constructive semantics is equivalent to subsumption w.r.t. least �xed

point semantics.

Proof: In a cycle-free terminology for any domain D and primitive assignment

P, there is only one �xed point for the completion function, which can be shown

by induction over the depth of terminologies. Because of the similarity of the

equations in Def. 3.11 and 5.6 and the de�nition of E

l

, we have E

l

= E for

identical D and P. Thus, subsumption is identical.

The question remains what the �xed point semantics does to our examples

presented in the last section. As the next observation shows, the concept Binary-

tree from Sect. 5.1.1 is handled in the way expected.

De�nition 5.9 (Notation: Transitive Closure of a Relation) Let R be a

binary relation. Then the transitive closure of R, written R

+

, is the smallest

relation such that

hx; yi 2 R

+

i� hx; yi 2 R _ 9z : hx; zi 2 R ^ hz; yi 2 R

+

Observation 5.1 Assuming a terminology as in Fig. 5.2, no least �xed point

extension of Binary-tree contains objects with circular role-chains, i.e., for all

objects x 2 E

l

[Binary-tree]:

hx; xi 62 (E

l

[branch])

+

Proof: Assume there is an x 2 D such that hx; xi 2 (E

l

[branch])

+

. By induction

over the construction of the least �xed point, x is in not in any �nite approxi-

mation of the least �xed point extension Binary-tree. Hence, x is not in any least

�xed point extension of Binary-tree.

However, we can of course get an object structure similar to the left structure

in Fig. 5.3, i.e., a directed, acyclic graph. This means we get almost the struc-

ture we expect. Furthermore, if we de�ned a Ternary-tree similar to a Binary-tree,

except that the number in the atmost clause is changed to 3 and the \all" re-

striction is changed to Ternary-tree, then we would get a subsumption relationship

between Binary-tree and Ternary-tree. Although this sounds satisfying, there is a

big surprise when it comes to concepts like Human, Car and Car-engine de�ned in

Sect. 5.1.

Observation 5.2 Assuming a terminology as de�ned in Fig. 5.5, the least �xed

point extension of Human is empty for any D and P. The same holds for the

extension of Car in the terminology of Fig. 5.7.

138

Proof: Every �nite approximation of the least �xed point extensions of the

concepts mentioned is empty. Hence, the extensions are empty.

We could take this observation either as a deep truth we would not have

detected if we were not interested in terminological cycles or, taking a more

pragmatic view, as an indication that the least �xed point does not capture our

intuitive understanding of what a terminological cycle means.

In order to get around this problem, we could look for another �xed point.

Because our completion functions are monotonic on complete lattices and, there-

fore, the �xed points form complete lattices as well, we can, for example, consider

the greatest �xed point as the \right" solution. Let us denote extension func-

tions de�ned in this way by E

g

. Obviously, these �xed points share the property

of being equivalent to the semantic structures of the constructive semantics in

the non-circular case { because if there is only one �xed point, it is the least and

the greatest one. However, this semantics also leads to some counter-intuitive

results as the following observations demonstrate.

Observation 5.3 Assuming the terminology of Fig. 5.2, under a greatest �xed

point semantics, there are semantic structures which contain objects x such that

x 2 E

g

[Binary-tree] and hx; xi 2 (E

g

[branch])

+

Proof: Obviously, such structures can be part of a �xed point for appropriate D

and primitive assignment. Thus, if such structures are part of some �xed points,

they are necessarily in the greatest �xed point.

That means that a greatest �xed point semantics permits semantic structures

other than those considered in our intuitive analysis in Sect. 5.1.1. However, this

is not a big surprise because we intended to consider other kinds of semantic

structures in order to get at least an approximate model for Humans. While

we now get non-empty extensions for Humans, there is another surprise when

Centaurs come into play as in Fig. 5.9.

begetter

:

� anyrelation

Human

:

= (and (atleast 2 begetter) (atmost 2 begetter)

(all begetter Human))

Horse

:

= (and (atleast 2 begetter) (atmost 2 begetter)

(all begetter Horse))

Centaur

:

= (and Human Horse)

Figure 5.9: Humans, Horses and Centaurs

139

Observation 5.4 Assuming a terminology as in Fig. 5.9, under a greatest �xed

point semantics, the extension of Human is always the same as the extension of

Horse and thus identical to the extension of Centaur.

Proof: Let us assume a greatest �xed point extension function E

g

with

E

g

[Human] 6= E

g

[Horse]. This however means that there is another extension

function which is greater, which is a contradiction.

The conclusion we can draw from these observations is that if we are to adopt

a greatest �xed point semantics, we had better introduce any circular concept

primitively because otherwise the extensions would be far too large. This, howe-

ver, violates the intuitions we spelled out in Sect. 5.1.4 and limits the recognition

capabilities.

5.2.3 Descriptive Semantics

A di�erent way to assign semantics to a terminology is to abandon the notion of

construction: Why did we insist on building up unique extensions for a given set

D and a given primitive assignment P? Getting rid of this idea, we may view

terminologies as describing possible worlds in which we can apply the introduced

terms, as we did originally (see Def. 3.12). Instead of constructing extensions by

starting with a domain and a primitive assignment, we consider all those seman-

tic structures which are admissible with respect to the system of set equations

generated by the normal-form terminology. This means in terms of the last sub-

section that we consider all �xed points of � as possible extension functions. This

style of semantics will be called descriptive semantics.

Comparing subsumption w.r.t. to descriptive semantics with subsumption

w.r.t. to �xed point semantics yields the next proposition.

Proposition 5.2 Subsumption with respect to descriptive semantics is weaker

than subsumption with respect to a least or greatest �xed point semantics.

Proof: Note �rst that for any domain and primitive assignment, the �xed point

extension functions E

l

and E

g

determined by least or greatest �xed points of

�

R

(V

C

) and �

C

(V

R

) are admissible extension functions in the sense of Def. 3.12.

On the other hand, not all extension functions E in the sense of Def. 3.12 cor-

respond to least or greatest �xed points. Thus, subsumption w.r.t. descriptive

semantics implies subsumption w.r.t. �xed point semantics, but not the other

way around.

Turning this rather abstract characterization of the relationship between the

two notions of subsumption into an example, let us reconsider the terminology

from Fig. 5.9 describing Humans, Horses and Centaurs.

140

Observation 5.5 Assuming a terminology as in Fig. 5.9, under a descriptive

semantics, the extension of the concept Human is not necessarily the same as the

extension of Horse.

Proof: We will give an example to demonstrate that.

D = IR

E[begetter] = fhx; yij 9n 2 IN : x = a

0

+

n

X

i=1

a

i

^ y = x+ a

n+1

^

a

0

2 IN ^ (a

i

= 2

�i

_ a

i

= �2

�i

)g

E[Human] = fxj 9n 2 IN : x = 1 +

n

X

i=1

a

i

^ (a

i

= 2

�i

_ a

i

= �2

�i

)g

E[Horse] = fxj 9n 2 IN : x = 3 +

n

X

i=1

a

i

^ (a

i

= 2

�i

_ a

i

= �2

�i

)g

Obviously, E is an admissible extension function in the sense of Def. 3.12 and

E[human] 6= E[horse].

We may see this result in a positive light because it matches our intuitions

spelled out in Sect. 5.1.4, or in a negative light because it shows that a Ternary-

tree as mentioned in the last subsection does not subsume a Binary-tree in this

semantics. However, turning to hybrid reasoning (as described in Sect. 4.5), we

see that any object which is recognized as a Binary-tree by using only branch

relation descriptions and Tree object descriptions will be recognized as a Ternary-

tree as well.

5.2.4 Evaluating the Semantics

Instead of a unique answer to the question we posed in this section, namely, what

terminological cycles mean if we apply formal semantics, we now have four. While

all kinds of semantics agree on the meaning of cycle-free terminologies, they take

di�erent tacks when cycles are present:

1. Constructive semantics tells us nothing about terminological cycles. They

are simply ill-de�ned.

2. Least �xed point semantics tells us that concepts which permit a \base,"

i.e., concepts without an \atleast" restriction, are reasonable. However,

requiring that all Humans have two Humans as their begetters is an \empty"

de�nition. It leads to a necessarily empty extension.

3. Greatest �xed point semantics does not insist on the non-existence of Hu-

mans. However, it views all structurally similar concepts, for example,

Human and Horse in Fig. 5.9, as identical.

141

4. Descriptive semantics does not merge Human and Horse in Fig. 5.9. Ho-

wever, this also means that Ternary-tree does not subsume Binary-tree. For

this reason, it seems that concept names get more signi�cance in this kind

of semantics than in the other kinds of semantics.

Therefore, the question is what kind of semantics should we believe in? Of

course, it is not a question of believing but a question of convenience and inten-

tion. What inferences do we expect, and what worlds do we intend to model?

In Sect. 5.1, we spelled out the intuitions about circular concepts. As it turns

out, no single style of assigning semantics matches these intuitions. Furthermore,

taking each example on its own, there is no semantics which matches the intuition

behind it because our terminological language is too weak. Even more expres-

sive terminological languages such as nikl are not powerful enough to prohibit

Binary-trees from becoming dags or to prohibit Humans from becoming their own

begetters.

Since the question of which semantics matches the intuition cannot be ans-

wered, we may ask which kind of semantics covers the intuition best. The only

semantics which covers our intuitions is the descriptive one { all extensions we

expect can be extensions. However, we have to give up subsumption relationships

one would expect between data-type like structures. This, however, is not a se-

rious defect because we never intended to specify data-types and to reason with

them. On the contrary, what is an essential property for formal speci�cation in

programming languages might not be adequate for knowledge representation. In

knowledge representation, we do not specify entities but describe them.

While the descriptive semantics seems to be the most preferable one, there

are still some de�ciencies. First, it is a \loose semantics." In contrast to the

constructive and the least �xed point semantics, it does not give hints about how

to construct models but only characterizes them in a very abstract manner. This

makes it hard to prove properties about cycles. Second, although the descriptive

semantics seems to meet our intuitions about recognizing members of species

(e.g. Humans), the corresponding admissible semantic structures do not re
ect

our intuitions. The extension of the concept Human, for instance, contains either

in�nitely many objects connected by an in�nite chain of begetter relationships,

or it is \based" on objects which are circularly connected, e.g., \Adam has two

begetters, namely Eve and himself, and Eve has two begetters, namely Adam and

herself".

A third argument against the descriptive semantics could be that names seem

to play more signi�cant role than in the other styles of semantics. However,

names already play an important role, at least in the case of primitive concepts.

Two structurally equivalent primitive concepts do not necessarily have the same

extension. Circularly introduced concepts are, in a sense, similar to primitive

ones { there is a subtle di�erence, though (see Sections 5.3.3 and 5.3.5).

142

Comparing the descriptive semantics with the other styles of semantics we

introduced, we may recognize a weak analogy to a recent debate in the philosophy

of science

[

Brown, 1986, p. 275

]

:

A major theme of recent philosophy of science has been the rejec-

tion of the empiricist thesis that, with the exception of terms which

play a purely formal role, the language of science derives its meaning

from some, possibly quite indirect, correlation with experience. The

alternative that has been proposed is that meaning is internal to each

conceptual system, that terms derive their meaning from the role they

play in a language, and that something akin to \meaning"
ows from

conceptual framework to experience.

If we interpret the primitive components as something like \empirical evi-

dence" we employ to recognize entities belonging to a certain category { and

there does not seem to be another intuitive interpretation { then the construc-

tive semantics represents the \empiricist" point of view very well. Both kinds of

�xed point semantics can be taken as a generalization of this view because they

take structure into account { the least �xed point semantics formalizing the view

of recursive de�nition, and the greatest �xed point semantics formalizing the no-

tion of structural equivalence. Only the descriptive semantics admits that there

is more than experience (primitive components) and structure. The application

of a term to an object depends partly on a priori knowledge about the object

which cannot be derived solely from empirical data.

5.3 Consequences of the Descriptive Semantics

While only some plausible examples of terminological cycles were analyzed above,

in this section we will try to investigate them in a more principled way. This will

be done by using the descriptive semantics because it seems to be the semantics

which �ts best.

Obviously, there are di�erent kinds of cycles: circular role introductions, cir-

cular concept introductions using the concept components, as in the Man/Male-

human example of Fig. 5.1, and circular concept introductions using value restric-

tions, as in the Human example of Fig. 5.5. In order to make it easier to state

something about cycles, let us �rst introduce some notation.

De�nition 5.10 (Notation: Usage Relation) If an atomic term a

i

directly

uses an atomic term a

u

, i.e., a

u

appears on the right hand side of the introduction

of a

i

, we will write a

i

,!a

u

. If a

i

uses a

u

, then we write a

i

+

,!a

u

.

143

5.3.1 Circular Roles

Let us start with the most meaningless and simplest case, with roles introdu-

ced circularly { which we will call component circular roles. First, let us de�ne

formally what we mean by that.

De�nition 5.11 (Component Circular Roles) Let T be a terminology.

Then we say that a role r is component-circular i� r

+

,!r in T . A set of atomic

roles R � N

R

is a set of mutually component-circular roles i� 8r; r

0

2 R) r

+

,!r

0

.

Because role introductions in TF are very simple { only one role name is

permitted on the right hand side of a role introduction { there is not much

meaning in this kind of terminological cycles. Independent of whether the roles

of a set of mutually circular roles were introduced as primitive or as de�ned roles,

they are all equivalent. Assume a set of introductions as below:

r

1

:

= r

2

E[r

1

] = E[r

2

]

r

2

:

� r

3

E[r

2

] = E[r

3

] \ P[r

2

]

.

.

.

.

.

.

r

n

:

= r

1

E[r

n

] = E[r

1

]

Then we can immediately derive 8 i; j : 1 � i; j � n) E[r

i

] = E[r

j

]. Moreover, it

seems plausible that we can eliminate such cycles without changing the meaning

of the terminology. In order to formalize what we mean by \eliminating something

without changing the meaning," let us �rst de�ne what we mean by saying that

one terminology is a conservative extension of another one.

De�nition 5.12 (Conservative Extension) Let T and T

0

be two terminolo-

gies and N and N

0

the respective sets of atomic terms and primitive components.

We say T

0

is a conservative extension of T , written T � T

0

, i� N � N

0

and for

any D and any extension function E

0

w.r.t. T

0

, there is an extension function E

w.r.t. T and vice versa such that 8 a 2 N :) E[a] = E

0

[a].

The meaning of this de�nition is obvious. It means that if we ignore the

extensions of the extra terms in T

0

(probably only introduced because of tech-

nical reasons), we get identical extensions for all terms. To give an example,

any normal-form terminology T

N

is a conservative extension of the original ter-

minology T . With this notion, we can say what we mean by eliminating role

cycles.

Proposition 5.3 Let T be a terminology containing circular roles. Then there

is another terminology T

0

such that T � T

0

, and T

0

contains no circular roles.

144

Proof: Note that the extensions of roles in one set of mutually circular roles are

all the same and that the only other restriction is that they have to be subsets of

the primitive assignments for primitive components mentioned. For this reason,

the characteristic of the extensions is not changed by the following transformation:

First, all concept introductions and role introductions for noncircular roles are

copied to T

0

. Second, for any set of mutually circular roles R

i

in T , a new role s

i

is introduced in T

0

as \s

i

:

� anyrelation." Third, any role r

i;j

in R

i

is introduced

as \r

i;j

:

= s

i

."

Thus, circular role introductions do not add anything interesting to our lan-

guage. We may eliminate them without a�ecting the rest of the terminology.

5.3.2 Component-Circular Concepts

With concept introductions, the situation seems to be more complex. We have

at least two di�erent kinds of terminological cycles { cycles occurring because

an atomic concept is used as a component in an \and" expression (not inside an

\all" restriction) and cycles occurring because an atomic concept is mentioned in

an \all" restriction.

De�nition 5.13 (Notation: Kinds of Usage) Let T be a terminology and c

i

and c

u

two atomic concepts. Then we say c

i

uses c

u

as a direct component i� c

u

appears at the right hand side of the introduction of c

i

outside of the scope of any

\all" expressions, written c

i

and

,!c

u

. If c

i

uses c

u

, and c

u

appears inside of an \all"

expression, we say c

i

uses c

u

in a value restriction, written c

i

all

,!c

u

. The relations

and+

,! and

all+

,! are the transitive closures of the above relations.

As usual, we will start with the simple case, with cycles appearing by using

an atomic concept as a component in a concept introduction.

De�nition 5.14 (Component Circular Concepts) An atomic concept c is

component-circular i� c

and+

,! c. A set of atomic concepts C � N

C

is a set of

mutually component-circular concepts i� 8x; y 2 C) x

and+

,!y.

At �rst sight, component-circular concepts appear to be very similar to circu-

lar roles. However, while role introductions are very simple, this is not the case

with concept introductions. Concept introductions permit situations in which an

atomic concept participates in more than one cycle and perhaps even in di�erent

kinds of cycles.

Let us �rst analyze what it means that an atomic concept participates in more

than one cycle induced by the relation

and

,!. We would have something like:

c

and

,!c

1;1

c

1;1

and

,!c

1;2

: : : c

1;n

1

�1

and

,!c

1;n

1

c

1;n

1

and

,!c

c

and

,!c

2;1

c

2;1

and

,!c

2;2

: : : c

2;n

2

�1

and

,!c

2;n

2

c

2;n

2

and

,!c

.

.

.

145

Obviously, all atomic concepts above belong to one unique set of mutually com-

ponent-circular concepts because for all of them we have c

i

and+

,! c

j

. Thus, multiple,

overlapping cycles do not add anything new. Moreover, it does not matter whe-

ther the concepts in a set of mutually component-circular concepts participate in

other kinds of terminological cycles. Component-circular concepts can be elimi-

nated in a way similar to the way component-circular roles can.

Proposition 5.4 Let T be a terminology containing component-circular con-

cepts. Then there is another terminology T

0

such that T � T

0

, and T

0

contains

no component-circular concepts.

Proof Sketch: Obviously, the extensions of all atomic concepts in a set of

mutually component-circular concepts have to be identical. Moreover, the exten-

sions of these atomic concepts have to obey the restrictions spelled out by the

non-component-circular parts of the concept introductions. These are the only

restrictions, and thus we may apply a similar construction of a new terminology

as in the proof above without changing the extension characteristics.

This means component-circular concepts are as useless as circular roles are.

Neither of them adds anything to the expressiveness. We can eliminate both

without a�ecting the rest of the terminology. Therefore, we will ignore them in

the following and assume that the terminologies we consider do not contain such

cycles.

5.3.3 Restriction-Circular Concepts

The interesting species of terminological cycles is the one generated by using a

atomic concept in a value restriction, as the examples in Sect. 5.1 demonstrate.

These cycles add something to the expressive power. Obviously, they allow put-

ting restrictions on semantic structures which cannot be expressed by cycle-free

terminologies.

The �rst interesting problem which comes up in this context is: What does a

cycle generated by combinations of the relations

and+

,! and

all+

,! amount to? In the

examples of Sect. 5.2, we only analyzed cycles generated by

all+

,!. However, there

are, of course, cycles conceivable which are generated by a combination of both

usage relations as, for instance, Fig. 5.10 shows.

As a matter of fact, these kinds of cycles seem to be similar to cycles created

by using only the relation

all+

,!. It seems plausible that we would be able to reduce

such general cycles to cycles using only the relation

all+

,!.

De�nition 5.15 (Restriction Circular Concepts) Let T be a terminology

without component-circular concepts. Let

�

,! be the transitive, re
exive closure of

,!. We say that the atomic concept c is a general restriction-circular concept i�

146

branch

:

� anyrelation

Tree

:

� (all branch Tree)

3-2-tree

:

= (and Tree (atmost 3 branch) (all branch Binary-tree))

Binary-tree

:

= (and 3-2-tree (atmost 2 branch))

Figure 5.10: General Restriction-Circular Concepts

c(

�

,!�

all

,!�

�

,!)c. We say that c is a simple restriction-circular concept i� (c

all+

,!c)

and not (c(

�

,!�

and

,!�

�

,!)c).

Proposition 5.5 If T is a terminology containing general restriction-circular

concepts which are not simple restriction-circular, then there is another termi-

nology T

0

such that T � T

0

, and T

0

contains only simple restriction-circular

concepts.

Proof: T

0

can be constructed in a stepwise manner, eliminating one

and

,! relation-

ship in each step. Assume that T

i

contains an atomic concept c which is general

restriction-circular but not simple restriction-circular. Then there are two atomic

concepts c

1

and c

2

such that c

�

,!c

1

, c

1

and

,!c

2

, and c

2

�

,!c. A new terminology T

i+1

can be constructed such that T

i

� T

i+1

and c

1

6

and

,!c

2

in the following way:

1. If c

2

is introduced as \c

2

:

� def

c

2

" in T

i

, then a new atomic concept

c

p

2

is introduced in T

i+1

as \c

p

2

:

� Anything." C

2

is introduced as

\c

2

:

= (and def

c

2

c

p

2

)." This operation evidently does not a�ect the cha-

racteristics of the extensions.

2. Thus, we may assume that c

2

is a de�ned concept. Changing the introduc-

tion of c

1

by replacing each occurrence of c

2

in c

1

by the de�nition of c

2

obviously does not change the characteristics of the extensions.

This transformation does not a�ect the extensions and eliminates one rela-

tionship of the

and

,! relation. Furthermore, since we assumed that there are no

component-circular concepts, the transformations will lead to the result desired

after a �nite number of steps.

5.3.4 Semantic and Syntactic Cycles

If we could now prove that simple restriction-circular concepts could be elimina-

ted, as well, terminological cycles would no longer be a problem. However, this

attempt is apparently doomed to failure. Otherwise we would not have had so

many problems with Binary-trees and Humans in Sect. 5.2.

147

In order to shed more light on such concepts, let us analyze their semantic

properties. If we have c

all+

,!c, then we can identify at least one chain of atomic

concepts such that c

0

all

,!c

1

all

,! : : : c

n

with c = c

0

= c

n

.

1

Corresponding to this

concept chain, a role chain r

1

; r

2

; : : : ; r

m

can be found such that the concepts c

i

are

used in \all" restrictions

2

of these roles in the introductions of the concepts c

i�1

.

We will call the concept c restriction-circular over r

1

; r

2

; : : : ; r

m

(and perhaps

over other role chains as well).

The evident property of any element x in the extension of c is that if we

follow the role chain, we come to another object y which is in the extension of c

as well { or there is no such role-chain in the semantic structure. This, however,

does not su�ce to characterize restriction-circular concepts. There are also some

non-circular concepts having this property, e.g. a concept with an (atmost 0 r

1

)

restriction. What makes restriction-circular concepts special is that there are

some semantic structures where we can follow the role chain arbitrarily often

and still �nd objects which belong to the concept extension of c. This alone

also does not constitute a distinguishing semantic criterion for restriction-circular

concepts because we can have similar extensions in cycle-free terminologies { by

accident. However, taking both properties simultaneously describes very well

what is special about restriction-circular concepts.

De�nition 5.16 (Notation: Iterated Composition) Let R be a relation

R � D � D. Then by R

n

we mean the composition of R with itself n times,

i.e.,

R

n

def

= R � : : : �R

| {z }

n

De�nition 5.17 (Semantically Circular Concepts) Let T be a terminology.

Then the atomic concept c is semantically circular over the role chain r

1

; : : : ; r

m

i� for any semantic structure hD; Ei it holds that

8 x; y : x 2 E[c] ^ hx; yi 2 (E[r

1

] � : : : � E[r

m

])) y 2 E[c]

and for any n 2 IN there are D and E such that

9 x; y : x 2 E[c] ^ hx; yi 2 (E[r

1

] � : : : � E[r

m

])

n

Although we started o� to �nd a unique property of restriction-circular con-

cepts, it turns out that the notions of semantically circular and restriction-circular

do not coincide. We may have restriction-circular concepts which are not semanti-

cally circular and vice versa. For example, the concepts D and E are not restriction

circular, but they are semantically circular { because they use restriction-circular

1

There can be more than one such chain, of course.

2

Note that \all" restrictions can be nested. In this case, we will take all nested roles in the

obvious order.

148

concepts. Conversely, the concept A in Fig. 5.11 is restriction-circular, but not

semantically circular. Although from a syntactic point of view there is a circula-

rity, it does not lead to cycles in the semantic structure because the role r { the

role A is restriction-circular over { cannot have any role-�llers.

A

:

= (and (all r A) (atmost 0 r))

B

:

= (all r B)

C

:

= (all r C)

D

:

= (and B C)

E

:

= (all r B)

Figure 5.11: Syntactic and Semantic Cycles

The conditions under which a restriction-circular concept is not semantically

circular or vice versa can, of course, be quali�ed. The �rst case occurs when a

concept is restriction-circular over a role chain r

1

; : : : ; r

m

but is length-restricted

over this role chain, as in the case of concept A in Fig. 5.11.

De�nition 5.18 (Length-Restricted Concepts) Let T be a terminology. A

concept c is length restricted over a role chain r

1

; : : : ; r

m

i� there exists some

n 2 IN such that for any domain D and any extension function E:

:(9 x; y : x 2 E[c] ^ hx; yi 2 (E[r

1

] � : : : � E[r

m

])

n

)

Proposition 5.6 Any restriction-circular concept (over role chains R

i

) which is

not length-restricted (over all R

i

) is a semantically circular concept. Conversely,

any semantically circular concept is either a restriction-circular concept or uses

such a concept.

Proof: The �rst proposition follows directly from the de�nitions. The se-

cond proposition is also evident because an atomic concept c which is neither

restriction-circular nor uses such a concept cannot be semantically circular.

Although this characterizes cycles completely from a semantic and syntactic

point of view in TF , the question is how much expressivity we added to the lan-

guage. Apparently, we lost the property that concepts say something only about

a �nite, local context { a property we used in order to prove that subsumption in

TF is decidable. With cycles we can have extensions such that in�nitely many

domain objects are relevant for the decision of whether a given object is in the

extension of a concept or not. Hence, it may be the case that if cycles are added

to the language, subsumption is not longer decidable. However, as we will see in

149

the next subsection, we can always �nd semantic structures with a �nite domain

which are \indistinguishable" from in�nite semantic structures with respect to

given concepts.

5.3.5 Finite, Cyclic Semantic Structures

Although restriction-circular concepts may have in�nite extensions such that in-

�nitely many objects are relevant for the determination of whether an object is in

the extension of a concept, it is nevertheless possible to create a �nite semantic

structure such that the extension of the concept is nonempty. The key idea in

this construction is based on the fact that for the determination of whether an

object is part of a concept extension it does not make a di�erence whether there

is an in�nite chain of objects or an assertional cycle. Assuming, for instance, a

simple restriction-circular concept, such as

C

:

= (and (all r C) (atleast 1 r))

then an object x

0

will be in E[C] if there is an in�nite chain

hx

0

; x

1

i; hx

1

; x

2

i; : : : hx

i

; x

i+1

i; : : :

with x

j

2 E[C] and hx

j

; x

j+1

i 2 E[r]. However, if we simply have x

0

2 E[C] and

hx

0

; x

0

i 2 E[r], then E would be an admissible extension function, and E[C] is

nonempty, as well. In a sense, the de�nition of C does not distinguish between

these two extensions. Based on this idea, we will show that we can always �nd a

�nite admissible semantic structure of a terminology { containing a �nite cyclic

object structure { such that the extension of a given concept is nonempty.

In order to keep things simple, this claim will be proven �rst for a sublanguage

of TF which does not contain role introductions { a language we will call TF

�

.

This means every role in TF

�

is a primitive subrole of anyrelation, and all role

extensions are independent of each other.

Lemma 5.1 Let T be a terminology using TF

�

syntax and assume that T con-

tains terminological cycles. Then, for any concept c which is not incoherent, there

is an admissible semantic structure hD; Ei of T such that E[c] 6= ; and D is �nite

and bounded in size by the structure of the terminology.

Proof: Let T

N

be the normal-form terminology corresponding to T , and let

T

0

be a conservative extension of T

N

such that all value restrictions are atomic

concepts and there are no component-circular concepts.

If c is not restriction-circular and does not use such a concept, then the proof

is obvious. In the case when c is restriction-circular or uses such a concept, apply

the following extension-preserving expansion transformation to c:

150

1. Replace all atomic concepts not appearing in \all" expressions by their re-

spective normal-form de�nitions as long as there are atomic concepts which

are not embedded in \all" expressions and apply norm to the resulting

expression, which leads to an expression of the form

(and p

1

: : : p

l

(all r

1

(and c

1;1

: : : c

1;m

1

)) : : : (all r

n

: : :))

with p

i

positive or negated primitive concept components and c

j;k

atomic

concepts.

2. Check each value restriction in the resulting expression whether it appeared

previously in the expansion process (ignoring the order in the \and" expres-

sion). If this is the case, do not expand this expression further.

3. Otherwise remember this value restriction, and apply the expansion process

recursively to it.

Since we have only a �nite number of �nite cycles in T

0

, this process always

terminates. The resulting concept, which is equivalent to c in T

0

, will be denoted

by c

exp

. All nonexpanded value restrictions in c

exp

will be called terminal value

restrictions,, and the atomic concepts used in terminal value restrictions will

be called t-concepts. Furthermore, we will refer to chains of roles formed by

immediately embedded \all" expressions, starting at the top-level and extending

to terminal value restrictions, as t-chains. Furthermore, we will say that a role-

chain r

1;1

: : : r

1;k

is a proper pre�x of a role-chain r

2;1

: : : r

2;l

i� k < l and r

1;i

= r

2;i

,

for all 1 � i � k.

Assuming that the t-concepts are new primitive concept components, the

relevant breadth and size of the expanded concept is computed, b = rbreadth(c

exp

)

and s = rsize(c

exp

), which evidently depends on the structure of the terminology.

In order to prove the lemma, let us assume that there are only admissible semantic

structures of T

0

with domains larger than s � b such that the extension of c is

nonempty. Choose one such semantic structure hD; Ei of T

0

with a corresponding

primitive assignment P and an element d such that d 2 E[c], and thus d 2 E[c

exp

].

Extend P to P

�

by using the values from E for the t-concepts, generate

a new extension function E

�

de�ned on expressions containing only primitive

components and t-concepts, and apply Lemma 4.5 to identify a semantic structure

hD

0

; E

0

i of size s (or smaller) with a generating primitive assignment P

0

such that

d 2 E

0

[c

exp

]. Remember, that the semantic structure corresponds to a tree. Now

copy hD

0

; E

0

i and P

0

b times, naming the copies E

i

, x

i

2 D

i

, and P

i

, 1 � i � b,

and create a new semantic structure by taking the disjoint union of these copies,

i.e.,

hD

00

; E

00

i

def

=

b

]

i=1

hD

i

; E

i

i

for which we have d

i

2 E

i

[c

exp

].

151

Let (allr(andc

1

: : : c

q

)) be one of the terminal value restrictions with r

1

; : : : r

p

; r

the corresponding t-chain. Now we have two cases. First, there may not exist an

element y 2 D

0

such that hd; yi 2 E

0

[r

1

] � : : : � E

0

[r

p

] � E

0

[r]. Then d can be in the

extension of c

exp

in a semantic structure of T

0

even if there are no role-�llers for

this t-chain. Second, it may be the case that there are some objects reachable

from d using the t-chain, which will be denoted by fy

k;j

g. The objects, the y

k;j

s

are role-�llers of for role r, will be denoted by fx

k

g.

Obviously, it holds that fy

k;j

g � P

0

[c

i

], 1 � i � q. Otherwise the original

semantic structure would not have supported d 2 E[c

exp

]. Since we stopped

expanding the terminal value restriction because it appeared previously in the

expansion process, there is at least one object z in D

0

which is in the extension

of (and c

1

: : : c

q

) and is reachable from d by a proper pre�x of the t-chain. This

element and all those which can be characterized in the same way are in the

extension of the terminal value restriction because we copied these elements to the

expanded primitive assignment. If we could satisfy all terminal value restrictions,

the assumption that all t-concepts are primitive components could be dropped,

without removing z and all similar elements from the extension of the terminal

value restriction.

In order to achieve this, delete all pairs hx

i

k

; y

i

j;k

i from P

i

[r] and E

i

[r], and all

elements y

i

j;k

from D

i

, E

i

[x], P

i

[x], and insert into P

i

[r] and E

i

[r] the following

role-relationships: hx

i

k

; z

j

i, 0 � i � b, 1 � j � m. After having done this for

all terminal value restrictions, call the new structure hD

000

; E

000

i and create a new

primitive assignmentP

000

by copying everything from P

00

except for the t-concepts.

Although hD

000

; E

000

i is not an admissible semantic structure for T

0

w.r.t. P

000

,

it can be used to generate one by applying the completion function � under the

assumption that the extension of all unde�ned terms in E

000

is empty. Such an

application of � never leads to a removal of an element of E[c

i

] for any t-concept c

i

since the created assertional cycle corresponds to the de�nitional cycle explicated

during the expansion process. Thus, there exists an admissible semantic structure

of T

0

bounded by s � b such that E[c

exp

] is nonempty, and, evidently, this holds

for T and c as well.

This gives us a strong indication that subsumption is decidable. However, in

order to give a complete proof, we have to use the technique applied in Lemma 4.5

{ and we have to guarantee that the identi�ed non-inclusion situation contains a

semantic structure of the original terminology.

Lemma 5.2 Let T be a terminology using TF

�

syntax and assume that T con-

tains terminological cycles. Then, for any semantic structure hD; Ei of T such

that d 2 E[c

in

] and d 62 E[c

out

], we can identify another semantic structure hD

0

; E

0

i

of T , D

0

bounded in size by the structure of T , with the same relationships.

Proof: Similar to the technique used above, the expansion process described in

the proof of Lemma 5.1 is applied to c

in

and c

out

. If there is a t-chain R in

152

the expanded expression of c

in

such that R is a proper pre�x of a t-chain R

0

in the expanded expression of c

out

, or vice versa, then the expansion process is

applied to the terminal value expression of the shorter t-chain. Furthermore, if a

t-chain T in one concept is a proper pre�x of or identical with a chain T

0

in the

other concept, such that T

0

starts at the top-level and ends at a value restriction

which contains only primitive components, the expansion process is applied to

the terminal value restriction at T . This is done until no t-chain is a proper

pre�x of any chain in the other concept. Since there are only a �nite number of

cycles and all cycles are of �nite length, this process terminates. The resulting

two expressions will be denoted by c

e;i

and c

e;o

.

Now we apply the same technique as in the proof of the previous lemma, i.e.,

we start to construct an admissible extension by pretending that the remaining

atomic concepts are primitive components, applying Lemma 4.5, and taking the

disjoint union of max(rbreadth(c

e;i

); rbreadth(c

e;o

)) copies of the semantic struc-

tures.

Finally, we create assertional cycles. This time we have to take care, however,

to construct cycles for two concepts simultaneously preserving the non-inclusion

situation. Basically, there are three cases. First, c

e;o

contains a t-chain not

appearing in c

e;i

. Then we may simply delete all objects reachable from d using

this t-chain from the primitive assignment of the t-concepts. Second, c

e;i

contains

a t-chain not occurring in c

e;i

. Then we create a cycle as in Lemma 5.1. Third, if

there are identical t-chains in both c

e;i

and c

e;o

, then we also create an assertional

cycle using c

e;i

. However, if the terminal value restriction in c

e;o

contains some

t-concepts not occurring in the terminal value restriction of c

e;i

, and some objects

reachable from d by the t-chain are not in the extension of these t-concepts, we

have to guarantee that the selected elements z

j

have the same property. This can

be achieved by deleting the objects z

j

from all primitive assignments to t-concepts

which do not occur in the terminal value restriction of c

e;i

without changing the

instance relationships for d.

Applying � obviously creates an admissible semantic structure of T such that

there is the non-inclusion situation desired.

Corollary 5.1 Subsumption in TF

�

is decidable, even if there are terminological

cycles.

Proof: Using the same arguments as in Theorem 4.3, Lemma 5.2 is enough to

guarantee decidability.

In trying to generalize this result to TF , we note that we made use of the fact

that all role extensions are independent in TF

�

{ a property we do not have in

TF . However, this turns out not to be crucial.

Theorem 5.3 Subsumption in TF is decidable, even if there are terminological

cycles.

153

Proof: We will use the same construction as for TF

�

. However, instead of

expanding along role-chains, we will expand value restrictions on roles which are

interdependent in parallel. Since the combination of cycles leads to �nite cycles

again, the expansion of concepts according to the rules spelled out in the proof of

Lemma 5.2 will always terminate as well. Additionally, it is obviously possible to

construct the appropriate assertional cycles such that an arbitrary non-inclusion

situation is transformed into a �nite one with a domain bounded in size by the

structure of the terminology.

5.4 Reasoning with Terminological Cycles

The proofs in the last section already gave hints how to reason with terminolo-

gical cycles. For TF

�

, we even could derive a complete subsumption algorithm

from the proof of Lemma 5.2. After the expansion according to the rules spelled

out in the proof of Lemma 5.2, application of csub results in a complete sub-

sumption determination with respect to the descriptive semantics. The reason

for the completeness lies in the facts that csub is complete for TF

�

without

cycles.

3

In adding cycles, rules for the comparison of terminal value restrictions

on identical t-chains have to be added. However, these are easy. If the concept

c is tested whether it subsumes c

0

, and this test succeeds except for a terminal

value restriction on one t-chain, then it subsumes c

0

i� the set of t-concepts in

the terminal value restriction in c is a subset of those in c

0

. Otherwise, we can

create a semantic structure such that some object is in the extension of c

0

but

not in the extension of c by using an assertional cycle.

In the case of TF , however, we gave up the hope for completeness anyway.

Thus, the question is how far we should go in supporting the detection of sub-

sumption relationships between restriction-circular concepts. The simplest stra-

tegy would be to consider all simple restriction-circular concepts as primitive

concepts, using only roles which are not used in cycles for subsumption determi-

nation. This is the strategy used in the nikl system. However, this would mean

that we would not detect that the two concepts B and E in Fig. 5.11 are equi-

valent, although they are de�ned by literally equivalent expressions. Moreover,

we would not be able to recognize Binary-trees and Humans if we employed such

a subsumption algorithm in the realization process described in Sect. 4.5.2.

A better way is, of course, to adopt the strategy which leads to completeness

for TF

�

, namely, to expand circular concepts until a cycle is detected, adjusting

the depth of expansion between the concepts to be compared. This would uncover

at least such obvious subsumption relationships as those between B and E in

Fig. 5.11.

3

I do not provide a proof for this claim, but it be can easily shown using the proof technique

used in

[

Levesque and Brachman, 1987

]

.

154

Thinking about how to integrate such an algorithm into the framework of

classi�cation, we see that a classi�cation algorithm has to be considerably modi-

�ed in order to account for cycles. We cannot simply create anonymous concepts

for every value restriction and classify them, but we can only partially classify

value restrictions of restriction-circular concepts. If all concepts have been ente-

red into the concept hierarchy, however, we can try to �nd more subsumers for

all concepts participating in the cycle, and may stop if there is no change after

we tried to �nd more subsumers for all concepts participating in a cycle.

4

Finally, there is the question of how to deal with terminological cycles in

the realization process. First of all, it should be clear that restriction-circular

concepts cannot be completely expanded into number restrictions on roles and

primitive components. The propagation step (R1) has to stop as soon as a value

restriction which is already part of the description of a role-�ller is propagated

in order to achieve termination. Note that this termination condition is a special

case of a possible optimization mentioned in Sect. 4.5.2. Steps (R2) and (R3) are

not critical, except that the classi�cation of abstractions containing restriction-

circular concepts may be more expensive than the classi�cation of noncircular

concepts. This means that the realization process is already equipped to deal

with restriction-circular concepts. Moreover, it should be obvious that the reali-

zation process recognizes objects as Humans if they have two begetters which are

described as Humans and all its o�springs are Humans { supposing the termino-

logy of Fig. 5.5. Furthermore, noncircular, �nite Binary-trees as de�ned in Fig. 5.2

would be recognized by the realization process. Finally, if a world description is

role-closed, realization is complete { a claim we will not prove here, though.

