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1 INTRODUCTION

Belief revision is the process of incorporating new information into a knowledge

base while preserving consistency. Recently, belief revision has received a lot of

attention in AI,

1

which led to a number of di�erent proposals for di�erent appli-

cations (Ginsberg 1986; Ginsberg, Smith 1987; Dalal 1988; G�ardenfors, Makinson

1988; Winslett 1988; Myers, Smith 1988; Rao, Foo 1989; Nebel 1989; Winslett 1989;

Katsuno, Mendelzon 1989; Katsuno, Mendelzon 1990; Doyle 1990). Most of this re-

search has been considerably in
uenced by approaches in philosophical logic, in par-

ticular by G�ardenfors and his colleagues (Alchourr�on, G�ardenfors, Makinson 1985;

G�ardenfors 1988), who developed the logic of theory change, also called theory of epi-

stemic change. This theory formalizes epistemic states as deductively closed theories

and de�nes di�erent change operations on such epistemic states.

Syntax-based approaches to belief revision to be introduced in Section 3 have been

very popular because of their conceptual simplicity. However, there also has been

criticisms since the outcome of a revision operation relies an arbitrary syntactic di-

stinctions (see, e.g., (Dalal 1988; Winslett 1988; Katsuno, Mendelzon 1989))|and

for this reason such operations cannot be analyzed on the knowledge level. In (Nebel

1989) we showed that syntax-based approaches can be interpreted as assigning hig-

her relevance to explicitly represented sentences. Based on that view, one particular

kind of syntax-based revision, called base revision, was shown to �t into the theory

of epistemic change. In Section 4 we generalize this result to prioritized bases. It

will be shown that the class of prioritized base revisions is identical with the class of

belief revision operations generated by epistemic relevance orderings (Nebel 1990).

The belief revision operations generated by epistemic relevance orderings do not sa-

�
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tisfy all AGM postulates belief revision operations should obey, however (see (G�ar-

denfors, this book)). In Section 5 some interesting special cases of epistemic relevance

are analyzed that lead to the satisfaction of all AGM postulates. In particular, we

show that epistemic entrenchment as introduced in (G�ardenfors, Makinson 1988) is

a special case of epistemic relevance.

Makinson and G�ardenfors (1990) showed that there is a tight connection between

belief revision and nonmonotonic logics. In Section 6 we will strengthen this result.

First, we show that the form of logical nonmonotonicity observable when revising

beliefs is a necessary consequence of temporal nonmonotonicity induced by belief

revision. Second, we will prove that this similarity can be strengthened to equivalence

of expressiveness for particular nonmonotonic logics and belief revision operations in

the case of propositional logic. Poole's (1988) and Brewka's (1989; 1990) approaches

are shown to be expressively equivalent to some forms of syntax-based belief revision

approaches. An interesting consequence of this result is that the \absurd belief state"

that is inconsistent turns out to be more important than assumed to be in the theory

of epistemic change.

Additionally to the logical properties of belief revision and default reasoning, in Sec-

tion 7 the computational properties are analyzed. As it turns out, the complexity of

propositional syntax-based belief revision is located at the lower end of the polynomial

hierarchy.

2 FORMAL PRELIMINARIES

Throughout this chapter, a propositional language L with the usual logical connec-

tives (:, _, ^, ! and $) is assumed. The countable alphabet of propositional

variables p; q; r : : : is denoted by �, propositional sentences by �; �;  ; �; !; : : :, con-

stant truth by >, its negation by ?, and countable sets of propositional sentences by

K;L;M; : : : and A;B;C; : : :

The symbol ` denotes derivability and Cn the corresponding closure operation, i.e.,

Cn(K)

def

= f� 2 LjK ` �g: (1)

Instead of Cn(f�g), we will also write Cn(�). Deductively closed sets of propositional

sentences, i.e., K = Cn(K), are denoted by K;L;M; : : : and are called belief sets.

Arbitrary sets of sentences are called belief bases and are denoted by the letters

A;B;C. Systems of belief bases and belief sets are denoted by S. Finite belief bases C

are often identi�ed with the conjunction of all propositions

V

C. If S = fA

1

; : : : ; A

n

g

is a �nite family of �nite belief bases, then

W

S shall denote a proposition logically

equivalent to (

V

A

1

) _ : : : _ (

V

A

n

). As usual, we set

W

; = ?.



Sometimes, we will also talk about truth assignments and models of propositions

and belief bases. A truth assignment is a function I: � ! fT;Fg. A model I of

a proposition � is a truth assignment that satis�es � in the classical sense, written

j=

I

�. A model of a belief base C is a truth assignment that satis�es all propositions

in C, written j=

I

C.

As usual (see (G�ardenfors, this book)), K + � is the expansion of K by �, K

:

+ � is

the revision of the belief set K by �, and K

:

� � is the contraction of K by �. (K?�)

denotes the system of set-inclusion maximal subsets of K that do not imply �, and


 denotes a selection function that selects a subset of (K?�).

3 SYNTAX-BASED REVISION APPROACHES: BASE REVISIONS

The logic of theory change captures the logical portion of minimal change giving us

a kind of yardstick to evaluate approaches to belief revision. However, it still leaves

open the problem of how to specify additional restrictions so that a revision operation

also satis�es a \pragmatic" measure of minimal change.

Two principal points of departure are conceivable. Starting with a belief base as

the representation of a belief set, either the syntactic form of the belief base (Fagin,

Ullman, Vardi 1983; Ginsberg 1986; Nebel 1989) or the possible states of the world

described by the belief base|the models of the belief base|could be changed mi-

nimally (Dalal 1988; Winslett 1988; Katsuno, Mendelzon 1989; Katsuno, Mendelzon

1990). The former approach seems to be more reasonable if the belief base corre-

sponds to a body of explicit beliefs that has some relevance, such as a code of norms

or a scienti�c or naive theory which is almost correct. The latter view seems plau-

sible if the application is oriented towards minimal change of the state of the world

described by a belief set. In this paper, we adopt the former perspective. In order to

distinguish operations on syntactic descriptions { on belief bases { from operations

on belief sets, belief base changes are called base revision and base contraction.

The idea of changing a belief base minimally could be formalized by selecting maximal

subsets of the belief base not implying a given sentence. If there is more than one such

maximal subset, the intersection of the consequences of these subsets is used as the

result. Thus, using (C?�) as the set of maximal subsets of C not implying �, simple

base revision, written as C��, could be de�ned as follows (Fagin, Ullman, Vardi 1983;

Ginsberg 1986; Nebel 1989):

C � �

def

=

�

\

B2(C?:�)

Cn(B)

�

+ �: (2)

The operation � considers all sentences in a base as equally relevant. In most ap-



plications, however, we want to distinguish between the importance or relevance of

di�erent sentences. In (Fagin, Ullman, Vardi 1983) database priorities are assigned

to propositions in order to re
ect the distinction between facts and integrity rules.

Ginsberg (1986) and Ginsberg and Smith (1987) make a distinction between facts

that can change and those that are \protected."

2

This idea of assigning di�erent priorities to sentences can be formalized by employing

a complete preorderwith maximal elements, written � �  , on the elements of a belief

base C. In other words, we consider a re
exive and transitive relation such that for

all �; 2 C we have � �  or  � �. For � �  and  6� �, we will also write � �  .

Further, there exists at least one maximal element �, i.e., for no element  : � �  .

This relation will be called epistemic relevance ordering. It induces an equivalence

relation, written � '  , as follows:

� '  i� (� �  and  � �): (3)

The corresponding equivalence classes are denoted by � and are called degrees of

epistemic relevance of C. The set of equivalence classes C=' is denoted by C. Since

the preorder is complete, � is a linear order on C. Further, there exists a maximal

such degree because the preorder contains maximal elements.

A belief base together with an epistemic relevance ordering will be called prioritized

base. If the belief base is �nite, we will also use the notation C

1

; : : : ; C

n

to denote

the n degrees of epistemic relevance of C with the convention that C

1

has highest

relevance.

Employing an epistemic relevance ordering, the prioritized removal of � from C,

written C + �, will be de�ned as a system S of subsets of C. Each element B 2 S

in turn is the union over a family consisting of subsets of all degrees of epistemic

relevance, i.e.,

B =

[

fB

�

g

�2C

where B

�

� �: (4)

Formally, B 2 (C + �) if, and only if,

1. B =

S

�2C

B

�

,

2. for all � 2 C, B

�

� �, and

2

In particular, (Ginsberg, Smith 1987) makes clear, however, that usually more than one level of

protected sentences is needed. For instance, the rule that an object can only occupy one place is,

of course, an undeniable truth in our commonsense view of the world, while the rule that a room

becomes stu�y when the ventilation is blocked may well be violated by an open window.



3. for all � 2 C, B

�

is set-inclusion maximal among the subsets of � such that

S

 ��

B

 

6` �.

