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Abstract

Hybrid knowledge representation and rea-

soning systems have received a lot of in-

terest in recent years. In this paper, we

will give a brief survey of the principles and

ideas behind these systems and will then fo-

cus on one particular kind of such systems,

namely, TBox/ABox systems. A formal anal-

ysis of these systems clari�es some of the

subtleties and problems involved. Finally,

the computational problems are investigated,

which leads to two conclusions. First,

worst-case tractability cannot be achieved in

TBox/ABox systems. Second, even if some

system-component uses only incomplete rea-

soning methods, it is nevertheless possible to

achieve completeness in the overall system in

certain special cases.

1 Introduction

Hybrid knowledge representation and reasoning sys-

tems (KRR systems) are systems that use more than

one representation formalism and/or more than one

reasoning component. Such a design addresses two im-

portant issues in current research on knowledge repre-

sentation and reasoning, namely, expressive power and

e�ciency of reasoning, in the following way:

� The expressiveness is improved by either allow-

ing for alternative representation of the same in-

formation by di�erent formalisms for the sake of

notational convenience or by combining di�erent

restricted formalisms to make up a more powerful

formalism.

� The e�ciency of reasoning is enhanced by em-

ploying di�erent specialized reasoners in order to

cut down the search space.

Of course, KRR systems are not the only systems

which could be hybrid. Almost all AI systems use more

than one representation formalism and more than one

reasoning subsystem, for instance, the expert systems

described in [5, 33] and almost all natural language

systems (see e.g. [19]). However, in this case the is-

sues are di�erent. In expert systems and natural lan-

guage systems, the representation formalisms and rea-

soning components are usually only loosely connected

and the integration is a matter of software engineering

and driven by the domain and task the system is built

for. In KRR systems, on the other hand, the integra-

tion has to based on a domain-independent, formally

�rm base|a point, we will try to highlight in this pa-

per.

In the following section, some examples of hybrid

KRR systems are brie
y sketched, their main char-

acteristics are described and problems and bene�ts

are discussed. Section 3 gives then a detailed for-

mal description of one particular class of hybrid KRR

systems|TBox/ABox systems|highlighting some of

the critical properties that make them useful. Fi-

nally, in Section 4 the computational problems of

TBox/ABox systems are analyzed leading to two im-

portant conclusions. First, worst-case tractability can-

not be achieved in TBox/ABox systems. Second, even

if the TBox reasoner is incomplete, it is possible to

characterize an important special-case that makes the

overall reasoner complete.

2 Hybrid Representation and

Reasoning Systems

There are a number of examples of hybrid KRR sys-

tems described in the literature. First, there is a group

of logic-based hybrid systems, for instance, the cake

system [52], the family of TBox/ABox systems (e.g.

kl-two [60], krypton [9], kandor [48], back [61],

meson [14], loom [29], and classic [6]), theorem

provers using sorted deduction [10, 17] or theory res-

olution [58], and constraint logic programming [22].
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Second, we have a group of hybrid systems which in-

tegrate logic with other formalisms [16, 51]. In the

following, we will concentrate on the former class.
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Figure 1: Architecture of hybrid KRR systems

In all cases, the principal architecture of the sys-

tems can be depicted as in Figure 1. However, there

might be the case that there is only one representa-

tion, that is, di�erent reasoners are operating on just

one representation formalism, or that there is only one

reasoner implying that one formalism is translated into

the other before reasoning takes place (as e.g. in the

system described in [47]). Actually, it is impossible

to tell from the behavior of the system how many

reasoners or formalisms are actually employed. This

means that hybridness is not a knowledge-level prop-

erty [26, 44] but a symbol-level property.

The most interesting issue in such systems is how

the border line between the di�erent reasoners and for-

malisms is drawn, and how the gap between them is

bridged. In order to give an impression about the is-

sues involved, some of the systems mentioned above

will be brie
y sketched.

2.1 CAKE

cake is a the representation kernel of a programmer's

apprentice system [52]. One component is the plan cal-

culus component, which reasons about programs rep-

resented by using a 
ow-chart style formalism with

pre- and postconditions. The second component is

rup [32]|a TMS that supports reasoning in variable-

free predicate logic with equality.

The link between these two formalisms is established

by a sort of translation between the two formalisms.

