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Abstract

If a new piece of information contradicts our previously held beliefs, we

have to revise our beliefs. This problem of belief revision arises in a number

of areas in Computer Science and Arti�cial Intelligence, e.g., in updating

logical database, in hypothetical reasoning, and in machine learning. Most

of the research in this area is in
uenced by work in philosophical logic,

in particular by G�ardenfors and his colleagues, who developed the theory

of belief revision. Here we will focus on the computational aspects of

this theory, surveying results that address the issue of the computational

complexity of belief revision.
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1 Introduction

If a new piece of information contradicts our previously held beliefs, we have to

revise our beliefs. This problem of belief revision

1

arises in a number of areas in

Computer Science and Arti�cial Intelligence, e.g., in updating logical database

[

Fagin et al., 1983

]

, in hypothetical reasoning

[

Ginsberg, 1986

]

, and in machine

learning

[

Wrobel, 1994

]

. Most of the research in this area is in
uenced by work in

philosophical logic, in particular by G�ardenfors and his colleagues

[

Alchourr�on et

al., 1985; G�ardenfors, 1988; G�ardenfors, 1992a

]

, who developed the theory of

belief revision. Here we will focus on the computational aspects of this theory,

surveying results that address the issue of the computational complexity of belief

revision.

The theory of belief revision gives a quite accurate characterization of the

space of possible revision operations and analyzes how such revision operations

can be generated by revision schemes that map a belief state and some extra-

logical preference information to a revision operation. However, the theory does

not give any indication of how to put belief revision to work in a computational

setting. If one wants to apply this theory in a computer science or arti�cial

intelligence application, there are two severe problems. First of all, it is assumed

that belief states are modelled by logically closed sets of formulae, which seems to

be representationally infeasible since logically closed sets are always in�nite. In

a computational framework, however, it is common practice to represent in�nite

entities by �nite means, provided this is possible at all. In the following, we will

assume that belief states can always be represented by �nite sets of formulae in

propositional logic, which are called belief bases.

Secondly, there is the problem that the extra-logical preference information is

usually assumed to be a relation over the set of all formulae in a logically closed

theory, a relation over all models of the theory, or a relation over all subsets of

the theory. Even assuming that the logically closed theory is �nite modulo logical

equivalence, the necessary amount of information is still huge, usually exponential

or double exponential in the size of the belief base. Hence for applications one is

interested in revision schemes that require an amount of preference information

that is feasible in the size of the belief base.

Some revision schemes, such as the model-based revision schemes

[

Katsuno

and Mendelzon, 1991

]

, do not need any explicit preference information, which is

an advantage from a representational point of view, but also means that these

schemes are quite in
exible. The revision operation is always uniquely deter-

mined by the logical contents (the set of models) of the belief base. Flexibility

can be achieved when we start with the particular syntactic realization of a belief

base and some extra information in order to generate a revision operation. Revi-

1

The related problem of how to accommodate new information that is the result of a change

in the world has been analyzed by Katsuno and Mendelzon

[

Katsuno and Mendelzon, 1992

]

,

who call the corresponding belief change operation belief update.

1



sion schemes de�ned following this idea are called syntax-based revision schemes

[

Nebel, 1994

]

.

Having a representationally feasible revision scheme does not imply that it

is computationally feasible, however. To the contrary, belief revision is computa-

tionally infeasible for most representationally feasible revision schemes|provided

one accepts the assumption of computational complexity theory that any problem

that is at least as hard as propositional satis�ability is computationally infeasi-

ble. Revision is, of course, as hard as deciding propositional satis�ability because

satis�ability is a subproblem of all revision schemes. Whether revision is strictly

harder than satis�ability and whether there are interesting special cases that may

be easier, is not immediately evident, however. Further, it is not obvious, how

large a revised belief base can become and how hard it is to generate a revised

base. All these questions are addressed in this paper, giving a survey on previous

results as well as presenting some new results.