Intuitively, the elements of C + � are constructed by selecting a maximal subset not

implying � from the greatest degree of epistemic relevance, then a maximal subset

of the next important degree is added such that � is not implied, and so on. Note,

however, that this intuition about constructing the elements of C + � may fail in

the general case. Since we did not place restrictions on the relevance ordering, it can

happen that there are in�nitely ascending chains of degrees of epistemic relevance.

Nevertheless, also in this case the existence of elements of B's satisfying the above

conditions is guaranteed by Zorn's lemma.

A prioritized removal operation selects by de�nition a subset of the maximal subsets

of a base not implying a given proposition.

Proposition 1 Given a base C and a relevance ordering �, for all �:

(C + �) � (C?�): (5)

Thus, it makes sense to use + instead of ? in the de�nition (2). The resulting

operation is called prioritized base revision, denoted by

^

�. This operation is identical

to simple base revision in case that there is only one degree of epistemic relevance.

In the interesting special case when we are dealing with �nite belief bases|which

corresponds to prioritized logical databases investigated in (Fagin, Ullman, Vardi

1983)|the result of a prioritized base revision can be �nitely represented.

Proposition 2 If C is a �nite belief base then

C

^

� � = Cn

�

(

_

(C + :�)) ^ �

�

; (6)

for every prioritized base revision

^

� on C.

Proof. Since C is �nite, there can be only a �nite number of �nite degrees of

epistemic relevance, hence, C + :� is a �nite set of �nite belief bases. In this case,

the following equivalences hold

Cn(

n

^

i=1

�

i

) = Cn(f�

1

; : : : ; �

n

g) (7)

Cn(

n

_

i=1

�

i

) =

n

\

i=1

Cn(�

i

); (8)



and the proposition follows immediately.

In order to demonstrate how base revision works, let us assume the following scenario.

Assume that a suspect tells you that he went to the beach for swimming and assume

that you have observed that the sun was shining. Further, you �rmly believe that

going to the beach for swimming when the sun is shining implies a sun tan. If you

then discover that the suspect is not tanned, there is an inconsistency to resolve.

Supposing the following propositions:

b = \going to the beach for swimming",

s = \the sun is shining",

t = \sun tan",

the situation can be modeled formally by a prioritized base C:

C

1

= f((b ^ s)! t)g;

C

2

= fsg;

C

3

= fbg;

C = C

1

[ C

2

[ C

3

:

From this belief base t can be derived. If we later observe that :t, the belief base

has to be revised:

C

^

� :t =

\

�

Cn(C + t)

�

+ :t

= Cn

�

_

n

f((b ^ s)! t); sg

o�

+ :t

= Cn(f((b ^ s)! t); s;:tg):

In particular, we would conclude that b was a lie.

A consequence of the de�nition of (simple and prioritized) base revision is that for

two di�erent belief bases A and B that have the same meaning, i.e., Cn(A) = Cn(B),

base revision can lead to di�erent results, i.e., Cn(A

^

��) 6= Cn(B

^

��). Base revision

has a \morbid sensitivity to the syntax of the description of the world" (Winslett

1988), which is considered as an undesirable property. Dalal (1988) formulated the

principle of irrelevance of syntax which states that a revision operation shall be

independent of the syntactic form of the belief base representing a belief set and of

the syntactic form of the sentence that has to be incorporated into the belief set

(see also (Katsuno, Mendelzon 1989)), i.e., revision operations shall operate on the

knowledge level (Newell 1982). In the theory of epistemic change this is accomplished

by the requirements that the objects to be revised are belief sets and that the result

of a revision does not depend on the syntactical form of the sentence to be added

(AGM postulate (K

:

+6)).



Obviously, base revision does not satisfy the principle of irrelevance of syntax|and

is not a belief revision operation in the sense of the theory of epistemic change for

this reason. Worse yet, abstracting from the syntactic representation of a belief base

and considering the logical equivalent belief set leads nowhere. Simple base revision

applied to belief sets is equivalent to full meet revision, thus, useless. For these

reasons, it is argued in (Dalal 1988; Winslett 1988; Katsuno, Mendelzon 1989) that

revision shall be performed on the model-theoretic level, i.e., by viewing a belief set

as the set of models that satisfy a given belief base and by performing revision in a

way that selects models that satisfy the new sentence and di�er minimally from the

models of the original belief base. In order to de�ne what the termminimal di�erence

means, we have to say something about how models are to be compared, though. In

Dalal (1988), for instance, the \distance" between models is measured by the number

of propositional variables that have di�erent truth values. Katsuno and Mendelzon

(1989) generalize this approach by considering complete preorders over models.

In any case, it is impossible to de�ne a revision operation by referring only to logi-

cal properties. Some inherently extra-logical, pragmatic preferences are necessary to

guide the revision process. This is actually one of the basic messages of the theory

of epistemic change. We have to make up our minds about the importance of pro-

positions or sets of propositions in order to select among the alternatives which are

logically possible. If we consider all of them as equally important and combine them

(by using full meet revision), we end up with nothing. Similarly, in case of a model-

theoretic perspective, we cannot consider all models as equally possible candidates

for a revision, since this would lead to a similar result.

As argued above, for some applications it does not seem to be a bad idea to derive

preferences from the syntactic form of the representation of a belief set. Actually,

from a more abstract point of view, it is not the particular syntactic form a belief

base we are interested in, but it is the fact that we believe that a particular set of

sentences is more valuable or justi�ed than another logically equivalent set, and we

want to preserve as many of the \valuable" sentences as possible. Using this idea it

is possible to reconstruct base revision in the framework of the theory of epistemic

change by employing the notion of epistemic relevance.

4 BELIEF REVISION GENERATED BY EPISTEMIC RELEVANCE

The intention behind base revision is that all the sentences in a belief base A are con-

sidered as relevant|some perhaps more so than others. For this reason we want to

give up as few sentences from A as possible, while with sentences that are only deriva-

ble we are more liberal. Formalizing this idea we employ as in the case of belief bases

an epistemic relevance ordering, i.e. a complete pre-order with maximal elements on

the entire belief set, with the intention of assigning the least degree of relevance to



sentences that are only derivable. Based on these orderings, selection functions are

constructed that select subsets that are maximally preferred with respect to epistemic

relevance orderings.

We start by de�ning a strict partial ordering expressing preferences on subsets A;B 2

2

K

, written as A� B, by

A� B i� 9� :

�

(A \ � � B \ � ) and 8! � � : (A \ ! = B \ !)

�

; (9)

which in turn can be used to de�ne a function 


�

that selects all maximally preferred

elements of K?�:




�

(K?�)

def

= fL 2 (K?�)j 8M 2 (K?�):L 6�Mg: (10)

Note that such maximally preferred sets always exist as can be easily inferred from the

following lemma that relates maximally preferred sets to the elements of a prioritized

removal.

Lemma 3 Let K be a belief set with an epistemic relevance ordering �. Then for

any sentence �:

L is maximally preferred in (K?�) i� L 2 (K + �): (11)

Proof. Note that Proposition 1 applies also to belief sets because any belief set is

also a belief base by de�nition. Hence, for all K and epistemic relevance orderings

on K, for all �:

(K + �) � (K?�): (12)

Assume that B 2 (K + �). Assume for contradiction that there is a setM 2 (K?�)

such that B � M . This means there exists a degree � such that B

�

� M \ � while

for all ! � � we have B

!

= M \ !. However, the set B

�

is by de�nition of + a

set-inclusion maximal subset of � such that (

S

!��

B

!

)[B

�

does not imply �, hence,

M \ � cannot be a proper superset of B

�

.

For the other direction, assume L is maximal w.r.t. � in (K?�). Set B = L and

B

�

= L \ �. Obviously, the following conditions are satis�ed:

1. L = B =

S

�2K

B

�

,

2. L \ � = B

�

� �, and



3. L\� = B

�

is set-inclusion maximal among the subsets of � such that

S

 ��

(L\

 ) =

S

 ��

B

 

6` �.

Hence, L 2 (K + �).

This means that 


�

selects a nonempty subset of (K?�) provided (K?�) is non-

empty, i.e., 


�

is a selection function (see (G�ardenfors, this book)) that may be used

to de�ne a partial meet revision operation. Revisions de�ned in this way will be

called revisions generated by epistemic relevance. Analyzing the properties of such

revisions, we note that they satisfy most of the AGM postulates.

Theorem 4 Revisions generated by epistemic relevance satisfy (K

:

+1){(K

:

+7).

Proof. Since 


�

is a selection function, revisions generated by epistemic relevance

satisfy (K

:

+1){(K

:

+6) by (Alchourr�on, G�ardenfors, Makinson 1985, Observation 2.3).

Further, we have by de�nition of the selection function that there exists a relation

v, de�ned by putting

M v L i� L 6�M; (13)

such that for all �,


(K?�) = fL 2 (K?�)j 8M 2 (K?�):M v Lg (14)

Thus,

:

+ is a relational partial meet revision, which by (Alchourr�on, G�ardenfors, Ma-

kinson 1985, Observations 3.1, 4.2 and 4.3) satis�es (K

:

+7).