We will close this section with a re
ection about how general the extension

of terminological languages by cycles as exercised in this chapter is. From a

semantic point of view, there is, of course, no problem. The critical point is

the complexity of the inference algorithms. We have shown that for TF the

addition of cycles does not destroy the decidability property of subsumption.

The computational complexity is increased somewhat because the expansion of

concepts leads to larger expressions. However, is this true for any conceivable

terminological language?

Although it is di�cult to make a general statement concerning this issue,

it is obvious that all languages which cannot distinguish between assertional

cycles and in�nite chains of objects of the same type permit the extensions of

terminological cycles without crossing the boundary to undecidable subsumption.

If, however, a language allows us to state restrictions concerning role-chains,

decidability of subsumption is endangered. Smolka

[

1989

]

showed that even in

feature logic agreements (i.e., role-value maps over functional roles) and cycles

4

This is also the strategy Lipkis proposes for handling terminological cycles in the kl-

one classi�er

[

Lipkis, 1982, p. 134

]

{ a fact, which shows that Lipkis also had the descriptive

semantics in mind when he thought about how to resolve terminological cycles. However, to

my knowledge, this proposal has never been implemented in kl-one.

155

result in undecidability.

Applying this result to our case, we know that TF , enriched by role-value-

maps, would buy us undecidability if we allowed for cycles. However, as already

mentioned in Sect. 4.2.1, role-value-maps alone lead to undecidability, even wit-

hout terminological cycles. However, without role-value-maps or anything similar

able to state \long-range" restrictions, it seems very likely that terminological cy-

cles do not result in the undecidability of subsumption.

156

Part III

Revision

157

Chapter 6

Belief Revision

In the previous three chapters, the discussion of representation and reasoning was

based on the assumption that the knowledge base under consideration is more or

less static. Actually, in discussing inferences, we allowed for monotonic growth

of the knowledge base, but we never considered the possibility that a fact or

de�nition has to be retracted or modi�ed once entered.

Precisely this topic will be the subject of the present chapter. However, we

will not try to develop a solution for the revision of terminological knowledge

bases, but will take a more general view on the problem of revision, which will

be used as a yardstick for the solutions to terminological revision in the next

chapter. Sect. 6.1 introduces a (nonexhaustive) list of problems which are all

subsumed under the general heading belief revision. Following this list, the ideas

behind the di�erent approaches to belief revision are analyzed and compared in

Sections 6.2{6.6. In particular, the comparison between the revision of closed

theories (which can be regarded as a formalization of the knowledge-level view on

knowledge bases) and the revision of �nite theory bases (which can be interpreted

as the symbol-level perspective on knowledge bases) in Sect. 6.3 leads to an

interesting result (Theorem 6.3) which gives a partial answer to the questions

posed in Sect. 2.3.4. The revision of a KB viewed on the symbol level can be

interpreted as a revision of the KB using the knowledge-level perspective but

taking into account an additional relevance metric on propositions { the epistemic

relevance of propositions.

Moreover, it turns out that it is not necessary to incorporate any notion

of reason maintenance into a theoretical framework of belief revision, contrary

to the opinion most authors seem to have. That does not mean that reason

maintenance is super
uous, but that it is simply an implementational, symbol-

level notion { a topic we will study in Sect. 6.6. Some data-dependency network

maintenance algorithms are presented, and so-called reason maintenance systems

are described.

158

6.1 Problems in Belief Revision

Belief revision is a �eld covering topics which are seemingly unrelated at �rst

sight: theories about the dynamics of epistemic states of rational agents, analysis

of counterfactuals, diagnosis from �rst principles, data base updates, nonmono-

tonic reasoning, dependency-directed backtracking, and so on

[

Doyle and London,

1980

]

. The underlying common theme is that a logical theory cannot be seen

as static object, but that it is necessary to modify a theory according to some

requirements and evaluate the consequences of the modi�cation.

This theme is obvious when we try to analyze the dynamics of epistemic states,

provided we view epistemic states of a rational agent as closed logical theory. A

rational agent may learn something new about the world, may abandon an old

belief, or may get information contradicting his old beliefs. Under the premise

that the epistemic state of an agent { the agent's current beliefs { is formalized

as a closed logical theory, we have to �gure out what a theory might look like

which takes into account the changed beliefs

[

G�ardenfors, 1988

]

. One immediate

requirement is that the new theory should di�er minimally from the original one.

However, this is precisely the main problem. What is a reasonable metric for

comparing di�erent theories?

As it turns out, the theory of the dynamics of epistemic states shares its basic

idea with the analysis of the meaning of counterfactuals and conditionals. These

are sentences of the form:

If Kohl were not chancellor, the economic situation would be better.

Using classical logical analysis, the phrase \If : : : then : : : " could be formalized

as a material implication { and we would conclude that this sentence is true

simply because its antecedent is false. However, following the argument that the

world-wide economic situation has much more impact on the national economy

than the chancellor does, we may deny the sentence above. Following this lead,

philosophers tried to pin down the truth conditions behind such sentences. In his

seminal paper

[

Stalnaker, 1968

]

, Stalnaker came up with a theory of conditionals

explaining the truth conditions for conditional sentences in terms of a \nearest"

possible world. A conditional sentence is true if in the \nearest" possible world

in which the antecedent is true, the consequent turns out to be true as well.

Later on, this idea was modi�ed by Lewis

[

1973

]

, who argued that it is more

reasonable to consider a set of most similar possible worlds instead of a single

one.

1

In any case, this leaves us again with a problem of measurement, namely,

of determining the \distance" between possible worlds. In fact, it is the same

1

We will not delve into these details. However, the underlying reason for considering sets

of possible worlds instead of single possible worlds is that in the latter case the law of the

\counterfactual excluded middle" is valid, which does not seem very reasonable.

159

problem as determining a new epistemic state which di�ers minimally from the

old one when the epistemic input contradicts old beliefs.

2

Following the thread laid out above, we may ask what counterfactuals or the

dynamics of epistemic states have in common with diagnosis from �rst princip-

les. As Ginsberg

[

1986

]

shows, there is a rather obvious connection. When a

technical system is formalized as a logical theory describing the interconnections

and the expected behavior of the components of such a system, a failure in such

a system would amount to an inconsistency between the system description and

the observational data. Diagnosing the failure can then be rephrased as �nding

a theory which is consistent with the observations but otherwise most similar

to the original description of the system. The di�erence between the original

theory and the new one is then the diagnosis { describing which original as-

sumptions cannot be satis�ed. As shown by Ginsberg in his paper and ampli�ed

by Reiter

[

1987

]

, we may view diagnosis alternatively as a special instance of

nonmonotonic reasoning, which can be formalized to a certain extent by default

theories

[

Reiter, 1980

]

, a point we will return to in Sect. 6.5. For this reason,

it is obvious that implementation techniques developed in the context of non-

monotonic reasoning and belief revision �t well into the entire framework, in

particular reason-maintenance systems (RMS)

3

and associated techniques, such

as dependency-directed backtracking.

In order to complete the explanation for the list given in the beginning of

this section, only the reason for the inclusion of data base updates has to be

given. First, it might seem that what has been said so far has nothing to do

with data base updates at all. Data base updates are usually unique operations

on sets of tuples, and there is no question of what has to be done when a tuple

should be inserted, deleted, or modi�ed { except that data base integrity has to

be maintained. If, however, we allow for exceptions, as discussed in

[

Borgida,

1985

]

, or for incomplete data bases, we meet problems very much alike the ones

discussed above. In order to analyze these problems, we have to view data bases

as logical theories (which are then called logical data bases) and are faced with the

problem of changing these theories minimally if an update should be performed

[

Fagin et al., 1983; Fagin et al., 1986

]

. However, as we will see in Sect. 6.4, it is

possible to have another opinion about this matter.

2

With the di�erence that logical theories usually correspond to sets of possible worlds, while

one possible world corresponds to a complete theory { a theory in which each proposition is

either true or false, but never undetermined.

3

Not very surprisingly, in the context of diagnosis from �rst principles, we �nd a RMS: de

Kleer's ATMS

[

de Kleer and Williams, 1987

]

.

160

6.2 The Logic of Theory Change

Most closely related to the idea of changing a knowledge base on the knowledge

level, as discussed in Sect. 2.3.4, is the research by Alchourr�on, G�ardenfors, and

Makinson

[

Alchourr�on and Makinson, 1982; Alchourr�on et al., 1985; Makinson,

1985; G�ardenfors, 1988

]

4

, some of whose main results will be presented in this

section. The intention of this work is to �nd a characterization of the process of

changing logical theories which are closed with respect to a logical consequence

operation. G�ardenfors

[

1988

]

even tries to build an entire theory of the dynamics

of epistemic states on the notion of closed logical theories.

For the following discussion, we will assume a logical language L containing

propositions and the standard sentential connectives (:, _, ^, (, ,), which

can be used to form new propositions. The consequence operation mentioned

above shall be a function named Cn, mapping sets of propositions to sets of

propositions with the following properties

[

Alchourr�on et al., 1985

]

. For any sets

A, B of propositions it shall hold that:

A � Cn(A) (inclusion) (6.1)

Cn(A) = Cn(Cn(A)) (iteration) (6.2)

Cn(A) � Cn(B) whenever A � B (monotonicity) (6.3)

Furthermore, we will assume that Cn includes tautological implication, that

Cn is compact, i.e., x 2 Cn(A

0

) for some �nite subset A

0

of A whenever x 2 Cn(A),

and, �nally, that Cn satis�es the rule of introduction of disjunction in the premise,

i.e., if x 2 Cn(A [fyg) and x 2 Cn(A [fzg) then x 2 Cn(A [f(y _ z)g).

A set of propositions A closed with respect to Cn (i.e., A = Cn(A)) is called

a closed theory or theory for short. A set of propositions B generating a theory

A (i.e., A = Cn(B)) is called its base.

6.2.1 Expansion, Contraction, and Revision

Analyzing potential operations which change closed theories, we note that theory

expansion, i.e., adding a proposition x to a given theory A (written A + x) is

well-de�ned and unique. It amounts to creating the set-union of A and fxg and

closing the set with respect to Cn. Actually, as can be easily derived from the

properties of the consequence operation, it does not make a di�erence whether

we add the new proposition to the theory A or to a base B of A, i.e.,

Cn(B) + x

def

= Cn(Cn(B) [fxg) = Cn(B [fxg) (6.4)

Other theory change operations are more problematical. Theory contraction,

i.e., removing a proposition x from a theory A (written A

:

� x), and theory

4

[

G�ardenfors, 1988

]

contains almost all of the results of the papers written by Alchourr�on,

G�ardenfors, and Makinson.

161

revision, i.e., adding a proposition x to a theory A under the requirement that

the resulting theory shall be consistent and closed under logical consequence

(written A

:

+ x),

5

cannot be expressed as simple set operations, and they have

no obvious, unique result, either. Of course, when applying such operations, we

would like to change the original theory minimally. But even this constraint does

not lead to a unique result. When trying to remove a proposition x from a closed

theory A, there are usually many maximal subsets of A which fail to imply x.

The same holds for revision if we de�ne it using equation (6.5), which is called

the Levi Identity after I. Levi

[

1977

]

:

A

:

+ x

def

= Cn((A

:

� :x) [fxg) (6.5)

Now one may give up and conclude that theory revision and contraction is

outside of the scope of logical analysis and largely dependent on pragmatics.

Although this is almost correct, it is possible to say a little more about the

processes. In the work of Alchourr�on, G�ardenfors, and Makinson, the problem

of �nding intuitive plausible theory-change operations is approached by formu-

lating postulates on possible change operations and testing candidates against

them. Even stronger, G�ardenfors argues that these rationality postulates, which

have come to be called to be the \G�ardenfors Postulates," are the only logical

constraints on such operations. Any other requirement has to be extra-logical

[

G�ardenfors, 1988, Sect. 3.3

]

. One set of these postulates describing contraction

operations

6

can be given as follows (A a theory, x; y propositions):

(

:

�1) A

:

� x is a theory (closure);

(

:

�2) A

:

� x � A (inclusion);

(

:

�3) If x 62 A, then A

:

� x = A (vacuity);

(

:

�4) If x 62 Cn(;), then x 62 A

:

� x (success);

(

:

�5) If Cn(x) = Cn(y), then A

:

� x = A

:

� y (preservation);

(

:

�6) A � Cn((A

:

� x) [fxg) (recovery);

(

:

�7) (A

:

� x) \ (A

:

� y) � A

:

� (x ^ y);

(

:

�8) If x 62 A

:

� (x ^ y), then A

:

� (x ^ y) � A

:

� x.

5

Note that we referred to the general process of modifying a KB as revision, where in the

context of theory change operation only the introduction of a propositions under the require-

ment of consistency preservation is called revision. To avoid confusion, we will use the terms

knowledge base revision and theory revision when ambiguities are possible.

6

A similar set of postulates can be given for theory revision, which can be proven to be

equivalent using the Levi Identity (6.5). Here, we will regard contraction as the basic operation

and consider revision only as a derived operation, following the arguments in

[

Makinson, 1985

]

.

162

Most of these postulates are quite straightforward and intuitively plausible.

The closure postulate tells us that we always get a theory when applying

:

�.

The inclusion postulate assures that when a proposition is removed, nothing

previously unknown can enter into the theory, setting an upper bound for any

possible contraction operation. Postulate (

:

�3) takes care of one of the limiting

cases, namely, that the proposition to be removed is not part of the theory, while

the next postulate (

:

�4) describes the e�ect of the other cases: if the proposition

to be removed is not a logically valid one, then the contraction operation will

e�ectively remove it. The preservation postulate assures that the syntactical

form of the proposition to be removed will not e�ect the resulting theory: any two

propositions which are logically equivalent shall lead to the same result. Finally,

the recovery postulate describes the lower bound of any contraction operation: the

contracted theory should contain enough information to recover all propositions

deleted. Note that the properties of Cn together with (

:

�6) and (

:

�2) lead to the

following conditional equation:

If x 2 A then A = Cn((A

:

� x) [fxg) (6.6)

The two postulates (

:

�7) and (

:

�8) are less obvious and not as basic as the

former ones { a reason for calling them \supplementary postulates." (

:

�7) states

that retracting a conjunction should remove less information than retracting both

conjuncts individually in parallel, with (

:

�8) its conditional converse. Although

this does not sound like a strong restriction, not all conceivable contraction ope-

rations satisfy it.

7

6.2.2 Full Meet Contraction

Trying to construct contraction functions, a �rst idea could be to take into ac-

count all possible outcomes of removing a proposition, and, since we do not have

a measure of what is a better solution, to choose the intersection of the outcomes

as the result of the contraction operation. Because we do not want to give up

more than necessary, we will consider only the family of maximal subsets of a

theory not implying a given proposition. Let us denote the family of maximal

subsets of a theory A not implying x by A #x (pronounced \A less x"), de�ned

as:

A#x

def

= fB � Aj x 62 Cn(B) and 8B

0

: B � B

0

� A then x 2 Cn(B

0

)g (6.7)

It can be easily veri�ed that A#x is nonempty if and only if x is not a valid

proposition. Following the arguments above, a contraction operation

:

� could

7

The main reason G�ardenfors includes them is to apply the theory of theory revision to the

analysis of counterfactuals. For this analysis, these postulates are quite useful. In particular,

they lead to a relation between revised theories similar to a principle for selecting neighboring

possible worlds Stalnaker

[

1968

]

postulated.

163

then be de�ned as:

8

A

:

� x

def

=

(
\

(A#x) if x 62 Cn(;)

A otherwise

(6.8)

As is easy to see, this operation, called full meet contraction, satis�es (

:

�1){

(

:

�5). As we will see, it also satis�es (

:

�6) { in a very strange way, though. The

information left in a contracted theory is really minimal, as shown by the following

theorem (Observation 2.1 in

[

Alchourr�on and Makinson, 1982

]

and Theorem 3 in

[

Fagin et al., 1983

]

):

Theorem 6.1 (Full Meet Contraction) If

:

� is a full meet contraction ope-

ration as de�ned by equation (6.8), then for x 2 A and x 62 Cn(;):

A

:

� x = A \ Cn(f:xg) (6.9)

Proof: First, we will consider the case when y 2 A and y 2 Cn(f:xg). Now

assume that y 62 A

:

� x. That means that there is a set K

0

2 A # x such that

y 62 K

0

. Because of the maximality condition on all such sets, we know that

x 2 Cn(K

0

[fyg). Using contraposition on our premise y 2 Cn(f:xg), we get

x 2 Cn(f:yg) and hence x 2 Cn(K

0

[f:yg). Together with the previous result

and the introduction of disjunctions in premises, we have x 2 Cn(K

0

[f(y _

:y)g) = Cn(K

0

) and a contradiction.

For the converse case y 2 A and y 62 Cn(f:xg), we know by contraposition

that x 62 Cn(f:yg) and hence x 62 Cn(f(x _ :y)g). Because of the maximality of

the sets inA#x, there are at least two sets K

0

;K

00

with y 2 K

0

and (x_:y) 2 K

00

,

but there can be no set which includes both because x 2 Cn(fy; (x _ :y)g), and

thus y 62

T

(A#x).

This means that when retracting x from A with a full meet contraction opera-

tion, we are left with only the propositions of A which are already consequences

of :x. Carrying this result over to theory revision we have: If :x 2 A and

:x 62 Cn(;) then A

:

+ x = Cn(fxg), which is probably not what one would like.

Despite this fact, the recovery postulate is satis�ed. This is trivial for the two

limiting cases when x 2 Cn(;) or x 62 A, and becomes obvious for the other cases

when substituting the right hand side of equation (6.9) for A

:

� x in (

:

�6), which

leads to:

A � Cn((A \ Cn(f:xg)) [fxg) (6.10)

Now, because for any y 2 A we know that (y _ :x) 2 Cn(f:xg) and that this

together with x implies y, the right hand side of (6.10) is clearly a superset of

the left hand side. Furthermore, using (6.9), it can be easily derived that (

:

�7)

(it can even be strengthened to equality) and (

:

�8) hold as well.

8

Note that the maximality of the elements of A # x implies that the elements are closed

theories. Moreover, any intersection of closed theories is itself a closed theory

164

6.2.3 Maxichoice Contraction

One conclusion one may draw from the observations above could be that the given

postulates are too weak { because they obviously allow for rather useless theory

change operations. More generally, one may argue that the idea of changing closed

theories is on the wrong track, as done in

[

Fagin et al., 1983

]

. Instead, however,

full meet contraction could be regarded as a kind of lower bound any contraction

operation has to obey. This lead is followed in

[

Alchourr�on and Makinson, 1982

]

,

where an operation called maxichoice contraction is analyzed. This contraction

operation is de�ned using a choice function
 which picks one element of A # x

which is used as the result of the contraction:

A

:

� x

def

=

(

(A#x) if x 62 Cn(;)

A otherwise

(6.11)

Evidently, maxichoice contraction satis�es the postulates (

:

�1){(

:

�6) { the

latter because a single element of A # x is always larger than

T

(A # x). The

\supplementary postulates," however, are only satis�ed if the choice function

adheres to an additional constraint. There has to be some partial ordering � of

2

A

such that the choice function always selects one of the largest elements (w.r.t.

�):

8x 2 A : 8B 2 (A#x) : B �
(A#x) (6.12)

If this is the case, it is possible to derive some other neat properties which seem

to be plausible for rational belief revision

[

Alchourr�on and Makinson, 1982

]

. Ho-

wever, we will not go into these details here.

Despite this positive result, there is a serious drawback. While full meet

contraction leaves us with theories which are too small, the other extreme {

maxichoice contraction { usually creates theories far too large, as shown by the

next theorem

[

Alchourr�on and Makinson, 1982

]

:

Theorem 6.2 (Maxichoice Contraction) If

:

� is a maxichoice contraction

operation as de�ned by (6.11), then for x 2 A:

For any proposition y : (x _ y) 2 A

:

� x or (x _ :y) 2 A

:

� x (6.13)

Proof: Note that with x 2 A we always have f(x _ y); (x _ :y)g � A for all

propositions y. In the limiting case when x is a logical tautology, i.e., x 2 Cn(;),

(6.13) holds because A = A

:

� x.

For the principal case when x 2 A and x 62 Cn(;), let us assume contrary to

(6.13) that (x _ :y) 62 A

:

� x and (x _ y) 62 A

:

� x. Since A

:

� x 2 (A # x),

we know that x 2 Cn((A

:

� x) [f(x _ :y)g) and x 2 Cn((A

:

� x) [f(x _ y)g).

Hence, we have x 2 Cn((A

:

� x) [f:yg) and x 2 Cn((A

:

� x) [fyg) and thus

x 2 (A

:

� x), which is a contradiction.

165

Therefore, when revising a theory using maxichoice contraction, we see by

applying the Levi Identity (6.5) that in the case when :x 2 A and :x 62 Cn(;),

we would end up with a revised theory A

:

+ x such that either y 2 A

:

+ x or

:y 2 A

:

+ x for all propositions y. In other words, by revising an arbitrary theory

in this way, we would all of a sudden get a complete theory,

9

i.e., we would \learn"

something new not connected with the proposition we inserted! Obviously, this

is a property which runs counter to any possible intuition of revising a set of

beliefs, a body of legal regulations, or whatsoever.

6.2.4 Partial Meet Contraction

Since full meet contraction results in theories too small to be useful, and maxi-

choice contraction produces theories too large to be plausible, it might be wor-

thwhile to study the middle ground { partial meet contraction

[

Alchourr�on et al.,

1985

]

. Again, we will assume a choice function
 { this time selecting a subset

of A#x instead of a singleton, as above. Partial meet contraction is then de�ned

as the intersection over the sets in this subset:

A

:

� x

def

=

(

\

(A#x) if x 62 Cn(;)

A otherwise

(6.14)

Using the arguments given above, it is easy to see that partial meet contrac-

tion satis�es all the basic postulates (

:

�1){(

:

�6).

10

In order to also satisfy the

supplementary postulates, again a relation � over 2

A

must be employed; howe-

ver, this time we do not require it to be a partial ordering. It has to satisfy only

the following marking o� identity { only \best" elements are chosen by
 for all

x 62 Cn(;):

(A#x) = fB 2 (A#x)j 8B

0

2 (A#x) : B

0

� Bg (6.15)

In

[

Alchourr�on et al., 1985

]

, possible constraints on the relation � and their

consequences for the corresponding contraction and revision functions are ana-

lyzed, resulting in a complex web of relationships we are not interested in here.

The main results are that (6.15) alone su�ces to achieve (

:

�7), in which case

the choice function is called relational choice function. If (6.15) holds and the

relation is even transitive, the choice function is called transitively relational, and

(

:

�8) is satis�ed as well.

The interesting point in this game is how to arrive at a relation over

2

A

. G�ardenfors and Makinson introduce in

[

G�ardenfors, 1988, Sect. 4.6

]

and

9

Interpreting such complete theories epistemically, G�ardenfors

[

1988, Sect. 3.3

]

calls them

belief states of besserwissers.

10

Actually, the converse also holds: any contraction operation satisfying (

:

�1){(

:

�6) is a

partial meet contraction

[

Alchourr�on et al., 1985

]

.

166

[

G�ardenfors and Makinson, 1988

]

the notion of epistemic entrenchment of propo-

sitions, which has the intuitive meaning that the more epistemically entrenched

a proposition is, the harder it will be to get rid of it during contraction ope-

rations. After presenting some postulates for epistemic entrenchment functions,

G�ardenfors relates such functions to contraction operations and shows that any

partial meet contraction employing a transitive relation � can be used to gene-

rate an entrenchment function and vice versa. The underlying idea of epistemic

entrenchment is that although all believed or accepted propositions are equally

certain, some of them have greater informative or explanatory value than others.

In particular, G�ardenfors

[

1988, Sect. 4.7

]

argues that the change of paradigms in

science

[

Kuhn, 1970

]

could be explained as a change of epistemic entrenchment.

A paradigm change is not so much a change in the theory { theories change con-

tinually { but a change in what propositions are considered important. Thus, the

main outcome of a paradigm change is a di�erent future evolution of the theory.

6.3 Changes of Finite Theory Bases

Although the results presented in the previous section sound interesting and seem

to provide some insights into the problem of belief revision, it seems arguable

whether the approach could be used in a computational context, as in AI or in

the data base world. First of all, closed theories cannot be dealt with directly

in a computational context because they are too large. At least, if we deal with

them, we would like to have a �nite representation (i.e., a �nite axiomatization),

and there seems to be no obvious way to derive a �nite representation from a

revised or contracted theory in the general case.

Second, it seems to be preferable for pragmatic reasons to modify �nite theory

bases, or for short �nite bases, instead of closed theories. Propositions in �nite

bases usually represent something like facts, observations, rules, laws, etc., and

when we are forced to change the theory we would like to stay as close as possible

to the original formulation of the �nite base. In particular, when it becomes

necessary to give up a proposition in the �nite base, we would like to throw

away the consequences of the retracted proposition as well. For instance, let a

be the proposition \it is raining," let b be the proposition \John is wearing a

hat," and let us assume we have the base B = fa; a) bg, i.e., \it is raining" and

\John wears his hat when it is raining." That means that from B we can infer

that \John is wearing a hat." Now, when we learn that it is not raining, then

together with a we would like to get rid of b. This, however, cannot be easily

accomplished by the approach described in Sect. 6.2. On the contrary, since the

theory of the dynamics of epistemic states formalizes the idea of keeping as much

of the old propositions (in the closed theory) as possible, it seems likely that b will

be among the propositions in the contracted theory since it does not contradict

:a. G�ardenfors

[

1988, Sect. 3.5

]

puts it in the following way:

167

However, belief sets cannot be used to express that some beliefs may

be reasons for other beliefs. (This de�ciency was one of the motiva-

tions behind Doyle's TMS : : :). And intuitively, when we compare

degrees of similarity between di�erent epistemic states, we want the

structure of reasons or justi�cations to count as well.

6.3.1 Logical Data Bases and Diagnosis

Due to the reasons above, revision and contraction operations for applications as

counterfactual reasoning in diagnosis from �rst principles

[

Ginsberg, 1986

]

and

data base updates

[

Fagin et al., 1983; Fagin et al., 1986

]

are performed not on

closed theories, but on �nite bases. In both applications, the basic contraction

operation on a �nite base B with respect to a proposition x determines the family

of maximal subsets of B not implying x, i.e., in terms of the previous section:

B # x (applying # to �nite bases instead of theories). Then, any proposition y

which is in the logical closure of all elements of B #x is considered to be in the

logical closure of the contracted base. If we denote the the contraction operation

on theory bases as �, a base contraction operation could be de�ned as:

B � x

def

=

8

>

<

>

:

\

C2(B#x)

Cn(C) if x 62 Cn(;)

Cn(B) otherwise

(6.16)

Applied to our example above, fa; a) bg � a leads to the intended result

Cn(fa) bg). Although this is a satisfying result, there are a few open questions:

� Does � satisfy the G�ardenfors Postulates?

� How does base contraction relate to the contraction of closed theories?

� How should we represent a contracted base?

Evidently, the postulates (

:

�1){(

:

�5) are satis�ed by � if the postulates are

adapted to base changes (at some places Cn must be added). However, (

:

�6) does

not hold in general. Consider, for instance,

fa; a) bg � b = Cn(fa _ (a) b)g) (6.17)

which after the addition of b is weaker than the original theory. The reason is

obvious: � is not a partial meet contraction on closed theories, i.e., in general,

we do not have

B � x � Cn(B) \ Cn(:x) (6.18)

This could be taken as evidence that, despite the fact that the underlying ideas

are similar, theory contraction and base contraction are quite di�erent. However,

168

after some re
ection and playing around with the formulas, the situation appears

to be totally di�erent.

First of all, we might ask what will happen if we add Cn(B) \Cn(:x) to the

right side of the de�nition of �. Thus, let us de�ne a new contraction operation

:

� as:

B

:

� x

def

=

8

>

<

>

:

Cn((

\

C2(B#x)

Cn(C)) [(Cn(B) \ Cn(:x))) if x 62 Cn(;)

Cn(B) otherwise

(6.19)

It is easy to see that a base revision operation

�

+ de�ned using the Levi Identity

(6.5) leads to the same results regardless of whether � or

:

� is employed. This is

evident for the limiting case :x 2 Cn(;), which leads to an inconsistent theory.

It becomes obvious for the other cases when applying (6.16) and (6.19):

B

�

+ x

def

= Cn((B

:

� :x) [fxg) (6.20)

= Cn((

\

C2(B#:x)

Cn(C)) [(Cn(B) \ Cn(fxg)) [fxg)

= Cn((

\

C2(B#:x)

Cn(C)) [fxg)

= Cn((B � :x) [fxg)

Thus, � and

:

� are revision-equivalent operations

[

Makinson, 1987

]

. This

justi�es the usage of � in contexts where we are mainly interested in revisions

{ as is the case with counterfactual reasoning or diagnosis from �rst principles.

When, however, contraction and revision are considered as equally important

{ as in the context of updating logical data bases, where we want to add new

information as well as to delete outdated information { then we had better use

:

�. Otherwise, more information is lost than intended. In particular, we would

be unable to undo a contraction operation.

6.3.2 Base Contraction is a Partial Meet Contraction

Before we now go on trying to verify that the \supplementary" postulates are

satis�ed by

:

�, we will try to establish a connection between base contraction

and theory contraction. In

[

Ginsberg, 1986

]

, as well as in

[

Fagin et al., 1983

]

,

some thoughts are devoted to the issue of modifying closed theories. In

[

Fagin

et al., 1983

]

, however, these considerations are quickly dropped after proving a

theorem similar to Theorem 6.1 { syntactic considerations seem necessary when

modifying theories. Ginsberg

[

1986

]

comes to the same conclusion, however, he

at least tries to relate his approach to the modi�cation of closed theories. He

proposes using a multi-valued logic in which reason maintenance information is

encoded as truth-values (for a similar approach cf.

[

Martins and Shapiro, 1986

]

).

169

Thus, Ginsberg accounts for the inability of closed theories to express reasons for

beliefs discussed in the beginning of this section. This proposal does seem to lead

to the desired results, i.e., changes of closed theories (in the reason maintenance

style logic) are identical to changes of �nite bases. However, I have to admit that

I am not really fond of encoding meta-theoretical facts (derivations) as truth-

values. Moreover, this approach does not shed too much light onto the relation

between modi�cations of closed theories and modi�cations of �nite bases.

In trying to establish a relation between base contraction and contraction of

closed theories, the notion of epistemic entrenchment as sketched in the end of the

previous subsection might be of help. Unfortunately, however, it is not possible

to specify the degree of entrenchment without considering the logical force of

propositions. In particular, G�ardenfors and Makinson

[

1988

]

postulate that if

y 2 Cn(fxg), then y is at least as epistemically entrenched as x. In other words,

the consequence of a proposition is at least as entrenched as the proposition

itself. The rationale behind this postulate has been already spelled out in the

beginning of this section, namely, that when we have to give up something, we

should try to minimize the loss. If we have to choose among a proposition x and

its consequence y, we had better give up x alone instead of y and its generating

proposition x! In a nutshell, epistemic entrenchment runs counter to the idea of

reason maintenance.

Setting the reason maintenance problem aside for a while, we will try to ana-

lyze the other interesting aspect of base contraction { the syntactical aspect. In

contracting bases, we try to preserve as much as possible of the original formula-

tion of the base. Interpreting this in terms of closed theories, we could say that

the propositions in the base are regarded as somehow more relevant { they have

a higher degree of what we will call epistemic relevance than propositions which

are not in the base but only implied by it. Following this idea, we clearly would

like to minimize the loss of epistemically relevant propositions.

Formally, given a base B, we may de�ne a choice function

B

which selects just

the elements of (Cn(B)#x) containing maximal subsets of relevant propositions

{ maximal subsets of B not implying x:

B

(Cn(B)#x)

def

= fC 2 (Cn(B)#x)j 8 C

0

2 (Cn(B)#x) : (6.21)

C

0

\B 6� C \Bg

Using this choice function, we can de�ne a partial meet contraction on closed

theories Cn(B):

Cn(B)

:

� x

def

=

(

\

B

(Cn(B)#x) if x 62 Cn(;)

Cn(B) otherwise

(6.22)

The interesting point about

:

� as de�ned above is that its results are the same

as

:

�, provided the same base is used.

170

Theorem 6.3 (Equivalence of Base and Partial Meet Contraction) Let

B be a �nite base,

:

� be a partial meet contraction on closed theories as de�ned in

equation (6.22), and

:

� a base contraction operation as de�ned in equation (6.19).

Then

Cn(B)

:

� x = B

:

� x (6.23)

Proof: For the limiting cases when x 62 Cn(B) or x 2 Cn(;) the result is

immediate. Thus let us assume x 2 Cn(B) and x 62 Cn(;).

First, we will show that for any x 2 Cn(B) and any set S � B with x 62 Cn(S)

the following equation holds:

\

fC 2 (Cn(B)#x)j S � Cg = Cn(S [(Cn(B) \ Cn(f:xg))) (6.24)

It is clear that in (6.24) the right hand side (rhs) is a subset of the left hand side

(lhs) because, �rst, the lhs is larger than

T

(Cn(B)#x) and thus by Theorem 6.1

larger than Cn(B) \ Cn(f:xg) and because, second, the lhs includes the set S.

Since the lhs is a closed theory (see page 8), it must be a closed theory including

S and Cn(B) \ Cn(f:xg).

It remains to be shown that all propositions of the left hand side are also

propositions of the right hand side in (6.24). Let us assume the contrary, i.e.,

there is a y such that y 2 lhs and y 62 rhs. Using set theory and the properties

of Cn, we can transform the rhs to Cn(S [f:xg)\Cn(B). Since y 2 Cn(B), our

assumptions lead to y 62 Cn(S[f:xg) and, in particular, to y 62 Cn(f:xg). Using

this, we can derive x 62 Cn(f(x _ :y)g), following the same line of arguments as

in the proof of Theorem 6.1. By that and the observation that y 62 Cn(S), we

can conclude that x 62 Cn(S [f(x_ :y)g). Since adding y to this set would lead

to the derivation of x, there must be a set S

0

� S [f(x _ :y)g with y 62 S

0

and

S

0

2 (Cn(B)#x), which means that y cannot be a member of all sets in Cn(B)#x

which contain S, and we have a contradiction.

Using equation (6.24) and the argument that

B

plays the role of selecting

sets C 2 (Cn(B) # x) which contain maximal subsets of B not implying x, we

know:

\

B

(Cn(B)#x) = Cn((

\

C2(B#x)

Cn(C)) [(Cn(B) \ Cn(f:xg)))

= B

:

� x

6.3.3 Epistemic Relevance and Reason Maintenance

Although we started o� with the conjecture that base contraction and theory

contraction are quite di�erent operations, Theorem 6.3 shows that the former is

only a special case of the latter. Moreover, it demonstrates that the intuitive idea

171

of modifying bases in

[

Fagin et al., 1983

]

and

[

Ginsberg, 1986

]

, which seemed so-

mehow arbitrary, can be cleanly reconstructed as an operation on closed theories.

Applying this result to the discussion in Sect. 2.3.4, we see that modi�cations of a

knowledge-level KB do not make much sense (taking into account Theorem 6.1).

In order to modify such knowledge-level KB, more knowledge than is captured

by the abstraction of logical closure is necessary. We have to decide which propo-

sitions are important, on which propositions our \body of knowledge" is based.

The symbol-level, the theory base, may just be taken as the set of important

propositions.

Actually, it is not necessary to refer to a theory base. The only important

point is that we decide which propositions are epistemically relevant. In the case

when we only distinguish between two degrees of epistemic relevance (relevant

and irrelevant), a theory base can just be used to encode such an assignment of

epistemic relevance. However, we can, of course, abstract from any symbolic rep-

resentation and can regard the epistemic relevance of proposition as just another

piece of knowledge.

Another interesting point about base contraction is that from a theoretical

point of view reason maintenance is simply a by-product of base contraction and

revision. Taking our example from the beginning of this section:

fa; a) bg

:

� a = Cn(fa) bg)

we see that base contraction removes the consequences of retracted propositions.

Contrary to the assumptions of G�ardenfors and Ginsberg, it is not necessary to

put the reasons for beliefs or derivations of propositions into belief sets. Partial

meet contraction takes care of these things by itself, if we provide the \right"

choice function. What really counts is the epistemic relevance of propositions.

Apart from these general considerations, there are a few details of the contrac-

tion operation de�ned in equation (6.22), and hence of

:

�, which still need some

investigation. First, there is the question of whether this kind of contraction

satis�es the \supplementary" postulates and, second, how epistemic relevance

relates to epistemic entrenchment.

Concerning the postulates, it is easy to see that there is a relation �

B

over

2

Cn(B)

such that the marking o� identity (6.15) holds:

X �

B

Y

def

, X \ B 6� Y \B (6.25)

This means that

B

is a relational choice function, and by that, (

:

�7) is satis�ed

(see page 166). Additionally, it is evident that �

B

is not transitive. For instance,

letB = fa; b; cg. Then we have fa; bg �

B

fcg, and fcg �

B

fag, but fa; bg 6�

B

fag!

This means we cannot expect that (

:

�8) holds in general.

11

In order to give an

11

In order to achieve that, we would have to put more into

B

than a set-inclusion relation

restricted to the base. However, as pointed out by Ginsberg

[

1986

]

in a similar context, it seems

questionable whether this is really necessary from a practical point of view.

172

example where (

:

�8) does indeed not hold, let us assume the following base

B = fa; b ^ c; a ^ b ^ d; a ^ dg

Then it holds that

(a ^ c) 62 (B

:

� ((a ^ c) ^ (b ^ d)))

a 2 (B

:

� ((a ^ c) ^ (b ^ d)))

a 62 (B

:

� (a ^ c))

That means

(B

:

� ((a ^ c) ^ (b ^ d))) 6� (B

:

� (a ^ c))

Comparing the notion of epistemic entrenchment as introduced by G�ardenfors

and Makinson with epistemic relevance as introduced above, we see that these

two notions de�nitely do not coincide. The former respects the logical force of

propositions and is strictly connected to contraction operations. For instance,

in

[

G�ardenfors and Makinson, 1988

]

, a principle is derived from the postulates

about degrees of epistemic entrenchment, which reads translated to our notation:

y 2 A

:

� x i� (x _ :y) <

�

(x _ y) or y 2 Cn(;) (6.26)

where a <

�

b means \a is epistemically less entrenched than b." Clearly, our

notion of epistemic relevance does not allow deriving this principle. Epistemic

relevance simply marks propositions which are considered somehow as crucial,

regardless of how the propositions logically or in the course of contractions are

related to others.

An obvious generalization of the construction given is to use a more �ne-

grained measure of epistemic relevance. We might not only distinguish between

propositions which are in the base and those which are not, but may assign mul-

tiple degrees of relevance to propositions to distinguish between simple facts and

integrity rules in a logical data base, the latter more relevant than the former. In

fact, this is done in

[

Ginsberg, 1986

]

and in

[

Fagin et al., 1983

]

, although, only

on the theory base level, of course. With the reconstruction of base contraction

as a special case of theory contraction, we are in a position to explain this assi-

gnment of priorities to propositions as a generalization of the more basic notion

of epistemic relevance.

Let us assume a function �

n

which assigns integers between 0 and n to all

propositions in a logical language L:

�

n

: L ! f0; 1; 2; : : : ; ng (6.27)

with the intuitive meaning that if x and y are propositions of a theory A and

if �

n

(x) < �

n

(y), then y is epistemically more relevant than x. Based on this

173

function, we can de�ne a kind of \prioritized set inclusion" on sets of propositions.