2

The structure of the rest of the paper is as follows. The next section introduces

terminology and notation and sketches some relevant results of the theory of be-

lief revision. Section 3 introduces the basic notions of complexity theory that are

necessary to present the results in the rest of the paper. In Section 4, we discuss

the two main approaches to representationally feasible revision schemes, describe

how the complexity of revision schemes can be evaluated, establish a lower bound

for representationally feasible revision schemes, and analyze the simplest possible

revision scheme. In Sections 5{7 we consider the three main approaches to revis-

ing a belief base using syntax-based revision schemes and analyze the approaches

from a computational complexity point of view. In addition to the general case,

we also look at restrictions such as bounding the size of the revision formula and

restricting the base logic to Horn logic. In Section 8, we study the question of how

large a revised base can become and how hard it is to generate a revised base. In

Section 9, some pointers to related work are provided. Finally, in Section 10, we

summarize the results, evaluate the syntax-sensitivity of syntax-based revision

schemes, and discuss further research directions.

2 The Theory of Belief Revision

Before we sketch the theory of belief revision, �rst some terminological and no-

tational conventions are introduced in the next subsection. We then proceed by

presenting rationality postulates for belief revision. Based on that, three belief

revision schemes are introduced.

2

All unpublished proofs are given in the appendix.

2



2.1 Preliminaries

Throughout this paper, a propositional language L over a �nite alphabet � of

propositional variables p; q; r : : : with the usual logical connectives (:, _, ^, !

and $) is assumed. Propositional formulae are denoted by ';  ; �; !; : : :, con-

stant truth by >, and its negation by ?. An atom or atomic formula is a

formula consisting of a propositional variable only. A literal is an atom or a

negated atom. A clause is a disjunction of literals. A formula in conjunctive

normal-form is a formula that is a conjunction of clauses. Truth assignments,

denoted by � and �, assign one of the values true and false to the variables in �.

A truth assignment satis�es a formula i� the formula evaluates to true under

the assignment. A set A of formulae is satis�ed by � i� all formulae in A are

satis�ed by �. A satisfying truth-assignment is also called model of the formula

or the set of formulae. A formula ' is said to be logically implied by a set of

formulae A, symbolically A j= ', i� all models of A are models of ' as well.

Sets of propositional formulae are denoted by K;L;M; : : : and A;B;C; : : :

The size of a formula ' (counting all symbols in the formula) is denoted by j'j

and the size of a set of formulae A by jAj, where the size of a set of formulae

is de�ned as the sum over the sizes of the formulae in the belief base. This is to

be distinguished from the cardinality of a set A, denoted by kAk, where only

the number of elements in A is relevant.

The logical closure of a set of formulae A, symbolically Cn(A) is de�ned as

follows:

Cn(A)

def

= f' 2 LjA j= 'g: (1)

Instead of Cn(f'g), we will also write Cn('). Logically closed sets of proposi-

tional formulae, i.e., K = Cn(K), are denoted by the capital letters K;L;M : : :

and are called belief sets. The monotonic addition of a propositional formula

' to a belief set K, i.e., Cn(K [ f'g), is denoted by K + ' and called expan-

sion of K by '. Arbitrary sets of formulae are called belief bases and are

denoted by capital letters from the beginning of the alphabet. Systems of belief

bases and belief sets are denoted by S. Finite belief bases C are often identi�ed

with the conjunction of all formulae

V

C. If S = fA

1

; : : : ; A

n

g is a �nite fam-

ily of �nite belief bases, then

W

S shall denote a formula logically equivalent to

(

V

A

1

) _ : : : _ (

V

A

n

). As usual, we set

W

; = ?.

2.2 Rationality Postulates

G�ardenfors and his colleagues

[

Alchourr�on et al., 1985; G�ardenfors, 1988

]

con-

sidered mainly two change operations on belief sets, namely, contraction and

revision. Contraction is the removal of a formula ' from a belief set K result-

ing in a new belief set, denoted by K

:

� ', that does not contain ' (if ' is not a

tautology), and revision is the addition of a formula ' to K, denoted by K

:

+ ',

3



such that Cn(?) 6= K

:

+ ' whenever 6j= :'. Although contraction and revision

are not uniquely determined operations|the only commonly agreed criterion is

that the changes to the original belief sets have to be minimal|it is possible to

constrain the space of reasonable belief change operations. G�ardenfors proposed

the following set of rationality postulates for revision operations:

(

:

+1) K

:

+ ' is a belief set;

(

:

+2) ' 2 K

:

+ ';

(

:

+3) K

:

+ ' � K + ';

(

:

+4) If :' 62 K, then K + ' � K

:

+ ';

(

:

+5) K

:

+ ' = Cn(?) only if j= :';

(

:

+6) If j= '$  then K

:

+ ' = K

:

+  ;

(

:

+7) K

:

+ (' ^  ) � (K

:

+ ') +  ;

(

:

+8) If : 62 K

:

+ ', then (K

:

+ ') +  � K

:

+ (' ^  ).