Note that the relation 6� is not transitive and therefore revisions generated by epi-

stemic relevance do not satisfy (K

:

+8) in general.

3

The interesting point about such

revisions is that they coincide with prioritized base revision as de�ned in Section 3.

That any revision generated by epistemic relevance can be conceived as a prioritized

base revision follows already from Lemma 3. In order to show the other direction of

the correspondence, the following Lemma (adapted from (Nebel 1989)) is helpful.

Lemma 5 Let K be a belief set and � be sentence such that :� 2 K. Let C be any

subset of K such that C 6` :�. Then

�

\

fM 2 K?:�j C �Mg

�

+ � = Cn(C) + �: (15)

3

For a counter-example consult Section 6.



Proof. \�": Since by the assumption of the lemma C � K and C 6` :�, (

T

fM 2

K?:�j C � Mg) contains C as a subset by de�nition. Further, since all elements

of (K?�) are belief sets and the intersection of belief sets is a belief set again,

(

T

fM 2 K?:�jC �Mg) contains Cn(C), hence, the right hand side is a subset of

the left hand side.

\�": Assume the contrary, i.e., there is a sentence  that is an element of the

left hand side of equation (15), but  62 Cn(C [ f�g). By the latter assumption

Cn(C [ f: g [ f�g) is consistent and :� 62 Cn(C [ f: g) � Cn(C [ f: _ :�g).

By the assumption of the lemma that :� 2 K, we have (:� _ : ) 2 K. Since also

C � K, there is at least one element in (K?:�) that contains C [ f: _ :�g. Call

this set L.

From the �rst assumption that  2 Cn((

T

fM 2 K?:�j C � Mg) [ f�g), we

conclude (� !  ) 2 Cn(

T

fM 2 K?:�j C � Mg). However, the set L 2 (K?:�)

that contains C and (: _ :�) cannot contain (�!  ) because otherwise L ` :�.

By the fact that the intersection over a system of belief sets is already a belief set,

we have Cn(

T

fM 2 K?:�j C �Mg) =

T

fM 2 K?:�j C �Mg.

Finally, because L 2 fM 2 K?:�j C � Mg, it cannot be the case that (� !  ) 2

(

T

fM 2 K?:�jC �Mg). Thus, we have a contradiction of our assumption. Hence,

the left hand side must be a subset of the right hand side.

It should be noted that if in the above lemma the set C is empty, the lemma describes

the behavior of full meet revision. Another way to look at this lemma is that if the

selection function selects elements of K?:� by focusing on a particular set C, then

the result of the revision is the set of consequences of the union of C and the new

sentence. This result can be easily generalized to systems of focusing sets.

Lemma 6 Let K be a belief set, and let � be a sentence such that :� 2 K. Let S be

a system of subsets of K, where C 6` :� for all C 2 S. Then

�

\

fM 2 K?:�j 9C 2 S: C �Mg

�

+ � =

�

\

C2S

Cn(C)

�

+ �: (16)

Proof.

�

\

fM 2 K?:�j 9C 2 S: C �Mg

�

+ � =

= Cn

�

(

\

fM 2 K?:�j 9C 2 S:C �Mg) [ f�g

�

(17)



= Cn

 

�

\

(

[

C2S

fM 2 K?:�j C �Mg)

�

[ f�g

!

(18)

= Cn

 

�

\

C2S

(

\

fM 2 K?:�j C �Mg)

�

[ f�g

!

(19)

= Cn

 

\

C2S

�

(

\

fM 2 K?:�j C �Mg) [ f�g

�

!

(20)

= Cn

 

\

C2S

Cn

�

(

\

fM 2 K?:�j C �Mg) [ f�g

�

!

(21)

= Cn

 

\

C2S

Cn

�

C [ f�g

�

!

(22)

= Cn

 

\

C2S

Cn

�

Cn(C) [ f�g

�

!

(23)

= Cn

 

�

\

C2S

Cn(C)

�

[ f�g

!

(24)

=

�

\

C2S

Cn(C)

�

+ �: (25)

Equation 17 is the application of the de�nition of the expansion of a belief set. (18){

(20) follow by set theory. (21) follows because for any system of belief sets S the

following equation holds:

Cn(

\

K2S

(K [ f�g)) = Cn(

\

K2S

Cn(K [ f�g)) (26)

The \�" direction is obvious. For the other direction assume a sentence  that is an

element of the right hand side, i.e., such that for allK 2 S we have  2 Cn(K[f�g).

By the deduction theorem, (� !  ) 2 Cn(K) for all K 2 S. Since K = Cn(K), it

holds that (� !  ) 2 (

T

K2S

K), hence,  2 Cn((

T

K2S

K) [ f�g) = Cn(

T

K2S

(K \

f�g)).

(22) is an application of Lemma 5. (23) follows from properties of Cn, (24) is another

application of equation (26), and, �nally, (25) is another application of the de�nition

of the expansion of a belief set.

Using this lemma, the correspondence between revision generated by epistemic rele-

vance and prioritized base revision can be easily shown.

Theorem 7 For any revision operation

:

+ on a belief set K generated by epistemic

relevance, there exists a corresponding prioritized base revision

^

� on some base C of



K, and vice versa, such that for all �:

K

:

+ � = C

^

� �: (27)

Proof. Assume a belief set K and an epistemic relevance ordering � on K. By

de�nition, any belief set is also a belief base. Applying Lemma 3, it follows that




�

(K?:�) = (K + :�): (28)

Hence, for a given revision on K generated by epistemic relevance, there is a priori-

tized base revision on some base C of K (namely, the base C = K)

4

such that for all

�:

K

:

+ � = C

^

� �: (29)

For the other direction, assume a prioritized belief base C with degrees of epistemic

relevance C. Set K = Cn(C) and set K = C [ f0g, where 0 = K �C and 0 � � for

all � 2 C. Now we will show that




�

(K?:�) = fM 2 (K?:�)j 9A 2 (C + :�): A �Mg: (30)

\�": Let A 2 (C + :�) and let L 2 (K?:�) such that A � L. Such a set L exists

because A � C � K and A 6` :�. Then L must be maximal w.r.t. � in (K?:�).

Assuming otherwise would mean that there is a degree � and the selected subset

A

�

� � was not maximal w.r.t. to the conditions in the de�nition of the elements

of a prioritized removal, or there is another set N 2 (K?:�) that is identical to L

for all priority � 2 C but contains a larger subset of 0, which is impossible, however,

because L is already a maximal subset of K.

\�": Assume that L is an element of the left hand side of equation (30), i.e., L is a

maximal element w.r.t. �. Consider the set A = L \ C. Assume for contradiction

that A 62 (C + :�). Since A 6` :�, this means that there is set B 2 (C + :�) such

that

S

 ��

(A\ ) �

S

 ��

B

 

for some degree � 2 C. Now, since B 6` :� and B � K,

there must be a set M 2 (K?:�) that contains B. By de�nition of �, we would

then have L � M . Hence, L cannot be a maximal element w.r.t. � and we have a

contradiction. Thus, the left hand side is a subset of the right hand side.

Applying Lemma 6 to equation (30) we get

�

\




�

(K?:�)

�

+ � =

�

\

B2(C+:�)

Cn(B)

�

+ �; (31)

4

Note, however, that a smaller base would be su�cient as can be seen from the proof of Propo-

sition 8.



i.e., for any prioritized base revision on C there exists an equivalent revision on Cn(C)

generated by epistemic relevance.

This means that prioritized base revision coincides with revision generated by epi-

stemic relevance in the sense that the class of prioritized base revisions is identical

with the class of revisions generated by epistemic relevance. This abstract view on

syntax-based revision may also answer some of the questions raised by Myers and

Smith (1988). They observed that sometimes base revision does not seem to be the

appropriate operation because some derived information turns out to be more rele-

vant than the syntactically represented sentences in a belief base, and we get the

wrong results when using base revision. However, there is no magic involved here.

Base revision leads to the right results only if the syntactic representation really re-


ects the epistemic relevance. For this reason, the notion of revision generated by

epistemic relevance seems to be preferable over base revision because it avoids the

confusion between surface-level syntactic representation and the intended relevance

of propositions.

The question of whether the correspondence between belief revision generated by

epistemic relevance and prioritized base revision can be exploited computationally

cannot be answered positively in the general case. Although Theorem 7 states that

it is possible to compute a revision on a belief set K generated by epistemic ent-

renchment by performing a prioritized base revision on some base of K, this does not

help very much because in the proof we used K itself as the base. For the case of

belief sets that are �nite modulo logical equivalence, however, a revision operation

generated by epistemic relevance can be performed by a prioritized base revision on

a �nite base.