Plans and programs used in the plan calculus compo-

nent are mapped to assertions that are stored in the

active database provided by the rup system. rup in

turn reports about detected inconsistencies, equalities

etc. to the plan-calculus component.

Thus, in the case of cake we have two reasoners

acting on the same information which is represented

in di�erent ways. The bene�t of this system architec-

ture is that domain-dependent reasoning is e�ciently

carried out in the plan calculus component, without

overloading this component by reinventing the logical

wheel.

2.2 The Family of TBox/ABox Systems

In TBox/ABox systems, two epistemological di�erent

kinds of knowledge are distinguished, namely, termi-

nological and assertional knowledge [7], which is dealt

with in di�erent \boxes"|the former kind of knowl-

edge in the TBox, the latter in the ABox. Termi-

nological knowledge is concerned with the de�nitional

meaning of concepts, e.g. a parent is de�ned as a person

who has a child, while assertional knowledge is about

the state of the world, e.g. that peter is a parent with

the child mary.

Actually, we may further divide this class of systems

into two subclasses, namely those that use full �rst-

order logic in the ABox, such as krypton, and those

that use a restricted formalism (variable-free predi-

cate logic or less). In the former case, the distinction

between terminological and assertional representation

may only be considered as a notational convenience be-

cause everything expressible in krypton's TBox can

also be asserted in the ABox.

1

In the latter case|the ABox allows only for a ex-

pressively limited formalism|the combination of a

TBox and an ABox leads to a powerful system such

that the expressiveness of the overall formalism is more

than the sum of its parts, as we will see in Section 3.

Parallel to the distinction along the lines of expres-

sive power, one could distinguish the reasoning ar-

chitecture. In the case when the ABox supports full

�rst-order logic, the technical device to bridge the gap

between ABox and TBox is partial theory resolution

[9, 58]. In the other case, the combination is much

easier to achieve because the ABox has only little in-


uence on the TBox.

2.3 Sorted Logics

In sorted logics, the universe of discourse is divided up

into subsets|called sorts|and variables are restricted

1

However, when analyzing possible belief revision oper-

ations, it turns out that the distinction between TBox and

ABox goes deeper. The techniques developed for revising

assertional knowledge [35] are inappropriate for termino-

logical knowledge [37, Ch. 7], indicating that the termi-

nological/assertional distinction provides more than nota-

tional convenience.
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to range over these subsets. Usually, the sorts are or-

dered in a sort taxonomy. Here again, di�erent ap-

proaches are possible which have wide-ranging e�ects

on the resulting expressiveness of the overall system

and on the communication protocol between the gen-

eral reasoner and the sort reasoner.

One approach, the so-called substitutional frame-

work [17], uses sort symbols only to restrict variables

and arguments of functions and predicates. In this

case, the communication protocol is quite simple. The

sort reasoner is only called during uni�cation as one

inference step.

This approach can be contrasted with a more lib-

eral use of sort literals where sort literal may appear

as one-place predicates in the �rst-order theory [10].

In this case, the communication between the general

reasoner and the sort reasoner becomes more compli-

cated because the sort reasoner may have to return

results in the form of �rst-order formulas to the gen-

eral reasoner.

2.4 Communication and Control

Similar to the tradeo� between expressiveness and

tractability [27], in hybrid systems there seems to be a

tradeo� between the degree of conceptual overlap be-

tween subformalisms and the simplicity of control and

communication between the reasoners. In general, we

can identify at least two di�erent kinds of communi-

cation protocols between subcomponents in a hybrid

system:

� A master/slave system, where the slave does one

or more inference steps when called by the mas-

ter. A necessary prerequisite for this protocol is

that the subformalisms are conceptually quite in-

dependent, as in the case of cake, TBox/Abox

systems with a expressively limited ABox, sorted

logics in the substitutional framework, and con-

straint logic programming.

� A master/slave system, where the slave delivers

its results in terms of the representation used by

the master system. This strategy has to be used

if there is a conceptual overlap in the represen-

tation formalisms, as e.g. in krypton, in sorted

logic in the non-substitutional framework, and in

partial theory resolution. Here the interaction be-

comes much more complex and there might even

be the potential danger that instead of reduc-

ing the search space the representation constructs

generated by the slave reasoner enlarge the search

space.

Of course, other architectures are conceivable. For

instance, reasoners might interact cooperatively or

they might be controlled by a metareasoner [21].