These postulates intend to capture the intuitive meaning of minimal change|

from a logical point of view

[

Alchourr�on et al., 1985; G�ardenfors, 1988;

G�ardenfors, 1992b; G�ardenfors and Rott, 1995

]

. The �rst six postulates, which

are straightforward, are called basic postulates. The postulates (

:

+7){(

:

+8),

which are called supplementary postulates, are less obvious. They capture

the idea that a revision of K by a conjunction ('^ ) should be achieved through

a revision by ' and an expansion by  , if this is possible at all, i.e., if  is con-

sistent with K

:

+ '.

In the context of belief base revision, additional postulates turn out to be

important

[

Rott, 1993; G�ardenfors and Rott, 1995; Katsuno and Mendelzon,

1991

]

:

(

:

+8r) K

:

+ (' _  ) � Cn(K

:

+ ' [K

:

+  );

(

:

+8c) If  2 K

:

+ ' then K

:

+ ' � K

:

+ (' ^  );

(

:

+8i) If  2 K

:

+ ' and ' 2 K

:

+  then K

:

+ ' = K

:

+  .

Postulate (

:

+8r) (called R8 in

[

Katsuno and Mendelzon, 1991

]

) constrains the

revisions by disjunctions. In the presence of the basic postulates, (

:

+8r) can be

derived from (

:

+8) but is not equivalent to it. (

:

+8c) is a weakened form of (

:

+8), and

(

:

+8i) (called R7 in

[

Katsuno and Mendelzon, 1991

]

) is a condition on the equality

of revised belief bases. In the presence of (

:

+1){(

:

+7), the two latter postulates are

equivalent, so we will only consider (

:

+8c) in the following.

There exists a similar set of postulates for contraction operations, which

is equivalent to this set using the fact that revision and contraction are inter-

de�nable by the Harper identity

[

G�ardenfors, 1981

]

K

:

� ' = (K

:

+ :') \K (2)

4



and the Levi

[

1977

]

identity

K

:

+ ' = (K

:

� :') + '; (3)

provided the basic postulates are satis�ed.

One interesting point to note is that the postulates do not constrain the

operators with respect to varying belief sets. In other words, when we talk about

a revision operator, we may restrict ourselves to a given belief set and consider

the mapping from L (the new information) to 2

L

(the revised belief set)|called

local revision in

[

Hansson, 1996

]

. In fact, in the rest of the paper we only

consider such local revisions.

Based on this framework, one can consider di�erent methods to construct

revision operations. Such methods are usually speci�ed as operations that map

a belief set with associated preference information and a revision formula to a

new belief set. Assuming that the preference information is expressed using an

element from the set P, such an operator, which we call revision scheme, is a

mapping from 2

L

� P � L to 2

L

. In other words, such a revision scheme can be

viewed as a recipe for generating a belief revision operation on a given belief set

with given preference information. If S is a revision scheme, then the generated

belief revision operations are called S revisions.

2.3 Partial Meet Revision Scheme

In

[

Alchourr�on et al., 1985

]

, so-called partial meet revisions are investigated. This

notion is based on systems of maximal (w.r.t. to set-inclusion) subsets of a given

belief set K that do not imply ', called the remainders of K by ' and written

as K?':

K?'

def

= fL � Kj L 6j= '; 8M :L �M � K )M j= 'g: (4)

A partial meet revision (on K for all ') is de�ned by a selection function


 that selects a nonempty subset of K?:' (provided K?:' is nonempty, fKg

otherwise) in the following way:

3

K

:

+ '

def

=

�

\


(K?:')

�

+ ': (5)

Such partial meet revisions satisfy unconditionally the �rst six postulates.

Furthermore, it is possible to show that all revision operations satisfying the basic

postulates are partial meet revisions

[

Alchourr�on et al., 1985, Observation 2.5

]

.

Actually, this and the other results cited below were proven for contraction.

However, as mentioned above, the postulates for revision and contraction are

equivalent if one employs the Harper and Levi identities.

3

Note that all elements of K?:' are belief sets and that the intersection of belief sets is a

belief set again.