Proposition 8 Let K be a belief set �nite modulo logical equivalence. If

:

+ is a

revision on K generated by epistemic relevance, then there exists a �nite prioritized

base C, such that for all �:

K

:

+ � = C

^

� �: (32)

Proof. De�ne C such that it contains one representative � for each class of logically

equivalent sentences [�] = f� 2 Kj ` � $ �g. These representatives are chosen to

be maximal elements w.r.t. � in [�]. The relevance ordering on C is de�ned as the

restriction of the epistemic relevance ordering on K.

Since K is �nite modulo logical equivalence, C is �nite. In order to show that (32)

holds, it obviously su�ces to prove the following condition:

A 2 (C + :�) i� Cn(A) 2 


�

(K?:�): (33)



\)": Assume A 2 (C + :�). First, we verify that Cn(A) 2 (K?:�). By de�nition

of + A does not imply :�. Furthermore, Cn(A) is a maximal subset of K. Assuming

otherwise, i.e., Cn(A)[ 6` :� for some  2 K, would mean that there is a sentence

� 2 [ ] such that A [ � 6` :�, which is impossible by the construction of C and the

de�nition of +.

Second, Cn(A) must be maximal w.r.t. � in (K?:�). Let us assume the contrary,

i.e., there is a set L 2 


�

(K?:�) and Cn(A) � L. This means for some degree

� : Cn(A) \ � � L \ � while for all larger degrees the sets are identical. Chose a

proposition  2 (L \ � )� (Cn(A) \ � ). Let � 2 [ ] be maximal w.r.t. �. Note that

� 62 A and that � '  � �. By this we conclude that L � (

S

���

A

�

) [ f�g ` :�.

This means however, that there cannot be a set L that is larger than Cn(A) w.r.t.

�.

\(": Assume a set L 2 (K?:�) that is maximally preferred. Set A = L \ C.

Because of the construction of C, we have Cn(A) = L. Assume for contradiction

that A 62 (C + :�). This means for some degree � there is a sentence � 2 � such

that � 62 A but (

S

!��

A

!

) [ f�g 6` :�. However, in this case there is also a set

M 2 (K?:�) that contains (

S

!��

A

!

) [ f�g and which is therefore more preferred

than L.

5 EPISTEMIC RELEVANCE AND EPISTEMIC ENTRENCHMENT

Although revisions generated by epistemic relevance do not satisfy all AGM postu-

lates, there are special cases that do so. A trivial special case is a revision generated

by only one degree of epistemic relevance, which is equivalent to full meet revision.

There are more interesting cases, however.

G�ardenfors and Makinson claim that the notion of epistemic entrenchment intro-

duced in (G�ardenfors, Makinson 1988) is closely related to the notion of database

priorities as proposed in (Fagin, Ullman, Vardi 1983). Since the notion of database

priorities is the �nite special case of epistemic relevance orderings on belief bases as

introduced in Section 3, which can in turn be used to generate belief revision opera-

tions, one would expect that epistemic entrenchment is closely related to epistemic

relevance. Although the intuitions are clearly similar, the question is whether the

di�erent formalizations lead indeed to identical results.

Epistemic entrenchment orderings, written as � �

�

 , are de�ned over the entire set

of sentences L and have to satisfy the following properties (see also (G�ardenfors, this

book)):

(EE1) If � �

�

 and  �

�

�, then � �

�

�.



(EE2) If � `  , then � �

�

 .

(EE3) For any �; , � �

�

(� ^  ) or  �

�

(� ^  ).

(EE4) When K 6= Cn(?), then � 62 K i� � �

�

 for all  2 L.

(EE5) If  �

�

� for all  2 L, then ` �.

Using such a relation, G�ardenfors and Makinson de�ne belief contraction generated

by epistemic entrenchment, written K

�

� �, by

 2 K

�

� � i�  2 K and ((� _  ) 6�

�

� or ` �) (34)

and show that such a belief contraction operation satis�es all AGM postulates for

contraction as well as the following condition (G�ardenfors, Makinson 1988, Theo-

rem 4):

� �

�

 i� � 62 K

�

� (� ^  ) or ` (� ^  ): (35)

Further, they show that any belief contraction operation satisfying all of the AGM

postulates is generated by some epistemic entrenchment ordering (G�ardenfors, Ma-

kinson 1988, Theorem 5).

The question is now how to interpret these results in the framework of epistemic

relevance orderings on belief sets. First of all, from (EE2), re
exivity follows. Second,

from (EE2) and (EE3), it follows that either � �

�

(�^ ) �

�

 or  �

�

(�^ ) �

�

�.

This means,�

�

is a complete preorder on L. For the strict part of this ordering we will

use the symbol �

�

. Further, from (EE2) it follows that there are maximal elements,

namely, all sentences logically equivalent to > (and perhaps some other sentences as

well). Ignoring the minimal elements (the sentences that are not elements of the belief

set (EE4)), the restriction of �

�

to the sentences in a belief set can be considered

as an epistemic relevance ordering as de�ned in the previous section. In this case,

using interde�nability of revision and contraction, de�nition (34) coincides with a

contraction operation that is de�ned by using the Harper identity and a revision

operation generated by epistemic relevance.

Theorem 9 Suppose a belief set K, an epistemic entrenchment ordering �

�

, and the

contraction operation

�

� generated by �

�

. Let � be the epistemic relevance ordering

that is the restriction of �

�

to K, and let

:

+ be the revision generated by the epistemic

relevance ordering �. Then

K

�

� � = (K

:

+ :�) \K: (36)



Proof. For the limiting case ` �, we have (K

:

+ :�) = Cn(?), hence the right hand

side equals K. By (34) we also get for the left hand side K.

For the case � 62 K, again (K [ f:�g) \ K = K. That the left hand side has the

same value follows from (34) and the observation that by (EE4) � 62 K and  2 K

implies � �

�

 , which in turn implies by  ` (� _  ) and (EE2): � �

�

 �

�

(� _  ).

For the principal case, � 2 K and 6` �, we will show that

 2

\




�

(K?�) i�  2 K and � �

�

(� _  ): (37)

If this condition is satis�ed, then equation (36) holds obviously for the principal case

as well.

\(": Suppose  2 K and� �

�

(�_ ). Note that because of ((�_ )^ (�_: )) ` �

and (EE2) we have ((� _  ) ^ (� _ : )) �

�

�, which leads by our assumption and

(EE1) to ((�_ )^ (�_: )) �

�

(�_ ). Because of (EE3), either (�_ ) or (�_: )

is less entrenched than the conjunction of them. It cannot be the former since that

is strictly more entrenched, hence

(� _ : ) �

�

((� _  ) ^ (� _ : )) �

�

(� _  ): (38)

Consider an arbitrary set L 2 


�

(K?�). Assume that (�_ ) 2 L. Then (�_: ) 62

L, or equivalently L[f g 6` �. Since L is a maximal subset of K not implying �, we

have  2 L. Thus, assume (� _  ) 62 L. Consider M = L \ f� 2 Kj (� _  ) �

�

�g.

Because L is a maximally preferred subset in (K?�), we must haveM[f(�_ )g ` �,

or, using the deduction theorem M ` ((� _  ) ! �), hence M ` (: _ �). By

the compactness of propositional logic, there is a �nite subset N � M such that

V

N ` (: _ �), hence, by (EE2)

V

N �

�

(: _ �), which by (EE3) implies that

there is a sentence � 2 N such that � �

�

(: _ �). By (38) we get � �

�

( _ �)

which is in contradiction to the construction of M , however. Thus,  is a member of

every maximally preferred set in (K?�).

\)": Assume  2

T




�

(K?�). Assume for contradiction that we nevertheless have

(� _  ) �

�

�. By the fact that � ` (� _ : ), we conclude

(� _  ) �

�

� �

�

(� _ : ): (39)

Since  2

T




�

(K?�), every set L 2 


�

(K?�) must contain  and, hence, (� _ ),

i.e., (�_: ) 62 L. Consider the setM = L\f� 2 Kj(�_: ) �

�

�g. Since no element

of 


�

(K?�) contains (� _ : ), all such sets M must already contain propositions

that together with (�_: ) leads to the derivation of �, i.e.,M [f(�_: )g ` �, or,

by the deduction theoremM ` ((�_: )! �), henceM ` (�_ ). By compactness,



(EE2), and (EE3) we conclude that there exists a proposition � 2 M such that

� �

�

(�_ ), and by the construction of M : (�_: ) �

�

(�_ ), contradicting (39).

Thus, the notion of epistemic entrenchment can indeed be viewed as a special case of

epistemic relevance orderings|and, in the �nite case, as a special case of database

priorities.

The next corollary makes explicit which of the conditions (EE1){(EE5) are actually

needed to lead to a fully rational revision operation generated by epistemic relevance.

Corollary 10 Any revision generated by an epistemic relevance ordering � such that

1. if � `  then � �  , and

2. for any �; : � � (� ^  ) or  � (� ^  ),

satis�es all AGM postulates.

Proof. (EE1) is already entailed by the fact that � is a preorder. (EE4) concerns

only elements that are not in the belief set, and are therefore not related by �.