2.5 Requirements and Possible Pitfalls

First of all, the design of a hybrid KRR system should

be done in a way such that the subformalisms em-

ployed are balanced in their expressiveness [42]. For

instance, it does not make much sense to have the

means to represent cardinalities of sets in a TBox with-

out the expressive power of representing cardinalities

in the ABox.

Second, the combination of subformalisms and sub-

systems should be more than the sum of their parts.

This means that the subformalisms should be inte-

grated, preferably by using a uni�ed (formal) seman-

tics or by employing some sort of projection or trans-

lation between the di�erent semantics. Furthermore,

this integration on the formal level should be mirrored

by a tight integration of the reasoners.

In this context, two possible pitfalls should be

mentioned. One is the danger of \computational

explosion"|caused by an uncontrolled interaction be-

tween the reasoners. The other one is unpredictable

and unprincipled incompleteness of a hybrid system

caused by the interaction of incomplete reasoners|a

phenomenon which may be called \computational im-

plosion."

However, when integrating incomplete reasoners in

a hybrid system there might also be the chance that

the overall system can be characterized as \more com-

plete" then its parts in the sense that it becomes pos-

sible to prove conditional completeness results.

3 TBox/ABox Systems

In order to make the points discussed above more con-

crete, one particular kind of hybrid KRR systems is

described and analyzed in detail, namely, TBox/ABox

systems as sketched in Section 2.2. However, we will

only focus on the formal aspects, i.e., on the semantics

of the employed representation formalism, the infer-

ences supported by this semantics and their computa-

tional properties.

3.1 Formal Terminologies

The TBox serves as the component which supports

the representation of terminologies. In the following,

a simple terminological language, called STL, will be

introduced.

2

2

This is essentially the terminological language em-

ployed in the hybrid representation system MESON [14].
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Terminologies are composed out of terminological

axioms (TA) which relate a concept (the left hand side)

to a concept description (the right hand side):

TA ! A

:

� C specialization

j A

:

= C equivalence:

with the additional restriction that no concept may

occur more than once as a left hand side in a termi-

nology. Giving an example,

Workstation

:

� Computer

Cluster

:

= Network u 9

�1

server:

is intended to mean thatWorkstation is a specialization

of Computer and Cluster is equivalent to a Networkwith

atleast 1 server.

The right hand sides of terminological axioms|

the concept descriptions (denoted by C)|are com-

posed out of concepts (denoted by A), restrictions on

attributes|called roles (denoted by R)|and the fol-

lowing description-forming operators:

C ! A atomic concept

j C u C

0

concept conjunction

j 8R:C value restriction

j 9

�n

R number restriction (min)

j 9

�n

R number restriction (max).

The sets of concepts, roles, and concept descriptions

are denoted by �

A

, �

R

, and �

C

, respectively.

In order to specify the meaning of terminologies for-

mally, we de�ne an interpretation I as a pair hD; �

I

i

with D an arbitrary set, the domain, and �

I

, the inter-

pretation function, a function from concepts to subsets

of D and from roles to subsets of D �D:

�

I

:

�

�

A

! 2

D

�

R

! 2

D�D

Simplifying notation, we will sometimes use an ap-

plicative style for referring to the set of elements which

are related to a given element x by a role, also often

called role-�ller set:

R

I

(x) = fy 2 Dj hx; yi 2 R

I

g

Based on the interpretation of concepts and roles,

the denotation of concept descriptions is de�ned in-

ductively:

(C u C

0

)

I

= C

I

\ C

0I

(8R:C)

I

= fx 2 DjR

I

(x) � C

I

g

(9

�n

R)

I

= fx 2 Dj kR

I

(x)k � ng

(9

�n

R)

I

= fx 2 Dj kR

I

(x)k � ng:

This means that a concept is interpreted as stand-

ing for a set of objects|its extension|and a concept

description receives its meaning by the application of

straightforward set operations. For instance, the ex-

tension of Networku 9

�1

server is simply the set of ob-

jects that are Networks that have at least one role-�ller

of the server role.

The concepts > and ? will be used as abbreviations

for 9

�0

R and 9

�0

R u 9

�1

R, respectively, where R is

any role. Thus, > is interpreted as the set of every-

thing and ? is interpreted as the empty set.