5



If some constraints are placed on the behavior of the selection function, it is

possible to show that (

:

+7) and (

:

+8) are also satis�ed. The key notion in this

context is relationality of the selection function, which means that there must

exist a so-called \marking o�" relation �

�

over all subsets of a belief set K

independent of ' such that the selection functions always \marks o�" the \best"

sets, i.e., for all ',


(K?') = fL 2 (K?')j 8M 2 (K?'):M �

�

Lg; (6)

in which case the revision operation is called relational partial meet revision.

Any such revision satis�es the postulates (

:

+1){(

:

+7)

[

Alchourr�on et al., 1985, Ob-

servations 3.1, 4.2, and 4.3

]

. If the relation is additionally transitive, then the

revision operation is called transitively relational and (

:

+1){(

:

+8) are satis�ed.

Furthermore, it can be shown that any revision operation satisfying (

:

+1){(

:

+8)

is a transitively relational partial meet revision

[

Alchourr�on et al., 1985, Corol-

lary 4.5

]

.

Rott

[

1993

]

showed additional representation theorems for belief sets that

are �nite (modulo Cn). He demonstrated that relational partial meet revisions

correspond to revisions satisfying (

:

+1){(

:

+7) and (

:

+8r). Further, using the notion

of negatively transitive relation, which is a relation such that a 6� b and b 6� c

implies a 6� c, he showed that negatively transitive revisions coincide with

the revisions satisfying (

:

+1){(

:

+7), (

:

+8r), and (

:

+8c).

4

It should be noted that some special cases of partial meet revisions are unrea-

sonable. If 
 always selects all of the elements of K?:', leading to the so-called

full meet revision, denoted by

F

+, then K

F

+ ' = Cn(') if :' 2 K. This means

we throw away all the old beliefs if the new formula is inconsistent with the belief

set, which is clearly unreasonable. Although unreasonable, full meet revision is

\fully rational" in the sense that it satis�es all the rationality postulates, as is

easy to verify. Another unreasonable partial meet revision is maxichoice revi-

sion, in which the selection function always selects a singleton set. This revision

leads to complete belief sets (i.e., belief sets such for each formula ' either ' 2 K

or :' 2 K), even if the original belief set was not complete.

2.4 Cut Revision Scheme

Instead of providing the preference information by a selection function, one may

also think of relations over formulae. Epistemic entrenchment orderings, writ-

ten as ' �  , are de�ned over the entire set of formulae L and have to satisfy

the following properties:

5

4

A similar result has been proven by Katsuno and Mendelzon

[

1991

]

in a model-theoretic

framework.

5

As shown by Dubois and Prade

[

Dubois and Prade, 1991

]

, epistemic entrenchments are the

qualitative counterparts to necessity measures in possibilistic logic

[

Dubois et al., 1994

]

.

6



(�1) If ' �  and  � �, then ' � �.

(�2) If ' j=  , then ' �  .

(�3) For any ';  , ' � (' ^  ) or  � (' ^  ).

(�4) When K 6= Cn(?), then ' 62 K i� ' �  for all  2 L.

(�5) If  � ' for all  2 L, then j= '.

From (�1){(�3), it follows immediately that � is a total preorder

6

over L re-

specting logical equivalence. The strict part of � is denoted by �.

Using such relations, G�ardenfors and Makinson de�ne belief contraction

generated by epistemic entrenchments, written K

�

� ', by

 2 K

�

� ' i�  2 K and (' � (' _  ) or j= ') (7)

and show that such a belief contraction operation satis�es all rationality postu-

lates for contraction as well as the following condition

[

G�ardenfors and Makinson,

1988, Theorem 4

]

:

' �  i� ' 62 K

�

� (' ^  ) or j= (' ^  ): (8)

Further, they show that any belief contraction operation satisfying all of the

rationality postulates is generated by some epistemic entrenchment ordering

[

G�ardenfors and Makinson, 1988, Theorem 5

]

.

Using the Levi identity, it is possible to de�ne a belief revision operation using

an epistemic entrenchment ordering. In this case, however, the condition in (7)

can be slightly simpli�ed. Instead of testing ' � (' _  ) it su�ces to check for

' �  

[

Rott, 1991b

]

. More formally, let cut

�

be de�ned as

cut

�

(')

def

= f 2 Lj ' �  g; (9)

then a revision operation based on � can be de�ned by

K

�

+ '

def

= cut

�

(:') + ': (10)

This operation is identical to a revision operation obtained by �rst contracting

K using

�

� and then applying the Levi identity.