Let

�

�1

n

(i)

def

=

(

fx 2 Lj �

n

(x) = ig for 0 � i � n

; otherwise

(6.28)

then �

�

n

, a prioritized set-inclusion operator with respect to the assignment of

epistemic relevance �

n

, can be de�ned as:

X �

�

n

Y

def

, 9i � 0 : X \ �

�1

n

(i) � Y \ �

�1

n

(i) ^ (6.29)

8j > i : X \ �

�1

n

(j) = Y \ �

�1

n

(j)

It should now be evident from the discussion in the previous section that it

is possible to de�ne a choice function

�

n

similar to

B

. This function would not

only try to maximize the loss of one set of relevant propositions, but it would do

so in a prioritized way. Namely, if a proposition x to be removed from a theory A

is not implied by the set of most relevant proposition A\�

�1

n

(n), then this set will

be in the contracted theory. Moreover, it is easy to verify that a choice function

de�ned in this way is again relational, and thus the postulates (

:

�1){(

:

�7) are

satis�ed. We will not dive deeper into these issues at this point, however. For

the rest of this section, we will be satis�ed with the base contraction operation

de�ned by equation 6.22.

As a last point, we should note that not only the epistemic relevance or any

other measure is important when changing a theory, but also the pragmatics

of the contraction or revision operation has to be taken into account. Assume,

for instance, somebody tells you that \Kim is John's wife." From that it is, of

course, valid to conclude that \Kim is a woman." Now, if you later learn that

\Kim divorced John," there is no reason to give up the belief that \Kim is a

woman," although the original propositions has become invalid. If, however, the

speaker corrects the statement by saying: \Oh, it isn't Kim but Joan who is

married to John," the belief in Kim being a female may become arguable.

6.3.4 Representational and Computational Issues

A point we have neglected so far is how a contracted base could be represented

by a �nite axiomatization. In the de�nition of the base contraction functions the

result was a closed theory. What we want, however, is a �nite representation

of this result. Using the properties of Cn, a �nite representation can be easily

derived:

B

:

� x = Cn((

\

C2(B#x)

Cn(C)) [(Cn(B) \ Cn(f:cg)))

= Cn((

_

C2(B#x)

C) ^ (B _ :x))

= Cn((

_

C2(B#x)

C ^ :x) _B)

174

Thus, assuming B is �nite, B

:

� x can be represented by a �nite disjunction.

A less obvious point is what should be considered as the new set of propositions

in the base. This is not a problem for counterfactual reasoning or diagnosis from

�rst principles as described in

[

Ginsberg, 1986

]

and

[

Reiter, 1987

]

because only

one revision operation is needed to give the desired result. Updating logical

data bases, however, requires that an arbitrarily long sequence of deletions and

insertions (read: contractions and revisions) can be dealt with, and in this case,

we do not want to view a changed theory as just one proposition { the one

proposition serving as an argument to Cn above. Otherwise, the next contraction

would wipe out everything!

One solution is to collect all common propositions from the maximal subsets

of B # x and create disjunctions for the others. Another way could be to view

a changed theory as a collection of alternative theories, an approach analyzed

in

[

Fagin et al., 1986

]

. There it is proposed to use a
ock of theory bases to

represent a changed base. Logically, it does not make a di�erence whether the

�rst solution or the second one is used. In either case, it is evident that, without

applying simpli�cations, the base may grow exponentially with the number of

change operations. However, the interesting point about
ocks is that a change

operation is applied to all elements of a
ock individually, which leads to a new

set of alternative theories. Thus, we are never forced to create disjunctions of pro-

positions in the base after a change operation since the disjunctions are implicitly

represented by the
ock. As shown in

[

Fagin et al., 1986

]

, sequences of theory

base change operations lead to di�erent results depending on whether the
ocks

approach or the solution sketched �rst is employed, and it is argued that
ocks

are more reasonably behaved than simple theory bases under change operations.

After the discussion in the previous subsection, it should be evident that the

underlying problem in �nding a reasonable representation of a changed theory

base is how to determine the new set of epistemically relevant propositions, or,

if we are dealing with more than two degrees of relevance, how to distribute the

relevance after a theory change operation. In other words, we have to solve the

problem of revising degrees of epistemic relevance, which had been invented to

solve the belief revision in the �rst place. Although it is an interesting problem,

we will not seek a solution here because the problem turns out not to be relevant

for the problem of terminological revision.

Turning �nally to computational issues, we note that in the general case {

in the case when we use �rst-order predicate logic { we are lost. Consistency,

the problem to be solved when (B #x) is computed, is undecidable in �rst-order

predicate logic. However, this does not mean that belief revision is completely

useless for practical purposes. When restricted formalisms are considered, the

situation is more feasible. In the context of logical data bases as well as in

diagnosis from �rst principles

[

Reiter, 1987

]

, the formulas are restricted, and

thus the general undecidability is not relevant in these cases. The problem is

still very di�cult, though. Even in propositional logic it is NP-complete. With

175

clever implementation techniques, however, one might reduce the time to such

an extent that reasonably large theory bases could be handled. Another way out

may be to reduce the expressiveness even more or to employ incomplete inference

algorithms.

6.4 Model-Theoretic Updates

While in Sections 6.2 and 6.3 we focused on propositions and tried to minimize

the loss of propositions considered to be important, another perspective on the

update problem is possible. Instead of the logical closure, the models of a theory

can be modi�ed (which in turn can then be described by a set of propositions,

hopefully). Two such approaches will be brie
y sketched in this section.

6.4.1 Minimal Perturbation of Models

In

[

Dalal, 1988

]

, the problem of revising a knowledge base is viewed from a model-

theoretic point of view. Despite this di�erence, the underlying assumption of

minimally changing a knowledge base is the same as in the previous two sections.

In this case, the models of the theories will minimally di�er. If we consider only

propositional logic as in

[

Dalal, 1988

]

, this notion can be easily formalized.

Let A be the atomic propositions { the atoms { and letM an interpretation,

i.e., a truth-value assignment to all atoms. An interpretation M is a model

of a set of formulas B, if all formulas in B evaluate to true, given the truth-

value assignment M, written j=

M

B. All such models of a set of propositions

are denoted by mod(B). A distance measure between models, which we will

call perturbation distance, can be de�ned by referring to the number of changed

truth-values. For instance, given the two models

12

M

1

= fa : T; b : Fg andM

2

=

fa : F; b : Fg, the perturbation distance is one, in symbols: �(M

1

;M

2

) = 1.

Using this measure, a function can be de�ned which generates perturbed models.

Let M be a model, then

g(n;M)

def

= fM

x

j�(M

x

;M) � ng (6.30)

If we now generalize g to sets of models in the obvious way by creating the

set-union of all perturbations, a model-theoretic revision operation can be de�ned,

denoted by

m

+. Let B be a set of propositions and x be a proposition to be added.

Then

m

+ can be de�ned indirectly:

mod(B

m

+ x)

def

=

8

>

<

>

:

g(i;mod(B)) \mod(fxg) for the least i with

nonempty result

; if there is no such i

(6.31)

12

Without loss of generality, we will assume that A is �nite.

176

As can be shown, this revision operation satis�es all the G�ardenfors Postu-

lates for theory revision

[

Dalal, 1988

]

. Thus, applying the G�ardenfors identity

[

Makinson, 1985, p. 352

]

A

:

� x = (A

:

+ :x) \A (6.32)

it is possible to generate a contraction operation which satis�es all the postulates

for contraction, even (

:

�8). Although this an interesting and encouraging result,

we still have to �gure out how a revised knowledge base could be represented

symbolically. Using results from Weber

[

1987

]

, Dalal shows that revisions of

models which are characterized by �nite bases can be carried out by a simple

symbolic transformation of the theory base. However, similar to the solutions

we investigated in Sect. 6.3, consistency checks have to be performed (i.e., the

approach is NP-complete in the propositional case), and the theory base grows

exponentially with the number of revision operations if no simpli�cations are

applied.

Comparing this model-theoretic approach to belief revision with the solution

presented in Sect. 6.3, an immediate advantage is that model-theoretic changes

are independent of the syntactic form of the knowledge base { which actually

was the reason to investigate this kind of revision in the �rst place. For this

reason, it is not necessary to worry about epistemic relevance or any other pre-

ference measure. However, what is regarded as an advantage by some people

may be considered as a shortcoming by others. The model-theoretic approach

is not as
exible as the solution presented in Sect. 6.3. It does not account for

di�erent degrees of epistemic relevance, but focuses only on minimal changes of

truth-values of atoms. Thus, reason maintenance is a notion neglected in this

approach. Taking, for instance, our example from Sect. 6.3 fa; a) bg (which

is logically equivalent to fa; bg), it is evident that a model-theoretic contraction

of the proposition a would not remove b. A minimal perturbation would only

change the truth-value of a.

Besides the independence from symbolic representation, Dalal

[

1988

]

conjectu-

res in that the model-theoretic approach to revision \retains more old knowledge"

than the proposals by Ginsberg

[

1986

]

and Fagin et al.

[

1983

]

we analyzed in the

previous section. Putting it formally, Dalal conjectures that

(B

�

+ x) \ Cn(B) � (B

m

+ x) \ Cn(B) for any B and x (6.33)

From the discussion of revision and contraction operations in the previous

sections, it should have become obvious that such a claim is very probably wrong.

Di�erent revision (or contraction) operations are, in most cases, not comparable

along the dimension of set-inclusion. In order to make this statement more vivid,

let us analyze a small example. Assuming

C = fa, b; b, cg

177

we get

C

�

+ :(b, c) = Cn(fa, b;:(b, c)g)

If we try to revise C with respect to :(b, c) using

m

+, we �rst have to apply the

perturbation function g to mod(C):

g(1;mod(C)) = g(1; ffa : T; b : T; c : Tg; fa : F; b : F; c : Fgg)

=

8

>

>

>

<

>

>

>

:

fa : T; b : T; c : Tg; fa : F; b : F; c : Fg;

fa : F; b : T; c : Tg; fa : T; b : F; c : Fg;

fa : T; b : F; c : Tg; fa : F; b : T; c : Fg;

fa : T; b : T; c : Fg; fa : F; b : F; c : Tg

9

>

>

>

=

>

>

>

;

which permits a nonempty intersection with mod(:(b, c)), namely:

g(1;mod(C)) \mod(:(a, b)) =

(

fa : T; b : F; c : Tg; fa : F; b : T; c : Fg;

fa : T; b : T; c : Fg; fa : F; b : F; c : Tg

)

We thus have

(a, b) 2 B

�

+ :(b, c)

but

(a, b) 62 B

m

+ :(b, c)

Summing up, our suspicion about the claim that model-theoretic revision

retains more knowledge than the approach in Sect. 6.3 turns out to be correct.

Nevertheless, I believe that the model-theoretic approach could be pro�tably

used under some circumstances, namely, if only a set of homogeneous data, say

observational data, is to be changed. For instance, it could be used in a logical

data base setting to revise the data tuples only.

6.4.2 Nonminimal Model-Theoretic Updates

An approach which does not incorporate the notion of minimal change is des-

cribed in

[

Winslett, 1986; Winslett, 1987

]

. As in Dalal's solution, models are

perturbed. However, this time the perturbation is not minimal, but all possible

permutations of truth-value assignments which verify the proposition to be in-

serted are taken into account. The underlying intuition is that the new formula

describes the state of a�airs more accurately than the information already in the

knowledge base. The range of an update request is not necessarily the entire set

of models but can be explicitly restricted by a selection clause. Syntactically, an

update request has the following form:

insert x where y (6.34)

with the meaning that the models in which y is true shall be changed such

that x becomes true, with x and y being propositions in some logical language.

178

Here, however, we will only consider the propositional case. Thus, when we talk

about models, we will mean truth-value assignments to atoms, as in the previous

subsection.

13

Starting with a KB consisting of a set of models K = fM

i

g, a new

set of models K

0

= fM

j

0

g is created by the following rules:

� If 6j=

M

i

y, then M

i

2 K

0

.

� Otherwise, all possible modelsM

�

i

become elements of K

0

which di�er from

M

i

only on the truth valuations of atoms mentioned in x such that x is

satis�ed.

As an example, let us assume that a knowledge base K is characterized by

the two models M

1

= fa : T; b : T; c : Fg and M

2

= fa : T; b : F; c : Tg. An

update

insert a _ b where c (6.35)

would then lead to a KB K

0

such that M

1

and M

2

are among the new models

{ the former because 6j=

M

1

c, and the latter because a _ b is already satis�ed

by M

2

. Additionally, we get the models M

3

= fa : T; b : T; c : Tg and M

4

=

fa : F; b : T; c : Tg which are generated from M

2

by creating all possible truth

valuations varying the truth values of a and b such that a _ b is true.

This example demonstrates some of the salient features of Winslett's propo-

sal. First, the syntactic formulation of an update request has an in
uence on

the update operation. As spelled out in the rules above, the truth-valuations for

atoms mentioned in the formula to be inserted change, and thus logically equi-

valent but syntactically di�erent expressions may have di�erent e�ects. So, for

instance, if we had requested the insertion of (a_ b)^ (c _:c), which is logically

equivalent to the expression to be inserted in the update request (6.35), then we

would have gotten a di�erent result { the truth-valuation of c would be varied.

Second, this means that this kind of belief revision does not change a knowledge

base minimally in the sense that new information is added if it does not con-

tradict old information. Third, as is shown in

[

Winslett, 1987

]

and is evident

from what has been said so far, we do not need a pair of modi�cation operations

(contraction and revision), but the insert operation alone is the only operation

necessary to reach any data base state from a given state. The \deletion" of a

proposition x can always be accomplished by inserting (x _ :x).

13

In

[

Winslett, 1987

]

, matters are much more complicated because the language is �rst-

order. However, for the model-theoretic updates only existentially quanti�ed and unquanti�ed

formulas are considered. Arbitrary quanti�ed formulas come into play only when integrity

constraints and closed world axioms are taken into account. These, however, are not updated

model-theoretically. The former restrict model perturbations, i.e., they are never changed,

while the latter are adjusted after updates. All in all, one could categorize the approach viewed

in its entirety as \hybrid" because more than only model-theoretic considerations are taken

into account. Here, however, we will talk only about the model-theoretic update part.

179

Although this brief sketch of the nonminimal model-theoretic approach to

belief revision sounds somewhat odd (at least to me), it has some pleasing pro-

perties. If we start o� with an incomplete data base characterized by a �nite

theory base, it is possible to represent updated data bases by theories which

grow only linearly with the number of updates. Moreover, Winslett argues that

this style of modi�cations captures the intention of a user (in a data base setting)

better than a minimal-change approach because the e�ects of update operations

depend mainly on the form of the insert operation and only minimally on the data

base, making it easy for a user to predict the outcome of an update operation

[

Winslett, 1987, Chapter 8

]

.

6.5 Nonmonotonic Reasoning

The problem we have studied in the previous three sections was how a logical

theory (or set of models, or knowledge base, or data base) could be changed in

order to re
ect some externally speci�ed requirement. Most of the solutions we

came up with implied nonmonotonic modi�cations of the original theory,

14

i.e.,

some propositions present in the original theory are not part of the modi�ed

theory. This property leads quite naturally to the question of how these operati-

ons relate to the discipline of nonmonotonic reasoning as studied in AI

[

Ginsberg,

1987

]

, which is used to formalize common-sense reasoning. As we will see, there

is an overlap, but the issues addressed and the underlying intentions are quite

di�erent.

Common-sense reasoning is a kind of reasoning which is very di�cult to for-

malize using classical logics. Despite the fact that most people justify their rea-

soning with the phrase \that is logical," analyzing their arguments reveals that

common-sense reasoning employs more than logically sound inferences. In order

to formalize this reasoning in AI, di�erent formalisms have been developed, all

of which are nonmonotonic in nature { they do not respect the monotonicity re-

quirement on the consequence operation (cf. equation (6.3)). The reason behind

this is that defeasible inferences { tentative guesses { should be possible.

One might ask, why is it necessary to develop formalisms for making guesses?

Would it not be a better idea to make all the implicit assumptions which go into

a common-sense inference explicit and use a standard logic calculus then? Of

course, this seems to be possible in principle. However, there are some problems in

exhaustively listing all implicit assumptions. Any rule about change in the world

can be invalidated by an almost in�nite number of incidents { a problem called the

quali�cation problem

[

McCarthy, 1980

]

. For instance, \If I load a gun and pull the

trigger, the bullet will be �red," will be usually a correct assumption. However,

there are a number of conceivable circumstances under which this assumption is

14

Actually, only the theory expansion operation de�ned by equation (6.4) changes a KB

monotonically.

180

incorrect: the powder is wet, the gun is broken, etc. There is an even a larger

number of inconceivable circumstances which could invalidate this assumption.

A related problem is the frame problem

15

[

McCarthy and Hayes, 1969

]

, which

might be stated as \What conditions still hold after an action has been perfor-

med?" Although this might sound trivial, the problems become obvious if we try

to formalize the notion of action and history, as done in

[

McCarthy and Hayes,

1969

]

using a situation calculus. We are faced with the problem of explicitly and

exhaustively stating which conditions are una�ected by all conceivable actions.

In the following, I will brie
y (and only intuitively) characterize the two most

popular formalisms developed in this context and relate them to the logic of

theory change as described above.

6.5.1 Circumscription

Assume you parked your car somewhere. It seems natural to conclude that the

car is still where you left it. This is, however, by no means a logically valid

conclusion because all sorts of things might have happened to your car { it might

have been stolen, towed away, etc. Thus, you may be forced to withdraw the

conclusion that the car is still there (especially if you come back to an empty

parking space). The general pattern of this kind of reasoning seems to be that one

starts o� with a theory about something and denies (for some important aspect

of it) anything which is not derivable from the theory { an assumption which may

be invalidated as one learns more. A simple form of inference which follows this

pattern is based on the closed world assumption (as introduced in Sect. 3.3.1).

Any atomic formula not present in the theory base is assumed to be false. A

more general form of the closed world assumption is predicate completion

[

Clark,

1978

]

as used in prolog. Yet a more general form of this kind of inferences

is circumscription as introduced by McCarthy

[

1980; 1986

]

. Actually, there is

not only one form of circumscription, but a number of di�erent circumscription

techniques have been developed

[

Genesereth and Nilsson, 1987, Chap. 6

]

. All of

these approaches, when viewed from a model-theoretic perspective, consider only

some minimal models instead of using all models in order to determine the truth

value of a proposition. Proof-theoretically, this amounts to adding some formula

to the original theory { in the case of circumscription, a second-order formula.

We will not go into the formal details of these things, however.

6.5.2 Default Theories

Another form of common-sense reasoning is the rule-of-thumb approach, e.g.,

if something is a bird, it is legitimate to assume that it can
y when there is

15

Note that this problem has nothing to do with frame representation languages as discussed

in Sect. 3.1.2!

181

no evidence to the contrary. Formalizing such reasoning processes led to the

development of default theories

[

Reiter, 1980

]

{ consisting of an ordinary �rst-

order theory base and a set of default rules, like the one concerning the
ying

capabilities of birds. These default rules are not considered as part of the object

language, but as additional inference rules, i.e., as a kind of meta-theoretical

device not belonging to the object-level theory.

Formally, a default theory consists of a pair T = (W;D), W a set of �rst-order

sentence in some language L and D a set of default rules of the form:

� :M�

1

: : :M�

m

w

(6.36)

with �; �

i

, and w well-formed formulas in L. The intuitive idea is that if � can

be proven and it is consistent to assume that all of the �

i

can hold individually,

then w may be inferred. This idea is formalized by the notion of extensions of

default theories, which are de�ned by the �xed-points of an operator �. �(S),

with S an arbitrary subset of propositions S � L, is de�ned as the smallest set

such that:

(D1) W � �(S),

(D2) �(S) is a closed �rst-order theory,

(D3) If (� : M�

1

: : :M�

m

=w) 2 D, � 2 �(S), and :�

1

; : : ::�

m

62 S then

w 2 �(S).

An extension E of a default theory is then a �xed-point of �, i.e.:

�(E) = E

While default theories in general are di�cult to deal with { there is currently

no idea what a proof theory might look like for such theories { there are a number

of special cases which are more easily dealt with. In particular, so-called normal

default theories which contain only default rules of the form (� :M�=�) are better

behaved. An example for such a normal default is the informal rule concerning

birds given above, which could be expressed formally as:

Bird(x) : M Fly(x)

Fly(x)

(6.37)

As may be evident from the brief sketch above, default theories and circums-

cription aim at similar goals, and it even seems possible to use them for the same

purposes. As it turns out, however, the relationship between the two approaches

is very complex, and neither one subsumes the other. They give similar results

only in some simple cases

[

Etherington, 1987

]

.

182

6.5.3 Default Theories, the Logic of Theory Change, and

the Knowledge Base Revision Problem

Although we did not dive into the formal peculiarities of circumscription and

scratched only the surface of default theories, it should be evident that the inten-

tions behind nonmonotonic formalisms and the logic of theory change are quite

di�erent. In the former case, we are interested in making tentative conclusions

which may be subject to revision when more information is acquired, while in the

latter case, we are interested in the evolution of a theory over time. Nevertheless,

as shown in

[

Ginsberg, 1986

]

diagnostic reasoning can be modeled by reasoning

in default theories as well as by theory base revision as described in Sect. 6.3,

employing a relevance function �

2

, i.e., a function with three degrees of epistemic

relevance.

Brie
y sketched, in diagnosis from �rst principles, a system and its behavior is

described by the �rst-order part of a default theory, while the assumptions that

all components work as expected are represented by default rules of the form

(:Mq

i

=q

i

). The latter are subject to revision when observations contradict them.

Using a theory change approach, one would assign second degree relevance to all

propositions in the �rst-order part of the default theory, �rst degree to all q

i

's,

and zero degree to all other propositions. Obviously, if one adds a proposition

representing an observation which does not contradict the propositions in the �rst

order-part of the default theory or the propositions with the relevance degree 2,

respectively, then the q

i

s are revised in both approaches.

This overlap between reasoning in default theories and reasoning using the

logic of theory change demonstrates some of the points where, I believe, the

theory change approach is superior to reasoning in default theories. First, default

theories are comprised of two ontologically quite distinct parts: a usual �rst-

order theory on one hand and a set of default rules on the other. The �rst part

is considered immune against revision, while the rules in the default part may

be subject to revision. In the theory change approach, we do not have such a

distinction but may freely distribute degrees of epistemic relevance or may use

other means to decide what is the best way to revise a theory. In particular,

it is even possible to switch to another choice function and consider another set

of propositions as more relevant. In our example of diagnosing faults, we may

come to suspect that not the devices are faulty, but that connections are broken,

which would simply amount to assigning a di�erent degree of epistemic relevance

to propositions. In a default theory framework, this would amount to a radical

reformulation of the entire default theory! Second, while in a default theory

one has only the choice between encoding a proposition as a regular �rst order

sentence or as a default rule, in the theory change approach, it is possible to use

an arbitrary number of di�erent degrees of epistemic relevance { permitting a

more �ne-grained selection of likely diagnoses.

Besides these considerations, it is evident that the logic of theory change

183

corresponds much better to the intuitions about knowledge base revision spelled

out in Sect. 2.3.2. While default logic and circumscription aim only at formalizing

defeasible inferences which are subject to revision, the logic of theory change

addresses the problem of continually changing a knowledge base. Although it is

not obvious how to apply the theoretical results to the problem of terminological

knowledge base revision, at least it provides a sound conceptual framework in

which solutions may be evaluated.

6.6 Reason-Maintenance Techniques

While in the previous sections we viewed belief revision from a theoretical point of

view, in this section we will survey the essential ideas behind the implementation

techniques supporting belief revision, called reason-maintenance or belief revision

techniques. These techniques address the following problems

[

Martins, 1987

]

:

� the inference problem: deriving new beliefs from old ones.

� the problem of disbelief propagation: identifying beliefs which become ar-

guable when other beliefs have changed.

� the revision problem: resolving contradictions by minimal mutilation of the

set of beliefs.

� the nonmonotonicity problem: dealing with nonmonotonically justi�ed be-

liefs { beliefs which depend on the disbelief of something else.

As should be obvious, these problems are mutually independent to a certain

degree. In fact, most reason-maintenance systems (rms) provide solutions for

only a subset of this list.

Relating these problems to our theoretical discussion in the previous sections,

we note that the inference problem is not a problem of only belief revision, but

of any reasoning process. What constitutes the problem in a rms is that a rms

has to keep track of derivations in order to be able to solve the disbelief propa-

gation problem: identifying beliefs which may become arguable if their ultimate

premises are disbelieved. For this purpose, the rms needs information about how

a belief was derived in the �rst place. Two principal solutions for the inference

problem are possible: integrating the inference algorithm into the overall system

or providing an interface to the outside world which allows the inference algo-

rithm to communicate with the rms. In fact, even if the inference algorithm is

integrated into the rms, as in the case of rup (a system, which will be described

in Sect. 6.6.3), an interface (called noticers, demons, consumers, proof monitors,

etc.) is usually provided to the outside world in order to signal that a new belief

was derived or that an old belief has been given up, giving the embedding system

a chance to act accordingly.

184

The third point above { the revision problem { is then the really essential point

in belief revision from a conceptual perspective: how do we change a theory in

order to deal with contradictions? As we have seen in Sections 6.2 { 6.4, this is

only one half of the problem because revision and contraction are two sides of the

same coin. However, it should be noted that the relation between revision and

contraction as described in Sect. 6.2, as well as all other theoretical results, hold

only as long as we deal with monotonic inferences. If nonmonotonic inferences

are employed, all the theoretical results described in Sections 6.2 and 6.3 become

rather useless { the assumption of monotonicity of the consequence operation is

very crucial.

This leads us the last problem in the list, namely, coping with nonmonotoni-

city, which complicates matters a lot. However, as exempli�ed by the re
ections

in Sect. 6.5.3, it is often possible to model the nonmonotonic reasoning process

by theory revision instead of employing a nonmonotonic logic of some sort, which

has the advantage of separating the standard logical inferences from the meta-

theoretical inferences about changing theories. In fact, a substantial number of

rms follow this lead, as we will see.

6.6.1 Monotonic Data-Dependency Networks

One of the basic problems for any AI system maintaining a model about the

world is that derived beliefs may become arguable when the fundamental reasons

for them, the premises, vanish. Actually, this becomes a problem only if derived

beliefs are explicitly stored. If all inferences are only performed on demand {

at query-time, then there is no problem at all. However, if intermediate results

are cached (as described in

[

Van Marcke, 1986

]

) or most of the inferences are

performed at assert-time, which sometimes is necessary for reasons of e�ciency

and pragmatics (as we have seen in Sections 4.4 and 4.5), then the problem

of maintaining derived beliefs must be solved somehow. Of course, there is a

very simple and clean solution to this problem: If something changes, all derived

beliefs are given up, and everything is computed from scratch again. Although

clean and simple, this solution is also very ine�cient. Giving up a premise or

adding a new one usually a�ects only a very small subset of the derived beliefs.

For this reason, the entire problem of belief revision could be seen as an internal

version of the frame problem described above, as noted in

[

de Kleer, 1984

]

.

In order to identify derived beliefs which may be a�ected by a change, it

is necessary to do some kind of bookkeeping, which is called data-dependen-

cy network management

[

Charniak et al., 1980, Chap. 16

]

. A data-dependency

network (ddn) is a directed graph G = (V;E), with the set of vertices V composed

of two disjoint sets, the nodes N , intended to denote believed propositions, and

the justi�cations J , intended to denote sets of propositions used in a derivation.

16

16

If we want to talk about a ddn as a graph we use the terms vertex and edge, while if we

185

The edges E point either from nodes to justi�cations or from justi�cations to

nodes, i.e., E � (N � J) [(J �N).

If there is a link from a justi�cation j to a node n, we say that j supports n.

If there is a link from a node n to a justi�cation j, we say that n participates

in the justi�cation j. A justi�cation without incoming edges is called a premise

justi�cation, and a node supported by a premise justi�cation is called a premise.

As an example, let us assume the following propositions:

a � Man(FRED)

b � Person(FRED)

c � Human(FRED)

d � (8x : Man(x)) Human(x))

e � (8x : Human(x)) Person(x))

f � (8x : Person(x)) Human(x))

If we assume fa; d; eg as the set of premises, after some (�rst-order predicate

logic) inferences, we end up with the set fa; b; c; d; eg of believed propositions.

A ddn recording the inferences would look like Fig. 6.1, with nodes depicted as

circles and justi�cations as squares.

j

e

-

j

d

-

j

a

-

��

��

e

��

��

d

��

��

a

j

1

��

��

c j

2

��

��

b

�

�

�

�

�*

H

H

H

H

Hj

- - -

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

Figure 6.1: A Simple Data-Dependency Network

Employing such a network, it is easy to identify beliefs which should go away

when a particular premise does. A simple procedure for removing derived beliefs

which are no longer justi�ed can be given as follows:

want to focus on the interpretation of a graph as a ddn, we use the terms node, justi�cation,

and link.

186

1. If a justi�cation j is removed, then check whether the nodes fn

j

g which the

justi�cation supported have another justi�cation. Remove all nodes which

do not have an alternate justi�cation.

2. Remove the justi�cations which the removed nodes pointed to.

3. If in the previous step a justi�cation got removed, call the entire procedure

recursively.

17

Let us assume that we might lose con�dence in the fact that every Human is

a Person, i.e., we would like to retract the proposition e. In order to do so, we

delete the premise justi�cation j

e

. Now, because e is not longer justi�ed, e is

deleted, and, following that, j

2

has to go away as well. The recursive call then

removes b, and we are done.

All this is very simple and also e�cient. Because nodes and justi�cations

are only \visited" when they are going to be deleted, in the worst case (when

everything has to be removed) the algorithm performs linearly in the number of

vertices of the ddn. In the average case, the number of deletions m is, of course,

much smaller: m� kV k.

Unfortunately, this is not the entire story. There are cases conceivable where

the simple algorithm sketched above may fail to remove some beliefs which are

not well-founded { beliefs which cannot be derived any longer from the set of

premises. For instance, if we added the proposition that every Person is a Human

(proposition f) to the set of premises in our example then we would end up with

the ddn in Fig. 6.2.

Removing the premise that FRED is a Man (proposition a) would correctly

remove justi�cation j

1

, but the derived beliefs b and c would not be touched

because both still have justi�cations { despite the fact that they cannot be derived

from the premises. If we want to take care of such unfounded beliefs, more

complicatedmachinery is necessary. One way to detect and handle such situations

is the current support strategy as described in

[

Doyle, 1979; McAllester, 1982;

Goodwin, 1982

]

. For any node, a current support { one of its justi�cations { is

maintained and is guaranteed to be well-founded.

The initial move is to use the �rst justi�cation of a node which enters a ddn

as the node's current support. Assuming that all nodes in the ddn have a well-

founded current support before the new justi�cation is inserted into the ddn,

this new justi�cation clearly provides the node it justi�es with a well-founded

support. When a justi�cation has to be removed, things are now quite more

complicated than in the above algorithm because the current support has to be

maintained. This could be done as follows:

17

Actually, we do not have to remove the nodes and justi�cations, but instead could merely

mark them as currently unbelieved. This could save some computations if there is a fair chance

that we might come back to a node and believe it again.

187

j

e

-

j

d

-

j

a

-

��

��

e

��

��

d

��

��

a

j

1

��

��

c j

2

��

��

b

�

�

�

�

�*

H

H

H

H

Hj

- - -

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

��

��

j

f

-

f

j

3

-

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z}

?

Figure 6.2: A Cyclic Justi�cation Structure

1. If a justi�cation is to be removed and it is not the current support of any

node, just remove it and exit.

2. If a justi�cation is the current support of some node n

1

, remove it and mark

node n

1

and all justi�cations n

1

participates in. If any of marked justi�ca-

tions is the current support of some node n

2

, apply step 2 recursively.

3. Now check for all marked nodes whether there is still an unmarked justi-

�cation and, if so, apply step 4 for each such node. After that, go to step

5.

4. Use the unmarked justi�cation j

u

as the new current support, unmark the

node n

u

, and propagate the new status. In other words, unmark, if possible,

all justi�cations the node n

u

participates in and check whether any of the

unmarked justi�cations can be used as a new current support for some

marked node. If so, apply this step recursively.

5. Delete all nodes and justi�cations which are still marked.

Applying this algorithm to our example, we �rst have to say what the current

supports are. Following the rule about selecting a current support when a new

justi�cation is entered, the only justi�cation which is not a current support is j

3

.

188

If we remove j

a

, then a and thus also j

1

will be marked in step 2. Because j

1

is

the current support of c, c and j

2

will be marked in the recursive application of

step 2, and by another recursive application, b and j

3

are marked. Since j

3

is not

a current support of a node, the recursion stops here. If we now try to reestablish

current supports, we note that none of the marked nodes can be provided with

new supports, and thus, they and all marked justi�cations are wiped out.

Although all this is clearly more complex than the simple algorithm, the time

needed to mark, unmark, and collect marked vertices is \almost" linearly pro-

portional to the number of vertices. Let us assume that d denotes the maximal

degree { the maximal number of outgoing and incoming edges. Then the mar-

king step (step 2) visits any vertex at most once. Assume that m nodes and

justi�cations were marked. Step 3 iterates once over all marked nodes and checks

for each node at most d justi�cations. Step 4 is only performed as long as a

label changes from marked to unmarked, which happens at most m times, and

the checks it performs on justi�cations and nodes are bounded by d. Step 5 is

again bounded by m. Thus, the complexity of the unmarking and wiping out

step is something like O(d�m). Comparing this with the �rst algorithm, we see

that the current algorithm is more expensive. The number of marked vertices is

usually larger in this algorithm than the number of vertices deleted in the �rst

algorithm. Furthermore, the maximal degree, although in most cases fairly small

[

Goodwin, 1982

]

, can considerably slow down the algorithm.

Summarizing, it would evidently be an advantage if it were possible to gua-

rantee that no cycles can appear. Thus, it is worth the e�ort to prove that a

particular application has such a property or, if this is impossible, to take pre-

cautions against the creation of cycles. The latter technique has been used, for

instance, in a reason-maintenance system, called itms, integrated in a expert

system for diagnosis

[

Puppe, 1987

]

.

6.6.2 Nonmonotonic Data-Dependency Networks

The ddns we analyzed in the previous subsection contained only monotonic ju-

sti�cations, i.e., all nodes participating in a justi�cation were believed nodes. If

we want to maintain dependency networks which also take disbeliefs into account,

the problem becomes more di�cult. First of all, we have to distinguish among the

incoming links of justi�cations between links which come from nodes which have

to be believed and links which come from nodes which have to be disbelieved in

order to validate the justi�cation. The corresponding sets of nodes participating

in a justi�cation are usually called the IN-set and OUT-set, respectively. Second,

we cannot throw away disbelieved nodes, as in the previous subsection, because

the disbelief in a node may be used in a justi�cation. This implies that we have

to maintain a labeling of nodes which tells us whether they are currently believed

(IN) or disbelieved (OUT).

Putting it more formally, a nonmonotonic ddn has the structure of a mono-

189

tonic ddn. Additionally, the set of edges from nodes to justi�cations is partioned

into OUT-EDGE and IN-EDGE. Furthermore, there is a labeling function B from

the set of vertices into the set fIN, OUT, UNDETg with the intuitive meaning

that a node labeled OUT is disbelieved, a node labeled IN is believed, and a

node labeled UNDET is something we cannot say much about. Similarly, justi-

�cations are labeled IN if they are valid, OUT if they are invalid, and UNDET

if the state is undetermined. Whether a justi�cation is valid or not follows the

intuitive meaning of the nodes in the OUT and IN sets. A justi�cation is valid

if all nodes in the IN-set are believed nodes and all nodes in the OUT-set are

disbelieved nodes. It is invalid if one of the nodes in the IN-set is a disbelieved

node or one of the nodes in the OUT-set is a believed node.

With these conventions, it is possible to de�ne what it means to have a com-

plete, consistent, and well-founded labeling. A labeling is called complete if all

vertices are either IN or OUT. The labeling is called consistent if each IN node has

at least one valid justi�cation and each OUT node has only invalid justi�cations.

The labeling is called well-founded if it is possible to trace back the reasons for a

node being IN to the believed premises { similar to the notion of well-foundness

introduced in the previous subsection.

Before the problem of updating such a network is sketched, a brief example

might be in order. Taking from Sect. 6.5 our bird which probably can
y who

we will call TWEETY following the tradition of AI literature, let us assume the

following propositions:

a � Bird(TWEETY)

b � Fly(TWEETY)

c � (Bird(x) :MFly(x)=Fly(x))

Assuming that fa; cg is our default theory, a nonmonotonic ddn including

the default conclusion c would look like Fig. 6.3 { the links in OUT-EDGE are

marked by a small black circle at the arrow head.

A complete, consistent, and well-founded labeling for this network would be

one which assigned IN to all vertices except to :b, which must be OUT. Modi�ca-

tions in such a nonmonotonic ddn follow approximately the same line as sketched

in the previous section. If the labeling of a justi�cation changes from IN to OUT

and the justi�cation is the current support of a node or if the labeling changes

from OUT to IN and thus changes a node from OUT to IN, something has to

be done. First, all labels which might be a�ected (using the current support

strategy) are replaced by UNDET. Second, a relabeling procedure starts. This

procedure tries to turn the leftover partial labeling into a new complete, consi-

stent, and well-founded labeling. Relabeling is, of course, more complex than

unmarking in the monotonic case. As can be shown, the problem of �nding a

complete and consistent labeling is equivalent to the famous satis�ability problem

for propositional expressions { and, thus, NP-complete. Fortunately, however, it

190

j

c

-

j

a

-

��

��

c

��

��

:b

��

��

a

j

1

��

��

b

�

�

�

�

��

@

@

@

@

@R

- t -

Figure 6.3: A Nonmonotonic Data-Dependency Network

is possible to identify very large and reasonable classes of nonmonotonic ddns

which are considerably better behaved.

One class of such reasonable networks can be characterized by the absence of

so-called odd nonmonotonic loops. These are paths in the graph from a node to

itself such that an odd number of nonmonotonic justi�cations are involved. A

simple case is the left network in Fig. 6.4. This is also an example of a network

for which no consistent labeling can be found. Assuming that a is IN, then the

justi�cation j

1

is invalid, and thus a must be OUT. Conversely, assuming that

a is OUT leads to the conclusion that it must be IN. Although odd loops are

not a su�cient condition for prohibiting a consistent labeling, they nevertheless

make the computation of labelings very di�cult. Without them, it is possible

to compute a new labeling with an O(d �m

2

) algorithm, d the maximal degree

of vertices, and m being the number of vertices to be labeled

[

Goodwin, 1982

]

.

Because odd loops are also \odd" from a conceptual point of view, it seems

legitimate to ban them from ddns { and the algorithm described by Goodwin

does just that. Odd loops are detected, and the algorithm complains about

them.

18

Excluding odd loops from the ddn leaves only the even ones { an example

is the left network in Fig. 6.4. These structures do not have the property of

excluding consistent labelings, but they permit multiple consistent labelings. In

our example, either B(b) = IN and B(c) = OUT, or B(b) = OUT and B(c) = IN

is possible. If it is possible to dispense with both kinds of nonmonotonic loops,

19

18

We will not go into the details of the algorithm. The only interesting point here is the

computational complexity.

19

The only loops permitted are the monotonic ones!

191

��

��

a

��

��

b

��

��

cj

1

j

2

j

3

& %

' $

6

?

t

' $

& %

6

?

�t

- t

Figure 6.4: Odd and Even Nonmonotonic Loops

the complexity given above can even be even reduced to O(d�m), which is just

the same as in the monotonic case!

6.6.3 Justi�cation-Based Reason Maintenance

The �rst domain-independent system based on the notion of data-dependency

networks was Doyle's truth-maintenance system (tms)

20

[

Doyle, 1979

]

, which

initiated considerable research e�orts in this direction and led to the development

of a number of similar systems.

Besides the maintenance of the nonmonotonic ddns as described in the pre-

vious subsection, a number of other interesting ideas utilizing the ddn were in-

corporated into the tms, including dependency-directed backtracking, generation

of explanations, and more. Although very useful, these features were later re-

cognized as distinct and isolatable from the basic idea of the tms { namely,

maintenance of a ddn. Goodwin designed a facility called proof monitors, which

react to changes of the belief status of a node. These proof monitors are then

used to realize dependency-directed backtracking and conditional proofs { the lat-

ter usable for the generation of explanations

[

Goodwin, 1982

]

.