An interpretation I satis�es a terminological axiom

�, written j=

I

�, i� the sets denoted by the right hand

and left hand side relate to each other as suggested by

the symbols:

j=

I

A

:

= C i� A

I

= C

I

j=

I

A

:

� C i� A

I

� C

I

:

Furthermore, an interpretation I is amodel of a termi-

nology T , written j=

I

T , i� all terminological axioms

in T are satis�ed by I.

In order to make these de�nitions more vivid, let us

examine a small example:

Workstation

:

� 8drive:Disk

Diskless-WS

:

= Workstation u 9

�0

drive

Diskbased-WS

:

= Workstation u 9

�1

drive

Network

:

� 9

�1

member u

8member:Workstation u

8server:Diskbased-WS

Small-Network

:

= Networku 9

�5

member

Cluster

:

= Networku 9

�4

member u

9

�1

server

Standalone-System

:

= Networku 9

�1

member:

Having de�ned the formal meaning of terminologies,

we can now say which terminological formulas are en-

tailed by a terminology. Here, we will permit arbitrary

formulas C

:

= C

0

and C

:

� C

0

. Such a formula � is

entailed by a terminology T , written T j= � , i� � is sat-

is�ed by all models of T . Applying this de�nition to

the example above, it is easy to see that the following

formulas are entailed:

Cluster

:

� Small-Network

Diskless-WS u Diskbased-WS

:

= ?:

Based on the entailment relation between terminolo-

gies and formulas, it is possible to de�ne a relation on
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the set of concept descriptions, namely, the subsump-

tion relation �

T

de�ned as

C �

T

C

0

i� T j= C

:

� C

0

:

This relation is obviously a preorder (that is, transi-

tive and re
exive) on the set �

C

of concept descrip-

tions composed from symbols appearing in T , and a

partial order on the quotient of �

C

with respect to the

equivalence relation �

T

de�ned by

C �

T

C

0

i� T j= C

:

= C

0

:

3.2 Computational Services of a TBox

One service TBoxes usually provide, called classi�ca-

tion [28], is the computation of a concept taxonomy,

such as the one in Figure 2, which represents the im-

mediate subsumption relation between concepts for the

terminology in the previous subsection.

>

Workstation Network

�

�

�

�

�

�*

H

H

H

H

H

HY

Diskless-WS Diskbased-WS

�

�

��

@

@

@I

Small-Network

6

Cluster

Standalone-System

�

�

��

@

@

@I

Figure 2: A concept taxonomy.

Evidently, subsumption and classi�cation are inter-

twined. In order to compute the concept taxonomy,

subsumption between concepts must be determined.

Once the concept taxonomy has been computed, sub-

sumption between concepts can be read o� from the

taxonomy,

3

that is, classi�cation can be regarded as a

kind of assert-time inference technique.

Obviously, classi�cation is a versatile service for

the knowledge acquisition task. Classi�cation points

out all implicit relationships between concepts which

might have been missed when introducing a concept.

As shown in [1, 15], classi�cation can be used to

drive the knowledge acquisition process by employing

a number of reasonable heuristics such as that di�erent

concepts should not denote the same set and that no

concept should be incoherent, that is, equivalent to ?.

Note that such incoherent concepts are quite useless

3

Actually, in some representation systems not only the

concept taxonomy but also the transitive closure is stored.

because they denote the empty set, but they do not

\infect" the knowledge base in the sense a contradic-

tory proposition in logic does. Terminologies always

have at least one model, namely, the trivial one inter-

preting every concept and role as the empty set.

Knowledge acquisition is not the only application

where classi�cation can be put to use. In general, any

problem requiring classi�cation-based reasoning [23]

can exploit this service. This kind of reasoning pro-

ceeds along the following line. Given some concept de-

scription, identify the concepts which most accurately

characterize the given description and use information

associated with the identi�ed concepts to do something

meaningful, that is, the concepts are used as a kind of

conceptual coat rack [62].

Making this idea less abstract, let us assume that

we want to identify a plan in order to solve a problem.

Now, we may de�ne a hierarchy of problem concepts

associating with each such problem concept a plan for

solving the problem. Thus, given a particular prob-

lem description, classi�cation can determine the most

specialized set of problem concepts for which plans are

known in order to solve the given problem [43]. Such

an organization of problem-solving knowledge is not

only very elegant and natural, but also makes main-

tenance of such a knowledge base easier and supports

explanation facilities. Other examples of where this

kind of representation and reasoning can be pro�tably

exploited are computer con�guration [45], natural lan-

guage generation [40], presentation planning [3], and

information retrieval [59].