Further, as can be seen from the proof of Theorem 9, (EE5) is not necessary at all.

We can always add a maximal degree that contains all logically valid sentences and

remove them from other degrees without changing the outcome of a revision.

Epistemic entrenchment orderings lead to \fully rational" contraction and revision,

and, moreover all such belief change operations are generated by some epistemic

entrenchment ordering. It is not obvious, however, how to arrive at such epistemic

entrenchment orderings. While epistemic relevance can be easily derived from a given

prioritized belief base, it is not clear whether there are natural ways to generate

epistemic entrenchment orderings. In (G�ardenfors, Makinson 1988) it is proposed

to start with a complete ordering over the maximal disjunctions derivable from a

belief base. Despite the fact that this does not sound very \natural", it also implies

that a large amount of information has to be supplied, sometimes too much (see

Proposition 17 in Section 7), in order to change a belief set.

Interestingly, there is another special case of epistemic relevance that leads to a belief

revision operation that satis�es all AGM postulates. When all degrees of epistemic



relevance of a prioritized belief base C are singletons, then the prioritized base revi-

sion (as well as the corresponding partial meet revision and the epistemic relevance

ordering on Cn(C)) is called unambiguous.

Proposition 11 Let C be a prioritized belief base such that all degrees of epistemic

relevance are singletons. Then (C + �) is a singleton i� 6` �.

Proof. Note that (C + �) 6= ; if and only if 6` �.

If C 6` � then trivially (C + �) = fCg.

For the case 6` � and C ` �, assume for contradiction that A;A

0

2 (C + �) and

A 6= A

0

. By the de�nition of + there must be some degree � such that A

�

6= A

0

�

.

Let � be the greatest such class. Now, since the degrees of epistemic relevance are

singletons, we either have (

S

���

A

�

[ �) = (

S

���

A

0

�

[ �) ` � or not. In both cases,

A and A

0

would agree on whether they contain �. Hence, they cannot be di�erent.

Note that even when (C + �) is always a singleton (for 6` �), the corresponding

selection function 


�

does not necessarily select singletons from (Cn(C)?�), i.e., the

corresponding belief revision operation is not a maxi-choice revision.

Clearly, the epistemic relevance ordering on the belief set Cn(C) cannot always be

extended to an epistemic entrenchment ordering. Nevertheless, belief revisions cor-

responding to unambiguous prioritized base revisions satisfy all AGM postulates.

Theorem 12 Let � be an unambiguous epistemic relevance ordering on a belief set

K. Then the revision generated by this ordering satis�es all AGM postulates.

Proof. By Theorem 4, the revision operation satis�es (K

:

+1){(K

:

+7). Thus, we only

have to verify (K

:

+8). By (Alchourr�on, G�ardenfors, Makinson 1985, Corollary 4.5)

it su�ce to show that the revision operation is transitively relational, i.e., using

de�nition (13), we have to show that 6� is transitive.

Since� is an unambiguous epistemic relevance ordering on K, all degrees of epistemic

relevance except for the least one are singletons. The least degree will be denoted by

0.

In order to show transitivity of 6�, we �rst show that incomparability of two sets

L;M 2 (K?:�), written LkM and de�ned by

LkM i� L 6�M andM 6� L;



is an equivalence relation on K?:�. Symmetry and re
exivity of k are immediate

consequences of the de�nition. For showing transitivity, suppose L;M;N 2 (K?:�)

and LkMkN . If L =M orM = N , then LkN follows immediately. Therefore assume

L 6=M 6= N . If LkM and L 6=M , then there is a degree � 2 K such that

L \ � 6�6=6�M \ � and 8! � � : (L \ ! =M \ !): (40)

Since all degrees except 0 are singletons, it follows that � = 0, i.e., L \ (K � 0) =

M \ (K�0). With the same argument, we conclude thatM \ (K�0) = N \ (K�0),

hence L\ (K�0) = N \ (K�0). Since L and N are maximal subsets of K, it cannot

be the case that L \ 0 � N \ 0 or L \ 0 � N \ 0, hence LkN .

From the fact that k is an equivalence relation, it follows straightforwardly that LkM

and M � N implies that L� N . For contradiction assume L 6� N . Then we must

have N � L because otherwise by transitivity of k we could concludeMkN , which is

a contradiction of the assumption. From N � L, the assumption that M � N and

the transitivity of� it follows thatM � L, which again contradicts the assumption.

With the same argument, it follows that L�M and MkN implies L� N .

Now assume L 6� M 6� N . By considering cases, transitivity of � follows. (1)

Assuming LkM and MkN leads to LkN , hence, L 6� N . (2) Assuming LkM and

N � M leads to N � L, hence L 6� N . (3) Assuming M � L and MkN leads

to N � L, hence L 6� N . (4) Assuming M � L and N � M leads to N � L,

hence L 6� N . Thus, belief revisions generated by unambiguous epistemic relevance

are transitively relational and satisfy for this reason (K

:

+8).

Although an unambiguous relevance ordering is not necessarily an entrenchment or-

dering, it is possible to generate an epistemic entrenchment ordering using (35) that

leads to an identical revision operation because unambiguous revisions are fully ratio-

nal. Given an unambiguous prioritized base C, the epistemic entrenchment ordering

can be derived as follows. For every pair of propositions �; 2 Cn(C), determine

fAg = C + � and fBg = C +  , and set  �

�

� if and only if A � B. The

veri�cation that this is indeed the right epistemic entrenchment ordering is left as an

exercise to the reader.

6 BELIEF REVISION AND DEFAULT REASONING

Doyle has remarked in (Doyle 1990, App. A) that \the adjective `nonmonotonic'

has su�ered much careless usage recently in arti�cial intelligence, and the only thing

common to many of its uses is the term `nonmonotonic' itself." Doyle identi�ed two

principal ideas behind the use of this term, namely,



[: : : ] that attitudes are gained and lost over time, that reasoning is non-

monotonic|this we call temporal nonmonotonicity|and that unsound

assumptions can be the deliberate product of sound reasoning, incomplete

information, and a \will to believe"|which we call logical nonmonotoni-

city.

Formally, the term logical nonmonotonicity refers to nonmonotonicity found in non-

monotonic logics, i.e., given a deductive closure operation C(�) of a nonmonotonic

logic,

A � B 6) C(A) � C(B): (41)

The notion of temporal nonmonotonicity refers to the development of a set of beliefs

over time, where K

t

will be used to refer to K at time point t:

t

1

� t

2

6) A

t

1

� A

t

2

(42)

Although these two forms of nonmonotonicity should not be confused, sometimes they

turn out to be intimately connected. In particular, the temporal nonmonotonicity

induced by belief revision, i.e., the fact that in general we do not have K � K

:

+ �,

is related to logical nonmonotonicity induced by some forms of default reasoning.

Further, there exists also a connection between a form of contraction and default

reasoning, as we will see below.

When reasoning with defaults in a setting as described in (Poole 1988; Brewka 1989),

we are prepared to \drop" some of the defaults if they are inconsistent with the

facts. This, however, is quite similar to what we are doing when revising beliefs in

the theory of epistemic change. Propositions of a theory are given up when they are

inconsistent with new facts. Since default reasoning leads to logical nonmonotonicity,

one would expect that belief revision is nonmonotonic in the facts to be added, i.e.,

we would expect that Cn(�) � Cn( ) does not imply K

:

+ � � K

:

+  . Indeed, as is

well known, requiring monotony in the second operand of a belief revision operation

is impossible in the general case. Exploring the space of possible revision operations

that imply monotony shows that the revision either violates one of the basic AGM

postulates or it is a trivial revision on Cn(;) or Cn(?).

Proposition 13 Let

:

+ be a belief revision operation de�ned on a belief set K. If for

all �; 

K

:

+ � � K

:

+  if Cn(�) � Cn( ); (43)

then



1. The operation

:

+ violates one of the basic AGM postulates (K

:

+1){(K

:

+6), or

2. K = Cn(;) and K

:

+ � = Cn(�), or

3. K = Cn(?) and K

:

+ � = Cn(�).

Proof. Assume K 6= Cn(?) and a proposition � with :� 2 K and 6` :�. By (43)

we would have K

:

+ > � K

:

+ �: Because of (K

:

+3) and (K

:

+4), K

:

+ > = K. By

assumption, we thus have :� 2 K

:

+ >. Now, by (K

:

+2) � 2 K

:

+ �. Because

of (K

:

+5) and the assumption 6` :�, :� 62 K

:

+ �. Thus, either the requirement

K

:

+ > � K

:

+ � or one of the basic postulates is violated.

Let

:

+ a belief revision operation on Cn(;) and assume that all basic postulates are

satis�ed. Then by (K

:

+1){(K

:

+3) it follows that Cn(�) � Cn(;)

:

+ � � Cn(;[f�g) =

Cn(�) and (43) is trivially satis�ed.