Since revisions based on epistemic entrenchment amount to cutting away all

formulae with an epistemic entrenchment lower than the negation of the formula

to be added, we call this kind of revision scheme cut revision scheme.

6

A preorder is a transitive and re
exive relation. A preorder � is total if for all pairs of

elements a; b we have a � b or b � a.

7



2.5 Safe Revision Scheme

Yet another revision scheme is the safe revision scheme introduced by Al-

chourr�on and Makinson

[

1985

]

. It is in some sense dual to partial meet revi-

sion because we do not consider the inclusion-maximal subsets consistent with

a formula but the inclusion minimal sets that are inconsistent with a formula.

Formally, a subset B of a belief set K is called an entailment set for ' i�

B j= ' and for all subsets C � B: C 6j= '. Clearly, removing one element from

each entailment set leads to consistency with the formula to be added. However,

which formulae should be removed?

Alchourr�on and Makinson

[

1985

]

postulate a strict partial order

7

�j over a

belief base K that respects logical equivalence, i.e., if j= ' $ '

0

and j=  $  

0

then '�j i� '

0

�j 

0

. Such a relation is called hierarchy over K. Given such

a hierarchy, an element ' 2 K is called safe with respect to  i� ' is not a

minimal element under �j in any entailment set for  .

The set of all elements of a belief set K that are safe with respect to ' are

denoted by K='. Safe revision is then de�ned by

K

:

+ '

def

= Cn(K=:') + ': (11)

Revision operations constructed in this way always satisfy the basic rationality

postulates

[

Alchourr�on and Makinson, 1985, Observation 3.2

]

. Further properties

of safe revisions can be shown if some constraints are placed on the hierarchy.

Since these results are not relevant for the rest of the paper, we only note that

another paper by Alchourr�on and Makinson

[

1986

]

and a paper by Rott

[

1992

]

contain interesting results on this issue.

3 Computational Complexity Theory

In computational complexity theory

8

one tries to classify problems according

to their requirements on computational resources (time, memory) depending on

the size of the input. In this context, the term problem means, contrary to

the ordinary meaning, \generic question," which has di�erent instances. For

example, a particular crossword puzzle is not a problem, but an instance of

the problem of crossword puzzle solving. In our context, deciding propositional

implication (i.e., A j= ') is a problem, while �nding out whether fp _ q;:pg j= q

is an instance of this problem.

7

A strict partial order is a transitive and irre
exive relation.

8

Good text books on this topic are

[

Balc�azar et al., 1988; Balc�azar et al., 1990; Garey and

Johnson, 1979; Papadimitriou, 1994; Wagner and Wechsung, 1988

]

.

8



3.1 Polynomial vs. Exponential Runtime Requirements

When we denote the size of an instance I by jIj, and if f is some monotonically

increasing function from positive integers to positive integers, we say that the

computation time of a problem is bounded by f (on a particular machine

T ) if for all instances no more than f(jIj) computation steps are necessary. Since

in most cases we are not interested in constant factors, usually the big-O nota-

tion is used. Let f and g be functions and c be a positive constant, then O(f)

is de�ned to be the class of functions g such that

g(n) � c� f(n) (12)

for all but �nitely many positive integers n. By abusing notation, one also says

that a computation needs O(f) time if the time is bounded by a function g

such that g 2 O(f). More generally, one de�nes the computation time to be

polynomially bounded if there is a �xed k such that the computation time is

bounded by O(n

k

).

A problem is considered to be e�ciently solvable if for all instances of the

problem an algorithm can �nd the correct answer in a number of computation

steps that is polynomially bounded|assuming a \traditional" model of computa-

tion, i.e., a sequential, deterministic computation model, e.g., Turing machines or

random access machines. It should be noted that the de�nition of polynomially

bounded computation is independent from the particular machine model since all

sequential, deterministic machines can be simulated on each other in polynomial

time.

In computational complexity theory, one usually restricts the attention to

so-called decision problems, i.e., problems that have only \yes" and \no" as

possible answers. These problems are also viewed as formal languages, denoted

by P;Q; : : :, formed by the \yes" instances. While this might seem to be a serious

restriction at �rst sight, it turns out that in most cases a polynomial algorithm

for a decision problem can be easily transformed into a polynomial algorithm for

the corresponding general problem.