3.3 Formal World Descriptions

However, in most of the applications cited above, one

does not start with a description of, say, a particu-

lar problem, but one has a collection of objects (de-

noted by c, d) and relationships between them. Given

such a world description, which is dealt with in the

ABox, one wants to know the set of concepts most ac-

curately describing those objects. In order to capture

this formally, let us again extend our formalism. This

time, however, we do not add new description-forming

expressions or terminological axioms, but something,

which will be called world axioms (WA) in order to

describe objects by naming the concepts they shall be

an instance of and to describe relationships between

two objects by specifying role relationships:

WA ! C(c) instance description

j r(c; d) relation description.

Using the interpretation of concepts and roles given

above, and interpreting objects c as elements of the

5



domain, i.e.,

c

I

2 D

using the unique names hypothesis

if c

I

= d

I

then c = d;

a world axiom is satis�ed by an interpretation, written

j=

I

!, under the following conditions:

j=

I

C(c) i� c

I

2 C

I

j=

I

R(c; d) i� d

I

2 R

I

(c

I

):

Similar to the de�nition of a model of a terminol-

ogy, we can say what we mean by a model of a world

description W or by a model of a world description W

combined with a terminology T , namely, an interpre-

tation which satis�es all world axioms in W or all ter-

minological and world axioms in T [W , respectively.

Furthermore, we will say that c is an instance of C i�

T [W j= C(c).

3.4 Putting the Boxes together

Combining TBox and ABox,

4

we can describe a world

by specifying the objects and relationships of interest

by a world description W employing a terminology T .

For instance, we may use the computer-network termi-

nology in order to describe a particular con�guration:

Workstation(w1)

Network(n1)

(9

�3

member)(n1)

server(n1;w1)

From this constellation it follows that w1 is a

Diskbased-WS because every role-�ller of the server role

for Networks is a Diskbased-WS and, additionally, n1 is

a Cluster and a Small-Network.

In general, TBox/ABox systems provide a compu-

tational service called realization [31] which computes

for each object c the set of most specialized concepts

MSC(c) the object is an instance of. Formally,MSC(c)

is a minimal set of concepts

5

such that

if A 2 MSC(c) then T [W j= A(c) (1)

if T [W j= B(c) then 9A:A 2 MSC(c) ^

T [W j= A

:

� B: (2)

4

Recently, also rules found their way into such systems,

a facility formally analyzed in [53].

5

Actually, of equivalence classes of concepts in order to

guarantee uniqueness.

In our case, condition (2) can be simpli�ed because

world descriptions form an (almost) conservative ex-

tension of terminologies, that is, entailment of termi-

nological formulas depends (in all interesting cases)

only on the terminology and not on the world descrip-

tion.

Theorem 1 If a world description W and a termi-

nology T are jointly satis�able, then

T [W j= � i� T j= �

for all terminological formulas � .

6

This means that we can formulate condition (2)

equivalently as

if T [W j= B(c) then 9A:A 2 MSC(c) ^

A �

T

B;

provided the assumption of the theorem holds. This

means in particular that after MSC(c) has been com-

puted, instance relationships for c can be determined

by looking up subsumption in the concept taxonomy.

Note that this property, which supports the �rst of

the communication protocols mentioned in Section 2.4,

heavily depends on the fact that the world axioms have

very limited expressiveness. If arbitrary �rst-order for-

mulas are permitted, as in krypton, the computation

of instance relationships becomes much more compli-

cated.

In a presentation planning application [3], the infor-

mation associated with the concepts in MSC(c) might

be used to decide how to represent a given object. In a

database or information retrieval application, MSC(c)

can be used to index the data objects by the concepts

in MSC(c) [4, 6, 50]. Query processing can then be im-

plemented as classi�cation of a query concept, retrieval

of all objects indexed by the immediate superconcepts

of the query concept in the concept taxonomy, and

�ltering by testing each retrieved object against the

query concept.

4 Algorithmic Considerations

Although we have talked about computational ser-

vices, we haven't given algorithms which do the actual

computations. However, instead of specifying infer-

ence algorithms (see, e.g. [27, 37, 41, 46, 56]), we will

investigate the computational properties of the prob-

lems.