Assume K = Cn(?). If ` :� then clearly K

:

+ � = Cn(?) = Cn(�) by (K

:

+1) and

(K

:

+2). Thus, assume 6` :�. By (K

:

+1) and (K

:

+2), we have Cn(�) � K

:

+ �. Now

assume there is a proposition � 2 K

:

+ � such that � 62 Cn(�). By (43) we would

have K

:

+ � � K

:

+ (:� ^ �). However, this would violate (K

:

+2) or (K

:

+5). Thus, if

the basic postulates and (43) are satis�ed, Cn(?)

:

+ � = Cn(�).

Makinson and G�ardenfors (1990) use this similarity of logical nonmonotonicity and

the nonmonotonicity of belief revision in the second operand as a starting point to

investigate the relationship between nonmonotonic logics and belief revision on a very

general level. They compare various general conditions on nonmonotonic provability

relations with the AGM postulates.

For the approaches to belief revision described in the previous section there is an

even stronger connection to some models of nonmonotonic reasoning. Prioritized

base revision, and hence partial meet revision generated by epistemic relevance, is

expressively equivalent to skeptical provability

5

in Poole's (1988) theory formation

approach and Brewka's (1989) level default theories (ldt)|in the case of �nitary

propositional logic.

A common generalization of both approaches are ranked default theories (rdt). A

rdt � is a pair � = (D;F), where D is a �nite sequence hD

1

; : : : ;D

n

i of �nite sets

of sentences (propositional, in our case) interpreted as ranked defaults and F is a

�nite set of sentences interpreted as hard facts.

5

A correspondence to credulous derivability could be achieved if a notion of nondeterministic

revision as proposed in (Doyle 1990) is adopted.



An extension of � is a deductively closed set of propositions

E = Cn((

n

[

i=1

R

i

) [ F) (44)

such that for all i with 1 � i � n:

1. R

i

� D

i

,

2. R

i

is set-inclusion maximal among the subsets of D

i

such that (

S

i

j=1

R

j

) [ F

is consistent.

6

A sentence � is strongly provable in �, written �j��, i� for all extensions E of �:

� 2 E.

Poole's approach is a special case of rdt's where D = hD

1

i, and Brewka's ldt's

are rdt's with F = ;. Note, however, that the expressive di�erence between rdt's

and ldt's is actually very small and shows up only if F is inconsistent. In this case,

rdt's allow the derivation of ? while this is impossible in ldt's.

Theorem 14 Let � = (hD

1

; : : : ;D

n

i;F) be a rdt. Let C =

S

n

i=1

D

i

be a prioritized

base with degrees of epistemic relevance D

1

; : : : ;D

n

. Then for all �:

�j�� i� � 2 (C

^

�F): (45)

Proof. In the limiting case when F ` ?, C

^

�F = Cn(?). Further, in this case there

is no extension of �, hence �j�� for all � 2 L by the de�nition of strong provability.

When F is consistent, then (C + :(

V

F)) is by de�nition a system S of subsets

B � C such that

1. B =

S

n

i=1

B

i

,

2. B

i

� C

i

, for all 1 � i � n, and

3. for all 1 � i � n, B

i

is set-inclusion maximal among the subsets of C

i

such that

S

i

j=1

B

j

6` :(

V

F).

6

Note that this de�nition, which is similar to the de�nition of an extension in (Poole 1988),

excludes inconsistent extensions. Nevertheless, the de�nition of strong provability implies that ?

can be derived i� F is inconsistent.



Since the second condition of 3. is equivalent with the condition that (

S

i

j=1

B

j

)[F)

is consistent, it follows that by de�nition for every extension E of � there exists a

set B 2 (C + :(

V

F)) such that E = Cn(B [ F) and vice versa, hence

\

E is an extension of �

E =

\

B2(C+:(

V

F))

Cn(B) + (

^

F); (46)

which completes the proof.

This means that ranked default theories have the same expressive power as �nitary

prioritized base revision operations, which coincide with �nitary belief revisions ge-

nerated by epistemic relevance.

It should be noted that in ranked default theories there is no requirement on the

internal consistency of defaults. This means that the set

S

i

D

i

may very well be

inconsistent. In Theorem 14 that may lead to ? 2 Cn(C), i.e., the belief set to

be revised is inconsistent. Although this might sound unreasonable in the context

of modeling (idealized) epistemic states|in fact, inconsistency is indeed explicitly

excluded by requirement (2.2.1) in (G�ardenfors 1988)|it does not lead to technical

problems in the theory of epistemic change. Additionally, it is possible to give a

transformation between reasoning in rdt's and prioritized base revision using only

consistent belief sets.

Corollary 15 Let � be a rdt as above. Then there exists a consistent prioritized

base C and a proposition  such that for all �

�j�� i� � 2

�

C

^

� ( ^ F)

�

: (47)

Proof. De�ne C as in Theorem 14. Transform every sentence in C into negation

normal form (i.e., into a formula that contains only ^, _ and :, and all negation signs

appear only in front of propositional variables). Assuming without loss of generality

that the alphabet of propositional variables � is �nite, extend � to �

0

by adding for

every propositional variable p a fresh variable p

0

. Now replace any negative literal :p

in all sentences of C by p

0

, call the new belief base C

0

and de�ne

y

def

=

^

p2�

(:p $ p

0

): (48)

Since no sentence in C

0

contains any negation sign, C

0

is consistent.

Let � any proposition over �, we will show that for any two belief bases B and B

0

,

where B

0

is a transformed belief base according to the above rules, the following



relation holds:

B ` � i� B

0

[ f g ` �: (49)

Assume B ` � but B

0

[f g 6` �. This means B

0

[f g[:� is satis�able. Restricting

the truth assignment of this belief set to �, we get one that must satisfy B[f:�g by

construction of B

0

. This is impossible, however. Conversely, assuming satis�ability of

B[f:�g, a truth assignment can be extended to �

0

such that it satis�es B[f g[:�,

hence also B

0

[ f g [ :�.

That means that for any maximal subset B � C that is consistent with a given

proposition � there exists a corresponding set B

0

� C

0

, that is consistent with  and

� and maximal in C

0

. Further adding  to B

0

allows to derive the same propositions

over � as can be derived from B.

From the results above and the translation of (K

:

+8) to a condition on nonmonotonic

derivability relations in (Makinson, G�ardenfors 1990), it follows that the derivability

relation of rdt's w.r.t. the set of hard facts F does not satisfy rational monotony

(see (Makinson, G�ardenfors 1990)).

7

This condition can be phrased as follows:

If �j� and �j6�:� then � ^ �j� (50)

In plain words, if a proposition � permits the plausible conclusion  , this conclusion

continues to hold for the stronger premise �^� provided there is no plausible reason

to deny � given the assumption �. Applying this condition to rdt's we consider

the nonmonotonic derivability relation as parameterized by the defaults D, written

Fj�

D

�. For a counter-example to rational monotony, suppose a situation where two

people of di�erent sex meet the �rst time and try to get to know important facts

about each other. Assume one person has the following background beliefs modeled

as a set of defaults:

1. Being a parent implies being married (p! m).

2. Living alone implies being a bachelor (a! b).

3. Wearing a ring implies being a dandy or being married (r ! (d _m)).

7

Note that this result depends on the exact correspondence between rdt's and belief revision

generated by epistemic relevance. In (Makinson, G�ardenfors 1990; G�ardenfors 1990) the correspon-

dence between Poole's logic and belief revision was only approximate because the defaults were

assumed to be deductively closed.



All these defaults have the same priority. Further, suppose the postulate (b$ :m)

and the facts p, a, and r. One extension, which contains m, is the consequential

closure of the facts and rules 1 and 3. The other possible extension, which contains

d, is the closure of the facts and rule 2. This means that (m _ d) is a sceptical

consequence:

(b$ :m) ^ p ^ a ^ r j�

D

(m _ d): (51)

If :d is added to the facts the expected conclusion m does not follow, however. In

this case one extension, which contains m and :d, is generated by the facts and rule 1

and 3. The other possible extension is generated by the facts and rule 2 and contains

:m and :d. Hence,

:d ^ ((b$ :m) ^ p ^ a ^ r) j6�

D

(m _ d); (52)

although

((b$ :m) ^ p ^ a ^ r) j6�

D

d: (53)

Another interesting observation in this context is that the addition of constraints

to rdt's is similar but not identical to a belief contraction operation. Poole (1988)

introduced constraints|another set of sentences|as a means to restrict the applica-

bility of defaults. A ranked default theory with constraints is a triple � = (D;F ; C),

where D and F are de�ned as above and C is a �nite set of sentences interpreted as

constraints. The notion of an extension is modi�ed as follows. Instead of condition 2.

it is required that

2. R

i

is set-inclusion maximal among the subsets of D

i

such that (

S

n

i=1

R

i

)[F [C

is consistent.