20

A note on terminologymight be in order here. Although truth maintenance system is clearly

a misnomer, as admitted by Doyle

[

1979, p. 232

]

himself { it is not the truth of but reasons

for beliefs or disbeliefs which are maintained { the term truth maintenance seems to have an

overwhelming persistence in the literature. Other, more adequate terms used to describe these

system are belief revision systems

[

Martins, 1987

]

{ which I do not like because belief revision

is a more general term, as we have seen in this chapter { or reason maintenance system, which

I have adopted throughout. When referring to Doyle's reason maintenance system, however,

the acronym tms will be used.

192

From a problem-solving point of view, the technique of dependency-directed

backtracking { a term coined by Stallman and Sussman

[

1977

]

{ is certainly the

most important one. In a problem-solving task, for instance, scheduling, con�gu-

ration, or analysis of faults, a fairly large search space usually has to be explored.

A straightforward technique to accomplish this is ordinary, chronological back-

tracking { the control strategy used in prolog. Choices are made one after the

other, and if it becomes obvious after a particular choice that the solution can-

not be reached with the particular set of choices done so far, the last decision is

retracted and an alternative is explored. If at a choice point all alternatives are

exhausted, the choice point before is revisited, and the same strategy is applied.

Backtracking using this strategy may explore some subsets of alternatives more

than once, even if this particular subset is responsible for prohibiting a solution.

A better strategy is, of course, to record a failure and the reasons for it, avoiding

reexploration of already recognized bad combinations of alternatives.

This is precisely the technique employed in the tms for solving the revision

problem mentioned in the beginning of this section. If, after an input to the tms,

a node which has been labeled as contradictory by the program using the tms

becomes believed, the tms tries to track down the reasons for the belief of the

contradiction. Because premises are beliefs the tms cannot change, it tries to

blame assumptions for the contradiction. An assumption in the tms is a believed

node which is nonmonotonically justi�ed. Out of the set of assumptions suppor-

ting the contradiction directly or indirectly through monotonic justi�cations, one

culprit is chosen and is forced to be disbelieved by inserting new justi�cations and

nodes which summarize the reasons for the contradiction being IN. The details

of this process will be omitted here because this process is quite complex.

Viewing such a behavior from the outside, it can be interpreted as �nding

one of the maximal sets of assumptions such that no contradiction arises after

input of a new node x. Thus, in a weak sense this behavior is similar to �nding

a set in B #x. If assumptions are of the form \belief p if :p is disbelieved", then,

of course, by the arguments made in Sect. 6.5.3, the parallel is quite obvious.

However, assumptions can take an arbitrary form, and, furthermore, the tms

does not incorporate the notion of logical closure but relies on the inferences

done by the embedding system. Even in the case that the assumptions are in the

form as described above, the parallel is still only approximate.

A rms which �ts better into the theoretical framework established in the

previous sections is the rms component of McAllester's rup system

[

McAllester,

1980

]

. rup is a radical departure from the tms in that only monotonic justi-

�cations are maintained and that the inference algorithm is integrated into the

system.

The logic supported by rup is ordinary propositional logic.

21

The inference

21

Actually, in rup a facility called noticers are used, which are similar to proof monitors men-

tioned above and which can be used to derive new ground formulas from universal implications.

193

algorithm used is invoked at assert-time and employs a technique which could

be called propositional constraint propagation of truth-values. Viewing it from a

theorem proving angle, it can be characterized as unit resolution (e.g.

[

Genesereth

and Nilsson, 1987, Sect. 5.2.

]

), and since refutation based on unit resolution is

incomplete, the system does not detect all possible contradictions.

Ignoring the incompleteness, let us analyze the basic operations of the rms.

First of all, it is possible to enter propositions as premises by an assert operation.

Such an input can be either consistent with the propositions accumulated so far

or it can be inconsistent, i.e., the inference algorithm has already deduced its

falsity. In the former case, the new proposition is added, and new truth-values

are propagated (which can lead to the detection of a contradiction). In the

latter case or when an inserted proposition leads to a contradiction, the source

of the inconsistency is sought, using the current support justi�cations which are

tracked down to the set of premises causing the contradiction. One (or more) of

these propositions have to be abandoned (by the system or by the user) in order

to remove the contradiction. Interpreting this strategy in the terms of theory

revision, it could be called a maxichoice revision on a theory base.

22

Interestingly,

McAllester also proposes including \likelihood classes" of premises with di�erent

degrees of relevance, which very much resembles our notion of epistemic relevance

in Sect. 6.3. However, McAllester does not consider the idea of implementing a

schema similar to the base revision operation

�

+. The main reason is probably that

unit resolution cannot deal with the disjunctions created by such an operation in

a sensible way.

Complementary to the assert operation, a retract operation removes pre-

mises. While assert is a full-
edged revision operation (modulo incompleteness

of the inference algorithm), retract is a contraction operation limited to pre-

mises. However, it is possible to de�ne a general contraction operation by �rst

asserting the negation of the proposition to be removed and then retracting

the previously asserted proposition.

6.6.4 Assumption-Based Reason Maintenance

Although the kind of rms described in the previous section proved to be quite

valuable and was used in a number of applications,

23

a number of de�ciencies be-

came obvious when such systems were used in problem solving contexts, in parti-

cular for qualitative reasoning. The \conventional" rms { also called justi�cation-

based rms because of its reliance on justi�cations for the reason-maintenance

Thus, a limited form of �rst-order predicate logic is supported as well.

22

Note that such a strategy can be interpreted as if a choice function had been speci�ed

which is transitively relational, i.e., rup implements a revision scheme which satis�es all the

G�ardenfors Postulates

[

Nebel, 1989

]

.

23

For instance, rup was used in the cake system

[

Rich, 1982; Rich, 1985

]

, and tms was used

in the rule-based problem solving system amord

[

de Kleer et al., 1977

]

.

194

process { is ine�cient in terms of space and time. Most importantly, it is impos-

sible to compare the outcomes of di�erent sets of assumptions

[

de Kleer, 1984

]

.

The problem of ine�ciency results from the \clever" dependency-directed back-

tracking strategy, which prunes the search tree but costs a lot of bookkeeping

overhead. As de Kleer

[

1984, p. 79

]

put it:

Very simple problems �ll up all the memory of Symbolics LM-2 or 3600

in short order : : :Timing analysis shows that the reasoner spends the

majority of its time in the backtracking algorithms. The term \non-

monotonic" reasoning is a misnomer as far as memory is concerned:

the number of justi�cations grows monotonically as problem solving

proceeds.

Due to these criticisms, de Kleer proposes an alternative architecture for rms,

which he calls assumption-based rms. The essence of the idea is to label nodes

with the set of assumptions which were used in the derivation of the node. This

means that a node is neither believed or disbelieved, but believed relative to some

context which is determined by sets of assumptions used in the derivation of the

node. Here, assumptions are not nonmonotonically justi�ed beliefs { de Kleer's

approach is fundamentally monotonic { but arguable premises which may turn

out to be wrong. This architecture avoids the ine�ciency of dependency-directed

backtracking and permits comparison of solutions achieved under di�erent sets of

assumptions { which is very important for qualitative reasoning. Of course, dis-

pensing with backtracking means that the di�erent states are held in parallel, and

thus even more space will be used { in principle. The concrete implementation,

called atms

[

de Kleer, 1986a

]

, however, implements the labeling of nodes very

e�ciently in terms of space and time by using bit-vectors for the representation

of sets. Although this does not solve the problem for arbitrarily large problem

spaces, atms turns out to be usable for all practical cases. De Kleer

[

1986a,

p. 152

]

claims that problems with 1000 assumptions are well within the abilities

of atms

Interpreting de Kleer's system in the framework of theory revision, the atms

computes to a certain degree the maximal sets of assumption which do not con
ict

with the basic premises (a point noted also in

[

de Kleer, 1986b, p. 222

]

).

6.6.5 Utilizing Reason-Maintenance Techniques in

Knowledge Base Revision

Although the problem of knowledge base revision has not been rigorously de�ned

so far, and only some intuitions were spelled out in Sections 1.3 and 2.3.4, it should

be clear that the reason-maintenance techniques described are not a priori usable

for knowledge base revision.

195

First of all, rms's were designed to be used in a problem-solving context. In

other words, rms's are used to explore the problem space given by a problem

description in order to �nd one or all feasible solutions (a plan, a diagnosis, or

whatever). For this purpose, backtracking techniques { in the case of justi�cation-

based rms's { or a kind of breadth-�rst search { in the case of assumption-based

rms's { are employed. Even though we might view the problem of changing a

knowledge base according to some requirement as similar to �nding a solution in

a planning or diagnosis task, we probably do not want to invoke expensive search

algorithms.

Second, all propositions in a rms are retained once generated, and perhaps

marked as being disbelieved or no longer derivable. This is certainly something

we do not intend when changing a knowledge base which is supposed to be static

except perhaps when an explicit change is required. In this case, it seems more

reasonable to \garbage collect" all propositions which are no longer derivable,

particularly so if it is very unlikely that the nonderivable propositions will be

again derived. Otherwise, the above cited comment of de Kleer which states that

although the KB is changed nonmonotonically, the amount of memory consumed

grows monotonically applies.

Summarizing, the techniques of identifying propositions which are no longer

derivable are undoubtly useful in a knowledge base revision context. However, the

utility of the other techniques described is arguable. However, we will defer a more

detailed discussion of these problems until after the problem of terminological

revision has been analyzed.

196

Chapter 7

The Revision Problem in

Terminological Systems

For terminological knowledge bases, revision services do not seem to be strictly ne-

cessary, because terminological knowledge should be static. Although this might

be correct as a �rst approximation, applications often require the revision even

of terminological knowledge. After a brief discussion of the reasons for revisions,

a number of principles are formulated which any knowledge base revision facility

should follow. Based on that, the subproblems of revising terminological knowl-

edge bases are analyzed. In order to get an impression how these problems have

been solved previously, the revision facilities of di�erent terminological systems

are evaluated, revealing that the solutions o�ered are not fully satisfactory.

Accounting for these criticisms, an attempt is made to apply the logic of theory

change to the problem of terminological revision. As it turns out, a straight-

forward adaption fails because of the restricted expressiveness of terminological

representation formalisms. Looking deeper reveals that it is not the representa-

tion formalism which is to blame, but that the underlying reason for the failure

seems to be that the pragmatics of terminological representation do not match

the assumptions behind the logic of theory change.

These re
ections result in a view of terminological revision as minimal mo-

di�cations of de�nitions viewed in isolation. Using this view, a small set of

terminological revision operations is speci�ed.

Finally, we take a quick look at the revision problem in hybrid system and

discuss the interaction between terminological and assertional knowledge in the

revision process.

7.1 Terminologies in Flux

In an idealized environment, one could assume that every piece of knowledge put

into a KB is accurate and thus never needs to be retracted. However, things

197

appear to be di�erent in the real world. It can happen that an input to a KB

is wrong { it does not describe the world as it is { or that a piece of knowledge

becomes outdated because the world has changed.

Terminological knowledge does not seem to be fallible in this respect at �rst

sight. This kind of knowledge is purely analytic in nature and, thus, does not

say anything about the state the world is in. Therefore, one would hardly expect

that a terminological knowledge base has to be revised because of changes in the

world or because it does not model the world accurately.

7.1.1 Terminologies, Analytic Knowledge, and Revisions

The above point of view, however, neglects the fact that terminology does indeed

form an important part of our world, although not of the extensional world.

Terminology serves the purpose of permitting communication. Therefore, we

might run into the above mentioned problems even with terminological knowledge

bases.

First, when entering a terminology into a knowledge base, it is easy to make

a mistake. For instance, we might misunderstand how a technical term is de-

�ned. In denying that this problem has anything to do with representation of

terminological knowledge, but only with our own imperfect understanding, one

could devise some sort of special tool, say, a knowledge base editor, for this pro-

blem. However, if we employ a terminological representation system as part of

a discovery system, such as am

[

Lenat, 1982

]

, or as part of a knowledge acquisi-

tion system, such as the nanoklaus system

[

Haas and Hendrix, 1983

]

, then we

had better be able to correct \misde�nitions." It is not very satisfying to read

that \nanoklaus currently has no provision for unlearning. Therefore, if a new

assertion causes an inconsistency because a previous assertion was not correct,

there is no provision for withdrawing the incorrect assertion"

[

Haas and Hendrix,

1983, p. 411

]

.

Second, terminology changes over time. In particular, categories de�ned by

social or legal institutions are instable. Imagine a term Small-team, which is

de�ned by the management division as a Team with less than than six members.

Let us assume that only such teams get involved in advanced research tasks.

However, after the next management meeting, the de�nition of what a Small-

team is might change, although the contingent rule that advanced research tasks

should be assigned only to those teams may still be valid.

We may try to do away with this problem by denying that relationships bet-

ween terms de�ned by social or legal institutions are analytic. Consequently,

these relationships should not be represented by using a terminological repre-

sentation formalism. We may even go one step further and, adopting Quine's

[

1963

]

arguments, question whether the notion of analytic truth makes any sense

at all. Thus, if terminological formalisms are only capable of representing some

\nonsensical" relationships, what are they good for?

198

This radical position leads nowhere. It neither solves the posed problem

nor does it really account for Quine's arguments. Quine argued only against

the position that there can be any analytic truth in ordinary language or in

science because terms are not strictly de�ned but intertwined with experience

and subject to change: \: : :no statement is immune to revision"

[

Quine, 1963, p.

43

]

. However, he admitted, of course, that a statement can become true because

of inherent lexical or because of factual conditions. The only point he made is that

the boundary is not as sharp as was supposed by others and that this boundary

may even change. Thus, we should be prepared for changes in terminologies and

had better provide a representation system with appropriate services.

199

7.1.2 General Principles for Knowledge Base Revision

Before we analyze the problems coming up in the context of revising terminolo-

gical knowledge bases, it may be worthwhile to identify the general principles to

which any sensible knowledge base revision facility should adhere. These cover,

of course, the G�ardenfors Postulates to some extent, but are aimed at captu-

ring more than only knowledge representation systems employing a superset of

propositional logic as their representation language.

As discussed in Sect. 2.3.2, we will assume one operation { tell { which adds

new knowledge to a knowledge base, perhaps removing con
icting information

if necessary, and another one { forget { which removes knowledge from the

knowledge base, resembling theory revision and theory contraction as discussed

in the last chapter. Here, we will refer to them collectively as knowledge base

revision operations, or just revision operations. Abstractly, such operations can

be speci�ed as functions from the set of all possible knowledge bases KB and

revision request expressions of a request language L into the set of all possible

knowledge bases:

tell:KB �L ! KB

forget:KB �L ! KB

Any such pair of revision operations should satisfy the following principles:

(K1) Adequacy of the request language: The request language should be

interpretable in terms of the interpretation rules for the representation

formalism the KB employs.

(K2) Independence of syntax: If the revision request expressions of two re-

vision operations are equivalent in meaning, then the respective ope-

rations should have the same e�ect on the KB.

(K3) Closure: Any revision operation on a KB should lead to a new, unique-

ly determinable state representable by the representation formalism

employed.

(K4) Success: Any revision operation should be successful, i.e., after a tell

operation, the revision request expression should be derivable from

the KB. Conversely, after a forget, operation the revision request

expression should not any longer be derivable from the KB { provided

the expression is not derivable from the empty KB.

(K5) Minimal change: The change of the KB by a revision operation should

be as minimal as possible { according to some measure of minimality.

200

(K6) E�ciency: Revision operations shall be as e�cient as possible. In

particular, the computational complexity should not be harder than

the complexity of the associated inference algorithms.

The �rst of these principles, adequacy of request language, seems to be almost

self-evident. If the revision operations were not interpretable in terms of the

representation language, then the question would be what we are requesting to

revise. However, as we will see in the next section, it is possible to ignore this

principle { a move which leads to a number of problems which have nothing to

do with the original problem of revising a knowledge base.

If we follow the �rst principle, the second one { which resembles the preser-

vation postulate (

:

�5) { is also self-evident. If we can assign meaning to revision

requests in terms of the semantics of the representation formalism used, then

we certainly want two requests equivalent in meaning to have the same e�ect.

Again, though evident, it seems possible to have di�erent opinions on that. The

nonminimal model-theoretic approach to revision described in Sect. 6.4.2 violates

this principle. On the other hand, as we have seen in Sect. 6.4.1, it is also possible

to have an even stronger opinion on this matter; namely, that revision operations

should also be independent of the syntactical form of the knowledge base.

The third principle { the counterpart to the closure postulate (

:

�1) { turns out

to be the one which creates most of the problems in the context of terminological

revision. Of course, a trivial way to satisfy (K3) is to ignore all revision operations

leading to an unrepresentable knowledge base. However, this would violate (K4)

or (K5).

Principle (K4) tells us that any revision operation with a meaningful revision

request expression should be successful { similar to to the success postulate (

:

�4).

Actually, revision operations which violate this principle should not be called

tell or forget because they obviously do not accomplish what the names

promise.

The �fth principle captures the essence of belief revision. Any revision opera-

tion should be accomplished by a minimal change of the KB. As we have seen in

the last chapter, de�ning the distance between two knowledge states is the cru-

cial point. Three of the G�ardenfors Postulates circumscribe just this principle.

The inclusion postulate (

:

�2) assures that nothing previously unknown should

enter the theory when a contraction is performed, the recovery postulate (

:

�6)

gives a lower bound on any contraction by requesting \recovery," and the va-

cuity postulate (

:

�3) captures the limiting case that there is nothing to remove.

However, although the postulates are plausible, they do not necessarily lead to

meaningful theory change operations, as shown by Theorems 6.1 and 6.2. Prag-

matic considerations are necessary to give the notion of \minimal change" a real

meaning.

Finally, in a computational context, revision operations should be performed

e�ciently. As pointed out in the last chapter, there are evidently some inherent

201

complexity problems in belief revision. However, there was no hint that revision

algorithms have to be harder than inference algorithms in terms of computational

complexity. Thus, a property we will require as a minimum is that revision should

be as easy as inference. Clever implementation techniques are, of course, also

desirable.

7.1.3 Problems in Revising a Terminology

The �rst obvious problem in terminological revision is selecting an appropriate

request language. If we reconsider the syntax de�nition of TF , we see that term

introductions could be used as revision request expressions. However, although

we can assign a meaning to such an expression, it is not clear what tell or

forget operations should do on such expressions.

As already pointed out, the closure principle is the most problematic one. One

reason is that in a terminological formalism we do not have anything similar to

negation or disjunction on a propositional level { a point creating problems when

aiming at something similar to a theory base contraction operation. However,

there are other reasons for not subscribing to the theory change approach when

revising terminological knowledge bases. Terminological knowledge simply seems

not be revisable along the lines discussed in the last chapter.

Even accepting a di�erent sense of revision, we still should try to keep the

closure principle, however. This means that any change operation should lead

to well-de�ned KB. As can be seen from the de�nition of the terminological

formalism in Chap. 3, there are only a few cases we have to take care of. First, we

should avoid multiple introductions of the same atomic term. As we will see, this

can be handled in a very natural way. Second, the problematical case mentioned

in Chap. 3 { terminological cycles { have already been solved in Chap. 5. Third,

we should take care of unintroduced atomic terms. However, this problem can

be solved by adopting the natural convention that each such term is a top-level

primitive term.

Finally, we have the problem of performing revision operations on a termi-

nological knowledge base as e�ciently as possible. This topic, however, will be

postponed to Chap. 8.

7.2 Previous Solutions

Instead of developing a solution from scratch, it might be helpful to study previous

solutions. These could be classi�ed as following:

� network editors, which operate directly on the network used to implement

a terminological knowledge base,

202

� knowledge-base editors, which modify a terminology using a special purpose

editor with dedicated edit operations,

� functional, symbol-level approaches, which o�er a small set of operations for

modi�cations of a terminological knowledge base on the symbol level, and

� functional, knowledge-level approaches, which view a terminological knowl-

edge base as a set of possible subsumption relationships which are to be

modi�ed. However, only additions of new concept de�nitions are permitted

in this context.

None of these solutions is fully satisfactory because they do not support mo-

di�cations of parts of term de�nitions as described in Sect. 1.3. They all seem

to operate on a too coarse-grained level. Moreover, most of them operate on a

shallow, syntactical level, making it di�cult to get an idea of what revision ope-

rations reallymean, and the only approach which is genuinely connected with the

semantics of the representation formalism cannot be extended straightforwardly

to deal with revision.

7.2.1 Network Editing Approaches

Accepting that revisions of terminologies are necessary, a �rst idea realizing these

operations might be to manipulate the network used to implement the role and

concept taxonomies and the various relationships between concepts and roles

{ an approach pursued in the back system

[

von Luck et al., 1987; Peltason

et al., 1987

]

. For example, modifying a value restriction could be carried out by

modifying a directed link between two concepts. However, although this approach

seems natural when creating a concept taxonomy by incrementally adding nodes

and links to a network, there are some serious problems.

First of all, deletions in a network are problematical. If, for instance, a concept

node which is used as a value restriction by another concept is deleted, then it

is not obvious how to proceed. Either such operations should be prohibited, or

they should lead to the deletion of the concept using the deleted concept as a

value restriction. Otherwise the deletion of a value restriction might result in a

\dangling reference."

Second, there are a number of problems when the distinction between literal

and derived links in a network is not maintained { as in the back system. For

instance, inheritance of value restrictions can lead to the insertion of some links

which cannot be deleted. Trying to delete such an inherited link leads to the

immediate reinsertion of the link by inheritance.

The situation becomes even worse if a manually constructed network is classi-

�ed using a classi�cation procedure as described in Sect. 4.4.2. In this case, some

links expressing superconcept relationships are deleted and others are added.

However, the meaning of the superconcept links is changed. Before classi�cation

203

they meant something similar to conceptual containment, but afterwards they

mean immediate subsumption, i.e., necessary set inclusion of extensions. For this

reason, modi�cations after classi�cation have a di�erent meaning than before.

The di�erence becomes obvious when we add a restriction to the concept Small-

team in Figure 3.2, which represents the literal relationships between concepts of

our \team" terminology, and to the same concept in Figure 1.2, which depicts the

derived relationships of the same terminology. In the former case, the restriction

would not be inherited by Modern-team because there is no superconcept link

between the concepts. In the latter case, however, there exists a superconcept

link between Small-team and Modern-team and, thus, there is the question of

whether the link should be used for inheritance. In the back system, this link

is used for inheritance { i.e., instead of distinguishing between the two di�erent

kinds of superconcept links (description-forming and immediate subsumption),

they are merged into one, confusing matters a lot

[

Brachman, 1983

]

. Despite the

fact that such an approach leaves the semantic grounds laid down in the previous

three chapters, it also violates the intuitions behind terminological knowledge

representation.

Summarizing, there are two main problemswith the network editing approach.

First, in adopting the network metaphor, we may run into the problem that de-

letions are problematical. Second, when dropping the distinction between literal

and derived properties, we confuse matters a lot. While the latter problem can

be easily solved by maintaining the distinction between literal term introductions

and derived properties of the terminology, the former problem seems to be a con-

ceptual problem solvable only by choosing a di�erent level on which things are

revised.

7.2.2 Knowledge Base Editing

The prototypical example of a knowledge base editor for a terminological repre-

sentation system is kreme

[

Abrett and Burstein, 1987

]

.

1

kreme is intended to

be an editor for multiple knowledge representation formalisms, but here we will

focus only on the facilities for editing terminological knowledge bases, employing

a representation formalism closely related to nikl. However, kreme is not built

on top of the nikl system because nikl does not support arbitrary modi�cations

of the knowledge base, but only additions of new concept de�nitions.

Besides abilities of knowledge presentation, i.e., browsing and navigating

through a KB (see also

[

Kindermann and Quantz, 1988

]

), kreme o�ers a large

set of operations to modify an existing terminology. This includes adding new

concepts and roles, modifying the de�nitions of existing concepts and roles by

a structure-oriented editor, deleting concepts and roles, and renaming concepts

1

A similar knowledge base editor is incorporated in quirk

[

Bergmann and Gerlach, 1987

]

,

but it does not o�er as many edit operations as kreme.

204

and roles. All changes to a KB are incorporated into the KB by reclassifying the

changed concepts or roles and all other objects which depend on them after an

edit operation has been explicitly �nished by the user.

While adding and modifying concepts or roles are relatively straightforward,

local operations { they would amount to supplying a new right hand side of a

term introduction in TF { deleting and renaming are more problematic operations

since these are global operations on a terminology.

Renaming a term means that all occurrences of one particular term in a

terminology are replaced by another one. This does not change any semantic

relationships in the terminology

2

but a�ects only how a given concept is accessed

from the outside world. Thus, we will consider the issue of naming and renaming

as extrinsic to a terminology and ignore it in the following (but cf. Sect. 7.2.4),

assuming that the problem can be solved by employing some level of indirection

in accessing terms or by a sequence of other modi�cation operations.

In contrast to renaming a term, deleting a concept or role is an operation

which changes semantic relationships. However, it is not quite clear what is

meant by \deleting a term." Abrett and Burstein

[

1986

]

propose three di�erent

delete operations in:

3

� The term introduction as well as any occurrence of the term in other de-

�nitions are deleted. If the concept was used as a value restriction in a

de�nition, a new concept is sought, e.g. a superconcept of the deleted

concept, which may require user interaction.

� The term introduction as well as all subsumed terms are deleted.

� The term introduction is deleted, and all occurrences of the term are re-

placed by the right hand side of the deleted concept introduction.

None of these operations seems particularly convincing. In fact, the idea

of \deleting" a concept or role seems to be somewhat arguable. What do we

mean by that? The last alternative suggests that we want to forbid the usage of

the particular atomic term but want to retain the \meaning," i.e., the de�nition.

The former two alternatives are somewhat vague. They seem to lead to a reduced

terminology both without the term and without the original meaning of the term.

However, it is quite unclear under what circumstances one would like to use these

operations. \Deleting something," a very common operation in computer science,

requires that the thing to be deleted has \object character," a property which

terms in terminologies do not seem to possess.

2

Of course, in case of a name clash, i.e., when the new name is already used in a terminology,

this would have dramatic consequences. However, this is probably an illegal operation.

3

In the later paper

[

Abrett and Burstein, 1987

]

, however, the issue of deleting concepts is

only brie
y sketched.

205

Besides edit operations, kreme o�ers some support for the knowledge ac-

quisition process in form of plausibility tests. During the classi�cation of new

objects or reclassi�cation of changed objects, some checks are performed to de-

tect implausible states. These include:

� a check whether all concepts and roles mentioned in a de�nition are already

introduced, and if the check fails, the user can introduce the unde�ned

terms.

� a check whether an actual, computed value restriction is equivalent to an

introduced, atomic concept. If this is not the case, the user can introduce a

new atomic concept to denote the actual value restriction, or the user may

change the de�nition of the concept used as the literal value restriction such

that it becomes a subconcept of the concept used as the value restriction

of a superconcept.

In order to make the last point a little more vivid, let us analyze the termi-

nology in Figure 7.1 { an example borrowed from

[

Abrett and Burstein, 1986

]

.

inlet-valve

:

� anyrelation

Valve

:

� Anything

Two-port-device

:

= (all inlet-valve Valve)

Stop-Valve

:

� Anything

Tank

:

= (all inlet-valve Stop-valve)

Two-port-tank

:

= (and Two-port-device Tank)

Figure 7.1: A Missing Superconcept Relationship

When computing the actual value restriction of the role inlet-valve for the

concept Two-port-tank by performing inheritance, it becomes obvious that this

is the conjunction of Valve and Stop-valve, a concept conjunction which does not

have a name yet. Although this is quite reasonable and absolutely compatible

with the semantics of the representation formalism, it may be a hint that so-

mething is missing. For this reason, kreme o�ers the user the opportunity to

create a concept with the de�nition (and Valve Stop-Valve) or to make Stop-Valve

a subconcept of Valve, which would be just the right thing in our case. Brie
y

described, the kreme classi�er was made interactive { driven by knowledge ac-

quisition heuristics.

4

4

For another approach with even more interactive capabilities integrated in the classi�er,

albeit one employing a simpler terminological representation language, cf.

[

Finin and Silverman,

1986

]

.

206

Summing up, kreme seems to be a very
exible and powerful tool for editing

terminological knowledge bases. Nevertheless, there are some shortcomings when

viewed in light of the requirements on a knowledge base interface as spelled out in

Sect. 1.1. Particularly, it does not seem to be possible to evaluate the operations

supported by kreme against the principles in Sect. 7.1.2:

� kreme mixes user interaction and knowledge base operations so that the

borderline between them appears to be fuzzy. In particular, kreme in-

corporates knowledge acquisition heuristics into inferences, which might be

adequate in a knowledge base editing context, but precludes the applica-

tion of kreme as a subsystem in a knowledge acquisition system, as e.g.

nanoklaus. Additionally, it makes the modi�cation or extension of these

heuristics di�cult.

� It does not seem to be possible to interpret the entire set of edit operations

as knowledge base revision operations. In particular, the delete and rename

operations seem to be arguable. Neither their intuitive nor their formal

meaning appears to be plausible.

7.2.3 Adding and Deleting De�nitions

In trying to reduce the set of edit operations described above to a small set of

well-de�ned revision operations on terminological knowledge bases, one may come

up with the following set of operations:

� add a term introduction to a terminology,

� delete a term introduction from a terminology.

As a matter of fact, in a recently developed representation system, in loom

[

MacGregor and Bates, 1987

]

, this set has been implemented (MacGregor, perso-

nal communication, 1988). Employing these operations, it is possible to give an

entirely functional speci�cation of a terminological knowledge base, albeit on a

purely syntactical level, i.e., the knowledge base is viewed as a collection of sym-

bolic term introductions rather than as a body of knowledge. Using this idea, it

is possible to give a very compact formal description of the intended behavior of

a representation system. In order to do so, let us �rst de�ne what we mean by a

term table:

De�nition 7.1 (Term Table) Let A

C

and A

R

be (in�nite) sets of atomic con-

cepts and atomic roles, respectively. Then the function S with

S:A

C

! f

:

= ;

:

� g � TF

C

S:A

R

! f

:

= ;

:

� g � TF

R

207

is called a term table. The special term table S

0

with

8c : c 2 A

C

) S

0

[c] = h

:

� ;Anythingi

8r : r 2 A

R

) S

0

[r] = h

:

� ; anyrelationi

is called the empty term table.

Based on this de�nition, it is easy to give a functional, symbol-level speci-

�cation for a terminological knowledge representation system. A KB is a tuple

consisting of a term table and a set of unordered pairs denoting disjoint decla-

rations of concepts, the set of all KBs denoted by KB. Obviously, for any KB

there is a corresponding terminology and vice versa. The terminology correspon-

ding to a particular k 2 KB is denoted by T (k). Following the arguments in

Sect. 2.3.2, four operations are de�ned on such knowledge bases, namely, initkb,

tell, forget, and ask, with tell and ask appearing in three di�erent
avors

corresponding to the types of introductions we can make:

newkb: ! KB (7.1)

tell

C

:KB �A

C

� f

:

� ;

:

= g � TF

C

! KB (7.2)

tell

R

:KB�A

R

� f

:

� ;

:

= g � TF

R

! KB (7.3)

tell

dis

:KB � TF

C

� TF

C

! KB (7.4)

forget

C

:KB �A

C

! KB (7.5)

forget

R

:KB �A

R

! KB (7.6)

forget

dis

:KB �A

C

�A

C

! KB (7.7)

ask

�

:KB � TF

T

2

! fyes;nog (7.8)

newkb should deliver a KB consisting of the empty term table S

0

and an empty

set of disjointness-pairs, tell should replace an entry in the term table by a

new de�nition, forget deletes a de�nition by entering the expression for an

unde�ned term, and ask infers the entailed subsumption relations. In order to

describe the e�ects of these operation formally, let f

[x=y]

denote a function which

is identical to f except at the point x, where the value of f is y:

newkb[]

def

= hS

0

; ;i (7.9)

tell

C

[hS; di; c; op; cexpr]

def

= hS

[c=hop;cexpri]

; di (7.10)

tell

R

[hS; di; r; op; rexpr]

def

= hS

[r=hop;rexpri]

; di (7.11)

tell

dis

[hS; di; c

1

; c

2

]

def

= hS; (d [ffc

1

; c

2

gg)i (7.12)

forget

C

[hS; di; c]

def

= hS

[c=h

:

� ;Anythingi]

; di (7.13)

forget

R

[hS; di; r]

def

= hS

[r=h

:

� ;anyrelationi]

; di (7.14)

208

forget

dis

[hS; di; c

1

; c

2

]

def

= hS; (d n ffc

1

; c

2

gg)i (7.15)

ask

�

[k; x; y]

def

=

(

yes if x �

T (k)

y

no otherwise

(7.16)

There are not too many exciting things to say about this functional speci�-

cation. Most of it is buried in the expression \x �

T (k)

y" in equation (7.16).

There are a few notable points, though. The �rst thing is that the objects we

manipulate are not terms but term introductions, which seems more natural for

a terminology. Thus, we do not get the idea that terms themselves are objects

which can be deleted { and so avoid the blind alley of trying to �gure out what

it could mean to \delete a term."

Second, we note that we could do without the forget

C

and forget

R

ope-

rations because the corresponding tell operations can be used to achieve the

same e�ect if supplied with the appropriate parameters. In fact, loom o�ers just

tell operations (MacGregor, personal communication, 1988).

The above re
ections demonstrate that though we started o� with a pure

symbol-level view, it is nevertheless possible to characterize the semantic conse-

quences of the operations. Evaluating this approach using (K1){(K5), we note

that most principles are satis�ed. The revision request expressions clearly have a

meaning; they are just term introductions and disjointness expressions in the case

of tell operations. Thus, (K1) is satis�ed for tell operations. With forget

operations, the situation is more problematic. However, as mentioned above, we

can do without forget operations { ignoring disjointness restrictions for the

moment. Any revision operation leads to a well-de�ned new KB { provided we

apply the analysis of Chap. 5. Thus, (K3) is satis�ed. Additionally, all tell

expressions are successful in that the subsumption relationships expressed by the

term introduction entered into the KB are derivable afterwards. Moreover, if two

term introductions are semantically equivalent, then the semantic e�ects { the

subsumption relationships { are the same. Hence, (K2) and (K4) are satis�ed.

Actually, the only problem is (K5). Although we did not specify any notion of

minimal change, it seems that a KB change triggered by a tell is nonminimal.

This would not be too bad if it turned out that the notion of minimal change

does not make sense in the framework of terminological representation. However,

if we consider the examples given in the Introduction, we see that incremental

additions or deletions of parts of a term introduction seem to be plausible ope-

rations. Of course, it is easy to achieve the e�ect of an incremental addition or

deletion by the tell operation speci�ed above { provided the right revision re-

quest expressions are speci�ed. However, we are forced to input knowledge which

is represented already. Moreover, from an implementational point of view, dele-

ting and adding a term introduction is more expensive than deleting or adding

only parts of a term introduction (as we will see in Chap. 8).

209

7.2.4 Modi�cations Viewed as Additions

Although the speci�cation in the last section seems to be at least partly reaso-

nable, it is possible to have a radically di�erent view on what it could mean to

modify terminologies. Until now, we have not di�erentiated between a term and

its name because from a semantic point of view such a distinction does not seem

to be necessary. However, when talking about operations on terminologies, we

have already left semantic ground and have entered the land of pragmatics. Thus,

it may be worthwhile to re
ect about the intentions behind the use of a name.

There are (at least) two di�erent interpretations possible when a name is

used to refer to something in a formal system (as argued in

[

Patel-Schneider et

al., 1985, p. 4

]

and

[

Finin and Silverman, 1986, p. 107

]

), namely:

� reference by meaning, i.e., when a name is used, it refers to the current

meaning (de�nition), and the reference is immediately resolved on input so

that later modi�cations do not have any e�ect on the entered expression;

� reference by name, i.e., the usage of a name has the purpose of referring to

something (e.g. a de�nition) which may change.

In order to illustrate the e�ects of the two di�erent perspectives,

5

let us assume

that the de�nition of Team in Figure 3.4 is changed, so that instead of requiring

two members, a Team can now consist of only one member. Interpreting the

knowledge base under the reference by name principle this change would also

a�ect the de�nition of Small-team, i.e., Small-teams require only one member as

well. Actually, the functional speci�cation in the last section just formalizes this

perspective. If, however, the knowledge base is interpreted under the reference

by meaning principle the change would not a�ect Small-teams, which would still

be required to consist of at least two members.

If we would like to formalize such a behavior, we could use the speci�cation

given in the last section, except that for each tell expression, the expanded

de�ning form { using only primitive components { should be entered into the

term table.

In essence, the reference by meaning perspective amounts to viewing a rede-

�nition of a concept (or role) as an additional de�nition not a�ecting the rest

of the terminological knowledge base. For this reason, it avoids a large number

of problems accompanying the reference by name perspective. First, using the

reference by meaning principle, it is impossible to create terminological cycles be-

cause the usage of a name always refers to the current meaning and thus neither

a direct circular term introduction, e.g.

A

:

= (and A B)

5

Obviously, these two perspectives are roughly similar to the two evaluation strategies for

parameters in programming languages which are called reference by value and reference by

name.

210

nor an indirect circular introduction can result in a \meaning cycle." The names

on the right hand side are simply \evaluated" before the name on the left hand

side gets its (new) meaning. Second, on the implementational level, we are never

forced to take care of assert-time inferences which may become invalid.

Although the principle of reference by meaning allows for a simple and elegant

implementation of revision operations, it does not seem to capture the intuitive

understanding of what a modi�cation in a terminological knowledge base amounts

to. The reason for this mismatch is that the occurrence of a concept name seems

to denote more than just the current de�nition. To put it semi-formally, in

our example, the use of Team in the de�nition of Small-team is done with the

intention that in any possible terminology the meaning of Team is part of the

concept Small-team (until this is explicitly denied).

Of course, situations are conceivable in which revisions according to the re-

ference by meaning principle do meet the intentions of somebody building up a

knowledge base. This, however, would mean that a concept name has been used

simply to refer to a given structure { usage of a name to refer to this structure

has just been coincidental.

In summary, we are not able to decide on formal grounds which principle is

\better," but it seems that the intentions behind de�nitions are better matched

by the reference by name principle. In fact, I do not know of any system using the

other principle as a documented feature for knowledge base revision. However, an

older nikl version o�ered it as an undocumented feature for modifying classi�ed

concepts { a fact I discovered once by accident when I was trying to revise a

terminological KB with the reference by name principle in mind. krypton seems

to o�er both modes as undocumented features for the terminological part of the

KB as far as I can tell from the program listing

[

Pigman, 1984b

]

.

7.2.5 A Functional, Knowledge-Level Approach

What we have analyzed so far was more or less the manipulations of symbols,

and the meaning of the manipulations could only be derived indirectly. In this

section we will investigate an alternative approach: the functional, knowledge-

level approach to the speci�cation of a representation system

[

Levesque, 1984a

]

as used for the krypton system

[

Brachman et al., 1985

]

. In this approach,

the knowledge the system possesses at any instance of time is described using

the possible subsumption relations (and truth valuations for the assertional part,

which we will ignore here). Furthermore, any interaction with the system, such

as giving more knowledge to the system or asking what it knows, is performed as

a function on this abstract body of knowledge. Thus, this speci�cation abstracts

not only from any implementational structures but also from concrete symbolic

structures used to express the knowledge.