As we have seen in the previous section, subsump-

tion determination is the central operation in a TBox

6

Proofs for this and the following theorems and propo-

sitions can be found in [37].
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system. This point is reinforced by the fact that

all other interesting properties and relations, such as

equivalence of two concepts (C �

T

C

0

), incoherency of

a concept (C �

T

?), and disjointness of two concepts

((C u C

0

) �

T

?) can be reduced to subsumption in

linear time.

Proposition 1 Given a terminology T and two con-

cept descriptions C;C

0

:

1. C �

T

? i� C �

T

?

2. C �

T

C

0

i� C �

T

C

0

and C

0

�

T

C

Similarly, subsumption can be reduced to equiva-

lence.

Proposition 2 Given a terminology T and two con-

cept descriptions C;C

0

:

C �

T

C

0

i� C �

T

(C u C

0

):

Furthermore, if we had a concept-negation operator,

such as the one introduced below, it would be possible

to reduce subsumption to incoherency in linear time.

4.1 The Subsumption Problem

In other words, when looking for e�cient inference al-

gorithms for TBox systems, we have to �nd an e�cient

subsumption algorithm. In order to simplify matters,

we will show how subsumption in arbitrary terminolo-

gies can be reduced to subsumption in the empty ter-

minology, denoted by ;.

First of all, a function Exp from concept descriptions

and terminologies to concept descriptions is de�ned.

This function repeatedly replaces all concepts A ap-

pearing in a given concept description C by the right

hand side of the introduction of A until no further

replacements are possible|adding a special fresh con-

cept for every concept A introduced by a specialization

axiom. Thus, Exp(C; T ) contains only unde�ned con-

cepts, that is, concepts that do not appear as the left

hand side of a terminological axiom in T . Obviously,

Exp terminates if T does not contain terminological

cycles, i.e., a direct or indirect occurrence of the con-

cept introduced on the left hand side in the concept

description on the right hand side.

7

Moreover, Exp

does not change the meaning of a concept since the

replaced subexpressions and the replacing expressions

in C are identically interpreted in T .

7

Although such terminological cycles are sometimes

useful, they are usually not supported by TBox systems

because their intuitive meaning is not completely clear and

they complicate the design of subsumption algorithms (but

cf. [36] and [37].)

Proposition 3 For every model I of a terminology

T :

C

I

= (Exp(C; T ))

I

:

From this observation it is almost immediate that

subsumption in terminologies can be reduced to sub-

sumption in the empty terminology ;, i.e., to subsump-

tion of concept descriptions, which will be called term-

subsumption.

Theorem 2 Given a terminology T and two concept

descriptions C, C

0

:

C �

T

C

0

i� Exp(C; T ) �

;

Exp(C

0

; T ):

This means when developing subsumption algo-

rithms, we have to consider only the description-

forming part of the formalism. Considering the

description-forming language speci�ed in Section 3.1,

it is easy to show that subsumption can be determined

in polynomial time by adapting the subsumption algo-

rithm and the proof of [27] to STL.

4.2 Computational Complexity of

Term-Subsumption

An interesting question coming up in this context is

how far we can go in enhancing the expressiveness of

a description-forming language without sacri�cing e�-

ciency, i.e., polynomial-time computational subsump-

tion determination. A (partial) answer is given in Ta-

ble 1. In order to interpret this table, some more term-

forming operators, which have been used in TBox sys-

tems, have to be introduced, however. First of all, let

us extend the concept-description language:

C ! : : :

j C t C

0

concept disjunction

j :C concept negation

j 9

�n

R:C generalized number restr.

j 9R:C generalized exist. restr.

j 9R existential restriction

j R # R

0

role agreement.

The meaning of concept disjunction and negation

should be obvious. Generalized number restrictions

permit us to describe concepts such as Parents who

have at least 3 Male-persons as their children:

9

�3

child:Male-person:

Role agreement can be used to de�ne, for instance, the

concept of an Autobiography:

Biography u (subject # author)

7



Name Concept-Forming

Operators

Role-Forming

Operators

Complexity of Subsumption, Re-

marks, and References

FL

�

(C u C

0

), (8R:C),

(9R)

polynomial [8, 27]

STL (C u C

0

), (8R:C),

(9

�n

R), (9

�n

R)

polynomial, with  -terms [2] added

probably still polynomial (classic,

see [6])

FL (C u C

0

), (8R:C),

(9R)