It should be obvious that the addition of constraints is a generalization of the basic

framework, i.e., for all F ;D; �:

(D;F ; ;) ` � i� (D;F) ` �: (54)

Provided the set F[C is consistent, which is the interesting case, skeptical derivability

can be modeled as a form of contraction on belief bases (see (Nebel 1989)).

Theorem 16 Let � = (hD

1

; : : : ;D

n

i;F ; C) be an rdt with constraints such that

F [C is consistent. Let C = F [

S

n

i=1

D

i

be a prioritized base with F ;D

1

; : : : ;D

n

the

degrees of relevance of C. Then

�j�� i�

_

�

C + :(

^

C)

�

` � (55)



Proof. If F [ C is consistent, then every element B 2 (C + :(

V

C)) contains F .

Further, the subsets chosen from D

i

are maximal subsets consistent with F and C,

hence, the extensions of � correspond to sets B 2 (C + :(

V

C)) and vice versa, such

that E = Cn(B).

This goes some way to answering the question whether there is a counter-part to

contraction in nonmonotonic logics, raised in (Makinson, G�ardenfors 1990). Default

reasoning with constraints in Poole's theory formation approach can be modeled by

using base contraction.

Trying to lift this result to belief sets, however, is impossible in the general case.

Usually, ranked default theories with constraints do not allow the derivation of

V

C,

and this property is independent from consistency of the set of facts F with the set of

defaults

S

i

D

i

. When contracting an inconsistent belief set, however, the contracted

belief set contains the negation of the proposition used to contract the belief set. This

property follows from the Harper identity when we set A = Cn(?):

Cn(?)

:

� � = (Cn(?)

:

+ :�) \ Cn(?) = Cn(?)

:

+ :� � Cn(:�) (56)

This means, provided we try to model derivability in such logics by belief contraction,

in case when the defaults are inconsistent with the facts, a belief contraction would

lead to the inclusion of the constraints|which may not be derivable in the corre-

sponding default logic. Base contraction does not have this property because such

operations remove more beliefs than belief contractions. In particular, while every

contracted belief set K

:

� � contains Cn(K)\Cn(:�), a contracted base usually does

not contain those beliefs (see also (Nebel 1989)).

7 COMPUTATIONAL COMPLEXITY

For the investigation of the computational complexity of belief revision, we consider

the problem of determining membership of a sentence  in a belief set K = Cn(C)

revised by �, i.e.,

 2 K

:

+ �: (57)

As the input size we use the sum of the size jCj of the belief base C that represents

K and the sizes j�j and j j of the sentences � and  , respectively.

This assumption implies that the representation of the preference relation used to

guide the revision process should be polynomially bounded by jCj+j�j+j j. Although

this sounds like a reasonable restriction, it is not met by all belief revision approa-

ches. Belief revision generated by epistemic entrenchment orderings (G�ardenfors,

Makinson 1988), for instance, requires more preference information in the general



case. An epistemic entrenchment ordering over all elements of a belief set can be un-

iquely characterized by an initial complete order over the set of all derivable maximal

disjunctions (over all literals) (G�ardenfors, Makinson 1988, Theorem 7). This set is

logarithmic in the size of the set of formulas (modulo logical equivalence) in a belief

set. However, the number of maximal disjunctions may still be very large.

Proposition 17 The set of maximal disjunctions implied by a belief base has a worst-

case size that is exponential in the size of the belief base.

A similar statement could be made about revisions generated by epistemic relevance.

It is, of course, possible to have a belief base C that represents K and an epistemic

relevance ordering over K that is not representable in a polynomial way w.r.t. jCj.

However, if we consider only complete preorders over C with the understanding that

the degree of least relevant sentences is Cn(C)�C, then the ordering is represented

in a way that is polynomially bounded by jCj and

:

+ can be computed by using the

corresponding prioritized base revision. This means all \natural" epistemic relevance

orderings are well-behaved.

Analyzing the computational complexity of the belief revision problems, the �rst

thing one notes that deciding the trivial case  2 Cn(;)

:

+ � is already co-NP-

complete,

8

and we might give up immediately. However, �nding a characterization

of the complexity that is more �ne grained than just saying it is NP-hard can help

to understand the structure of the problem better. In particular, we may be able

to compare the inherent complexity of di�erent approaches and, most importantly,

we may say something about feasible implementations, which most likely will make

compromises along the line that the expressiveness of the logical language is restricted

and/or incompleteness is tolerated at some point. For this purpose we have to know,

however, what the sources of complexities are.

The belief revision problems considered in this paper fall into complexity classes

located at the lower end of the polynomial hierarchy. Since this notion is not as

common as the central complexity classes, it will be brie
y sketched (Garey, Johnson

1979, Sect. 7.2). Let X be a class of decision problems. Then P

X

denotes the class

of decision problems L 2 P

X

such that there is a decision problem L

0

2 X and a

polynomial Turing-reduction from L to L

0

, i.e., all instances of L can be solved in

8

We assume some familiaritywith the basic notions of the theory of NP-completeness as presented

in the �rst few chapters of (Garey, Johnson 1979). This means the terms decision problem, P, NP,

co-NP, PSPACE, polynomial transformation (or many-one reduction), polynomial Turing reduction,

completeness w.r.t. polynomial transformability or Turing reducibility should be familiar to the

reader.



polynomial time on a deterministic Turing machine that employs an oracle for L

0

.

Similarly, NP

X

denotes the class of decision problems L 2 NP

X

such that there is

nondeterministic Turing-machine that solves all instances of L in polynomial time

using an oracle for L

0

2 X. Based on these notions, the sets �

p

k

, �

p

k

, and �

p

k

are

de�ned as follows:

9

�

p

0

= �

p

0

= �

p

0

= P; (58)

�

p

k+1

= P

�

p

k

; (59)

�

p

k+1

= NP

�

p

k

; (60)

�

p

k+1

= co-�

p

k+1

: (61)

Thus, �

p

1

= NP, �

p

1

= co-NP, and �

p

2

is the set of NP-easy problems. Further note

that

S

k�0

�

p

k

=

S

k�0

�

p

k

=

S

k�0

�

p

k

� PSPACE.

The role of the \canonical" complete problem (w.r.t. polynomial transformability),

which is played by SAT for �

p

1

, is played by k-QBF for �

p

k

. k-QBF is the problem of

deciding whether the following quanti�ed boolean formula is true:

9~p 8~q : : :

| {z }

k alternating quanti�ers starting with 9

F (~p; ~q; : : :): (62)

The complementary problem, denoted by k�QBF, is complete for �

p

k

.

Turning now to the revision operations discussed in this paper, we �rst of all notice

that the special belief revision problem of determining membership for a full meet re-

vision, called FMR-problem, is comparably easy. With respect to Turing-reducibility,

there is actually no di�erence to the complexity of ordinary propositional derivability,

i.e., the FMR-problem is NP-equivalent.

Proposition 18 FMR 2 �

p

2

� (�

p

1

[�

p

1

) provided �

p

1

6= �

p

1

.

Proof. If

:

+ is a full meet revision, � 2 Cn(C)

:

+  can be solved by the following

algorithm:

if C 6` :�

then C [ f�g `  

else � `  

From this, membership in �

p

2

follows.

9

The superscript p is only used to distinguish these sets from the analogous sets in the Kleene

hierarchy.



Further, SAT can be polynomially transformed to FMR by solving � 2 Cn(�)

:

+ >,

and unsatis�ability (SAT) can be polynomially transformed to FMR by solving ? 2

Cn(;)

:

+ �. Hence, assuming FMR 2 NP [ co-NP would lead to NP = co-NP.

The membership problem for simple base revision will be called SBR-problem. This

problem is obviously more complicated than the FMR-problem. However, the added

complexity is not overwhelming|from a theoretical point of view.

Theorem 19 SBR is �

p

2

-complete.

Proof. We will prove that the complementary problem C � � 6`  , which is called

SBR, is �

p

2

-complete. Hardness is shown by a polynomial transformation from 2-QBF

to SBR. Let ~p = p

1

; : : : ; p

n

, let ~q = q

1

; : : : ; q

m

, and let 9~p 8~q F (~p; ~q) be an instance of

2-QBF. Set

C = fp

1

; : : : ; p

n

;:p

1

; : : : ;:p

n

;:F (~p; ~q)g: (63)

Now we claim that

C �> 6` :F (~p; ~q) i� 9~p 8~q F (~p; ~q) is true. (64)

C�> 6` :F (~p; ~q) if and only if there is an elementB 2 (C?>) such that :F (~p; ~q) 62

B. Since every set of literals fl

1

; : : : l

n

g with l

i

= p

i

or l

i

= :p

i

is consistent,

:F (~p; ~q) 62 B if and only if the set fl

1

; : : : ; l

n

g � B is inconsistent with :F (~p; ~q),

i.e., fl

1

; : : : ; l

n

g ` F (~p; ~q). This, in turn is equivalent with the fact that there is a

truth assignment to ~p such that F (~p; ~q) is true for all truth-assignments to ~q. Thus,

equivalence (64) holds.