211

Using the function types (7.1){(7.8)

6

introduced in the last subsection, we

can de�ne the e�ect of the functions on terminological knowledge bases following

closely the approach in

[

Brachman et al., 1985

]

.

newkb[]

def

= f� j � is a subsumption relationg (7.17)

tell

C

[k; c;

:

� ; cexpr]

def

= f�2 kj c � cexprg (7.18)

tell

C

[k; c;

:

= ; cexpr]

def

= f�2 kj c � cexpr ^ cexpr � cg (7.19)

tell

R

[k; r;

:

� ; rexpr]

def

= f�2 kj r � rexprg (7.20)

tell

R

[k; r;

:

= ; rexpr]

def

= f�2 kj r � rexpr ^ rexpr � rg (7.21)

tell

dis

[k; c

1

; c

2

]

def

= f�2 kj 8x 2 TF

C

: (and c

1

c

2

) � xg

7

(7.22)

ask

�

[k; x; y]

def

=

(

yes if 8 �2 k : x � y

no otherwise

(7.23)

The �rst thing one notes is probably that there is no forget operation. It

was not present in

[

Brachman et al., 1985

]

{ and there are good reasons for this

omission, as we will see in the next section. The second important point is that

the semantics of the terminological formalism comes into play in equation (7.17)

by referring to the set of subsumption relations of all possible terminologies. Any

tell operation simply selects a more speci�c set of these relations, i.e., it restricts

the set of possible terminologies. The more knowledge acquired, the more the set

of possibilities shrinks.

The rationale behind the functional, knowledge-level speci�cation is spelled

out in

[

Levesque, 1984a

]

. The main intuition behind the formalization of a knowl-

edge-level KB is that it describes possible world structures { among which we

expect to �nd the world we are trying to describe { which in the course of getting

more information becomes more restricted. World structures in this approach

are truth assignments of propositions { abstracting from interpretations. In the

setting of terminological knowledge bases, this amounts to an abstraction from

semantic structures resulting in sets of subsumption relations.

In this speci�cation, \the actual syntactic form of the de�nition of p is not

considered to be relevant; what counts is the relationship between p and all

other gterms"

[

Brachman et al., 1985, p. 535

]

. However, it abstracts not only

from the actual syntactic form of a de�nition but also from the \reasons" for

subsumption relations, i.e., all terminologies with the same entailed subsumption

relation are considered as equivalent. For example, the two terminologies in

6

In the original paper

[

Brachman et al., 1985

]

tell and ask are called define and subsu-

mes, respectively.

7

Note that disjointness can be reduced to incoherency of the conjunction of the disjoint

concepts, which in turn is equivalent to the fact that the conjunction is subsumed by all

possible concepts because it necessarily has the smallest { the empty { extension.

212

Figure 7.2 are indistinguishable on the knowledge level { they entail identical

subsumption relations.

First Terminology:

A

:

= (and B C)

D

:

� (and A E)

Second Terminology:

A

:

= (and B C)

D

:

� (and B C E)

Figure 7.2: Two Terminologies Equivalent on the Knowledge Level

This example demonstrates that a forget operation undoing the e�ects of a

particular de�nition as speci�ed in Sect. 7.2.3 cannot be de�ned. On the knowl-

edge level, there is simply no way to tell whether a certain subsumption relati-

onship is the result of a particular de�nition or not.

We could, of course, try to revise the subsumption relations directly. A for-

get operation would then be de�ned in terms of eliminating certain subsumption

relationships. Assuming, for instance, that k is the knowledge-level KB corre-

sponding to the terminologies in Figure 7.2, then we might request that the

subsumption relationship between A and D should not hold any longer:

forget

C

[k;D � A] (7.24)

Obviously, such an operation would be something like a theory contraction

in terms of the theoretical framework presented in the last chapter. However, it

is not fully clear whether the results of the last chapter are really applicable { a

problem we will address in the next section.

7.3 A Framework for Terminological Revision

After studying what has been done so far in the area of modifying terminological

knowledge bases, it seems that none of the solutions are fully satisfactory. All of

them violate at least one of the principles presented in Sect. 7.1.2, and the most

promising approach for knowledge base revision { the functional, knowledge-level

approach { does not support forget operations.

As we see in the next subsection, we cannot capture terminological revision

in terms of the logic of theory change without a considerable modi�cation of

the representation language. However, such a modi�cation runs counter to the

philosophy of terminological representation spelled out in Chap. 3. Re
ecting

213

on the pragmatics of terminological knowledge leads us to view a term de�ning

expression { the right hand side of a term introduction { as a set of essential

meaning components, components which can be added and removed.

7.3.1 Terminological Revision Viewed as Belief Revision

Trying to relate the knowledge-level approach to the theoretical framework of

belief revision presented in the previous chapter, we may view the forget ope-

ration as a base contraction operation and the tell operation as a base revision

operation. Clearly, as in the case of theory change operations, we would like to

take the symbol-level into account, using it for determining the epistemic relevant

entities. As a �rst approximation, we will use the term introductions as the set

of epistemic relevant propositions.

However, there are a number of problems. First, a terminological knowledge

base can never become inconsistent. Although, it is possible that a concept can

be incoherent, i.e., its extension is necessarily empty, this does not lead to an

inconsistent KB, a terminology without any admissible semantic structure. Ac-

tually, this means that the tell operation can be seen as a theory expansion

operation since anything is consistent with a terminological KB. Second, connec-

ted with the �rst problem, there is no counter part to disjunction or negation in

a terminology. It is simply impossible to state negated subsumption, like

:(D � A)

or disjunctive subsumption relationships, such as

(D � A) _ (B � C)

The G�ardenfors Postulates for contraction do not refer to disjunction or ne-

gation. However, the construction presented in Sect. 6.3 relied heavily on both of

them. Even the model-theoretic approach described in Sect. 6.4.1 makes use of

them when it comes to the symbolic transformation required to accomplish the

model-theoretic update. The reason for this need is obvious. There are usually

many maximal subsets of propositions which accomplish a contraction request,

and because one does not want to select a single solution, all of them are taken

disjunctively. For instance, in order to accomplish the forget request (7.24)

in the second terminology displayed in Figure 7.2, one could either delete the

introduction of A or the one of D. Since there is no measurement of which dele-

tion is \better," it is probably best to use the disjunction of both introductions.

This, however, cannot be done in a terminological formalism. Although termino-

logical formalisms which support a concept-disjunction operator are conceivable,

they would not help in the general case. They would permit disjunctive concept

descriptions of the form

(or A B)

214

but not disjunctive concept introductions, such as

(A

:

� X) _ (D

:

� Y)

Moreover, in order to satisfy the recovery postulate (

:

�6), we would have to

introduce negated concept introductions as well.

These re
ections show that a contraction operation on subsumption relati-

onships similar to the base contraction operation described in Sect. 6.3 would

require a substantial extension of the representation formalism { an extension

which seems not to �t into the framework of terminological representation. In

a terminology, object descriptions are taken as unambiguous and de�nite, and

subsumption relationships are derived from the descriptions. There is simply no

room for stating disjunctive term introductions as in the example above.

7.3.2 Terminological Revision as Revision of Literal De-

�nitions

Looking for the deeper reasons of the failure of the logic of theory change, we see

that the pragmatics of terminological representation are probably responsible. If

we imagine a system similar to the one described in the Introduction, i.e., a kind

of database system employing a terminological formalism as its database de�ni-

tion language and if we allow for knowledge base revision in the overall system,

then we certainly would require the term introductions to be unrevisable, except

when it is explicitly requested. Entering an assertional item should never lead to

a revision of the terminological knowledge. In some sense, it seems that termino-

logical knowledge is epistemically most relevant { even immune against revision.

The same holds true for other applications, for instance, the ones mentioned in

Chap. 3. In those applications, an input to the assertional subcomponent of the

system should never lead to a change of the terminological knowledge.

The reason is that the represented terminological knowledge is the basis for

communication, the vocabulary used to interact with the world. Of course, we

have to face the possibility that the de�nition of a term is inaccurate because of a

misunderstanding or a change of meaning over time. However, it is the de�nition

of a term, not the subsumption relationship between terms, which is \wrong."

Moreover, the de�nition is not wrong in the sense that it does not match the

facts, but only in the sense that somebody may have a di�erent understanding.

Carnap, trying to characterize the nature of analytic postulates (A-postulates),

which correspond to what we have called \term introductions," put it as follows

[

Carnap, 1966, p. 263

]

:

Always bear in mind that A-postulates, although they seem to do so,

do not tell anything about the actual world. Consider, for example,

the term \warmer". We may wish to lay down an A-postulate to the

215

e�ect that the relation designated by this term is asymmetric. : : : If

someone says he has discovered two objects A and B, of such a nature

that A is warmer than B, and B is warmer than A, we would not

respond by saying: \How surprising! What a wonderful discovery!"

We would reply: \You and I must have di�erent understandings of

the word `warmer'."

This means that instead of a belief revision operation as discussed in the pre-

vious chapter it is more appropriate to try to come to a new mutual agreement

about the meaning of a term. We might take an unwanted subsumption relation-

ship between two terms as an indication that one or more term de�nitions have

to be changed. The revision operation itself, however, should only act on term

de�nitions and only after it has been determined which term de�nitions have to

be changed in which way. Otherwise an accurate term de�nition might be chan-

ged, and thus even more misde�nitions are introduced into the terminological

knowledge base. The appropriate level for such revision operations is obviously

the level of literal term de�nitions.

8

The symbol-level approach described in Sect. 7.2.3 seems to come very close

to this idea. The only arguable point in this solution is that in order to make a

small change to a term de�nition, the entire de�nition has to be reentered. The

other way around, symbol-level changes as described in Sect. 7.2.3 changes the

KB (on the symbol-level) more than necessary. However, this shortcoming can be

circumvented if we can give a sensible and semantically sound de�nition of what

the essential meaning components (see

[

Carnap, 1966, p. 263

]

) are that make up

the meaning of a concept.

De�nition 7.2 (Simple Concept) A TF concept expression is called a simple

concept if it does not contain any and operators.

A simple concept does not contain any conjunction of concepts, neither on

the top-level nor in an embedded expression. For instance,

(all R (atleast 1 Q))

is a simple concept, while

(and X (atleast 1 Q))

is not. Obviously, simple concepts are very similar to linear concepts as introdu-

ced in Sect. 4.3.2, except that the last expression is not a primitive component

8

In other contexts, these pragmatic assumptions may turn out to be wrong. For instance, the

task of learning concepts from examples is not based on explicit, literal changes of a description,

but on �nding �tting descriptions for given examples by employing rules of generalization

etc.

[

Diettrich and Michalski, 1983

]

. Nevertheless, even in this case it is not subsumption

relationships which are manipulated, but symbolic descriptions. In this sense, the approach

to terminological revision described here may be employed as an interface to a knowledge

representation system in such a learning system.

216

but a atomic concept or a number restriction. Furthermore, the function unfold

de�ned in Def. 4.8 applied to TF concept expression yields sets of simple concepts

such that the conjunction over the set is equivalent to the original concept.

Proposition 7.1 Let c be an arbitrary TF concept. Then for any terminology

T and any semantic structure hD; Ei of T :

E[c] = E[(and unfold(c))]

Based on this decomposition of de�ning expressions into essential meaning

components,

9

we are able to re�ne the symbol-level revision approach to set-

theoretical modi�cations of simple concepts participating in a concept de�nition.

Instead of viewing the de�ning expression in a term introduction as one mono-

lithic expression, we take the perspective of a de�ning expression being a set of

simple concept expressions. Thus, a tell operation does not add a new de�nition

to the knowledge base, perhaps also removing an old one, but rather adds a set

of simple concepts set-theoretically to an already present de�nition. Similarly,

a forget operation removes the elements which appear in the revision request

expression from the set of simple concepts making up a concept de�nition. In

the following, this idea is put in formal terms.

De�nition 7.3 (Simple Concept Term Table) Let A

C

and A

R

be the (in�-

nite) set of atomic concepts and atomic roles, respectively. Let TF

S

be the set of

simple concept expressions according to Def. 7.2. Then the function S with

S:A

C

! f

:

= ;

:

� g � 2

TF

S

S:A

R

! f

:

= ;

:

� g � 2

TF

R

is called a simple concept term table. Moreover, let S

1

be S projected to the �rst

component, and S

2

be S projected to the second component. The special simple

concept term table S

0

with

8c : c 2 A

C

) S

0

[c] = h

:

� ; ;i

8r : r 2 A

R

) S

0

[r] = h

:

� ; ;i

is called the empty simple concept term table.

As in Sect. 7.2.3, we will take T (k) to denote a terminology corresponding in

a natural way to a knowledge base consisting of a simple concept term table and

a disjointness set. The operations we de�ne on such knowledge bases are slightly

9

The decomposition of concepts into conjunctions of simple concepts obviously relies on the

restricted expressiveness of TF . However, if expressively more powerful languages are used, it

should be possible to �nd a similar notion of decomposition.

217

di�erent from the ones presented in Sect. 7.2.3 because now we will change the

de�ning expression and the status of a term { primitive or de�ned { separately.

newkb[]

def

= hS

0

; ;i (7.25)

tell

C

[hS; di; c;=]

def

= hS

[c=h=;S

2

[c]i]

; di (7.26)

tell

C

[hS; di; c; cexpr]

def

= hS

[c=hS

1

[c];(S

2

[c][F [cexpr])i]

; di (7.27)

tell

R

[hS; di; r;=]

def

= hS

[r=h=;S

2

[r]i]

; di (7.28)

tell

R

[hS; di; r; rexpr]

def

= hS

[r=hS

1

[r];frexprgi]

; di (7.29)

tell

dis

[hS; di; c

1

; c

2

]

def

= hS; (d [ffc

1

; c

2

gg)i (7.30)

forget

C

[hS; di; c;=]

def

= hS

[c=h

:

� ;S

2

[c]i]

; di (7.31)

forget

C

[hS; di; c; cexpr]

def

= hS

[c=hS

1

[c];(S

2

[c]nF[cexpr])i]

; di (7.32)

forget

R

[hS; di; r;=]

def

= hS

[r=h

:

� ;S

2

[r]i]

; di (7.33)

forget

R

[hS; di; r; rexpr]

def

= hS

[r=hS

1

[r];(S

2

[r]nfrexprg)i]

; di (7.34)

forget

dis

[hS; di; c

1

; c

2

]

def

= hS; (d n ffc

1

; c

2

gg)i (7.35)

ask

�

[k; x; y]

def

=

(

yes if x �

T (k)

y

no otherwise

(7.36)

Before we discuss the pros and cons of the presented revision approach, a few

comments might be in order. The �rst thing we note is that the speci�cation of

newkb, tell

dis

, forget

dis

, and ask

�

do not di�er from the speci�cation given

in Sect. 7.2.3. The operations on roles and concepts are, however, completely

di�erent. In equations (7.26), (7.28), (7.31), and (7.33) the status of a term is

manipulated, i.e., whether it is de�ned or primitive, while in equations (7.27)

and (7.32) simple concept expressions are added or removed from a set of simple

simple concepts characterizing a de�ning expression. In the case of roles, there

is a slight anomaly in that the revision request expression of a tell operation

in (7.29) replaces an already present expression. However, taking the restricted

expressiveness of TF into account, there is no other reasonable way. Replacing

the old expression is the only means of guaranteeing success, and it is a minimal

change in that it does not change more than necessary { on the level of simple

term expressions.

7.3.3 Properties of the Literal Revision Approach

When evaluating the solution described in the last subsection, it seems to be

necessary to analyze the level of simple concepts on which the revision operations

are de�ned. Obviously, this level lies between the syntax and the semantics of

218

terms. It abstracts from arbitrary syntactic distinctions, such as ordering of

subexpressions, embedded conjunctions, and multiple occurrences of the same

simple concepts, but does not consider all terms which have the same meaning

in one terminology as equivalent. So, for instance, in the terminology

A

:

= (and B C)

D

:

= (and A C)

the sets of simple concepts characterizing the respective de�ning expressions are

di�erent, although they have the same extension. However, this is not an acci-

dental distinction but seems to meet the intuitions. As I argued in Sect. 7.2.4,

the literal parts of a de�ning expression of a term should be part of the meaning

of a term in any possible terminology. The level of simple concepts accomplishes

just that. The set of simple concepts characterizing the de�ning expression of D

contains A and C in any terminology. Thus, the level of simple concepts forma-

lizes the notion of equivalence of concept expressions when viewed in isolation,

i.e., equivalence regardless of a terminology. However, there is one exception. If a

concept expression is incoherent in every terminology or contains a value restric-

tion which is incoherent in every terminology, then two expressions semantically

equivalent in every terminology may still be characterized by di�erent sets of

simple concepts. For example,

(and (atleast 2 R) (atmost 1 R)) (7.37)

although having an empty extension in any terminology, is not necessarily equi-

valent to other incoherent concepts on the level of simple concepts.

However, the distinction made on the the level of simple concepts again seems

to be reasonable. Although the expression (7.37) is semantically equivalent to

any other incoherent concept, the reason for the incoherency can only be found

by considering the simple concepts which make up the concept expression. While

this reason for the incoherency is not important when we view the expression

(7.37) as static and unchangeable, it plays a role when viewed from a dynamic

angle. If we intend to revise the concept expression, for instance, by removing

one of the number restrictions, we probably want to retain the other number

restriction.

Essentially, the level of simple concepts seems to capture everything which

we consider as important distinctions between concepts, and it abstracts from all

unimportant, coincidental, purely syntactical distinctions. Moreover, interpreting

a terminological knowledge base on this level, all the requirements presented in

Sect. 7.1.2 are satis�ed trivially. The important question in this context is how far

the principles are satis�ed on the semantic level, i.e., on the level of subsumption

relationships, as well.

The �rst of the principles presented in Sect. 7.1.2, adequacy of the request lan-

guage, is evidently satis�ed. Although we do not manipulate term introductions

219

or subsumption relationships, the expressions still can be interpreted in the for-

malism. The principle (K2) { revision request expressions with the same meaning

should lead to identical e�ects { is satis�ed to the extent described above. All

concept expressions which have identical extension in any terminology and which

do not contain incoherent subexpressions are equivalent on the level of simple

concepts, and have thus the same e�ect on a knowledge base. As regards (K3),

the closure principle, it is impossible to introduce a term more than once and ter-

minological cycles do not present any semantical problem { thus, this principle

is satis�ed.

With regard to (K4) and (K5), the situation is more problematic. The success

principle (K4) is unconditionally satis�ed for tell operations in the sense that

after a tell operation the expression to be added to a term de�nition subsu-

mes the term. For forget operation, however, this does not hold in general.

For instance, if we request to remove (atleast 2 member) from Small-team in the

by now famous \team" terminology, the number restriction on the member role

would still be inherited from Team. As argued above, however, revision opera-

tions are intended to operate on individual de�ning expressions, and thus the

success should be measured on this level as well { and on this level the opera-

tions are successful in most cases. After a forget operation, the expression to

be removed no longer subsumes the term de�ning expression if both are viewed

in isolation { and if the original expression and the expression to be removed are

not incoherent. Summarizing, in a weak sense, (K4) is satis�ed. However, there

are cases when forget is unsuccessful on the semantic level. With (K5), the

minimal change principle, the situation is similar. A tell operation might add

a simple concept which is already inherited and thus change the knowledge base

more than necessary, but when we view the expression in isolation, there is no

other choice.

Actually, I would regard forget operations which are unsuccessful on the

semantic level, tell operations which add something already derivable, and tell

operations which lead to incoherent concepts as legal but as implausible revision

requests (see also Sect. 8.3). They indicate that the assumptions about the state

of the terminological knowledge base are most probably invalid, a fact which

should be taken as a starting point for interaction between the agent issuing the

terminological revision operation and the terminological representation system.

However, this is something which has more to do with knowledge acquisition than

with knowledge representation, and, thus, we will touch on this issue only brie
y

in Sect. 8.3. Summarizing, I strongly believe that the literal revision approach

described above su�ces to cover all cases where terminological revisions appear

to be necessary.

In order to justify this claim, it might be helpful to reconsider the examples

given in the Introduction. In the �rst example, the \atmost"-restriction on the

member role of the Small-team was requested to be decreased to three. Translating

this to a formal revision request on the \team" terminology T , it might look like

220

as follows:

tell

C

[T ;Small-team; (atmost 3member)]

resulting in an addition of the requested number restriction to the de�ning ex-

pression of the concept Small-team. A Modern-team would thus no longer be a

Small-team.

In the second example, for Modern-team, the \atmost" restriction on the mem-

ber role should be changed to ten. Taking this request literally, one could try:

tell

C

[T ;Modern-team; (atmost 10member)]

leading to the addition of the requested number restriction to the de�nition of

Modern-team, although without any semantic e�ect. The Modern-team concept

has already a stronger number restriction on the member role. Actually, I would

regard such an operation as an implausible revision operation which should lead

to further interaction.

10

The e�ect of this operation becomes visible only if the

the stronger restriction is removed from the de�nition of Modern-team, before or

after the above tell operation:

forget

C

[T ;Modern-team; (atmost 5 member)]

In the third example, somebody requested a change for the value restriction

of the member role for the concept Modern-team as follows:

tell

C

[T ;Modern-team; (all memberMan)]

Such an operation leads to an incoherent concept de�nition because the leader

role, which is a subrole of member, is restricted to Woman. However, from a

semantic point of view, there is nothing wrong with incoherent concepts. Again,

I would regard this as an implausible, but legal operation, which should lead to

further interactions. In a belief revision context, one might be tempted to remove

the (least epistemically relevant) propositions leading to the incoherency, e.g. the

subrole introduction of leader, the value restriction on the leader role, or both.

However, since the incoherency is probably based on a misunderstanding of the

term, it seems to be more reasonable to come to a new mutual understanding

instead of trying to �nd a description which di�ers minimally. As argued above,

such an implicit revision will most probably lead to other misunderstandings in

the future.

The fourth example given in Sect. 1.3 is (intentionally) somewhat on the

wrong track. We requested to \delete" the concepts Man and Woman because

the distinction between them were no longer considered as meaningful. First of

10

What should be noted is that though the operation is implausible, even under a revision

scheme which is more oriented towards belief revision as described in the previous chapter, the

semantic e�ect would be the same because the addition of something which can be already

derived does not change anything.

221

all, as discussed in Sect. 7.2.2, it does not seem to be meaningful to delete con-

cepts. Second, it is not even necessary. The intention of dropping the distinction

between Man and Woman can be easily accomplished by \replacing" Woman and

Man by Human in all concepts which use them, in our case only the Modern-team

concept. This can be done either manually for all concepts, or preferably as a

kind of \macro operation" de�ned on the entire knowledge base.

Finally, the last example presented in Sect. 1.3

tell

C

[T ;Human; (all o�spring Human)]

was the reason I investigated terminological cycles in Chap. 5 in the �rst place.

Before we now end the conceptual analysis of revision in terminological sy-

stems, we will brie
y discuss the revision problem in the context of hybrid sy-

stems, providing a partial answer to the question posed in the Introduction of

how assertional and terminological knowledge interact in revision processes.

7.4 Revision in Hybrid Representation Systems

While we have so far concentrated our discussion on the problem of revising ter-

minological knowledge, it might be interesting to study the revision problem in

the broader context of hybrid representation systems. Actually, one intention

behind working out a formally sound solution for the problem of terminological

revision was to provide a framework for the maintenance of assertional knowl-

edge when terminological changes are permitted. With the solution described in

Sect. 7.3.2, it is possible to describe such a maintenance process which is formally

sound and intuitively plausible, as we will see below.

Conceiving a hybrid representation system employing a terminological forma-

lism and an assertional one, for instance TF and AF, let us assume knowledge

base revision operations which act on the TBox and on the ABox, named tell

T

,

forget

T

, tell

A

, and forget

A

, respectively. The two former operations should

be de�ned as described in Sect. 7.3.2, while the two latter should be something

similar to theory change operations as discussed in the last chapter.

As argued in Sect. 7.3.2, tell

A

and forget

A

should never lead to any mo-

di�cation of the TBox. This means that terminological knowledge is not only

epistemically more relevant than assertional knowledge, but also that it is im-

mune against revision { against revision concerning the description of the world.

11

Thus, if an assertion is to be entered which is inconsistent with the TBox alone,

i.e., if there are no models respecting the terminology for the assertion to be

entered, the assertion should be rejected. If the assertion is inconsistent with the

11

As pointed out before, in a concept learning context, one would probably like the oppo-

site behavior, i.e., terminological knowledge to be considered less epistemically relevant than

assertional knowledge.

222

ABox interpreted in light of the TBox, then the ABox has to be revised using one

of the strategies described in the last chapter { taking the TBox as unrevisable.

Revisions in the ABox as described are straightforward, at least conceptually.

The interesting problem is what should be done with the ABox if the TBox is

revised. telling and forgeting parts of de�ning expressions have the obvious

intuitive meaning of restricting or relaxing, respectively, the conditions under

which a term may be applied to an object. telling or forgeting the de�ned

status of a term simplymeans that all necessary and su�cient conditions are given

or that only necessary conditions are supplied, respectively. Using these intuitive

meanings of terminological revision operations, it is easy to derive consequences

of terminological change operations for the ABox.

forget

T

operations result simply in invalidating some hybrid inferences ba-

sed on the withdrawn part of the de�ning expression on one hand. On the other

hand, it may allow recognizing some objects as belonging to the extension of the

now more weakly de�ned concept. For instance, if we decide to forget that every

leader of a modern team has to be a Woman, then any role �ller of the leader

role which had not been explicitly stated to be a Woman can no longer believed

to be a Woman. On the other hand, any Team with at least one leader and not

more than four members can now be considered being a Modern-team, regardless

of the sex of the leader. In any case, a forget

T

operation can never lead to an

inconsistency. If an ABox has models respecting the terminology in the TBox, a

forget

T

operation simply makes more models possible.

For tell

T

operations, we have the opposite situation. A tell

T

may permit

some new hybrid inferences to be drawn, based on the added part of the de�ning

expression of some term. Additionally, some objects previously believed to belong

to the extension of a concept may, after the tell

T

operation, turn out not to be

in the extension of the concept any longer. Most seriously, a tell

T

can lead to

inconsistencies. For instance, if we have in our ABox an assertion that TEAM-X

is a Modern-team with four members, and we tell

T

the TBox that Modern-teams

have at most three members, then the ABox becomes inconsistent with respect

to the TBox. The obvious way to deal with such inconsistencies is to revise the

ABox with respect to the new TBox. Technically speaking, any object which

is predicated to belong to the extension of a modi�ed concept has to be revised

according to the added expression, which results in ferreting out the inconsistency

introduced by the tell

T

operation.

Summarizing, revision in hybrid systems does not seem to present deeper

conceptual problems and is easy to understand on an intuitive level. However,

a necessary prerequisite is that we permit for revisions of parts of term intro-

ductions, as described in Sect. 7.3.2. If we had adopted the scheme discussed in

Sect. 7.2.3 { revising a de�nition by deleting and reinserting it { this would not

have been so straightforward.

Changing the point of view on the problem, the solution presented in this

section may be used as another argument in favor of using hybrid representation

223

formalisms. In Chap. 3 we introduced a terminological formalism with the argu-

ments that factoring out terminological knowledge makes it possible to impose

organizational principles on a knowledge base and that it leads to e�cient special-

purpose inference techniques. Moreover, if the restricted assertional formalism

is used to form a hybrid representation formalism, as in our case, the boundary

between the two formalisms is quite clear, and the purposes of the subformalisms

are evident.

The situation is a little di�erent if �rst-order predicate logic is employed as

the assertional formalism, as e.g. in the krypton case. Although one can still

argue that the distinction between assertional and terminological knowledge sup-

ports the organization of a knowledge base and permits e�cient special-purpose

inference techniques, everything expressible in the terminological formalism may

as well be expressed in the assertional formalism. This situation often gives rise

to heated discussions whether it is really worthwhile to consider such a formalism

as hybrid or \simply" as a di�erent view on �rst-order predicate logic. Hybrid

formalisms may be convenient for expressing a given body of knowledge and may

even be used to speed up the inference process. However, the knowledge expres-

sed is the same regardless of whether a hybrid formalism is used or everything is

expressed in pure �rst-order logic.

Although this argument is correct in a formal sense { on the knowledge level

representation formalisms are irrelevant { it makes, of course, a di�erence how

knowledge can be expressed. This is not only a matter of convenience and orga-

nization but has also to do with the pragmatics of the represented knowledge. As

the re
ection about revision in terminological representation systems has shown,

terminological knowledge seem not to be revisable along the lines one would re-

vise assertional knowledge. This means that although from a static point of view

there may be no di�erence between the knowledge represented in an assertional

formalism and the knowledge represented in a terminological formalism, funda-

mental di�erences become visible if we analyze the properties of the dynamics of

a hybrid representation formalism.

224

Chapter 8

Terminological Reason

Maintenance

Having analyzed revision operations in terminological representation systems

from a conceptual point of view, we will now try to identify appropriate im-

plementation techniques. As a �rst approximation, there are two two simple but

ine�cient solutions. If we are not interested in assert-time inferences and do

all reasoning at query-time, there is no problem at all. After a revision of the

terminological knowledge base as described in Sect. 7.3.2, all subsumption tests

will work on the new terminology without any problems. However, as argued in

Sect. 4.4.2, there are a number of good reasons to perform assert-time inferences

in terminological representation systems.

Accepting that premise, we have the problem that some assert-time inferences

may become invalid after a revision operation and that new ones have to be made.

A brute-force solution would be to throw away everything derived after a revision

operation and to start computing all subsumption and immediate subsumption

relationships from scratch. However, as noted in Sect. 6.6.1, a small change to a

knowledge base usually a�ects only a small fraction of inferred propositions { a

fact we should take advantage of when designing a system.

In the following section, we will analyze what kind of assert-time inferences

should be taken care of and what kind of reason-maintenance technique is most

appropriate for our problem. In particular, we will try to analyze the trade-o�

between recording inferences and recomputation. Based on this analysis, a tech-

nique for combining a simple data-dependency network and invariants derivable

from semantic properties of terminologies related by revision operations will be

described in Sect. 8.2. Finally, in Sect. 8.3, we will brie
y discuss how such

a terminological revision system can be embedded in a knowledge acquisition

system.

225

8.1 Incremental Classi�cation

Essentially, what has been said above implies that the classi�cation process should

work incrementally. For each revision request, the classi�er should update the

a�ected parts of the concept and role taxonomy. Note that this is quite di�e-

rent from making classi�cation interactive, as described in

[

Finin and Silverman,

1986

]

. Interactive classi�cation, as de�ned by Finin and Silverman, means that

the inferences made during classi�cation are used to drive the interaction with

the user { based on some heuristics, e.g. that two atomic concepts with di�erent

names should not be equivalent in a terminology. While such a facility seems

to be a good idea for knowledge acquisition, it precludes the application of the

knowledge base revision facility in a broader context, and it is not clear how to

specify a clean interface between classi�cation and knowledge acquisition heu-

ristics { as we already noted when discussing the kreme system

[

Abrett and

Burstein, 1987

]

in Sect. 7.2.2.

Incremental classi�cation is in some sense easier than interactive classi�cation

because it is based \only" on the semantics of the representation formalism and

ignores all issues connected with heuristics concerning knowledge acquisition.

Nevertheless, incremental classi�cation is not trivial. Lipkis even seems to believe

that it is almost impossible

[

Lipkis, 1982, p. 134

]

:

Once a concept has been established as part of the taxonomy, the

classi�er assumes it will not be changed or deleted, as the e�ects

of such changes on other concepts in the network are, in general,

unpredictable.

Indeed, the classi�ers implemented in kl-one and nikl do not allow for

incremental changes of concept de�nitions. The only revision operation they

permit is the addition of a new, previously unde�ned and unused atomic concept.

As a consequence, working with these systems resembles the time-consuming

edit-compile-test cycle one has to follow in conventional compiler-based software

development environments { despite the fact that the development of knowledge-

based systems is usually performed experimentally and requires strong interactive

capabilities.

Of course, the citation above is either too pessimistic or merely represents a

statement about the particular implementation of the classi�er used in kl-one.

With the de�nition of what a legal revision operation is (as given in the previous

chapter) and the speci�cation of the semantics of the representation formalism, it

is obvious that a revision operation does not result in a completely unpredictable

and chaotic change of the concept taxonomy. Rather, some inferences made in the

classi�cation process become invalid and others become possible { a fact calling

for some form of reason maintenance.

226

8.1.1 What Kind of Reason Maintenance Do We Need?

As pointed out in Sect. 6.6.5, we do not need the full power of reason maintenance

systems for a knowledge base revision facility. We want neither dependency-

directed backtracking as in justi�cation-based rms nor the breadth-�rst search

technique employed in assumption-based rms. The reason is that we do not have

to �nd a minimal consistent set of assumptions or to track down inconsistencies

and get rid of them by chosing alternatives { as is needed in a problem-solving

context. We are merely interested in identifying propositions which can no longer

be derived and, conversely, sets of propositions which can be used to derive

something new. Furthermore, we want to retain as many of the inferences made

as possible. In a nutshell, we only need data-dependency network maintenance

techniques, as described in Sect. 6.6.1 and 6.6.2.

However, what kind of ddn is required? Is it enough to have a simple mono-

tonic, cycle-free ddn, or is it necessary to employ nonmonotonic ddns containing

cycles? Reconsidering the inferences necessary to compute the concept taxonomy

as described in Sect. 4.1 and 4.4, in particular the classi�cation process, leads to

the conclusion that some inferences are indeed nonmonotonic in the sense that

they can be invalidated by tell operations.

As already noted in Sect. 3.2.6, the immediate subsumption relation is non-

monotonic with respect to the addition of new concept introductions. Thus, it

is also nonmonotonically changed by a tell

C

operation on an unde�ned atomic

concept. However, the story is even worse. The subsumption relation is also

nonmonotonic with respect to the tell

C

operations we de�ned. Assuming two

concepts, c and c

0

with c �

T

c

0

, a tell

C

operation on c

0

can easily invalidate

the subsumption relationships between c and c

0

. Thus, if we intend to record

and maintain every atomic inference step in the classi�cation process, we have

to employ a nonmonotonic ddn. Although it seems unlikely that classi�cation

requires circular justi�cations, we will take a closer look at the entire problem,

identifying each atomic inference step and describing the necessary justi�cations.

8.1.2 Recording and Justifying Terminological Inferences

Instead of analyzing the classi�cation algorithm as described in Sect. 4.4, we will

analyze a simpli�ed model �rst. Let us assume that in order to compute imme-

diate subsumption, only the subsumption relation between concepts is used, i.e.,

instead of inserting a concept in a directed graph, the directed graph is computed

from the subsumption relation. Moreover, subsumption between terms will be

computed directly from subsumption between the respective p-terms. Thus, no

anonymous concepts for conjoined value restrictions are created as in the classi-

�cation algorithm described in Sect. 4.4.

Given these assumptions, the inference steps of the classi�cation process are

the following:

227

1. The replacement of atomic terms by their normal-form de�nitions by app-

lying the function exp.

2. The normalization of expanded p-terms by using the norm algorithm.

3. The structural comparison between two p-terms by using the compare

algorithm.

4. Computation of immediate subsumption according to De�nition 3.16.

Actually, steps 2 and 3 can be further decomposed into atomic inference steps

according to the rules (N1){(N8) and (C1){(C6) as speci�ed in norm and com-

pare, respectively. Using this model, we can justify all the atomic steps as

follows.

Each occurrence of a normal-form de�nition which replaces an atomic term in

a term expression can be justi�ed by the term introduction of the atomic term.

Each subexpression in a normalized p-term created by step (Ni) can be justi�ed

by the subexpressions of the unnormalized expression involved in forming a nor-

malized subexpressions. Based on these justi�cations, revision operations could

be handled in the following way. If a subexpression is added to the normal-form

de�nition of an atomic term, then perhaps some new subexpression in normalized

p-terms can be derived. Conversely, if a subexpression of a normal-form de�ni-

tion of an atomic concept is deleted, then some subexpressions in the normalized

p-term become unjusti�ed, and some recomputation is necessary.

Coming now to the structural comparison between p-terms, subsumption bet-

ween p-terms can be justi�ed by the fact that for each subexpression of the �rst

p-term, we �nd some subexpression in the second p-term such that one of the

rules in compare is satis�ed. This means that besides the relationships bet-

ween subexpressions in the two p-terms, a crucial justi�cation for subsumption

is that the subsuming p-term has just the subexpressions it has and no more. If

something is added to the previously subsuming p-term, it is necessary to �nd a

corresponding subexpression in the previously subsumed p-term in order to ju-

stify continued subsumption. Thus, if something is added to a subsuming p-term,

the recorded subsumption relationship will become possibly invalid, and for the

new subexpression, a corresponding subexpression has to be found in the sub-

sumed expression. Conversely, if we add something to a subsumed p-term, the

subsumption relationship computed previously is unarguably valid. For deletions,

of subexpression in p-terms the converse relationships hold.

In order to compute the immediate subsumption relation (i.e., the concept

taxonomy), we also need the complement of subsumption, nonsubsumption. That

is for each pair of p-terms p; q such that p does not subsume q, this relationship has

to be recorded and justi�ed by a subexpression in p for which no corresponding

subexpression in q can be found. Additionally, parallel to the subsumption case,

228

the nonsubsumption relationship has to be justi�ed by the fact that q has only

the subexpressions it has and no more.

Based on the subsumption and nonsubsumption relation between introduced

atomic terms, immediate subsumption between two atomic terms t and t

0

com-

puted using De�nition 3.16 has to be justi�ed by the fact that no introduced

atomic term \lies between" t and t

0

and that the terminology contains only the

introduced atomic terms it actually contains. In the event that a term intro-

duction is changed, a new term is added, the immediate subsumption relation

becomes possibly invalid and must be reestablished on the base of the updated

subsumption relation.

Note that no circular justi�cations are necessary. Terminological cycles, which

were not mentioned explicitly, would be handled by the extended subsumption

algorithm. Thus, although we have nonmonotonic justi�cations, the ddn we

would have to employ is still very simple.

Carrying over this result to the classi�cation algorithm described in Sect. 4.4,

we would have to add some more steps and modify some steps of the inference

recording technique described above. In step 1, only the top-level atomic concepts

would be expanded, and, in step 2, norm would be applied to these partially

expanded expressions. For concepts acting as value restrictions, anonymous terms

would be introduced { justi�ed by the particular value restriction { and these

anonymous concepts would be treated in the same way. Recording of inferences

according to compare would then act only on primitive concept components,

roles, and value restrictions for which subsumption is justi�ed by the chains of

immediate subsumption relationships between them established previously. This

means that the justi�cations for subsumption and immediate subsumption are

intertwined.

Furthermore, if we follow the strategy proposed in Sect. 4.4, inserting concepts

into the concept taxonomy by testing subsumption only until we �nd the set of

immediate subsumers and immediate subsumees, we will not record all subsump-

tion inferences but will justify the immediate subsumption relationships between

a newly inserted concept and the immediate subsumers and subsumees by pre-

viously established immediate subsumption relationships. Since immediate sub-

sumption depends on more premises than subsumption, it may pay to compute

and justify the entire subsumption relation, as well (perhaps only temporarily

before a revision operation is executed).

8.1.3 Redundancy and Functional Equivalence

Although it is possible to employ a ddn in order to support terminological reason

maintenance as sketched above, there are good arguments against such a straight-

forward adaption of reason maintenance techniques to our problem. Analyzing

the structure of recorded inferences and of the necessary justi�cations reveals that

the recorded inferences are either trivial, i.e., in terms of computational costs, it

229

does not pay to record the inferences, or they are justi�ed in a way such that

recomputation is necessary in most cases, anyway.

Subsumption and immediate subsumption both depend on justi�cations of

the form \nothing else is in the term or terminology." Such justi�cations are, ho-

wever, invalidated by almost all revisions. Furthermore, recording the subsump-

tion relationships between subexpressions of normalized terms does not save very

much when recomputations are necessary. In the simpli�ed model, as well as in

the case of full classi�cation, we would have to record

1. identity of primitive components

2. subsumption between roles

3. numerical relationships between number restrictions

4. subsumption relations between value restrictions, which are complex sub-

expressions in the case of the simpli�ed model and anonymous concepts in

the classi�cation model.

These relationships are, however, almost instantaneously computable from the

expressions itself. Although following the csub algorithm, we would need O(jqj)

steps to �nd a subexpression in a term q, we could reduce this to almost constant

time by using indexing or hashing techniques. Recording subsumption relations

between subexpressions would thus not enhance the e�ciency. On the contrary,

the overhead for recording and maintaining inferences would cost more in terms of

space and time than what could be saved by recording subsumption relationships!