(Rj

C

) co-NP-hard [8, 27]

ALE (C u C

0

), (8R:C),

(9R:C)

NP-complete [11]

back (C u C

0

), (8R:C),

(9

�n

R), (9

�n

R)

(R u R

0

) co-NP-hard, without (R u R

0

) but

with (9

�n

R:C) (kandor, see [48])

still co-NP-hard [34]

ALC (C u C

0

), (C t C

0

),

:C,

(8R:C), (9R:C)

PSPACE-complete [56]

with (9

�n

R) and (9

�n

R) still in

PSPACE, with feature logic [57]

added still decidable [20]

(C u C

0

), (8R:C),

(9

�n

R), (9

�n

R)

(R u R

0

), (Rj

C

) polynomial for four-valued seman-

tics [46]

R (R u R

0

), :R,

(R �R

0

)

undecidable [54]

kl-one

�

(C u C

0

), (8R:C),

(R # R

0

)

(R �R

0

) undecidable [55]

slightly weaker result: [49]

Table 1: Complexity of subsumption in term-forming languages
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The formal meaning of these concept-description op-

erators can be speci�ed as follows:

(C t C

0

)

I

= C

I

[ C

0I

(:C)

I

= D n C

I

(9

�n

R:C)

I

= fx 2 Dj kR

I

(x) \ C

I

k � ng

(9R:C)

I

= (9

�1

R:C)

I

= fx 2 Dj R

I

(x) \ C

I

6= ;g

(9R)

I

= (9R:>)

I

= fx 2 Dj R

I

(x) 6= ;g

(R # R

0

)

I

= fx 2 Dj R

I

(x) = R

0I

(x)g

Similar to concept-forming operators, role-forming

operators are conceivable, and have indeed been used

in di�erent term-forming languages.

8

The symbol S

will be used to denote atomic roles, while R will be

used to denote role-descriptions:

R ! S atomic role

j R u R

0

role conjunction

j :R role negation

j Rj

C

range restriction

j R �R

0

role chain

The formal meaning of these operators can be speci�ed

as follows:

(R uR

0

)

I

= R

I

\ R

0I

(:R)

I

= (D �D) nR

I

(Rj

C

)

I

= R

I

\ (D � C

I

)

(R �R

0

)

I

= fhx; yij 9z: z 2 R

I

(x) ^ y 2 R

0I

(z)g

As can be seen in Table 1, when trying to extend

the term-forming part of STL, one inevitably ends up

with languages for which subsumption determination

is intractable or, more precisely, NP-hard. Further-

more, introducing role-chains and agreements on roles

or role-negation and conjunction, the result is even

worse, subsumption determination becomes undecid-

able.

Since TBox/ABox systems are supposed to deliver

answers in a reasonable amount of time, the situation

described is quite disturbing. The following strategies

have been applied to circumvent this problem:

1. Restricting the term-forming languages (e.g.

krypton, classic)

8

Additionally, instead of using general roles, it would

also be possible to use features|single-valued roles|as

used in uni�cation-based grammar formalisms, which are

better behaved from a computational point of view [39].

2. Using a weaker semantics which supports only

tractable inferences [46].

3. Restricting the inferences the system can draw

(e.g. kl-two, back, loom).

All of these approaches have pros and cons. The �rst

two strategies, which are favored in [27], may rule out

a number of possible applications (see [13]), however,

the restrictions are principled. The third approach

(see e.g. loom [30]), on the other hand, restricts the

inferences usually in an unprincipled way, i.e., it is

often not clear which inferences the system will draw

and which inferences are ignored.

4.3 Computational Complexity of

Subsumption in Terminologies

As it turns out, the situation is even worse than de-

scribed in the previous subsection. From a theoretical

point of view, subsumption is inherently intractable.

In Section 4.1, it was shown how to reduce subsump-

tion in a terminology to term-subsumption. However,

this reduction may lead to expressions that are not

polynomially bounded in the size of the terminology,

as the following example demonstrates:

C

1

:

= 8r:C

0

u 8r

0

:C

0

C

2

:

= 8r:C

1

u 8r

0

:C

1

.

.

.

C

n

:

= 8r:C

n�1

u 8r

0

:C

n�1

:

Here, the size of Exp(C

n

; T ) is obviously proportional

to 2

n

. Of course, better algorithms are conceivable.