Membership of SBR in �

p

2

follows from the following algorithm that needs nondeter-

ministic polynomial time using an oracle for SAT:

1. Guess a set B � C.

2. Verify that there is no � 2 C �B such that B [ f�g 6` :�.

3. Verify B [ f�g 6`  .

This means that SBR is, on one hand, not much more di�cult than FMR, and, on the

other hand, apparently easier than derivability in most modal logics (e.g., K, T , and



S4), which is a PSPACE-complete problem (Garey, Johnson 1979, p. 262). Asking for

the computational signi�cance of this result, the answer is somewhat unsatisfying.

All problems in the polynomial hierarchy have the same property as the NP-complete

problems, namely, that they can be solved in polynomial time if and only if P = NP.

Further, all problems in the polynomial hierarchy can be solved by an exhaustive

search that takes exponential time. This means the worst-case behavior of any SBR

algorithm is most probably not better or worse than the worst-case behavior of any

propositional proof method. However, from the structure of the algorithm used in the

proof one sees that even if we restrict ourselves to polynomial methods for compu-

ting propositional satis�ability|for instance, by restricting the expressiveness|there

would still be the problem of determining the maximal consistent subsets Y .

Having now a very precise idea of the complexity of the SBR-problem, we may ask

what the computational costs of introducing priorities are. In other words whether

the membership problem for prioritized base revision, called PBR-problem, is more

di�cult than SBR.

Theorem 20 PBR is �

p

2

-complete.

Proof. �

p

2

-hardness is immediate by Theorem 19. Membership of PBR in �

p

2

also

follows easily. The maximality test (step 2 in the algorithm used in the proof of

Theorem 19) has to be performed as often as there are priority classes, which is

polynomially bounded by jZj.

This means that we do not have to pay for introducing priority classes. In the case

of default logics, the generalization from Poole's logic to rdt's does not increase the

computational costs. Note also, that the computational complexity of derivability

for Brewka's ldt's is not easier because the reduction in the proof of Theorem 19

applies to the special case F = ;, as well.

The membership problem for unambiguous prioritized base revision, the UBR-prob-

lem, turns out to be easier than SBR and PBR.

Theorem 21 UBR 2 �

p

2

� (�

p

1

[ �

p

1

), provided �

p

1

6= �

p

1

.

Proof. In order to show that UBR 2 �

p

2

, we specify an algorithm to compute

C

^

� � `  , for

^

� based on singleton degrees of relevance:



1. Initialize A = ; and i = 1.

2. Test A [ C

i

6` :�. If so, set A = A [ C

i

.

3. Increment i.

4. If there are only i� 1 degrees return with the result (A [ f�g `  ).

5. Otherwise continue with step 2.

Using an oracle for SAT, this algorithms runs in polynomial time. Thus, we have

UBR 2 �

p

2

.

Using the same arguments as in the proof of Proposition 18 leads to FMR 62 NP[co-NP

provided NP 6= co-NP.

From the proof, we can infer that if we can come up with a polynomial algorithm for

satis�ability (by restricting the propositional language to Horn logic, for instance),

then unambiguous base revision will be itself polynomial. This result gives a formal

justi�cation for the claim made in (Nebel 1989) that this form of revision is similar

to the functionality the rup system (McAllester 1982) o�ers|in an abstract sense,

though.

10

The important point to note is that a feasible implementation of belief

revision is possible if we restrict ourselves to polynomial methods for satis�ability by

restricting the language or by tolerating incompleteness and by using a polynomial

method for selecting among competing alternatives.

Finally, it may be interesting to compare syntax-based revision approaches with

model-based approaches, such as the one proposed by Dalal (1988). In order to

do so, we �rst need some de�nitions. Recall that a model I of a belief base C is

a truth assignment that satis�es all propositions in C. mod(C) denotes the set of

all models of C. �(I;J ) denotes the number of propositional variables such that

I and J map them to di�erent truth-values. Assuming that M denotes a set of

truth assignments, g

m

(M) is the set of truth assignments J such that there is a

truth-assignment I 2 M with �(J ;I) � m. If C is a �nite belief base, then G

m

(C)

is some belief base such that mod(G

m

(C)) = g

m

(mod(C)). Although G

m

is not a

deterministic function, all possible results are obviously logically equivalent.

10

The RUP system provides the possibility to put premises into di�erent likelihood classes. Ho-

wever, it seems to be the case that in resolving inconsistencies it could select non-maximal sets w.r.t.

� [McAllester, 1990, personal communication].



Now, model-based revision, written C � � is de�ned by:

11

C � �

def

=

8

>

<

>

:

G

m

(C) [ f�g for the least m s.t.

G

m

(C) [ f�g 6` ?

f�g if C ` ? or � ` ?:

(65)

Interestingly, the membership problem for model-based revision, called MBR-prob-

lem, has the same complexity as UBR and FMR. However, it is not obvious whether

a restriction of the expressiveness of the logical language would lead to a polynomial

algorithm in this case.

Theorem 22 MBR 2 �

p

2

� (�

p

1

[�

p

1

), provided �

p

1

6= �

p

1

.

Proof. Note that for any �xed i, G

i

(C) 6` � is a problem that can be solved in non-

deterministic polynomial time by guessing two truth assignment I;J and verifying

in polynomial time that

1. j=

I

C,

2. 6j=

J

�, and

3. �(I;J ) � i.

Note further that solving G

i

(C)[f�g 6`  can be reduced to solving G

i

(C) 6` (�!  ).

Let n be the number of di�erent propositional variables in C. Then it is obvious that

g

k

(C) = g

k+1

(C) for all k � n.

Membership of MBR in �

p

2

follows from the following algorithm:

1. Determine the least i, where 0 � i � n such that G

i

(C) 6` :�.

(a) If there is no such i, then return � `  .

(b) Otherwise, return (G

i

(C) [ f�g `  ).

Since n is bounded polynomially by jCj, this algorithms runs in polynomial time

using an oracle for the problem G

i

(C) 6` �.

11

This de�nition is a slight extension of the de�nition given in (Dalal 1988) that takes also care

of the limiting cases when C or � is inconsistent.



MBR 62 NP [ co-NP provided NP 6= co-NP follows with the same argument as in the

proof of Proposition 18.

Reconsidering the complexity results, there appears to be an interesting pattern.

Note that the best result for a belief revision problem we can hope for is membership

in �

p

2

because the problem involves consistency and inconsistency problems. While,

the \fully rational" base revisions,

12

namely, FMR, UBR, and MBR (for the latter see

(Dalal 1988)) turn out to be in this class, base revisions that are not \fully rational"

cannot be shown to be in this class.

8 SUMMARY AND OUTLOOK

The class of prioritized base revision (a form of syntax-based approaches to belief

revision) and the class of belief revision operations generated by epistemic relevance

were shown to be identical, removing partially the restriction of the theory of epi-

stemic change that states of beliefs have to be modeled as deductively closed sets of

sentences.

Further, epistemic relevance orderings on belief sets were shown to be a generali-

zation of epistemic entrenchment orderings con�rming the intuition spelled out in

(G�ardenfors, Makinson 1988) that epistemic entrenchment is related to the notion of

database priorities as introduced in (Fagin, Ullman, Vardi 1983).

Complementing the results in (Makinson, G�ardenfors 1990), we showed that concrete

models of nonmonotonic reasoning, namely, ranked default theories (rdt's)|a gene-

ralization of Poole's logic without constraints (Poole 1988) and Brewka's level default

theories (Brewka 1989; Brewka 1990)|turn out to be expressively equivalent to prio-

ritized base revision in the case of �nitary propositional logic. In addition, some

answer to the question raised in (Makinson, G�ardenfors 1990) whether contraction

plays a role in nonmonotonic logics was given. The theory formation approach with

constraints was shown to be equivalent|under some reasonable assumptions|to base

contraction. It is not possible to lift this result to belief contraction, however.

Finally, the computational complexity of di�erent base revision operations was

investigated|where the results apply by the above mentioned correspondences to

reasoning in default logics, as well.

The results con�rm the intuition that unambiguous prioritized base revision is not

harder but apparently less complex than general prioritized base revision (Doyle 1990,

12

This means base revisions such that the corresponding belief revision operations satisfy all the

AGM postulates.



Sect. 3.2), which in turn is not harder than simple base revision. An interesting point

is that model-based revision as proposed by Dalal is still NP-easy.

One of the open questions is, whether the correspondence between belief revision

and the analyzed default logics holds for the in�nite case as well. However, for this

purpose the theory of epistemic change has to be extended so that belief sets cannot

only be revised by sentences but also by other belief sets. Another interesting question

in this context is whether there are natural postulates for belief revision operations

that characterizes syntax-based approaches completely.

Finally, the observation that all \fully rational" revision operations analyzed in this

paper share the property of being NP-easy suggests analyzing that class of revision

operations in more detail in order to detect interesting and tractable special cases.
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