This re
ection shows that the straightforward combination of a terminological

reasoner and a ddn does not lead to the result desired. Most of the structure

we could make use of in a ddn is already part of the implementational data-

structure in a terminological representation system. Thus, what we should do is

to exploit this structure, aiming at a system which is functionally equivalent to a

ddn, instead of employing a full-
edged ddn, which would result in redundancy

and mere overhead.

8.2 Invariants of Revision Operations

The key idea in a \hybrid" approach to terminological revision as envisioned

above { exploiting the already computed structures of semantic relationships in

a terminology and combining this with ddn techniques where necessary { is to

identify as many invariants between terminologies related by revision operations

as possible. These invariants can then be used for recomputing the changed

relationships without relying on explicitly recorded atomic inference steps.

230

8.2.1 Terminologies Related by Revision Operations

When analyzing the general relation between two terminologies which are related

by a revision operation as de�ned in the previous chapter, it becomes obvious

that it is possible to identify a large number of relationships between concepts

and roles which are necessarily invariant for a given operation on a given term. In

particular, if we have a tell or forget operation on some atomic term t, then

for any terms s and s

0

which do not use t, i.e., s6

+

,!t and s

0

6

+

,!t, the subsumption

relationships between s and s

0

will not change. This means, only for t and all

terms using t directly or indirectly, the subsumption relationships have to be

recomputed.

However, this is not all that can be said. There are also a number of relation-

ships between terms which stay valid. In order to analyze these relationships, let

us adopt the following conventions. If T is a terminology, then T

0

shall denote

the revised terminology. Furthermore, t shall be the atomic term on which the

revision operation acts. In the case when we have a tell

dis

or forget

dis

, we

will have two terms which are directly a�ected, and which will be denoted by

t and t

0

. Furthermore, the variables o and o

0

will be used for denoting atomic

terms which do not use t or t

0

, and n and n

0

will be used for denoting atomic

terms which use t or t

0

.

One relationship which seems to stay invariant is n �

T

o for a tell

C

operation

and n 6�

T

o for a forget

C

operation. However, we have to be careful. If

the de�ned status is added to a concept introduction, this could mean that a

disjointness restriction becomes irrelevant, resulting in the removal of the term

Nothing as a value restriction in the corresponding p-term, which may lead to the

result that we cannot conclude from n �

T

o that n �

T

0

o is valid.

In general, there are two problematic situations we have to take care of,

namely, the presence of Nothing as a value restriction or as the normalized form

of a concept expression, and the presence of restriction-circular concepts.

1

In any

of these situations, a revision operation may change the subsumption relation in

a way which runs counter to the intuition that telling only makes the a�ected

terms more specialized and that forgeting has the opposite e�ect. Table 8.1

lists all possible cases and relationships we encounter when revising a concept.

Additionally, the exception conditions are all speci�ed.

Each tick (

p

) marks an invariant of a revision operation except for the cases

explicitly given in the footnotes. For instance, the operation tell

C

[T ; t; cexpr]

leads to o 6�

T

0

n if we had o 6�

T

n, and there is no exception to this rule. Instead

of giving proofs for all the invariants, in the next two subsections, we will only

sketch the arguments leading to the ticks in the upper two rows of Table 8.1 {

leaving it to the reader to verify the other rows by using similar arguments.

1

Component-circular concepts are not problematic. As the descriptive semantics tells us,

they are simply equivalent to primitive concepts. When introducing or removing such a cycle,

we should be careful. However, they do not present problems, as we will see below.

231

Operation n � o n 6� o n � n

0

n 6� n

0

o � n o 6� n

tell

C

(: : : ;=)

p

a

p p

a

p

a;c

p

tell

C

(: : : ; cexpr)

p p

c

p

tell

dis

(: : :)

p p

b

p

b

p

b

p

b

p

forget

C

(: : : ;=)

p p

b

p

b;c

p

b

p

forget

C

(: : : ; cexpr)

p p

c

p

forget

dis

(: : :)

p

a

p p

a

p

a

p p

a

a

Except part of one the concepts was equivalent to Nothing before the operation.

b

Except part of one the concepts becomes equivalent to Nothing after the operation.

c

Except one of the concepts is restriction-circular.

Table 8.1: Invariants of Revision Operations

Parallel to revision operations on concepts, we could try to identify invariants

for revision operations on roles. However, since the update of the role taxonomy

is almost trivial, it does not pay to �ll up the space with a table specifying the

role invariants. Furthermore, there are not that many invariants for relationships

between concepts after a role revision , unfortunately. Studying the subsumption

algorithm in Sect. 4.1.1, we see that changing relationships between roles may

either specialize or generalize a concept using this role. Thus, there is not much

to say about the relationship between concepts after a role revision, except that

we know that o �

T

0
o

0

and o

00

6�

T

0
o

000

holds if we had o �

T

o

0

and o

00

6�

T

o

000

,

respectively.

8.2.2 Making a Primitive Concept De�ned

Adding the status of being a de�ned concept to a concept de�nition amounts

to deleting a primitive component in the corresponding p-concept and, perhaps,

deleting a disjointness marker, which may lead to changing a concept from inco-

herent to coherent. Furthermore, for any concept not using the revised concept,

it follows that the corresponding p-concept does not contain the deleted primi-

tive component and disjointness marker. For this reason, in the normal case, we

can infer n �

T

0

o from n �

T

o. However, this holds only if no subexpression

of the p-concept corresponding to n contains the term Nothing resulting from a

disjointness restriction on the revised primitive concept. If this is the case, a

subsumption relationship between n and o based on the subsumption between

a subexpression of o and a Nothing-subexpression in n can be invalidated. For

the complementary relation, n 6�

T

o, things are easier. The removal of part of a

concept or value restriction in the p-term corresponding to n can never lead to

a nonsubsumption relationship being changed into a subsumption relationship.

Hence, in this case, we can unconditionally infer n 6�

T

0

o.

In the case when we consider the change of subsumption relationships bet-

232

ween concepts which are both a�ected by the revision, we see that in the normal

case, subsumption and nonsubsumption are invariant. If we have n �

T

n

0

and

we remove primitive components and disjointness markers, then either we re-

move them in corresponding subexpressions, or they did not contribute to the

subsumption relationship, anyway. However, similar to the case analyzed above,

the implicit removal of a disjointness restriction can invalidate this invariant.

Furthermore, if we have a restriction-circular concept, there are some problems.

Subsumption will not be a�ected by a cycle, but nonsubsumption is not always

preserved. Consider the following example:

X

:

� (all r X)

Y

:

= (all r X)

Here, we have Y 6�

T

X. However, adding the de�ned status to X leads to the

equivalence between X and Y.

Finally, in the �rst row, we have the two cases that before the revision ope-

ration, o �

T

n or o 6�

T

n. If there was a subsumption relation in the unrevised

terminology { which must rest on the fact that some subexpression in the p-term

corresponding to o is Nothing, which is subsumed by the primitive component to

be removed in the p-term corresponding to n { the removal of primitive parts in

the p-term corresponding to n cannot invalidate the subsumption relationship.

On the other hand, the removal of a primitive component in n can establish

subsumption, provided this was the only subexpression not present in o.

As should be obvious, component-circular concepts are not relevant if we add

a de�ned status to a concept. All concepts in the cycle would be equivalent to

a hypothetical primitive concept, and since such a cycle is neither created nor

eliminated by such a revision operation, such cycles are irrelevant.

8.2.3 Adding an Expression to a Concept De�nition

Adding a concept expression to a concept de�nition amounts to restricting the

extension, i.e., the revised concept is subsumed by more concepts than before.

This also holds for all a�ected concepts, i.e., all concepts using the revised concept

in the de�nition. For this reason, the �rst tick in the �rst row should be obvious.

The only problematic case might be that the addition results in a component-

circular concept introduction. In this case, the descriptive semantics tells us that

the entire cycle results in a primitive concept which is more specialized than all

concepts participating in the cycle. Thus, the invariant holds for the introduction

of component-circular concepts as well. Conversely, the relation n 6�

T

o is, of

course, not invariant. Adding something to the de�nition of n can very well

establish subsumption between n and o.

Subsumption between two a�ected concepts continues to hold, except we have

233

a restriction-circular concept, e.g.

X

:

= (all r X)

Y

:

= (all r X)

Adding a concept expression to the de�nition of X leads to the fact that X 6�

T

0

Y.

If the two concepts are not restriction-circular, however, then the addition of the

subexpression either will be at corresponding places in the two corresponding p-

terms since there was a subsumption relationship before, or the subsumed concept

contains a Nothing-subexpression at the place were the revised atomic concept

is mentioned in the subsuming p-term. Nonsubsumption between two a�ected

concepts obviously does not hold because the added concept expression can easily

establish subsumption between two concepts which were unrelated before.

Finally, there are the last two columns in the second row, which are in a sense

symmetrical to the �rst two columns. Adding something to a subsuming p-term

can easily lead to the fact that a previous subsumption relationship is invalidated.

On the other hand, the addition of a concept expression to some de�nition can

never lead to the fact that this concept subsumes some previously nonsubsumed

concept.

8.2.4 Exploiting the Invariants in Reclassi�cation

If we maintained the subsumption relation in a terminology, it would now be easy

to identify the individual relationships which become arguable by a revision ope-

ration and to check these by recomputing subsumption for the identi�ed pairs of

atomic concepts. However, not the subsumption, but the immediate subsumption

relation is usually recorded.

Using the most basic invariants, namely, that the subsumption relation on all

una�ected terms is invariant, the following strategy may be applied. All terms

which use the revised term t and the revised term t itself are spliced out o� the

taxonomies. After that, the normalized form of those terms is recomputed and

reinserted into the taxonomies.

2

As is easy to see, this simple strategy can be

extended in order to exploit the invariants of Table 8.1 as well. When reinser-

ting the a�ected terms into the concept taxonomy, the invariant subsumption

relationships can be used to save a large number of subsumption tests. For this

purpose, the invariant subsumption relationships between a�ected and una�ected

concepts as well as between two a�ected concepts should be temporarily saved

before the a�ected concepts are removed from the taxonomy.

This means that the task of saving recomputations is done by exploiting

invariants instead of relying on a general ddn. The only point where we need a

ddn is the identi�cation of a�ected concepts. Actually, the relation necessary to

2

This actually is the strategy used in kreme

[

Abrett and Burstein, 1987

]

and loom (Mac-

Gregor, personal communication, 1988).

234

identify a�ected atomic concepts is identical to the usage relation { and is for this

reason easily computable from the concept de�nitions itself. Employing a ddn

for this purpose, however, saves the e�ort of searching through all de�nitions.

Thus, we do not need any nonmonotonicity or cyclic justi�cations. The ddn we

have to use is a noncyclic, monotonic one.

The general conclusion we can draw from the re
ections in the last two sections

on implementation techniques for terminological reason maintenance is that when

we know how revision operations can e�ect the knowledge base, in particular,

when we know about invariants without explicitly recording them, then the use

of a general-purpose rms will be much less e�cient than the careful combination

of ddn techniques and invariants. Although this may sound almost trivial, the

idea of solving the revision problem by a dedicated and isolatable component

seems so overwhelmingly convincing that it may take some time to discover what

the real meaning (in terms of computational resources) behind the �nal note in

[

Doyle, 1979, p. 269

]

is: \the overhead required to record justi�cations for every

program belief might seem excessive."

Although the computational complexity in cycle-free ddns is reasonable, the

real costs can be very high. I discovered this fact when implementing a prototype

of a terminological revision system which handles terminological cycles and revi-

sion operations, which led to the investigation of invariants between terminologies

related by a revision operation.

There are two points to consider here. First, terminological revision di�ers

considerably from the problems Doyle and others propose to use a rms for. Se-

cond, the concrete implementation was carried out in symbolics-prolog, and

this implementation of prolog (as well as many other prolog implementati-

ons) has the property that recording something in the database usually costs a

lot of time compared to other operations, e.g. uni�cation and backtracking. For

this reason, in prolog, it often pays to recompute something instead of recor-

ding an assert-time inference. Nevertheless, maintaining the immediate subsump-

tion relation leads to a considerable speed-up compared to computing immediate

subsumption from scratch, and exploiting the invariants in revision also saves

a signi�cant amount of time when reclassifying concepts a�ected by a revision

operation.

8.3 Supporting Knowledge Acquisition

So far, we have intentionally ignored all issues concerning knowledge acquisition

and have focussed on the formal and implementational aspects of revising termi-

nological knowledge bases. This means that we have the freedom to apply the

system in every context where a revision facility is required { be it in machine

learning, in knowledge acquisition, or simply in maintaining the terminological

part of a hybrid representation system. In this section, we will discuss how the

235

revision facility might be integrated into a knowledge acquisition system.

First, we should note that the separation of issues connected with represen-

tation and revision on one hand and the problems of knowledge acquisition on

the other hand avoids a number of problems and confusions usually present in

approaches which do not distinguish between these issues. For instance, the \em-

pirical semantic" approach

[

Reimer, 1985; Reimer, 1986

]

(already mentioned in

Sect. 2.2.1) does not aim at describing what the contents of a knowledge base

is supposed to denote in the external world but imposes integrity constraints on

the use of certain representation constructs

[

Reimer, 1985, Sect. 3.3

]

: \Repre-

sentation constructs are required to re
ect the empirical regularities which are

holding in some domain of discourse. This way the possibility of representing il-

legal knowledge is reduced and (semantic!) integrity is increased." The problem

with such an approach is that it is clear neither what the \empirical regularities"

of representation constructs are, nor what \illegal" knowledge is. The net e�ects

are that it remains unclear what the representation constructs refer to and that

the speci�cation of the representation language and of the representation system

is overloaded with restrictions which belong conceptually to a user interface.

Furthermore, imposing \integrity constraints" on a representation language

may lead to restrictions which are di�cult by a user to understand and are most

probably unnecessary { if the syntax is designed carefully. The investigation of

terminological cycles in Chap. 5 was motivated mainly by this fact and the idea

that a system should be \liberal" with respect to seemingly weird user inputs.

Instead of complaining about a particular revision request, the system should

simply point out the consequences and perhaps indicate what is unusual about

the revision request. For instance, component-circular concepts seem to be really

nonsense { and for this reason one might be tempted to ban them from a termi-

nological knowledge base. However, the user may have had in mind to cut this

cycle somewhere else, in any case. Thus, forbidding component-circular concepts

would force the user to take an unmotivated detour. Nevertheless, taking a li-

beral standpoint does not imply that the user should not get any feedback. For

this reason, some conditions for detecting

� implausible state of a knowledge bases and

� implausible revision requests

will be speci�ed, whereby implausibility will mostly be justi�ed by the fact that a

shorter and less complex expression would be able to achieve the same semantic

e�ect. These conditions might be seen as \integrity constraints" in the sense

described above. However, they are not absolute and one can even say there is

a grading of plausibility, as opposed to the binary decision of either accepting or

rejecting a user input.

As we have seen in the previous chapter, all revision requests lead to well-

formed and meaningful knowledge bases. However, based on the rule given above

236

that it is more desirable to use a short and simple expression than a long and

complicated one to achieve a given semantic e�ect, it is possible to identify some,

more or less, implausible parts of a terminological knowledge base:

� Component-circular concepts and roles are implausible since the semantic

e�ect could be expressed more succinctly by a primitive concept using all

the non-circular restrictions.

� incoherent concepts are implausible because they cannot be used to describe

anything or to de�ne new plausible concepts. Most likely, the user has

overlooked some disjointness restriction or con
icting number restrictions.

� Similarly, incoherent value restrictions are implausible. The simplest way

to express that a role cannot be �lled is to use an \atmost" restriction of 0.

� The presence of two atomic concepts equivalent with respect to subsumption

is implausible since one of them would be enough to achieve anything which

could be done with the two concepts.

� Concept de�nitions mentioning role restrictions already inherited are some-

what implausible because the de�nition is more complex than necessary.

Using these conditions, a revision request can be judged to be implausible

if it leads to a partly implausible knowledge base. However, as already pointed

out in Sect. 7.3.3, there are more cases which can be regarded as implausible. In

particular, all revision requests which are not successful on the semantic level or

which are more complex than necessary can be regarded as implausible:

� Any revision request leading to an implausible state is implausible.

� Any tell operation adding something which is already a literal part of the

knowledge base is implausible.

� Any forget operation trying to remove something which is not a literal

part of the knowledge base is implausible.

� Any forget operation not removing the subsumption relation between the

removed expression and the revised concept is implausible. Note that this

implies that the revised concept was implausible!

� Any forget operation leading to Anything or anyrelation is implausible.

As is easy to see, these conditions could be checked by subsumption tests and

inspection of the simple concepts making up a concept de�nition. Moreover, the

conditions speci�ed could easily be formulated as formal rules which could be

used to drive a user interface, which would give us the
exibility to change and

extend this set of rules in order to meet di�erent demands.

237

I hope to have shown by the discussion above that distinguishing between the

formal process of revising a knowledge base and the heuristic part of supporting

the user in a knowledge acquisition context enables us to to achieve a better and

deeper understanding of both problems.

238

Chapter 9

Summary and Outlook

Knowledge representation formalisms should be declarative, i.e., they should have

a semantics that is process independent. However, when such formalisms are put

to use, the processing aspect becomes very important. Focusing on this aspect,

technical contribution were made in two areas, namely, reasoning and revision,

studied in the context of kl-one-based hybrid representation systems.

9.1 Technical Contributions

Starting with a kl-one-based terminological knowledge representation formalism

(called TF), a model-theoretic semantics inspired by

[

Brachman and Levesque,

1984

]

was used to analyze some of the semantic properties of the formalism. In

particular, it was shown that it is possible to abstract from the semantic structu-

res induced by a (cycle-free) terminology without changing the possible extensions

of de�ned terms. For this reason, subsumption in terminological languages can

be reduced to subsumption in term-forming languages (Theorem 3.3). This holds

even when primitive concepts and disjointness restrictions are permitted because

they can be eliminated without an e�ect on the relevant semantic structure of

a terminology (Theorem 3.1). Additionally, a simple assertional formalism (cal-

led AF) was introduced resulting together with TF in a hybrid representation

formalism closely resembling the formalism used in the back system. A uni�ed

model-theoretic semantics for the overall formalism was speci�ed, and a hybrid

entailment relation was de�ned. Based on this formalization, it was shown that

TF=AF is a conservative extension of TF (Theorem 3.6).

Using the formal semantics, I showed that the subsumption problem in the

term-forming language underlying TF is decidable (Theorem 4.3), but co-NP-

hard (Theorem 4.5) and speci�ed an incomplete subsumption algorithm which

detects all obvious subsumption relationships in polynomial time (Theorem 4.2).

Unfortunately, however, this complexity result is not valid for subsumption deter-

mination in terminological languages. This problem is co-NP-hard even for very

239

small terminological languages (Corollary 4.3). Concerning hybrid inferences, I

noted that an important inference had been ignored in similar systems, and pro-

ved that employing this inference leads to completeness of the hybrid inference

algorithm in the limiting case that the world description is, roughly speaking,

vivid in the sense of

[

Levesque, 1986

]

(Theorem 4.10). Although this is a rather

weak characterization, it seems to be a reasonable and desirable property.

Finally, I tackled a problem usually ignored, namely, how to deal with termino-

logical cycles. Evaluating three di�erent styles of semantics led to the conclusion

that the descriptive semantics, which does not prefer least or greatest semantic

structures, is the most plausible one. Based on this style of semantics, I showed

that subsumption in TF remains decidable (Theorem 5.3) and discussed how to

extend the inference algorithms.

Although inference is the most important aspect when using a knowledge

representation formalism, a knowledge representation system which is simply a

mechanized deductive calculus is not very useful for practical purposes. Since the

world changes, it is necessary to change knowledge bases as well { a requirement

which motivates the second topic { revision.

Based on a survey of current approaches in this �eld, it was shown that

the solutions proposed for updates of logical data bases and for counterfactual

reasoning can be reconstructed in the logic of theory change employing a notion

of epistemic relevance (Theorem 6.3). This reconstruction demonstrated that

reason maintenance is only an implementational notion and needs not to be

used as a primitive in a theoretical framework of belief revision, contrary to the

opinion other authors seem to have. Furthermore, I argued that belief revision as

implemented in the reason maintenance system rup can be conceived as a special

case of this scheme, which gives a formal characterization of the revision process

implemented in the assertional component of kl-two.

Using the rationality postulates of the logic of theory change, a set of general

requirements for knowledge base revision was developed (Sect. 7.1.2). These re-

quirements were employed to evaluate previous solution to the problem of revising

terminologies. As it turns out, none of them ful�ll all requirements. However, an

attempt to use the logic of theory change in order to solve the problem also did

not lead to a satisfying solution. First, in order to apply the logic of theory change

to terminological knowledge, the representation formalism must be considerably

extended. Second, taking pragmatics of terminological knowledge into account,

the logic of theory change seems not to be the appropriate tool for terminologi-

cal revision. For these reasons, I adopted an approach which aims at minimal

changes on the symbolic level, abstracting from arbitrary syntactic distinctions,

though (Sect. 7.3). One crucial property of this solution, namely, the closure

property of the revision operation, relies on the fact that terminological cycles

are legal and meaningful. Based on this result, I discussed how terminological

revision can be combined with the theory change approach in order to design an

intuitive plausible and simple model of revision in hybrid systems (Sect. 7.4).

240

Adopting the notion of minimal changes on the symbolic level, some possi-

ble implementation techniques were explored. A straightforward implementation

based on a rms is apparently too ine�cient, which led to the analysis of invari-

ants of terminological revision operations (Table 8.1). Using these and a simple

data-dependency network is obviously more e�cient than employing a general-

purpose rms. Finally, I sketched a mechanism how to integrate such a system

into a knowledge acquisition tool with the main emphasis on detecting implau-

sible states and revision requests, contrasting this with an approach of enforcing

\integrity."

9.2 Open Problems

There are a number of problems that are still open and some directions of investi-

gation I did not pursue. The most obvious question is the one resulting from the

analysis of subsumption determination in terminological languages in Sect. 4.3.2:

1. Are some of the provably intractable term-subsumption problems well-

behaved in most cases occuring in practice?

A second, more theoretical problem is the computational complexity of sub-

sumption determination in cyclic terminologies. If an appropriate �xed point

semantics (least or greatest) is used, the PSPACE-completeness result for NDFA

equivalence will probably carry over to subsumption in terminologies, i.e. sub-

sumption is probably PSPACE-hard. For the descriptive semantics, NDFA equi-

valence cannot be straightforwardly reduced to subsumption. Thus:

2. What is the increase in computational complexity when moving from cycle-

free to cyclic terminologies and does it depend on the style of the semantics?

Another open problem is in how far the conditional completeness result for

realization (Theorem 4.10) can be generalized:

3. What are the minimal requirements on the terminological language, on the

algorithms, and on the form of the assertional knowledge base to achieve

the conditional completeness results?

More generally, it seems to be necessary to develop theoretical tools and techni-

ques to analyze and describe incomplete reasoners

1

and to develop more general

methods to combine di�erent representation and reasoning systems in order to

1

The approach of analyzing expressively limited formalisms and weak semantics as described

in

[

Levesque, 1988

]

is one obvious direction. However, I believe that additional criteria have to

be developed which are more oriented towards application requirements.

241

create useful and predictable hybrid systems. As a matter of fact, hybrid sy-

stems employing limited reasoners will probably not be accepted if we are unable

to show that their reasoning capabilities satisfy some reasonable criteria.

2

Turning to revision, there are also some loose ends. First, there is the que-

stion of what the formal relationships between the notion of epistemic relevance

introduced in this work and epistemic entrenchment as introduced in

[

G�ardenfors

and Makinson, 1988

]

is. Although it is clear that in general it is impossible to

construct an epistemic entrenchment function for a given epistemic relevance

function (because base contraction does not satisfy postulate (

:

�8)), the question

is:

4. Under which circumstances is it possible to construct an epistemic ent-

renchment function corresponding to a given epistemic relevance function?

Furthermore, there is the question of how to formalize iterated revision and

contraction. The logic of theory change deals only with the case of revising a

theory given some measure of relevance but does not give a hint how this measure

is to be updated by a change operation. However, this is necessary if more than

one change operation shall be applied to a knowledge base.

Finally, evaluating the solution to the problem of terminological revision,

there are, of course, a number of pragmatic settings where other strategies are

conceivable, which gives raise to the question of whether the logic of theory change

can be exploited in such settings. As a general direction, I believe that the further

investigation of properties of belief revision are necessary for the design of future

representation systems because real systems will have to cope with a changing

world and the correction of wrong assumptions.

2

For instance, in

[

Smoliar and Swartout, 1988

]

, the incomplete terminological reasoner nikl

is criticized and rejected as a knowledge representation tool partly because of the lack of a

description of its reasoning capabilities.

242

Appendix A

The Universal Term-Forming

Formalism U

Below, the syntax and semantics of all term-forming operators of U

[

Patel-

Schneider, 1987a

]

is given (some of the operators have been renamed and others

have been omitted without changing the expressiveness, though).

hconcepti ::= hatomic-concepti j

(and hconcepti

+

) j

(or hconcepti

+

) j

(not hconcepti) j

(all hrolei hconcepti) j

(atleast hnumberi hrolei) j

(atmost hnumberi hrolei) j

(rvm hrolei hrolei) j

(sd hconcepti hbindingi

+

)

hbindingi ::= (� hrolei hrolei) j

(� hrolei hrolei)

hrolei ::= hatomic-rolei j

(androle hrolei

+

) j

(orrole hrolei

+

) j

(notrole hrolei) j

(comp hrolei

+

) j

self j

(inv hrolei) j

243

(range hrolei hconcepti) j

(trans hrolei)

hnumberi ::= hnon-negative integeri

The speci�cation of the semantics is done by specifying the equations for the

extension function. D and E are the domain and the extension function as de�ned

in De�nition 3.2. c and c

i

denote concepts, b and b

i

denote bindings, and r and

r

i

denote roles.

E[(and c

1

: : : c

n

)] =

T

n

i=1

E[c

i

]

E[(or c

1

: : : c

n

)] =

S

n

i=1

E[c

i

]

E[(not c)] = D n E[c]

E[(all r c)] = fx 2 Dj 8y : hx; yi 2 E[r]) y 2 E[c]g

E[(atleast n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E[r]gk � ng

E[(atmost n r)] = fx 2 Dj kfy 2 Djhx; yi 2 E[r]gk � ng

E[(rvm r

1

r

2

)] = fx 2 Dj8y : hx; yi 2 E[r

1

])

hx; yi 2 E[r

2

]g

E[(sd c b

1

: : : b

n

)] = fx 2 Dj 9y 2 E[c] ^ hx; yi 2

T

n

i=1

E[b

i

]g

E[(� r

1

r

2

)] = fhx; yi 2 D �Dj 8z 2 D : hx; zi 2 E[r

1

])

hy; zi 2 E[r

2

]g

E[(� r

1

r

2

)] = fhx; yi 2 D �Dj 8z 2 D : hy; zi 2 E[r

2

])

hx; zi 2 E[r

1

]g

E[(androle r

1

: : : r

n

)] =

T

n

i=1

E[r

i

]

E[(orrole r

1

: : : r

n

)] =

S

n

i=1

E[r

i

]

E[(notrole r)] = (D �D) n E[r]

E[(comp r

1

: : : r

n

)] = E[r

1

] � E[r

2

] � : : : � E[r

n

]

E[self] = fhx; yi 2 D �Dj x = yg

E[(inv r)] = fhx; yi 2 D �Dj hy; xi 2 E[r]g

E[(range r c)] = E[r] \ (D � E[c])

E[(trans r)] = (E[r])

+

244

Appendix B

Overview of Formalisms and

Systems

This appendix gives an overview of the computational complexity (with respect

to term-subsumption) of some term-forming languages described in the literature

and surveys the features of implemented hybrid systems employing terminological

formalisms. For this purpose, some more term-forming operators are needed. In

the following, c and c

i

denote concepts, r and r

i

denote roles, and rl and rl

i

denote lists of roles or the role self.

(single r)

def

= (atmost 1 r)

(some r)

def

= (atleast 1 r)

(c-some r c)

def

= (atleast 1 (range r c))

(c-atleast n r c)

def

= (atleast n (range r c))

(domain r c)

def

= (inv (range (inv r) c))

(l-rvm (rl

1

) (rl

2

))

def

= (rvm (comp rl

1

) (comp rl

2

))

(eq-rvm (rl

1

) (rl

2

))

def

= (and (rvm (comp rl

1

) (comp rl

2

))

(rvm (comp rl

2

) (comp rl

1

)))

Additionally, we will assume a restricted concept negation operator \a-not" de�-

ned on primitive components only, such as the one used in NTF , and a restric-

ted role-value-map operator \
-rvm" that is de�ned only over role-chains using

single-valued roles (or features). Using the term-forming operators of U and the

operators de�ned above, Table B.1 summarizes all published complexity results

concerning subsumption in term-forming languages.

245

Name Concept-

Forming

Operators

Role-

Forming

Operators

Complexity of Subsumption, Re-

marks, and References

FL

�

and, all, some polynomial

[

Levesque and Brachman, 1987

]

and, all,

some, rvm,

-rvm

inv polynomial

[

?

]

FL and, all, some range co-NP-hard

[

Levesque and Brachman, 1987

]

ALE and, all,

c-some, a-not

NP-complete

without a-not still NP-complete

[

?

]

ALU and, or,

a-not, all,

some

a

co-NP-hard

without all and c-some, subsump-

tion is still co-NP-hard

[

Schmidt-Schau� and Smolka,

1989

]

ALC and, or, not,

all, c-some

PSPACE-complete

[

Schmidt-Schau� and Smolka,

1989

]

NTF

T

and, all,

atleast,

atmost

androle co-NP-hard

without androle but with c-atleast

still co-NP-hard

Section 4.2.2 and

[

Nebel, 1988

]

and, all,

atleast

atmost

androle,

range

polynomial for four-valued se-

mantics

[

Patel-Schneider, 1989a

]

R androle,

notrole,

comp, self

undecidable

[

Schild, 1988

]

nikl

�

and, all,

some, single,

l-rvm

range, inv undecidable

without inv still undecidable

[

Patel-Schneider, 1989b

]

kl-one

�

and, all,

eq-rvm

undecidable (subsumes the above

result)

[

Schmidt-Schau�, 1989

]

a

In the book, c-some was mentioned here, wrongly!

Table B.1: Complexity Results for Various Term-Forming Languages

246

The next table surveys the features of hybrid systems based on kl-one as far

as there are descriptions of implemented systems in the literature. However, often

there are di�erent versions with di�erent terminological formalisms. Moreover,

sometimes the expressiveness is restricted in a way that makes it hard to give

a concise description in the framework established so far. For instance, in most

systems role-forming expressions are only permitted on the right hand side of

role introductions. This does not a�ect the principal expressivity provided roles

can be introduced as de�ned roles (i.e. by using

:

=), but it makes a di�erence if

only primitive roles are allowed. Additionally, sometimes extensions which do not

contribute to the terminological expressiveness (e.g. attributes, integer arithme-

tic, individual concepts) as described in Section 3.4.1 are part of terminological

formalism.

Worse yet, most systems are inferentially incomplete|except for krypton,

classic, and meson|even to a degree that a term-forming or restriction ope-

rator is never used for making any inference. Thus, should such operators be

included in a system description or not? Furthermore, even if one would describe

only those operators which have some inferential impact, it is still unclear to

which extent they are employed in making inferences.

For all of these reasons, any survey of existing hybrid systems based on kl-

one has an arguable value. It is a documentation of what people �nd useful to

include in such systems, but it is by no means a description of what has been

achieved in terms of designing hybrid systems that are inferentially complete,

or even only almost complete, or incomplete in a principled way. Taking all of

this into account, I decided to describe the systems as completely as possible

by enumerating the straightforward terminological operators and giving a rough

sketch of the assertional formalism. However, all idiosyncratic features that I do

not consider as essential have been left out.

In order to describe the systems as completely as possible, another restriction

operator has to be mentioned, namely, the cover operator which is used to state

that the extension of one concept is completely covered by the extension of a set

of other concepts, i.e. something like

E[c] = E[c

1

] [: : : [E[c

n

]

247

TBox ABox

System Concepts Roles Remarks and References

kl-one

:

=,

:

�,

and, all, atleast,

atmost, sd, l-rvm

:

� Individual Concepts, Wires,

Nexus, and Contexts

[

Brachman and Schmolze,

1985

]

kl-two

:

=,

:

�,

disjoint, cover,

and, all, atleast,

atmost, l-rvm

:

=,

:

�,

androle, inv,

domain, range

Variable-free predicate logic

with equality, but without

UNA and number restriction.

Updates supported by rup.

[

Vilain, 1985; Vilain, 1983

]

krypton

:

=,

and, all

:

=,

comp

First-order predicate logic

(theorem prover)

[

Brachman et al., 1985; Pig-

man, 1984a

]

kandor

:

=,

:

�,

disjoint

and, all,

c-atleast, atmost

:

�

a

Similar to AF, but no number

restrictions. Implicit exhaus-

tivity assumption for all roles

with speci�ed role-�llers.

[

Patel-Schneider, 1984

]

classic

:

=,

:

�,

disjoint,

and, all, atleast,

atmost,
-rvm

Similar to AF , but instead of

number restrictions, exhaus-

tivity of role-�llers can be ex-

plicitly speci�ed.

[

Borgida et al., 1989

]

back

:

=,

:

�,

disjoint,

and, all, atleast,

atmost, rvm

b

:

�

c

Similar to AF plus disjunc-

tion of role-�llers.

[

Nebel and von Luck, 1988;

von Luck et al., 1987

]

a

It is possible to restrict the range of primitive roles.

b

Note that rvm take only roles as arguments|not role-chains!

c

It is possible to restrict the domain and range of primitive roles.

Table B.2: Features of Hybrid Systems Based on kl-one

248

TBox ABox

System Concepts Roles Remarks and References

meson

:

=,

:

�,

disjoint,

and, all, atleast,

atmost

Similar to AF plus a facility

to state universal implicati-

ons

[

Owsnicki-Klewe, 1988

]

loom

:

=,

:

�,

disjoint, cover,

and, all, atleast,

atmost, rvm

:

=,

:

�,

androle, inv,

domain, range,

comp, self, trans

Similar to AF (but no num-

ber restriction or exhausti-

vity of role-�llers) plus uni-

versal implications. Updates

supported by object-centered

rms

[

MacGregor, 1988; MacGre-

gor and Bates, 1987

]

quirk &

quark

:

=,

:

�,

and, all, atleast,

atmost, l-rvm

:

=,

:

�,

androle, inv,

domain, range

Propositional formalism em-

ploying time intervals and be-

lief contexts

[

Bergmann and Gerlach,

1987; Poesio, 1988b

]

sphinx

:

=,

:

�,

disjoint, cover

a

,

and, all

:

=,

:

�,

comp, androle

b

,

domain, range

Horn logic with \negation as

failure" (i.e. Prolog)

[

Han et al., 1987

]

sb-one

:

=,

:

�,

disjoint, cover,

and, all, atleast,

atmost, l-rvm

:

�

c

Similar to AF

d

[

Kobsa, 1989; Kalmes, 1988

]

a

Disjointness and covering can only be stated in combination.

b

There are some nonobvious restriction for the androle operator.

c

It is possible to restrict the domain and range of primitive roles.

d

The sb-one ABox is still under construction.

Table B.3: Features of Hybrid Systems Based on kl-one (continued)

249

Bibliography

[

AAAI-82, 1982

]

Proceedings of the 2nd National Conference of the American

Association for Arti�cial Intelligence, Pittsburgh, PA, August 1982.

[

AAAI-84, 1984

]

Proceedings of the 4th National Conference of the American As-

sociation for Arti�cial Intelligence, Austin, TX, 1984.

[

AAAI-86, 1986

]

Proceedings of the 5th National Conference of the American As-

sociation for Arti�cial Intelligence, Philadelphia, PA, August 1986.

[

AAAI-88, 1988

]

Proceedings of the 7th National Conference of the American As-

sociation for Arti�cial Intelligence, Saint Paul, MI, August 1988.

[

Abarbanel and Williams, 1987

]

Robert M. Abarbanel and Michael D. Williams.

A relational representation for knowledge bases. In Kerschberg

[

1987

]

, pages

191{206.

[

Abrett and Burstein, 1986

]

Glenn Abrett and Mark H. Burstein. The BBN la-

boratories knowledge acquisition project: KREME knowledge editing environ-

ment. Bolt, Beranek, and Newman, Inc., 1986.

[

Abrett and Burstein, 1987

]

Glenn Abrett and Mark H. Burstein. The KREME

knowledge editing environment. International Journal of Man-Machine Stu-

dies, 27(2):103{126, 1987.

[

A��t-Kaci, 1986

]

Hassan A��t-Kaci. An algebraic semantics approach to the e�ec-

tive resolution of type equations. Theoretical Computer Science, 45:293{351,

1986.

[

Alchourr�on and Makinson, 1982

]

Carlos E. Alchourr�on and David Makinson.

On the logic of theory change: contraction functions and their associated re-

vision functions. Theoria, 48:14{37, 1982.

[

Alchourr�on et al., 1985

]

Carlos E. Alchourr�on, Peter G�ardenfors, and David Ma-

kinson. On the logic of theory change: Partial meet contraction and revision

functions. Journal of Symbolic Logic, 50(2):510{530, June 1985.

250

[

Allen, 1983

]

James F. Allen. Maintaining knowledge about temporal intervals.

Communications of the ACM, 26(11):832{843, November 1983. Also published

in

[

Brachman and Levesque, 1985

]

.

[

Allgayer and Reddig, 1986

]

J�urgen Allgayer and Carola Reddig. Processing de-

scriptions containing words and gestures|a system architecture. In Rollinger

and Horn

[

1986

]

, pages 119{130.

[

Arens et al., 1988

]

Yigal Arens, Lawrence Miller, Stuart C. Shapiro, and Nor-

man K. Sondheimer. Automatic construction of user-interface displays. In

AAAI-88

[

1988

]

, pages 808{813.

[

Bachant and McDermott, 1984

]

Judith Bachant and John McDermott. R1 re-

visited: Four years in the trenches. The AI Magazine, 5(3):21{32, 1984.

[

Barr and Feigenbaum, 1979

]

Avron Barr and Edward A. Feigenbaum, editors.

The Handbook of Arti�cial Intelligence, volume 1. Pitman, London, UK, 1979.

[

Belnap, 1977

]

Nuel D. Belnap. A useful four-valued logic. In G. Epstein and

J. M. Dunn, editors, Modern Uses of Multiple-Valued Logics, pages 30{56.

Reidel, Dordrecht, Holland, 1977.

[

Bergmann and Gerlach, 1987

]

Henning Bergmann and

Michael Gerlach. QUIRK: Implementierung einer TBox zur Repr�asentation

von begri�lichem Wissen. WISBER Memo 11, 2nd ed., Project WISBER,

Department of Computer Science, Universit�at Hamburg, Hamburg, Germany,

June 1987.

[

Bergmann and Paeseler, 1985

]

Henning Bergmann and Annedore Paeseler. Wis-

sensakquisition f�ur das nat�urlichsprachliche Zugangssystem HAM-ANS. In

Stoyan

[

1985

]

, pages 295{299.

[

Bj�rner, 1980

]

Dines Bj�rner, editor. Abstract Software Speci�cation. Springer-

Verlag, Berlin, Heidelberg, New York, 1980.

[

Bobrow and Ste�k, 1981

]

Daniel G. Bobrow and Mark J. Ste�k. The LOOPS

manual. Technical Report KB-VLSI-81-13, Xerox Palo Alto Research Center,

Palo Alto, CA, 1981.

[

Bobrow and Webber, 1980

]

Robert J. Bobrow and Bonnie Lynn Webber.

Knowledge representation for syntactic/semantic processing. In Proceedings

of the 1st National Conference of the American Association for Arti�cial In-

telligence, pages 316{323, Stanford, CA, August 1980.

[

Bobrow and Winograd, 1977

]

Daniel G. Bobrow and Terry Winograd. An over-

view of KRL-0, a knowledge representation language. Cognitive Science,

1(1):3{46, January 1977. Also published in

[

Brachman and Levesque, 1985

]

.