But the subsumption problem in terminologies can-

not be reduced generally to the subsumption problem

in the empty terminology in linear time, since it is

equivalent to the co-NP-complete problem of deciding

equivalence of nondeterministic automatons that ac-

cept �nite languages [18, p. 265].

Theorem 3 Given a terminological formalism con-

taining only the operators

:

= , u, and 8, the problem of

deciding whether C �

T

C

0

in cycle-free terminologies

is co-NP-complete.

9

This result means that \the goal of forging a pow-

erful system out of tractable parts" [27, p. 89] can-

not be achieved in the area of TBox systems. Fur-

thermore, it means that almost all TBox systems de-

scribed in the literature that have been conjectured

or proven to be tractable with respect to subsumption

over the description forming language can be blown

9

A proof appears in [38].
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up with a carefully thought out example. However,

nobody seems to have noticed this fact, and, indeed,

terminologies occurring in applications appear to be

well-behaved. In this respect and with regard to the

structure, our problem is similar to the type inference

problem in ml, which seems to be solvable in linear

time in all practical applications encountered so far,

but is PSPACE-hard in general [24].

The conclusion one can draw from this strange sit-

uation is that although the theory of computational

complexity can shade some light on the structure of

a problem, one should not be scared by intractability

in the �rst place. It may well be the case that it is

possible to �nd algorithms that are well-behaved in

all normal cases. Furthermore, it seems promising to

reevaluate the results shown in Table 1 in this light.

In our case, a reasonable restriction on the form of

terminologies, which can be considered as a \normal

case," is that the \depth of a terminology" over roles

and de�nitions is logarithmicly bounded by the size of

the terminology [38]. This restriction, which seems to

be met by all terminologies I have seen so far, ensures

that the expanded concept expressions are polynomi-

ally bounded in size by the size of the terminology.

Probably, it is not possible to �nd always such sim-

ple restrictions. However, it may turn out that for all

cases occurring in practice, sophisticated algorithms

can avoid an exponential explosion (see e.g. [12, 25]).

4.4 The Instance Determination Problem

Viewed in isolation, the results reported in Table 1

and Theorem 3 are discouraging. However, as already

pointed out above, Theorem 3 may not a�ect the e�-

ciency of subsumption in practice, and, moreover, in-

tractability of term-subsumption may not be signi�-

cant if we look at the context in which TBoxes are

used.

The main application of TBox/ABox systems is

classi�cation-based reasoning, that is, the determina-

tion of the concepts a particular object is an instance

of in order to apply some rules or procedures to it.

For this purpose, however, the computation of a con-

cept taxonomy is not strictly necessary. It su�ces to

check (for all concepts) whether a given object is an

instance or not. Unfortunately, though, in the gen-

eral case, testing the instance relationship is of similar

complexity as determining subsumption. But there

are some special cases, in which the computation of

instance relationships is easy.

For example, in the back system, which uses an

incomplete subsumption algorithm because subsump-

tion determination is intractable (see Table 1), the re-

alization algorithm described in [41] and [37, Ch. 4]

turns out to be complete in the important special case

when the world description contains enough informa-

tion in order to decide whether a role relationship be-

tween two objects holds or not|when the world de-

scription is role-closed.

This behavior has to do with the fact that role-closed

world descriptions have a canonical model M, that

is, an instance relationship is entailed by T [ W if,

and only if, it is satis�ed by M.

10

Furthermore, this

canonical model can be easily (in polynomial time)

computed when the world-description is role-closed.

Technically, this means that although the subsump-

tion relation is not completely determined, all instance

relations will be found|i.e., in this case, the overall

system is more complete than the parts.

5 Summary and Conclusions

Hybrid KRR systems address two important research

issues, namely, expressiveness of representation lan-

guages and e�ciency of reasoning. We have reviewed

di�erent such systems and have identi�ed some critical

points concerning the architecture of such systems.

Concentrating on TBox/ABox systems, we showed

the interplay of di�erent formalisms on the semantic

level and presented an analysis of the computational

problems involved. Although the theoretical results

suggest that e�cient reasoning in such systems is im-

possible, we pointed out some directions how to de-

sign e�cient systems. First, in designing inference

algorithms, not the worst case, but the normal case

should be considered and supported. Second, some-

times completeness of subsumption determination may

be sacri�ced and the emphasis should be shifted to re-

gain completeness for the overall system in important

special cases.
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