251

[

Bobrow et al., 1986

]

Daniel G. Bobrow, Sanjay Mittal, and Mark J. Ste�k. Ex-

pert systems: Perils promise. Communications of the ACM, 29(9):880{894,

September 1986.

[

Bobrow, 1986

]

Daniel G. Bobrow. Concluding remarks from the Arti�cial Intel-

ligence perspective. In Brodie and Mylopoulos

[

1986b

]

, pages 569{574.

[

Borgida et al., 1989

]

Alexander Borgida, Ronald J. Brachman, Deborah L. Mc-

Guinness, and Lori Alperin Resnick. CLASSIC: a structural data model for

objects. In Proceedings of the 1989 ACM SIGMOD International Conference

on Mangement of Data, pages 59{67, Portland, OR, 1989.

[

Borgida, 1985

]

Alexander Borgida. Language features for
exible handling of

exceptions in information systems. ACM Transactions on Database Systems,

10(4):565{603, December 1985.

[

Brachman and Levesque, 1982

]

Ronald J. Brachman and Hector J. Levesque.

Competence in knowledge representation. In AAAI-82

[

1982

]

, pages 189{192.

[

Brachman and Levesque, 1984

]

Ronald J. Brachman and Hector J. Levesque.

The tractability of subsumption in frame-based description languages. In

AAAI-84

[

1984

]

, pages 34{37.

[

Brachman and Levesque, 1985

]

Ronald J. Brachman and Hector J. Levesque,

editors. Readings in Knowledge Representation. Morgan Kaufmann, Los Altos,

CA, 1985.

[

Brachman and Levesque, 1986

]

Ronald J. Brachman and Hector J. Levesque.

The knowledge level of a KBMS. In Brodie and Mylopoulos

[

1986b

]

, pages

9{12.

[

Brachman and Levesque, 1987

]

Ronald J. Brachman and Hector J. Levesque.

Tales from the far side of KRYPTON. In Kerschberg

[

1987

]

, pages 3{43.

[

Brachman and Schmolze, 1985

]

Ronald J. Brachman and James G. Schmolze.

An overview of the KL-ONE knowledge representation system. Cognitive Sci-

ence, 9(2):171{216, April 1985.

[

Brachman and Smith, 1980

]

Ronald J. Brachman and Brian C. Smith. Special

issue on knowledge representation, February 1980.

[

Brachman et al., 1983

]

Ronald J. Brachman, Richard E. Fikes, and Hector J.

Levesque. KRYPTON: A functional approach to knowledge representation.

IEEE Computer, 16(10):67{73, October 1983. A revised version appears in

[

Brachman and Levesque, 1985

]

.

252

[

Brachman et al., 1985

]

Ronald J. Brachman, Victoria Pigman Gilbert, and Hec-

tor J. Levesque. An essential hybrid reasoning system: Knowledge and symbol

level accounts in KRYPTON. In IJCAI-85

[

1985

]

, pages 532{539.

[

Brachman et al., 1989

]

R. Brachman, H. J. Levesque, and R. Reiter, editors.

Principles of Knowledge Representation and Reasoning: Proceedings of the 1st

International Conference, Toronto, ON, May 1989. Morgan Kaufmann.

[

Brachman, 1977

]

Ronald J. Brachman. What`s in a concept: Structural foun-

dations for semantic networks. International Journal of Man-Machine Studies,

9:127{152, 1977.

[

Brachman, 1978

]

Ronald J. Brachman. Structured inheritance networks. In

W. A. Woods and R. J. Brachman, editors, Research in Natural Language

Understanding, Quarterly Progress Report No. 1, BBN Report No. 3742, pages

36{78. Bolt, Beranek, and Newman Inc., Cambridge, MA, 1978.

[

Brachman, 1983

]

Ronald J. Brachman. What IS-A is and isn't: An analysis of

taxonomic links in semantic networks. IEEE Computer, 16(10):30{36, October

1983.

[

Brachman, 1985

]

Ronald J. Brachman. `I lied about the trees' or, defaults and

de�nitions in knowledge representation. The AI Magazine, 6(3):80{93, 1985.

[

Brodie and Mylopoulos, 1986a

]

Michael L. Brodie and John Mylopoulos.

Knowledge bases versus databases. In On Knowledge Base Management Sy-

stems

[

1986b

]

, pages 83{86.

[

Brodie and Mylopoulos, 1986b

]

Michael L. Brodie and John Mylopoulos, edi-

tors. On Knowledge Base Management Systems. Springer-Verlag, Berlin, Hei-

delberg, New York, 1986.

[

Brodie and Zilles, 1980

]

Michael L. Brodie and Stephen N. Zilles, editors. Pro-

ceedings of the Pingree Park Workshop on Data Abstraction, Databases and

Conceptual Modelling, Pingree Park, Colo., 1980. Published as SIGART

Newsletter (No. 74), SIGMOD Record 11(2), and SIGPLAN Notices 16(1).

[

Brodie et al., 1984

]

Michael L. Brodie, John Mylopoulos, and Joachim W.

Schmidt, editors. On Conceptual Modelling. Springer-Verlag, Berlin, Heidel-

berg, New York, 1984.

[

Brown, 1986

]

Harold I. Brown. Sellars, concepts and conceptual change. Syn-

these, 6:275{307, 1986.

[

Carbonell, 1970

]

J. R. Carbonell. AI in CAI: An arti�cial intelligence approach

to computer-aided instruction. IEEE Transactions on Man-Machine Systems,

11(4):190{202, 1970.

253

[

Carey and DeWitt, 1986

]

Michael J. Carey and David J. DeWitt. Extensible

database systems. In Brodie and Mylopoulos

[

1986b

]

, pages 315{330.

[

Carnap, 1966

]

Rudolf Carnap. Philosophical Foundations of Physics. Basic

Books, New York, NY, 1966.

[

Chandrasekaran et al., 1988

]

B. Chandrasekaran, Ashok Goel, and Dean Alle-

mang. Connectionism and information|processing abstractions. The AI Ma-

gazine, 9(4):25{42, 1988.

[

Charniak et al., 1980

]

Eugene Charniak, Christopher K. Riesbeck, and Drew V.

McDermott. Arti�cial Intelligence Programming. Erlbaum, Hillsdale, NJ, 1980.

[

Christaller, 1985

]

Thomas Christaller. Eine Entwicklung generischer Kontroll-

strukturen aus kaskadierten ATNs. PhD thesis, Universit�at Hamburg, Ham-

burg, West Germany, 1985.

[

Clark, 1978

]

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,

Logic and Databases, pages 293{322. Plenum Press, New York, NY, 1978.

[

Clocksin and Mellish, 1981

]

William F. Clocksin and Christopher S. Mellish.

Programming in Prolog. Springer-Verlag, Berlin, Heidelberg, New York, 3rd

edition, 1981.

[

Collins and Quillian, 1970

]

Alan M. Collins and M. Ross Quillian. Facilitating

retrieval from semantic memory: The e�ect of repeating part of an inference.

In A. F. Sanders, editor, Acta Psychologica 33 Attention and Performance III.

North-Holland, Amsterdam, Holland, 1970.

[

Corella, 1987

]

Francisco Corella. Semantic retrieval and levels of abstraction. In

Kerschberg

[

1987

]

, pages 91{114.

[

Dalal, 1988

]

Mukesh Dalal. Investigations into a theory of knowledge base revi-

sion: Preliminary report. In AAAI-88

[

1988

]

, pages 475{479.

[

D'Aloisi et al., 1988

]

D. D'Aloisi, O. Stock, and A. Tuozzi. An implementation

of the propositional part of KRAPFEN, a hybrid knowledge representation

system. In Ras and Saitta

[

1988

]

, pages 200{209.

[

Date, 1981

]

C. J. Date. An Introduction to Database Systems. Addison-Wesley,

Reading, MA, 3rd edition, 1981.

[

Davidson, 1967

]

Donald Davidson. The logical form of action sentences. In

N. Rescher, editor, The Logic of Decision and Action, pages 81{95. University

of Pittsburgh Press, Pittsburgh, PA, 1967.

254

[

Davis and King, 1984

]

Randall Davis and Jonathan J. King. The origin of rule-

based systems in AI. In B. G. Buchanan and E. H. Shortli�e, editors, Rule

Based Expert Systems|The MYCIN Experiments of the Stanford Heuristic

Programming Project, pages 20{52. Addison-Wesley, Reading, MA, 1984.

[

Davis, 1982

]

Randall Davis. Teiresias: Applications of meta-level knowledge.

In R. Davis and D. B. Lenat, editors, Knowledge-Based Systems in Arti�cial

Intelligence, pages 229{485. McGraw-Hill, New York, NY, 1982.

[

de Kleer and Williams, 1987

]

Johan de Kleer and Brian C. Williams. Diagnosing

multiple faults. Arti�cial Intelligence, 32(1):97{130, April 1987. Also published

in

[

Ginsberg, 1987

]

.

[

de Kleer et al., 1977

]

Johan de Kleer, Jon Doyle, Guy L. Steele, and Gerald J.

Sussman. AMORD: Explicit control of reasoning. In Symposium on Arti�cial

Intelligence and Programming Languages, pages 116{125, August 1977. The

Proceedings are published as SIGPLAN Notices 16(2) and SIGART Newsletter

(No. 64). The article appears also in

[

Brachman and Levesque, 1985

]

.

[

de Kleer, 1984

]

Johan de Kleer. Choices without backtracking. In AAAI-84

[

1984

]

, pages 79{85.

[

de Kleer, 1986a

]

Johan de Kleer. An assumption-based TMS. Arti�cial Intelli-

gence, 28(2):127{162, March 1986. Also published in

[

Ginsberg, 1987

]

.

[

de Kleer, 1986b

]

Johan de Kleer. Problem solving with the ATMS. Arti�cial

Intelligence, 28(2):197{224, March 1986.

[

Diettrich and Michalski, 1983

]

Thomas G. Diettrich and Ryszard S. Michalski.

A comparative review of selected methods for learning from examples. In

Michalski et al.

[

1983

]

, pages 41{81.

[

Diettrich, 1986

]

Thomas G. Diettrich. Learning at the knowledge level.Machine

Learning, 1:287{316, 1986.

[

Donini and Lenzerini, 1988

]

Francesco M. Donini and Maurizio Lenzerini. Term-

Log: A logic for terminological knowledge. In Ras and Saitta

[

1988

]

, pages

408{417.

[

D�orre and Eisele, 1989

]

Jochen D�orre and Andreas Eisele. Determining consi-

stency of feature terms with distributed disjunctions. In D. Metzing, editor,

GWAI-89. 13th German Workshop on Arti�cial Intelligence, pages 270{279,

Eringerfeld, Germany, September 1989. Springer-Verlag.

[

Doyle and London, 1980

]

Jon Doyle and Philip London. A selected descriptor-

indexed bibliography to the literature on belief revision. SIGART Newsletter,

pages 7{23, 1980.

255

[

Doyle and Patil, 1989

]

Jon Doyle and Ramesh S. Patil. Language restrictions,

taxonomic classi�cation, and the utility of representation services. Technical

MemoMIT/LCS/TM-387, Laboratory of Computer Science, MIT, Cambridge,

MA, May 1989.

[

Doyle, 1979

]

Jon Doyle. A truth maintenance system. Arti�cial Intelligence,

12(3):231{272, 1979. Also published in

[

Webber and Nilsson, 1981

]

and in

[

Ginsberg, 1987

]

.

[

Dreyfus, 1981

]

Hubert L. Dreyfus. From micro-worlds to knowledge-representa-

tion: AI at an impasse. In Haugeland

[

1981

]

, pages 161{204. Also published

in

[

Brachman and Levesque, 1985

]

.

[

ECAI-88, 1988

]

Proceedings of the 8th European Conference on Arti�cial Intel-

ligence, Munich, Germany, August 1988. Pitman.

[

Edelmann and Owsnicki, 1986

]

J�urgen Edelmann and Bernd Owsnicki. Data

models in knowledge representation systems: A case study. In Rollinger and

Horn

[

1986

]

, pages 69{74.

[

Ernst and Newell, 1969

]

George W. Ernst and Allen Newell. GPS: A Case Study

in Generality and Problem-Solving. Academic Press, New York, NY, 1969.

[

Etherington, 1987

]

David W. Etherington. Relating default logic and circums-

cription. In McDermott

[

1987b

]

, pages 489{494.

[

Fagin et al., 1983

]

Ronald Fagin, Je�rey D. Ullman, and Moshe Y. Vardi. On

the semantics of updates in databases. In 2nd ACM SIGACT-SIGMOD Sym-

posium on Principles of Database Systems, pages 352{365, Atlanta, Ga., 1983.

[

Fagin et al., 1986

]

Ronald Fagin, Gabriel M. Kuper, Je�rey D. Ullman, and

Moshe Y. Vardi. Updating logical databases. Advances in Computing Re-

search, 3:1{18, 1986.

[

Fahlman, 1979

]

Scott E. Fahlman. A System for Representing and Using Real-

World Knowledge. MIT Press, Cambridge, MA, 1979.

[

Fikes, 1982

]

Richard E. Fikes. Highlights fromKloneTalk: Display-based editing

and browsing, decompositions, qua concepts and active role value maps. In

J. G. Schmolze and R. J. Brachman, editors, Proceedings of the 1981 KL-ONE

Workshop, pages 90{105, Cambridge, MA, 1982. The proceedings have been

published as BBN Report No. 4842 and Fairchild Technical Report No. 618.

[

Findler, 1979

]

N. V. Findler, editor. Associative Networks: Representation and

Use of Knowledge by Computers. Academic Press, New York, NY, 1979.

256

[

Finin and Silverman, 1986

]

TimothyW. Finin and David Silverman. Interactive

classi�cation as a knowledge acquisition tool. In Kerschberg

[

1986

]

, pages 79{

90.

[

Freeman et al., 1983

]

Michael Freeman, Donald McKay, Lewis Norton, and Mar-

tha Palmer. KNET: A logic-based associative network framework for expert

systems. Technical report, Research & Development Division, SDC|A Bur-

roughs Company, Paoli, PA, 1983.

[

Frisch, 1988

]

Alan M. Frisch, editor. Proceedings of the 1988 AAAI-Workshop

on Principles of Hybrid Reasoning, St. Paul, Minn., August 1988.

[

Frixione et al., 1988

]

M. Frixione, S. Gaglio, and G. Spinelli. Proper names and

individual concepts in SI-nets. In ECAI-88

[

1988

]

, pages 208{213.

[

G�ardenfors and Makinson, 1988

]

Peter G�ardenfors and David Makinson. Revi-

sion of knowledge systems using epistemic entrenchment. In Theoretical Aspects

of Reasoning about Knowledge: Proceedings of the Second Conference. Morgan

Kaufmann, Asilomar, CA, 1988.

[

G�ardenfors, 1988

]

Peter G�ardenfors. Knowledge in Flux|Modeling the Dyna-

mics of Epistemic States. MIT Press, Cambridge, MA, 1988.

[

Garey and Johnson, 1979

]

Michael R. Garey and David S. Johnson. Computers

and Intractability|A Guide to the Theory of NP-Completeness. Freeman, San

Francisco, CA, 1979.

[

Genesereth and Nilsson, 1987

]

Michael R. Genesereth and Nils J. Nilsson. Logi-

cal Foundations of Arti�cial Intelligence. Morgan Kaufmann, Los Altos, CA,

1987.

[

Ginsberg, 1986

]

Matthew L. Ginsberg. Counterfactuals. Arti�cial Intelligence,

30(1):35{79, October 1986.

[

Ginsberg, 1987

]

Matthew L. Ginsberg, editor. Readings in Nonmonotonic Rea-

soning. Morgan Kaufmann, Los Altos, CA, 1987.

[

Goldberg and Robson, 1983

]

Adele Goldberg and David Robson. Smalltalk-80:

The Language and its Implementation. Addison-Wesley, Reading, MA, 1983.

[

Goodwin, 1982

]

James W. Goodwin. An improved algorithm for non-monotonic

dependency net update. Research Report LiTH-MAT-R-82-83, Software Sy-

stems Research Center, Link�oping Institute of Technology, Link�oping, Sweden,

August 1982.

257

[

Haas and Hendrix, 1983

]

Norman Haas and Gary G. Hendrix. Learning by being

told: Acquiring knowledge for information management. In Michalski et al.

[

1983

]

, pages 405{428.

[

Habel, 1983

]

Christopher Habel. Logische Systeme und Repr�asentationsproble-

me. In B. Neumann, editor, GWAI-83. 7th German Workshop on Arti�cial In-

telligence, pages 118{142, Dassel/Solling, Germany, September 1983. Springer-

Verlag.

[

Han et al., 1987

]

Sangki Han, D. W. Shin, Y. Kim, Y. P. Jun, S. R. Maeng, and

J. W. Cho. A logic programming approach to hybrid knowledge representa-

tion. Technical Report CAL-TR-008, Department of Computer Science, Korea

Advanced Institute of Science and Technology, Seoul, Korea, October 1987.

[

H�arder et al., 1987

]

Theo H�arder, Nelson Mattos, and Bernhard Mitschang. Ab-

bildung von Frames auf neuere Datenmodelle. In Morik

[

1987

]

, pages 396{405.

[

Haugeland, 1981

]

J. Haugeland, editor. Mind Design. MIT Press, Cambridge,

MA, 1981.

[

Haugeland, 1985

]

John Haugeland. Arti�cial Intelligence|The Very Idea. MIT

Press, Cambridge, MA, 1985.

[

Hayes, 1974

]

Patrick J. Hayes. Some problems and non-problems in represen-

tation theory. In AISB Summer Conference, pages 63{79, Sussex, UK, 1974.

Also published in

[

Brachman and Levesque, 1985

]

.

[

Hayes, 1977

]

Patrick J. Hayes. In defence of logic. In IJCAI-77

[

1977

]

, pages

559{565.

[

Hayes, 1980

]

Patrick J. Hayes. The logic of frames. In Metzing

[

1980

]

, pages

46{61. Also published in

[

Brachman and Levesque, 1985

]

and

[

Webber and

Nilsson, 1981

]

.

[

Hayes, 1985

]

Patrick J. Hayes. Naive physics I: Ontology for liquids. In Formal

Theories of the Commonsense World

[

1985

]

, pages 71{108.

[

Hendrix, 1979

]

Gary G. Hendrix. Encoding knowledge in partitioned networks.

In Findler

[

1979

]

, pages 51{92.

[

Hendrix, 1986

]

Gary G. Hendrix. Q&A: Already a success? In Proceedings of the

11th International Conference on Computational Linguistics, pages 164{166,

Bonn, Germany, 1986.

[

Hobbs and Moore, 1985

]

Jerry R. Hobbs and Robert C. Moore. Formal Theories

of the Commonsense World. Ablex, Norwood, NJ, 1985.

258

[

Hobbs, 1985

]

Jerry R. Hobbs. Ontological promiscuity. In Proceedings of the

23rd Annual Meeting of the ACL, pages 61{69, Chicago, IL, 1985.

[

Hoeppner et al., 1983

]

Wolfgang Hoeppner, Thomas Christaller, Heinz Marbur-

ger, Ka tharina Morik, Bern hard Nebel, Michael O'Leary, and Wolfgang Wahl-

ster. Beyond domain-independence: Experience with the development of a

German natural language access system to highly diverse background systems.

In IJCAI-83

[

1983

]

, pages 115{121.

[

Hoeppner, 1988

]

W. Hoeppner, editor. K�unstliche Intelligenz. GWAI-88, 12.

Jahrestagung, Eringerfeld, Germany, September 1988. Springer-Verlag.

[

IJCAI-77, 1977

]

Proceedings of the 5th International Joint Conference on Arti-

�cial Intelligence, Cambridge, MA, August 1977.

[

IJCAI-83, 1983

]

Proceedings of the 8th International Joint Conference on Arti-

�cial Intelligence, Karlsruhe, Germany, August 1983.

[

IJCAI-85, 1985

]

Proceedings of the 9th International Joint Conference on Arti-

�cial Intelligence, Los Angeles, CA, August 1985.

[

IntelliCorp, 1985

]

IntelliCorp, Mountain View, CA. IntelliCorp KEE Software

Development System: User's Manual, 1985.

[

Israel, 1983

]

David J. Israel. The role of logic in knowledge representation. IEEE

Computer, 16(10):37{42, October 1983.

[

Kaczmarek et al., 1983

]

Thomas S. Kaczmarek, William Mark, and Norman K.

Sondheimer. The Consul/CUE interface: An integrated interactive environ-

ment. In Proceedings of the CHI'83 Conference on Human Factors in Compu-

ting Systems, pages 98{102, Boston, MA, 1983.

[

Kaczmarek et al., 1986

]

Thomas S. Kaczmarek, Raymond Bates, and Gabriel

Robins. Recent developments in NIKL. In AAAI-86

[

1986

]

, pages 978{987.

[

Kalmes, 1988

]

Joachim Kalmes. Sb-graph user manual (release 0.1). Techni-

cal Memo 30, Department of Computer Science, Universit�at des Saarlandes,

Saarbr�ucken, Germany, December 1988.

[

Kanellakis and Mitchell, 1989

]

Paris C. Kanellakis and John C. Mitchell. Poly-

morphic uni�cation and ML typing. In Proceedings of the 16th ACM Sympo-

sium on Principles of Programming Languages, pages 5{15, January 1989.

[

Kasper and Rounds, 1986

]

Robert T. Kasper and William C. Rounds. A logical

semantics for feature structures. In Proceedings of the 14th Annual Meeting of

the ACL, pages 257{265, New York, NY, 1986.

259

[

Kasper, 1987

]

Robert T. Kasper. A uni�cation method for disjunctive feature

descriptions. In Proceedings of the 25th Annual Meeting of the ACL, pages

235{242, Stanford, CA, 1987.

[

Kerschberg, 1986

]

L. Kerschberg, editor. Expert Database Systems|Proceedings

From the 1st International Workshop. Benjamin/Cummings, Menlo Park, CA,

1986.

[

Kerschberg, 1987

]

L. Kerschberg, editor. Expert Database Systems|Proceedings

From the 1st International Conference. Benjamin/Cummings, Menlo Park,

CA, 1987.

[

Kindermann and Quantz, 1988

]

Carsten Kindermann and Joachim Quantz.

Wissenspr�asentation und -repr�asentation. In Hoeppner

[

1988

]

, pages 206{210.

[

Kobsa, 1988

]

Alfred Kobsa. Report on a KL-ONE workshop. KI, 88/1:15{16,

1988.

[

Kobsa, 1989

]

Alfred Kobsa. The SB-ONE knowledge representation workbench.

In Preprints of the Workshop on Formal Aspects of Semantic Networks, Two

Harbors, CA, February 1989.

[

Kowalski, 1980

]

Robert A. Kowalski. Contribution to the SIGART Newslet-

ter special issue on knowledge representation. SIGART Newsletter, page 44,

February 1980.

[

Kuhn, 1970

]

Thomas S. Kuhn. The Structure of Scienti�c Revolutions. Chicago

University Press, Chicago, IL, 2nd edition, 1970.

[

Lehnert and Wilks, 1979

]

Wendy Lehnert and Yorick Wilks. A critical perspec-

tive on KRL. Cognitive Science, 3(1):1{28, January 1979.

[

Lenat, 1982

]

Douglas B. Lenat. AM: Discovery in mathematics as heuristic

search. In R. Davis and D. B. Lenat, editors, Knowledge-Based Systems in

Arti�cial Intelligence, pages 3{225. McGraw-Hill, New York, NY, 1982.

[

Levesque and Brachman, 1985

]

Hector J. Levesque and Ronald J. Brachman.

A fundamental tradeo� in knowledge representation and reasoning (revised

version). In Brachman and Levesque

[

1985

]

, pages 41{70.

[

Levesque and Brachman, 1986

]

Hector J. Levesque and Ronald J. Brachman.

Knowledge level interfaces to information systems. In Brodie and Mylopoulos

[

1986b

]

, pages 13{34.

[

Levesque and Brachman, 1987

]

Hector J. Levesque and Ronald J. Brachman.

Expressiveness and tractability in knowledge representation and reasoning.

Computational Intelligence, 3:78{93, 1987.

260

[

Levesque, 1984a

]

Hector J. Levesque. Foundations of a functional approach to

knowledge representation. Arti�cial Intelligence, 23(2):155{212, 1984.

[

Levesque, 1984b

]

Hector J. Levesque. A logic of implicit and explicit belief. In

AAAI-84

[

1984

]

, pages 198{202.

[

Levesque, 1986

]

Hector J. Levesque. Making believers out of computers. Arti�-

cial Intelligence, 30(1):81{108, October 1986.

[

Levesque, 1988

]

Hector J. Levesque. Logic and the complexity of reasoning.

Journal of Philosophical Logic, 17:355{389, 1988.

[

Levi, 1977

]

Isaac Levi. Subjunctives, dispositions and chances. Synthese,

34:423{455, 1977.

[

Lewis, 1973

]

David K. Lewis. Counterfactuals. Harvard University Press, Cam-

bridge, MA, 1973.

[

Lipkis, 1982

]

Thomas Lipkis. A KL-ONE classi�er. In J. G. Schmolze and R. J.

Brachman, editors, Proceedings of the 1981 KL-ONE Workshop, pages 128{

145, Cambridge, MA, 1982. The proceedings have been published as BBN

Report No. 4842 and Fairchild Technical Report No. 618.

[

Liskov and Zilles, 1974

]

Barbara Liskov and Stephen N. Zilles. Programming

with abstract data types. SIGPLAN Notices, 9(4):50{59, 1974.

[

Lovasz, 1973

]

L. Lovasz. Coverings and colorings of hypergraphs. In Procee-

dings of the 4th Southeastern Conference on Combinatorics, Graph Theory,

and Computing, pages 3{12. Utilitas Mathematics Publishing, Winnipeg, Ont.,

1973.

[

MacGregor and Bates, 1987

]

Robert MacGregor and Raymond Bates. The

Loom knowledge representation language. Technical Report ISI/RS-87-188,

University of Southern California, Information Science Institute, Marina del

Rey, CA, 1987.

[

MacGregor, 1988

]

Robert MacGregor. A deductive pattern matcher. In AAAI-

88

[

1988

]

, pages 403{408.

[

Maida and Shapiro, 1982

]

Anthony S. Maida and Stuart C. Shapiro. Intensional

concepts in propositional semantic networks. Cognitive Science, 6(4):291{330,

1982. Also published in

[

Brachman and Levesque, 1985

]

.

[

Maida, 1987

]

Anthony S. Maida. Frame theory. In Shapiro

[

1987

]

, pages 302{

312.

261

[

Makinson, 1985

]

David Makinson. How to give it up: A survey of some formal

aspects of theory change. Synthese, 62:347{363, 1985.

[

Makinson, 1987

]

David Makinson. On the status of the postulate of recovery in

the logic of theory change. Journal of Philosophical Logic, 16:383{394, 1987.

[

Mann and Matthiessen, 1983

]

William C. Mann and Christian M. I. M. Matt-

hiessen. Nigel: A systemic grammar for text generation. Technical Report

ISI/RR-83-105, University of Southern California, Information Science Insti-

tute, Marina del Rey, CA, February 1983.

[

Mann et al., 1985

]

William C. Mann, Yigal Arens, Christian M. I. M. Matt-

hiessen, Shari Naberschnig, and Norman K. Sondheimer. Janus abstraction

structure|draft 2. Draft paper, University of Southern California, Informa-

tion Science Institute, October 1985.

[

Marburger and Nebel, 1983

]

Heinz Marburger and Bernhard Nebel. Nat�urlich-

sprachlicher Datenbankzugang mit HAM-ANS: Syntaktische Korrespondenz,

nat�urlichsprachliche Quanti�zierung und semantisches Modell des Diskursbe-

reiches. In J. W. Schmidt, editor, Sprachen f�ur Datenbanken, pages 26{41.

Springer-Verlag, Berlin, Heidelberg, New York, 1983.

[

Marburger and Wahlster, 1983

]

Heinz Marburger and Wolfgang Wahlster. Case

role �lling as a side e�ect of visual search. In Proceedings of the 1st Conference

of the European Chapter of the Association for Computational Linguistics, pa-

ges 188{195, Pisa, Italy, 1983.

[

Mark, 1982

]

WilliamMark. Realization. In J. G. Schmolze and R. J. Brachman,

editors, Proceedings of the 1981 KL-ONE Workshop, pages 78{89, Cambridge,

MA, 1982. The proceedings have been published as BBN Report No. 4842 and

Fairchild Technical Report No. 618.

[

Martelli and Montanari, 1982

]

Alberto Martelli and Ugo Montanari. An e�-

cient uni�cation algorithm. ACM Transactions on Programming Languages

and Systems, 4(2):258{282, April 1982.

[

Martins and Shapiro, 1986

]

Jo~ao P. Martins and Stuart C. Shapiro. Theoretical

foundations for belief revision. In J. Y. Halpern, editor, Theoretical Aspects

of Reasoning About Knowledge: Proceedings of the 1986 Conference, pages

383{398. Morgan Kaufmann, Monterey, CA, 1986.

[

Martins, 1987

]

Jo~ao P. Martins. Belief revision. In Shapiro

[

1987

]

, pages 58{62.

[

Masterman, 1962

]

Margaret Masterman. Semantic message detection for ma-

chine translation, using an interlingua. In Proceedings of the 1961 Internatio-

nal Conference on Machine Translation of Languages and Applied Linguistic

Analysis, pages 438{475, London, UK, 1962.

262

[

Mays et al., 1987

]

Eric Mays, Chidanand Apt�e, James Griesmer, and John Kast-

ner. Organizing knowledge in a complex �nancial domain. IEEE Expert,

2(3):61{70, 1987.

[

Mays et al., 1988

]

Eric Mays, Chidanand Apt�e, James Griesmer, and John Kast-

ner. Experience with K-Rep: An object-centered knowledge representation

language. In Proceedings of IEEE CAIA-88, pages 62{67, March 1988.

[

McAllester, 1980

]

David A. McAllester. An outlook on truth maintenance. AI

Memo 551, AI Laboratory, Massachusetts Institute of Technology, Cambridge,

MA, August 1980.

[

McAllester, 1982

]

David A. McAllester. Reasoning utility package user's ma-

nual. AI Memo 667, AI Laboratory, Massachusetts Institute of Technology,

Cambridge, MA, April 1982.

[

McCarthy and Hayes, 1969

]

John McCarthy and Patrick J. Hayes. Some philo-

sophical problems from the standpoint of arti�cial intelligence. In B. Meltzer

and D. Michie, editors, Machine Intelligence, volume 4, pages 463{502. Edin-

burgh University Press, Edinburgh, UK, 1969. Also published in

[

Webber and

Nilsson, 1981

]

.

[

McCarthy, 1968

]

John McCarthy. Programs with common sense. In M. Minsky,

editor, Semantic Information Processing, pages 403{418. MIT Press, Cam-

bridge, MA, 1968. Also published in

[

Brachman and Levesque, 1985

]

.

[

McCarthy, 1977

]

John McCarthy. Epistemological problems in arti�cial intelli-

gence. In IJCAI-77

[

1977

]

, pages 1038{1044. Also published in

[

Webber and

Nilsson, 1981

]

and in

[

Brachman and Levesque, 1985

]

.

[

McCarthy, 1980

]

John McCarthy. Circumscription|a form of non-monotonic

reasoning. Arti�cial Intelligence, 13(1{2):27{39, 1980. Also published in

[

Web-

ber and Nilsson, 1981

]

and in

[

Ginsberg, 1987

]

.

[

McCarthy, 1986

]

John McCarthy. Applications of circumscription to formali-

zing common-sense knowledge. Arti�cial Intelligence, 28:89{116, 1986. Also

published in

[

Ginsberg, 1987

]

.

[

McCoy, 1984

]

Kathleen F. McCoy. Correcting object-related misconceptions:

How should the system respond? In Proceedings of the 10th International

Conference on Computational Linguistics, pages 444{447, Stanford, CA, 1984.

[

McDermott, 1976

]

Drew V. McDermott. Arti�cial intelligence meets natural

stupidity. SIGART Newsletter, pages 4{9, April 1976. Also published in

[

Hau-

geland, 1981

]

.

263

[

McDermott, 1978

]

Drew V. McDermott. Tarskian semantics, or no notation

without denotation! Cognitive Science, 2(3):277{282, July 1978.

[

McDermott, 1987a

]

Drew V. McDermott. A critique of pure reason. Computa-

tional Intelligence, 3(3):151{160, August 1987.

[

McDermott, 1987b

]

J. McDermott, editor. Proceedings of the 10th International

Joint Conference on Arti�cial Intelligence, Milan, Italy, August 1987. Morgan

Kaufmann.

[

Metzing, 1980

]

Dieter Metzing, editor. Frame Conceptions and Text Understan-

ding. deGruyter, Berlin, Germany, 1980.

[

Michalski et al., 1983

]

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,

editors. Machine Learning|An Arti�cial Intelligence Approach. Tioga, Palo

Alto, CA, 1983.

[

Michie, 1982

]

Donald Michie. Game-playing programs and the conceptual inter-

face. SIGART Newsletter, pages 64{70, April 1982.

[

Minsky, 1975

]

Marvin Minsky. A framework for representing knowledge. In

Winston

[

1975a

]

, pages 211{277. An abridged version has been published in

[

Haugeland, 1981

]

,

[

Metzing, 1980

]

, and

[

Brachman and Levesque, 1985

]

.

[

Moore, 1982

]

Robert C. Moore. The role of logic in knowledge representation

and common sense reasoning. In AAAI-82

[

1982

]

, pages 428{433. Also publis-

hed in

[

Brachman and Levesque, 1985

]

.

[

Moore, 1986

]

Johanna D. Moore. NIKL workshop summary, 15{16 July 1986,

Boston. University of Southern California, Information Science Institute, Oc-

tober 1986.

[

Morik, 1987

]

K. Morik, editor. GWAI-87. 11th German Workshop on Arti�cial

Intelligence, Geseke, Germany, September 1987. Springer-Verlag.

[

Moser, 1983

]

M. G. Moser. An overview of NIKL, the new implementation of

KL-ONE. In Research in Knowledge Representation and Natural Language Un-

derstanding, BBN Report No. 5421, pages 7{26. Bolt, Beranek, and Newman

Inc., Cambridge, MA, 1983.

[

Mylopoulos and Levesque, 1984

]

John Mylopoulos and Hector J. Levesque. An

overview of knowledge representation. In Brodie et al.

[

1984

]

, pages 3{18.

[

Mylopoulos et al., 1980

]

John Mylopoulos, Philip A. Bernstein, and Harry K. T.

Wong. A language facility for designing interactive database-intensive systems.

ACM Transactions on Database Systems, 5(2):185{207, 1980.

264

[

Nebel and Marburger, 1982

]

Bernhard Nebel and Heinz Marburger. Das nat�ur-

lichsprachliche System HAM-ANS: Intelligenter Zugri� auf heterogene Wis-

sens- und Datenbasen. In J. Nehmer, editor, GI-12. Jahrestagung, pages 392{

402. Springer-Verlag, Berlin, Heidelberg, New York, 1982.

[

Nebel and Smolka, 1990

]

Bernhard Nebel and Gert Smolka. Representation and

reasoning with attributive descriptions. In K.-H. Bl�asius, U. Hedtst�uck, and C.-

R. Rollinger, editors, Sorts and Types in Arti�cial Intelligence, volume 418 of

Lecture Notes in Arti�cial Intelligence, pages 112{139. Springer-Verlag, Berlin,

Heidelberg, New York, 1990. Also available as IWBS Report 81, IWBS, IBM

Germany, Stuttgart, September 1989.

[

Nebel and Sondheimer, 1986

]

Bernhard Nebel and Norman K. Sondheimer. NI-

GEL gets to know logic: An experiment in natural language generation taking

a logical, knowledge-based view. In Rollinger and Horn

[

1986

]

, pages 75{86.

Also available as KIT Report 36, Department of Computer Science, Technische

Universit�at Berlin, July 1986.

[

Nebel and von Luck, 1987

]

Bernhard Nebel and Kai von Luck. Issues of inte-

gration and balancing in hybrid knowledge representation systems. In Morik

[

1987

]

, pages 114{123. Also available as KIT Report 46, Department of Com-

puter Science, Technische Universit�at Berlin, July 1987.

[

Nebel and von Luck, 1988

]

Bernhard Nebel and Kai von Luck. Hybrid reasoning

in BACK. In Ras and Saitta

[

1988

]

, pages 260{269.

[

Nebel, 1985

]

Bernhard Nebel. How well does a vanilla loop �t into a frame?

Data & Knowledge Engineering, 1(2):181{194, 1985. Also available as KIT

Report 30, Department of Computer Science, Technische Universit�at Berlin,

October 1985.

[

Nebel, 1987

]

Bernhard Nebel. On terminological cycles. KIT Report 58, Depart-

ment of Computer Science, Technische Universit�at Berlin, Berlin, Germany,

November 1987.

[

Nebel, 1988

]

Bernhard Nebel. Computational complexity of terminological rea-

soning in BACK. Arti�cial Intelligence, 34(3):371{383, April 1988.

[

Nebel, 1989

]

Bernhard Nebel. A knowledge level analysis of belief revision. In

Brachman et al.

[

1989

]

, pages 301{311.

[

Nebel, 1990

]

Bernhard Nebel. Terminological reasoning is inherently intractable.

Arti�cial Intelligence, 43:235{249, 1990. Also available as IWBS Report 82,

IWBS, IBM Germany, Stuttgart, October 1989.

265

[

Neches et al., 1985

]

Robert Neches, William R. Swartout, and Johanna D.

Moore. Explainable (and maintainable) expert systems. In IJCAI-85

[

1985

]

,

pages 382{389.

[

Newell, 1982

]

Allen Newell. The knowledge level. Arti�cial Intelligence,

18(1):87{127, 1982. Also published in The AI Magazine, 2(2), 1981.

[

Nilsson, 1980

]

Nils J. Nilsson. Principles of Arti�cial Intelligence. Tioga, Palo

Alto, CA, 1980.

[

Owsnicki-Klewe, 1988

]

Bernd Owsnicki-Klewe. Con�guration as a consistency

maintenance task. In Hoeppner

[

1988

]

, pages 77{87.

[

Patel-Schneider et al., 1984

]

Peter F. Patel-Schneider, Ronald J. Brachman, and

Hector J. Levesque. ARGON: Knowledge representation meets information

retrieval. In Proceedings of the 1st Conference on Arti�cial Intelligence Appli-

cations, pages 280{286, Denver, Col., 1984.

[

Patel-Schneider et al., 1985

]

Peter F. Patel-Schneider, Victoria Pigman Gilbert,

and Ronald J. Brachman. Hybrid knowledge representation systems. AI Wor-

king Paper, Schlumberger Palo Alto Research, Palo Alto, CA, July 1985.

[

Patel-Schneider, 1984

]

Peter F. Patel-Schneider. Small can be beautiful in

knowledge representation. In Proceedings of the IEEE Workshop on Principles

of Knowledge-Based Systems, pages 11{16, Denver, Colo., 1984. An extended

version including a KANDOR system description is available as AI Techni-

cal Report No. 37, Palo Alto, CA, Schlumberger Palo Alto Research, October

1984.

[

Patel-Schneider, 1986

]

Peter F. Patel-Schneider. A four-valued semantics for

frame-based description languages. In AAAI-86

[

1986

]

, pages 344{348.

[

Patel-Schneider, 1987a

]

Peter F. Patel-Schneider. Decidable, Logic-Based

Knowledge Representation. PhD thesis, University of Toronto, Toronto, Ont.,

May 1987. Computer Science Department, Technical Report 201/87.

[

Patel-Schneider, 1987b

]

Peter F. Patel-Schneider. A hybrid, decidable, logic-

based knowledge representation system. Computational Intelligence, 3(2):64{

77, May 1987.

[

Patel-Schneider, 1989a

]

Peter F. Patel-Schneider. A four-valued semantics for

terminological logics. Arti�cial Intelligence, 38(3):319{351, April 1989.

[

Patel-Schneider, 1989b

]

Peter F. Patel-Schneider. Undecidability of subsump-

tion in NIKL. Arti�cial Intelligence, 39(2):263{272, June 1989.

266

[

Paterson and Wegman, 1978

]

M. S. Paterson and M. N. Wegman. Linear uni�-

cation. Journal of Computer and System Sciences, 16:158{167, 1978.

[

Peltason et al., 1987

]

Christof Peltason, Kai von Luck, Bernhard Nebel, and

Albrecht Schmiedel. The user's guide to the BACK system. KIT Report 42,

Department of Computer Science, Technische Universit�at Berlin, Berlin, Ger-

many, January 1987.

[

Peltason et al., 1989

]

Christof Peltason, Albrecht Schmiedel, Carsten Kinder-

mann, and Joachim Quantz. The BACK system revisited. KIT Report 75,

Department of Computer Science, Technische Universit�at Berlin, Berlin, Ger-

many, September 1989.

[

Peltason, 1987

]

Christof Peltason. The scheme of Posidonius|using taxonomic

reasoning in design. In D. Sriram and R. A. Adey, editors, Proceedings of

the 2nd International Conference on Applications of AI in Engineering, pages

299{314, Cambridge, MA, August 1987. Also available as KIT Report 55,

Department of Computer Science, Technische Universit�at Berlin, September

1987.

[

Pigman, 1984a

]

Victoria Pigman. KRYPTON: Description of an implementa-

tion, vol. 1. AI Technical Report 40, Schlumberger Palo Alto Research, Palo

Alto, CA, December 1984.

[

Pigman, 1984b

]

Victoria Pigman. KRYPTON: Description of an implementa-

tion, vol. 2. AI Technical Report 41, Schlumberger Palo Alto Research, Palo

Alto, CA, December 1984.

[

Pletat and von Luck, 1990

]

Udo Pletat and Kai von Luck. Knowledge Repre-

sentation in LILOG. In Karl-Hans Bl�asius, Uli Hedtst�uck, and Claus Rollinger,

editors, Sorts and Types in Arti�cial Intelligence, volume 418 of Lecture Notes

in Arti�cial Intelligence, pages 140{164. Springer-Verlag, Berlin, Heidelberg,

New York, 1990.

[

Poesio, 1988a

]

Massimo Poesio. Dialog-oriented A-boxing. Project WISBER,

Department of Computer Science, Universit�at Hamburg, 1988. In preparation.

[

Poesio, 1988b

]

Massimo Poesio. Toward a hybrid representation of time. In

ECAI-88

[

1988

]

, pages 247{252.

[

Puppe, 1987

]

Frank Puppe. Belief revision in diagnosis. In Morik

[

1987

]

, pages

175{184.

[

Quillian, 1966

]

M. Ross Quillian. Semantic Memory. PhD thesis, Carnegie Insti-

tute of Technology, Pittsburgh, PA, 1966. BBN Report AFCRL-66-189, Bolt,

Beranek, and Newman Inc., October 1966.

267

[

Quillian, 1967

]

M. Ross Quillian. Word concepts: A theory and simulation of

some basic semantic capabilities. Behavioral Science, 12:410{430, 1967. Also

published in

[

Brachman and Levesque, 1985

]

.

[

Quine, 1963

]

Willard Van Orman Quine. Two dogmas of empiricism. In

W. V. O. Quine, editor, From a logical point of view, pages 20{46. Harper,

New York, NY, 1963. Reprint of the 2nd edition. The 1st edition has been

published by Harvard University Press, 1953.

[

Ras and Saitta, 1988

]

Z. W. Ras and L. Saitta, editors. Proceedings of the

Third International Symposium on Methodologies for Intelligent systems, To-

rino, Italy, October 1988. North-Holland.

[

Reddy, 1988

]

Raj Reddy. Foundations and grand challenges of arti�cial intelli-

gence. The AI Magazine, 9(4):9{21, 1988.

[

Reimer, 1985

]

Ulrich Reimer. A representation construct for roles. Data &

Knowledge Engineering, 1(3):233{252, 1985.

[

Reimer, 1986

]

Ulrich Reimer. A system-controlledmulti-type specialization hier-

archy. In Kerschberg

[

1986

]

, pages 173{187.

[

Reiter, 1980

]

Raymond Reiter. A logic for default reasoning. Arti�cial Intelli-

gence, 13(1):81{132, April 1980. Also published in

[

Ginsberg, 1987

]

.

[

Reiter, 1984

]

Raymond Reiter. Towards a logical reconstruction of relational

database theory. In Brodie et al.

[

1984

]

, pages 191{233.

[

Reiter, 1987

]

Raymond Reiter. A theory of diagnosis from �rst principles. Arti-

�cial Intelligence, 32(1):57{95, April 1987. Also published in

[

Ginsberg, 1987

]

.

[

Rich, 1982

]

Charles Rich. Knowledge representation languages and predicate

calculus: How to have your cake and eat it too. In AAAI-82

[

1982

]

, pages

193{196.

[

Rich, 1983

]

Elaine Rich. Arti�cial Intelligence. McGraw-Hill, New York, NY,

1983.

[

Rich, 1985

]

Charles Rich. The layered architecture of a system for reasoning

about programs. In IJCAI-85

[

1985

]

, pages 540{546.

[

Richens, 1958

]

R. H. Richens. Interlingua machine translation. Computer Jour-

nal, 1(3):144{147, October 1958.

[

Roberts and Goldstein, 1977

]

R. Bruce Roberts and Ira P. Goldstein. FRL users'

manual. AI Memo 409, AI Laboratory, Massachusetts Institute of Technology,

Cambridge, MA, 1977.

268

[

Robinson, 1965

]

J. A. Robinson. A machine-oriented logic based on the resolu-

tion principle. Journal of the ACM, 12(1):23{41, 1965.

[

Rollinger and Horn, 1986

]

C.-R. Rollinger and W. Horn, editors. GWAI-86 und

2.

�

Osterreichische Arti�cial-Intelligence-Tagung, Ottenstein, Austria, Septem-

ber 1986. Springer-Verlag.

[

Rollinger, 1980

]

Claus-Rainer Rollinger. Readtime-Inferenzen f�ur Semantische

Netze. In C.-R. Rollinger and H.-J. Schneider, editors, Inferenzen in nat�ur-

lichsprachlichen Systemen der k�unstlichen Intelligenz, pages 115{150. Einhorn,

Berlin, Germany, 1980.

[

Rumelhart and McClelland, 1986

]

David E. Rumelhart and James L. McClel-

land, editors. Parallel Distributed Processing: Exploration in the Microstruc-

ture of Cognition. MIT Press, Cambridge, MA, 1986.

[

Schank, 1973

]

Roger C. Schank. Identi�cation of conceptualization underlying

natural language. In R. C. Schank and K. M. Colby, editors, Computer Models

of Thought and Language, pages 187{247. Freeman, San Francisco, CA, 1973.

[

Schefe, 1982

]

Peter Schefe. Some fundamental issues in knowledge representa-

tion. In W. Wahlster, editor, GWAI-82. 6th German Workshop on Arti�cial

Intelligence, pages 42{62. Springer-Verlag, Bad Honnef, Germany, September

1982.

[

Schefe, 1987

]

Peter Schefe. On de�nitional processes in knowledge reconstruc-

tion systems. In McDermott

[

1987b

]

, pages 509{511.

[

Schild, 1988

]

Klaus Schild. Undecidability of U . KIT Report 67, Department of

Computer Science, Technische Universit�at Berlin, Berlin, Germany, October

1988.

[

Schild, 1989

]

Klaus Schild. Towards a theory of frames and rules. KIT Report 76,

Department of Computer Science, Technische Universit�at Berlin, Berlin, Ger-

many, December 1989.

[

Schmidt-Schau� and Smolka, 1989

]

Manfred Schmidt-Schau� and Gert Smolka.

Attributive concept descriptions with complements. IWBS Report 68, IBM

Germany Scienti�c Center, IWBS, Stattgart, Germany, June 1989. To appear

in Arti�cial Intelligence.

[

Schmidt-Schau�, 1989

]

Manfred Schmidt-Schau�. Subsumption in KL-ONE is

undecidable. In Brachman et al.

[

1989

]

, pages 421{431.

[

Schmiedel et al., 1986

]

Albrecht Schmiedel, Kai von Luck, Bernhard Nebel, and

Christof Peltason. `Bitter Pills': A case study in knowledge representation.

269

KIT Report 39, Department of Computer Science, Technische Universit�at Ber-

lin, Berlin, Germany, August 1986.

[

Schmolze and Brachman, 1982

]

James G. Schmolze and Ronald J. Brachman,

editors. Proceedings of the 1981 KL-ONE Workshop, Cambridge, MA, 1982.

Bolt, Beranek, and Newman Inc. BBN Report No. 4842. Also available as AI

Technical Report 4, Schlumberger Palo Alto Research, May 1982.

[

Schmolze and Israel, 1983

]

James G. Schmolze and David J. Israel. KL-ONE:

Semantics and classi�cation. In Research in Knowledge Representation and

Natural Language Understanding, BBN Technical Report, No. 5421, pages 27{

39. Bolt, Beranek, and Newman Inc., Cambridge, MA, 1983.

[

Schmolze and Lipkis, 1983

]

James G. Schmolze and Thomas Lipkis. Classi�ca-

tion in the KL-ONE knowledge representation system. In IJCAI-83

[

1983

]

,

pages 330{332.

[

Schmolze, 1989a

]

James G. Schmolze. The language and semantics of NIKL.

Technical Report 89-4, Department of Computer Science, Tufts University,

Medford, MA, September 1989.

[

Schmolze, 1989b

]

James G. Schmolze. Terminological knowledge representation

systems supporting n-ary terms. In Brachman et al.

[

1989

]

, pages 432{443.

[

Schubert et al., 1979

]

Lenhart K. Schubert, Randolph G. Goebel, and Nicho-

las J. Cercone. The structure and organization of a semantic network for

comprehension and inference. In Findler

[

1979

]

, pages 121{175.

[

Shapiro and Rapaport, 1986

]

Stuart C. Shapiro and William J. Rapaport.

SNePS considered as a fully intensional semantic network. In AAAI-86

[

1986

]

,

pages 278{283.

[

Shapiro, 1979

]

Stuart C. Shapiro. The SNePS semantics network processing

system. In Findler

[

1979

]

, pages 179{203.

[

Shapiro, 1987

]

S. C. Shapiro, editor. Encyclopedia of Arti�cial Intelligence. Wi-

ley, Chichester, England, 1987.

[

Simmons, 1973

]

Robert F. Simmons. Semantic networks: Their computation

and use for understanding english sentences. In R. C. Schank and K. M. Colby,

editors, Computer Models of Thought and Language, pages 63{113. Freeman,

San Francisco, CA, 1973.

[

Sloman, 1985

]

Aaron Sloman. Why we need many knowledge representation for-

malisms. In M. Bramer, editor, Research and Development in Expert Systems.

Cambridge University Press, Cambridge, UK, 1985.

270

[

Smith, 1982

]

Brian C. Smith. Re
ection and Semantics in a Procedural Lan-

guage. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,

1982. Report MIT/LCS/TR-272.

[

Smoliar and Swartout, 1988

]

Stephen W. Smoliar and William R. Swartout. A

report from the frontiers of knowledge representation. University of Southern

California, Information Science Institute, October 1988.

[

Smolka, 1988

]

Gert Smolka. A feature logic with subsorts. LILOG Report 33,

IWBS, IBM Germany, Stuttgart, May 1988.

[

Smolka, 1989

]

Gert Smolka. Feature constraint logics for uni�cation grammars.

IWBS Report 93, IBM Germany Scienti�c Center, IWBS, Stuttgart, West

Germany, November 1989.

[

Sondheimer and Nebel, 1986

]

Norman K. Sondheimer and Bernhard Nebel. A

logical-form and knowledge-base design for natural language generation. In

AAAI-86

[

1986

]

, pages 612{618.

[

Sowa, 1987

]

John F. Sowa. Semantic networks. In Shapiro

[

1987

]

, pages 1011{

1024.

[

Stallman and Sussman, 1977

]

Richard M. Stallman and Gerald J. Sussman.

Forward reasoning and dependency directed backtracking in a system for

computer-aided circuit analysis. Arti�cial Intelligence, 9(2):135{196, 1977.

[

Stalnaker, 1968

]

Robert C. Stalnaker. A theory of conditionals. In N. Rescher,

editor, Studies in Logical Theory. Oxford University Press, Oxford, UK, 1968.

Also published in E. Sosa, editor, Causation and Conditionals, Oxford Uni-

versity Press, Oxford, 1975, and in W. Harper, R. Stalnaker, and G. Pearce,

editors, IFS, Reidel, Dordrecht, 1981.

[

Stickel, 1985

]

Mark E. Stickel. Automated deduction by theory resolution. In

IJCAI-85

[

1985

]

, pages 1181{1186.

[

Stoy, 1977

]

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach

to Programming Language Theory. MIT Press, Cambridge, MA, 1977.

[

Stoyan, 1985

]

H. Stoyan, editor. GWAI-85. 9th German Workshop on Arti�cial

Intelligence, Dassel, Germany, September 1985. Springer-Verlag.

[

Stoyan, 1987

]

Herbert Stoyan. K�unstliche Intelligenz|Sprachen und Systeme.

computer magazin, 16(3):68{71, 1987.

[

Swartout and Neches, 1986

]

William R. Swartout and Robert Neches. The shif-

ting terminological space: An impediment to evolvability. In AAAI-86

[

1986

]

,

pages 936{941.

271

[

Szolovits et al., 1977

]

Peter Szolovits, Lowell B. Hawkinson, and William A.

Martin. An overview of OWL, a language for knowledge representation. Tech-

nical Report MIT/LCS/TM-86, Laboratory for Computer Science, Massachu-

setts Institute of Technology, Cambridge, MA, June 1977.

[

Tarski, 1935

]

Alfred Tarski. Der Wahrheitsbegri� in den formalisierten Spra-

chen. Studia Philosophica Comentarii Societatis philosophicae Polonorium,

1:261{405, 1935. Reprinted in K. Breka and L. Kreiser (eds.), Logik-Texte,

Akademie-Verlag, Berlin, East Germany, 1971.

[

Tarski, 1955

]

Alfred Tarski. A lattice-theoretical �xpoint theorem and its app-

lications. Paci�c Journal of Mathematics, 5:285{309, 1955.

[

Tou et al., 1982

]

Frederich N. Tou, Michael D. Williams, Richard E. Fikes,

Austin Henderson, and Thomas Malone. RABBIT: An intelligent database

assistant. In AAAI-82

[

1982

]

, pages 314{318.

[

Touretzky, 1986

]

David S. Touretzky. The Mathematics of Inheritance Systems.

Morgan Kaufmann, Los Altos, CA, 1986.

[

Van Marcke, 1986

]

Kris Van Marcke. A parallel algorithm for consistency

maintenance in knowledge representation. In Proceedings of the 7th European

Conference on Arti�cial Intelligence, pages 278{290, Brighton, UK, July 1986.

[

Vilain and Kautz, 1986

]

Marc B. Vilain and Henry A. Kautz. Constraint prop-

agation algorithms for temporal reasoning. In AAAI-86

[

1986

]

, pages 377{382.

[

Vilain, 1983

]

Marc B. Vilain. Assertions in NIKL. In Research in Knowledge

Representation and Natural Language Understanding, BBN Report, No. 5421,

pages 45{79. Bolt, Beranek, and Newman Inc., Cambridge, MA, 1983.

[

Vilain, 1985

]

Marc B. Vilain. The restricted language architecture of a hybrid

representation system. In IJCAI-85

[

1985

]

, pages 547{551.

[

von Hahn et al., 1980

]

Walther von Hahn, Wolfgang Hoeppner, Anthony Jame-

son, and Wolfgang Wahlster. The anatomy of the natural language dialogue

system HAM-RPM. In L. Bolc, editor, Natural Language Based Computer

Systems, pages 119{254. Hanser/MacMillan, Munich, Germany, 1980.

[

von Luck et al., 1985

]

Kai von Luck, Bernhard Nebel, Christof Peltason, and

Albrecht Schmiedel. BACK to consistency and incompleteness. In Stoyan

[

1985

]

, pages 245{257. An extended version of this paper is available as: The

BACK System. KIT Report 29, Department of Computer Science, Technische

Universit�at Berlin, 1985.

272

[

von Luck et al., 1987

]

Kai von Luck, Bernhard Nebel, Christof Peltason, and

Albrecht Schmiedel. The anatomy of the BACK system. KIT Report 41,

Department of Computer Science, Technische Universit�at Berlin, Berlin, Ger-

many, January 1987.

[

von Luck et al., 1988

]

Kai von Luck, Bernhard Nebel, and Hans-Jochen Schnei-

der. Some aspects of knowledge-base management systems. In G. Rahmstorf,

editor, Wissensrepr�asentation in Expertensystemen, pages 146{157. Springer-

Verlag, Berlin, Heidelberg, New York, 1988.

[

von Luck, 1986

]

Kai von Luck. Semantic networks with number restricted roles

or another story about Clyde. In Rollinger and Horn

[

1986

]

, pages 58{68.

[

Wahlster, 1981

]

Wolfgang Wahlster. Nat�urlichsprachliche Argumentation in

Dialogsystemen. Springer-Verlag, Berlin, Heidelberg, New York, 1981.

[

Waterman, 1986

]

Donald A. Waterman. A Guide to Expert Systems. Addison-

Wesley, Reading, MA, 1986.

[

Webber and Nilsson, 1981

]

Bonnie Lynn Webber and Nils J. Nilsson, editors.

Readings in Arti�cial Intelligence. Tioga, Palo Alto, CA, 1981.

[

Weber, 1987

]

A. Weber. Updating propositional formulas. In Kerschberg

[

1987

]

,

pages 487{500.

[

Weinreb and Moon, 1981

]

Daniel Weinreb and David A. Moon. Lisp Machine

Manual. MIT, Cambridge, MA, 4th edition, 1981.

[

Wellman and Simmons, 1988

]

Michael P. Wellman and Reid G. Simmons. Me-

chanisms for reasoning about sets. In AAAI-88

[

1988

]

, pages 398{402.

[

Wiederhold et al., 1987

]

Gio Wiederhold, Surajit Chaudhuri, Waqar Hasan, Mi-

chael G. Walker, and Marianne Winslett. Architectural concepts for large

knowledge bases. In Morik

[

1987

]

, pages 366{385.

[

Wiederhold, 1986

]

Gio Wiederhold. Knowledge versus data. In Brodie and My-

lopoulos

[

1986b

]

, pages 77{82.

[

Wilensky, 1984

]

Robert Wilensky. KODIAK: A knowledge representation lan-

guage. In Proceedings of the 6th Annual Conference of the Cognitive Science

Society, pages 344{353, Boulder, Col., 1984.

[

Winograd, 1972

]

Terry Winograd. Understanding Natural Language. Academic

Press, New York, NY, 1972.

273

[

Winograd, 1975

]

Terry Winograd. Frame representations and the declara-

tive/procedural controversy. In D. G. Bobrow and A. M. Collins, editors,

Representation and Understanding: Studies in Cognitive Science, pages 185{

210. Academic Press, New York, NY, 1975. Also published in

[

Brachman and

Levesque, 1985

]

.

[

Winslett, 1986

]

Marianne S. Winslett. Is belief revision harder than you

thought? In AAAI-86

[

1986

]

, pages 421{427.

[

Winslett, 1987

]

Marianne S. Winslett. Updating Databases with Incomplete In-

formation. PhD thesis, Stanford University, Stanford, CA, January 1987. Tech-

nical Report STAN-CS-87-1143.

[

Winston and Horn, 1981

]

Patrick H. Winston and Berthold K. P. Horn. LISP.

Addison-Wesley, Reading, MA, 1981.

[

Winston, 1975a

]

P. Winston, editor. The Psychology of Computer Vision.

McGraw-Hill, New York, NY, 1975.

[

Winston, 1975b

]

Patrick H. Winston. Learning structural descriptions from ex-

amples. In Winston

[

1975a

]

, pages 157{209. Also published in

[

Brachman and

Levesque, 1985

]

.

[

Winston, 1984

]

Patrick H. Winston. Arti�cial Intelligence. Addison-Wesley,

Reading, MA, 2nd edition, 1984. A German translation has been published as:

K�unstliche Intelligenz, Addison-Wesley, Bonn, 1987.

[

Wong and Mylopoulos, 1977

]

Harry K. T. Wong and John Mylopoulos. Two

views of data semantics: Data models in arti�cial intelligence and database

mangement. INFOR, 15(3):344{383, 1977.

[

Woods, 1975

]

William A. Woods. What's in a link: Foundations for semantic

networks. In D. G. Bobrow and A. M. Collins, editors, Representation and

Understanding: Studies in Cognitive Science, pages 35{82. Academic Press,

New York, NY, 1975. Also published in

[

Brachman and Levesque, 1985

]

.

[

Woods, 1983

]

William A. Woods. What's important about knowledge represen-

tation. IEEE Computer, 16(10):22{29, October 1983.

274

Index

ABox, 3, 45, 71

back, 71

�rst-order predicate logic, 71

kl-two, 63

krypton, 63

quirk, 64

abstract data type, 14

abstraction of an object, 110, 114

creating, 110

too �ne-grained, 111

acyclic nondeterministic �nite state

automaton, 98

acyclic, nonredundant nondetermini-

stic �nite state automaton,

98

adequacy of request language princi-

ple, 200, 209, 219

AF, 64

semantics, 65{67

syntax, 64

agreement, 70

ALC, 247

ALE, 247

ALU , 247

am, 198

amord, 194

analytic postulates, 215

analytic truth, 198

ANDFA, see acyclic, nonredundant

nondeterministic �nite state

automaton

anyrelation, 48, 51

Anything, 48, 51

argon, 65

indexing in, 108

ask, 14, 208, 208{224

assertional component, see ABox

assertional cycle, 86, 150, 154

assertional formalism, 62{67

assumption

in atms, 195

in tms, 193

atms, 194{195

atms, 160

attribute set, 48

attribute value, 69

attributive concept descriptions, 70

back, 3, 45

ABox, 64, 71

attribute value, 69

balanced subformalisms, 123

classi�er, 76

compared with TF , 48

revision operations, 203{204

backtracking, 193

balancedness in hybrid representa-

tion systems, 123

base, 161

�nite, 167

base contraction, 168

representation of, 174

base revision, 169

base terms, 55

bottom element, 133

browsing, 204

cake, 21, 194

cancellation, 44

choice function, 165

maxichoice, 165

275

partial meet, 166

relational, 166

transitively relational, 166

chronological backtracking, 193

cinst algorithm, 106

circumscription, 181

classic, 46

ABox, 64

classi�cation, 75, 101{105

incremental, 226

interactive, 206, 226

terminological cycles, 155

classi�cation-based reasoning, 61

classi�er, 44

classify algorithm, 103

closed world assumption, 64, 65

local, 71

closure postulate, 162

closure principle, 200, 202, 209, 220

co-NP-hardness, 90

cognitive perspective, 16

common-sense reasoning, 180

compare algorithm, 77

completion function, 134

concept, 136

role, 136

component circular concepts, 145

component circular roles, 144

computational e�ciency, 21

computational tractability, 27

computer con�guration system, 62

concept, 40, 46

atomic, 47

anonymous, 103, 104

component circular, 145

implausibility of, 237

revision problem, 231

de�ned, 41, 47

disjointness, 53

extension, 50

extensionally de�ned, 69

generalization, 109

generic, 41

incoherent, 53

implausibility of, 237

individual, 41, 62

semantics, 63

length-restricted, 149

linear, 96

magical, 41

p-, 75

primitive, 41, 47

status, 57

top-level, 48

restriction circular, 146

revision problem, 231

root, 48

semantically circular, 148

simple, 216

starred, 41

concept conjunction, 46

concept-forming operator, 46

concept individuation, 41

concept introduction, 47

de�ned, 47

primitive, 47

concept learning, 216, 222

concept name, 5

concept negation

atomic, 54

concept specialization, 40, 43

concept taxonomy, 41, 103

precomputed, 102

visualization, 102

the right place in a, 44

concept unfolding, 96

completely, 96

conceptual coat rack, 61

conceptual dependency graph, 40

conceptual level, 40

conciseness of representation, 21

conditional, 159

connectionism, 15

consequence operation, 161

conservative extension, 144

consistency problem, 175

276

constraint propagation

propositional, 194

value restriction, 109

constructive semantics, 58, 131

consul, 44, 61

consumer, 184

continuity, 136

continuous function, 133

contraction, 161

base, 168, 214

seen as partial meet contrac-

tion, 170

theory, 161, 213

full meet, 164

G�ardenfors Postulates, 162

maxichoice, 165

partial meet, 166

counterfactual, 159, 163

culprit, 193

cunfold, 96

CWA, see closed world assumption

data base, 13, 18

arti�cial intelligence, 13

compared with knowledge base,

12

incomplete, 160

logical, 160

relational, 14, 20

data base management system, 31

data base schema, 32

data base update, 168

data dependency network, 185, 227

nonmonotonic, 189

labeling, 190

overhead of, 230

DBMS, see data base management

system

ddn, see data-dependency network

default, 44, 71

default rule, 182

default theory, 182

extension, 182

normal, 182

default value, 38

dependency-directed backtracking,

193

description wire, 63

descriptive semantics, 140

diagnosis from �rst principles, 168

directed set, 133

discovery system, 198

disjointness of terms, 53

disjointness restriction, 48, 54

domain, 19, 50

dynamics of epistemic states, 161

ees, 61

e�ciency principle, 201

engineering perspective, 16

epistemic entrenchment, 167

relation to epistemic relevance,

172

epistemic relevance, 170, 172, 194

degrees, 173

highest, 215

terminological revision, 214

epistemological adequacy, 20

hybrid formalism, 22

epistemological level, 40

epistemological perspective, 17

epistemological primitives, 40

equivalence of terms, 52

essential meaning component, 216

exp, 59

complexity, 95

expansion of a theory, 161, 214

expert system, 12

user interface, 23

expressive adequacy, 20

extension function, 50

greatest �xed point, 139

least �xed point, 137

extension of a concept, 50

extension of a default theory, 182

extension of a role, 50

277

fame, 3

feature logic, 70

�nite state automaton

nondeterministic, 97

�rst-order predicate logic, 19, 27

conciseness, 21

consistency problem, 175

epistemological adequacy, 21

inferentially weak version, 71

number restrictions, 63

semantics, 19

semi-decidability, 21

theorem prover for, 63

translating a formalism into, 49

translating, to English, 64

�xed point, 132

greatest, 139

least, 132

�xed point semantics, 134{140

FL

subsumption problem, 93

FL, 93

FL, 247

FL

�

, 247

Flavor system, 39

ock, 175

forget, 208, 208{224

four-valued logic, 28, 94

frame, 37, 39

hierarchical organization, 38

frame problem, 181

internal version, 185

frame system, 14, 37{39, 44

modi�cation, 26

frame theory, 44

frl, 4, 38

modi�cation operations, 26

full meet contraction, 164

functional approach, 26, 29

knowledge-level, 211{213

symbol-level, 207{211

G�ardenfors Identity, 177

G�ardenfors Postulates, 162, 168

minimal change principle, 201

negation and disjunction, 214

General Problem Solver, 10

generalization of concepts, 109

gps, 10

greatest �xed point, 139

greatest lower bound, 132

ham-ans, 16

ham-rpm, 16

heuristic, 27

knowledge acquisition, 207

heuristic adequacy, 21

hybrid formalism, 22

human window, 20

hybrid entailment, 66

hybrid formalism, 21{22, 35

hybrid inference, 105{122

hybrid system, 21, 62{64

kl-one-based, 3{4

revision, 222{224

hyper-graph-2-colorability, 90

immediate subsumee, 103

immediate subsumer, 61

determination, 101

immediate subsumption, 61, 102

nonmonotonicity, 62

precomputation, 102

implementational level, 39, 40

inclusion postulate, 162, 201

incoherent term, 53, 214

in every terminology, 219

reasons, 219

independence of syntax principle,

200, 209, 220

inference, 18, 26

assert-time, 101

becoming invalid, 225

in rup, 194

instance determination, 108

maintaining, 185

278

defeasible, 180

hybrid, 105{122

missing, 63

nonstructural, 94

query-time, 101

unwarranted, 61

inference algorithm, 27, 74, 194

complete, 27

sound, 27

tractable

vivid knowledge base, 122

information retrieval system, 61, 65

inheritance, 36

frame system, 38

realized by exp, 59

structural inheritance network,

40

initkb, 26, 208, 208{224

instance, 64

instance test, 106

on a model, 114

integrity constraint, 236

interpretation, 19, 176

interpretation function, 19, 65

itms, 189

janus, 3, 69

justi�cation, 185

monotonic, 193

nonmonotonic, 191

premise, 186

valid, 190

well-founded, 187

K-Rep, 46

kandor, 4, 45, 93

ABox, 64

concept de�nition, 69

information retrieval system, 62

KB, see knowledge base

KBMS, see knowledge base manage-

ment system

kee, 4

kl-one, 3, 43{45

ABox, 45

classi�er, 44

compared with TF , 48

revision operations, 226

subsumption problem, 84

kl-one

�

, 247

kl-two, 3

ABox, 63, 70

inferential capabilities, 63

revision operations, 63

unbalanced subformalisms, 123

KloneTalk, 45

knapsack problem, 92

knet, 45

knowledge

analytic, 198

common-sense, 12, 17, 22

default, 71

de�nitional, 44

expert, 12

illegal, 236

meta-, 28

procedurally expressed, 23, 38,

39

terminological, 35, 45, 198

knowledge acquisition, 24

necessity of revision, 198

supporting, 235

knowledge base, 11{33

implausible state, 236

knowledge-level, 14

vivid, 122

knowledge base editor, 24, 204{207

knowledge base management system,

30{33

knowledge base revision, 3

general principles, 200{202

utilizing reason-maintenance

techniques, 195

versus theory revision, 162

knowledge base revision operation,

see revision operation

279

knowledge engineer, 24

knowledge level, 13{14

functional approach, 26

knowledge base

formalization, 212

viewed as a theory, 161

knowledge base operations, 29

knowledge presentation, 204

knowledge representation, 10{30

knowledge representation formalism,

17, 17{23

assertional, 62{67

heterogeneous, 25

hybrid, 21{22, 35

object-centered, 35{45

terminological, 43{62

knowledge representation system,

23{30

services, 25{30

knowledge source, 25

knowledge-based system, 11, 23{25

knowledge-level

revision, 172

kodiak, 4

KR, see knowledge representation

krapfen, 46

kreme, 3

revision operations, 204{207

krl, 4, 38

modi�cation operations, 26

krypton, 3, 45

ABox, 63, 70

revision operations, 211

lambda calculus, 49

lattice, 133

complete, 133

semi lower, 52

least �xed point, 132, 134

least upper bound, 132

length-restricted concepts, 149

level of a term, 58

Levi Identity, 162, 166

linear concept

bb, 96

linguistic level, 40

link, 36

assertional, 37

structural, 37

lisp, 11, 38, 39

L

LILOG

, 63

logical adequacy, 37

logical level, 40

loom, 46

features, 250

revision operations, 207, 209

subsumption precomputation,

102

universal implication, 71

loops, 32, 39

lower bound, 132

machine translation, 36

marking o� identity, 166, 172

maxichoice contraction, 165

meson, 45, 94

ABox, 64

features, 250

universal implication, 71

meta-iv, 19

MINI, 96

subsumption problem, 99

minimal change principle, 200, 209,

220

minst algorithm, 114

model

canonical, 120

construction, 121

ordering, 120

unique minimal, 121

model of a world description, 65

respecting a terminology, 66

model-theoretic semantics, 49

monotonic function, 133

monotonic loop, 191

monotonicity, 136

280

most speci�c concepts, 108

msc, 108

multi-valued logic, 169

nanoklaus, 198

NARY

[KANDOR]

, 69

natural kind, 41

natural language generation, 62, 63

natural language system, 16, 24, 32,

36, 64

navigation, 204

NDFA, see nondeterministic �nite

state automaton

netl, 20

network editor, 203{204

nexus, 62

semantics, 63

nigel, 64

nikl, 4, 45, 63

criticisms, 242

incompleteness, 93

revision operations, 211, 226

subsumption problem, 83

TBox of kl-two, 63

nikl

�

, 247

node, 36

class-denoting, 37

individual-denoting, 37

non-inclusion situation, 84, 152

nondeterministic �nite state automa-

ton, 97

acyclic, 98

acyclic, nonredundant, 98

nonredundant, 98

nonmonotonic justi�cation, 229

nonmonotonic logic, 185

nonmonotonic loop, 191

nonmonotonic reasoning, 180

implementation techniques, 160

nonredundant nondeterministic �nite

state automaton, 98

norm algorithm, 76

notational e�cacy, 21

Nothing, 53

noticer, 184

NP-completeness, 28

NTF , 54

subsets, 54

NTF

T

, 55, 247

number restriction, 42, 46

kl-two, 63

object-centered formalism, 35{45

object description, 64

object-oriented programming lan-

guage, 39

object structure

�nite, cyclic, 129, 150

�nite, noncyclic, 128

in�nite, noncyclic, 129

ontological promiscuity, 64

owl, 40

p-concept, 75

p-role, 75

p-term, 59

normalized, 76

partial meet contraction, 166

partial ordering, 132

penni, 63

perspective of a frame, 38

perturbation distance, 176

Post's Correspondence Problem, 83

predicate completion, 181

premise node, 186

presentation planning system, 62

preservation postulate, 162, 201

primitive assignment, 58

primitive component, 54, 55

primitive concept component, 55

primitive role component, 55

principle of compositionality, 37

principle of rationality, 14

procedural attachment, 39

procne, 46

production-rule system, 14, 16

281

prolog, 11

control structure, 193

implementation, 235

predicate completion, 181

proof monitor, 184

proposition node, 185

propositional logic

consistency problem, 175

intractability, 28

model, 176

rup, 193

psi-klone, 61

 -term, 70

PSPACE-hardness, 27

quali�cation problem, 180

quark, 64

quirk, 46

ABox, 64

features, 250

knowledge base editor, 204

R, 83, 247

r1, 3

rabbit, 61

rational agent, 13, 159

realization, 75, 108{122

exploiting terminological cycles,

130

terminological cycles, 155

realize algorithm, 110

conditionally complete, 123

properties, 111{113

reason maintenance, 63, 184{195

assumption-based, 194{195

by-product of contraction, 172

justi�cation-based, 192{194

system, 184

reasoning

classi�cation-based, 61

common-sense, 17, 180

counterfactual, 168

model-based, 113{122

nonmonotonic, 180

implementation techniques,

160

puzzle mode, 113

re
exive, 39

terminological, 44

model-based, 113{117

reclassi�cation, 205

exploiting invariants, 234

recovery postulate, 162, 201, 215

reference by meaning, 210

reference by name, 210

relation composition, 84

iterated, 148

relation description, 64

relevant breadth, 87

relevant role-chain length, 84

relevant size, 89

representational level, 39

representational primitives, 40

request language, 200

resolution, 27

unit, 194

restriction declaration, 46

restriction-circular concepts, 146

revision, 162

base, 169, 214

maxichoice, 194

G

�

F ardenfors Postulates, 162

hybrid system, 222{224

knowledge base, see knowledge

base revision

literal, 215{222

model-theoretic, 176{180

nonminimal change, 178{180

theory, 162

G�ardenfors Postulates, 177

revision operation, 200

edit operation seen as, 207

invariants, 230{234

legal, 220

level, 216

principles, 200{202, 219

282

kreme, 207

violated, 213

role

invariants of, 232

revision request, 217

implausible, 220, 236

revision request expression, 200

revision-equivalent operations, 169

rms, see reason maintenance, system

role, 40, 46

atomic, 47

component circular, 144

extension, 50

identity, 83

individual, 41

inverse, 48, 68

local, 45

p-, 75

range restricted, 48, 68, 83

top-level primitive, 48

role composition, 48, 68, 83

role conjunction, 54, 83

role di�erentiation, 42, 47

role �ller, 42, 46, 64

role-forming operator, 48

role name, 5

role negation, 83

role restriction, 42

redundant, 237

role-set

generic, 41

particular, 41

role specialization, 47

role taxonomy, 103

precomputed, 102

role-value-map, 48, 68, 83

role-forming operator, 68

rup, 4, 193{194

ABox of kl-two, 63

incompleteness, 93

sb-one, 46

features, 250

scholar, 36

semantic network, 14, 20, 36{37, 39

logical adequacy, 37

partitioned, 37

semantics, 37

semantic structure

directed tree, 86

directed, acyclic graph, 86

least �xed point, 137

of a normal-form terminology, 56

of a terminology, 51

respecting a world, 67

semantically circular concepts, 148

semantics

constructive, 58

descriptive, 140

empirical, 19, 236

external, 19

�xed point, 132, 134{140

formal, 18

internal, 19

model-theoretic, 19, 49, 50

for terminological formalisms,

49

operational, 19

serf, 93

set splitting problem, 90

simple concept, 216

simple concept term table, 217

situation calculus, 181

Smalltalk-80, 39

sneps, 37

sphinx, 46

features, 250

spreading activation search, 36

structural description, 40, 68

structural inheritance network, 39{

43

subconcept, 36, 41

subrole, 49

subsumption, 50, 52

disjunctive, 214

hybrid, 67

283

immediate, see immediate sub-

sumption

in a terminology, 52

negated, 214

non-, 228

precomputation, 102

re
exivity, 52

term-, 60

computational complexity, 89{

94

decidability, 83{89

terminological cycles, 154

transitivity, 52

success postulate, 162, 201

success principle, 200, 209, 220

superconcept, 36, 40

supplementary postulates, 162

support, 186

current, 187

well-founded, 187

symbol level, 14, 29

t-chain, 151

t-concept, 151

TBox, 3, 45

kl-two, 63

teiresias, 24

tell, 14, 208, 208{224

term, 46

adding a, 205

atomic

multiply introduced, 202

unintroduced, 202

deleting a, 205

disjointness, 53

equivalence, 52

incoherent, 53

level, 58

modifying a, 205

renaming a, 205

term-forming formalism, 60

term-forming operator, 46

term introduction, 46

adding a, 207

adding part of a, 209

deleting a, 207

deleting part of a, 209

signi�cance, 60

term-subsumption, 60

computational complexity, 89{94

decidability, 83{89

term table, 207

using expanded terms, 210

term-forming operator, 68

terminological component, see TBox

terminological cycle, 51

elimination, 144, 146

in revision, 229

kind, 143

meaningful, 127{130

meaningless, 126

semantics, 131{141

terminological formalism, 45{62

terminology, 42, 46

conservative extension, 144

depth, 100

normal-form, 53{59

semantic structure, 56

transformation to, 55

semantic structure, 51

TermLog, 46

TF , 46

semantics, 49{52

subsets, 50

syntax, 46{49

TF

�

, 150

theorem prover, 63

theory, 161

complete, 160

by maxichoice revision, 166

theory base, see base

tms, 168, 192{193

top element, 133

transitive closure, 138

truth-maintenance system, see rea-

son maintenance

284

truth-value assignment, 176

tsub algorithm, 76

properties of, 79{83

U , 68

subsumption problem, 83

U , 243

UNA, see unique names assumption

unfold, 96, 217

unfolding

assertional cycle, 86

concept, 96

completely, 96

uni�cation grammar, 70

unique name assumption, 64

exploiting, 65

universe of discourse, 19

upper bound, 132

usage relation, 51, 143

kind of, 145

vacuity postulate, 162, 201

valuation function, 134

concept, 136

role, 136

value

actual, 37

default, 38

possible, 37

value restriction, 42, 46

actual, 206

computed, 206

incoherent, 237

literal, 206

terminal, 151

value restriction propagation, 110,

118

world description, 64

generalized, 118

inconsistent, 66

conditions, 122

detection, 111, 119

model, 65

role-closed, 118

vividness, 122

xtra, 61

285