The class of decision problems that can be characterized by being solvable in

polynomial time is denoted by P. Decision problems not belonging to this class,

e.g., problems that need exponential time, are considered to be not e�ciently

solvable. The reason for this judgement is that the growth rate of exponential

functions leads to astronomical runtime requirements even for moderately sized

instances.

The distinction between polynomial and exponential runtime requirements

becomes even more vivid if one considers the e�ects of further advances in com-

puter technology. Assuming we have a problem P

1

that needs n

2

steps and that

can be solved in reasonable time, e.g. one minute, up to an instance size of m

1

,

then an increase of speed by 10

6

leads to the e�ect that instances up to a size of

1000�m

1

can be solved in one minute. For problem P

2

that needs 2

n

steps the

9



picture is quite di�erent, however. Assuming that instances up to a size m

2

can

be solved with the traditional technology in reasonable time, an increase by 10

6

in speed leads only to 20 +m

2

as the maximal instance size.

Although the distinction between \e�ciently" and \not e�ciently" solvable

problems according to whether the number of computation steps can be polyno-

mially bounded or not seems to be reasonable, one should always keep in mind

that it is only a mathematical abstraction. It is based on the assumption that in

case of polynomial runtime the exponent is small, and that in the case of expo-

nential runtime the worst case occurs signi�cantly often. As experience shows,

however, these assumptions are valid for most naturally occurring problems.

In order to �nd out whether a problem is e�ciently solvable or not, we only

have to �nd a polynomial algorithm or to prove that such an algorithm is impos-

sible. However, there exist a large number of problems for which no polynomial

algorithms are known, but at the same time it seems to be impossible to prove

that super-polynomial time is necessary to solve these problems. The formal

classi�cation of these problems is one of the challenges of complexity theory.

3.2 Nondeterministic Computations and the Complexity

Class NP

One formal tool to characterize these problems is the nondeterministic Tur-

ing machine. Such a machine can choose nondeterministically among di�erent

successor states during its computation and it accepts an input (answers \yes")

if, and only if, there exists a sequence of nondeterministic choices that leads to

an accepting state. A nondeterministic Turing machine accepts a language P in

polynomial time if, and only if, all words of P are accepted using only a polyno-

mial number of computation steps on the nondeterministic machine. The class of

languages (or decision problems) that are accepted by nondeterministic Turing

machines using polynomial time is called NP.

Another perspective on problems in NP is that these are the problems for

which short proofs (i.e., of polynomial size) exist, where a proof in this context is

something that allows us to verify easily (i.e., in polynomial time) that a given

instance belongs to the \yes" instances. For example, the problem of deciding

satis�ability of a propositional formula, denoted by SAT, is a problem in NP

because truth-assignments are proofs in this context. They are short and it only

takes polynomial time to verify that a truth-assignment satis�es a formula.

Since all deterministic machines can be viewed as nondeterministic machines,

it follows that P � NP. Whether the converse inclusion holds is an open problem,

however. This is the famous P

?

=NP problem.

Although we do not know whether P 6= NP, it is nevertheless possible to iden-

tify the \hardest" problems in NP. The formal tool for doing so is the resource-

limited reduction between problems. A problem P can be polynomially many-

10



one reduced to problem Q, symbolically P �

p

m

Q, i� there exists a function f

from strings to strings that can be computed in polynomial time and that has

the property that w 2 P if and only if f(w) 2 Q. Intuitively, an algorithm

for problem Q can be used to solve problem P with only polynomial overhead.

In other words, Q must be at least as hard as P with respect to solvability in

polynomial time.

3.3 NP-Hardness and NP-Completeness

A problem that has the property that all problems in NP can be polynomially

reduced to it is obviously at least as hard as all problems in NP, i.e., it is NP-hard

with respect to polynomial many-one reductions.

Since it is very di�cult to prove something by quantifying over the entire class

of languages in NP, it would be convenient to identify a problem P that is in NP

and NP-hard. Because of the transitivity of �

p

m

it then su�ces to reduce P to Q

in order to show NP-hardness of Q.

Problems that are NP-hard and in NP are called NP-complete. More gen-

erally, a problem is called X-complete for a complexity class X if it is in X and

X-hard. Although it is not obvious that NP-complete problems exist, it turns out

that a large number of natural problem for which we do not know polynomial al-

gorithms are NP-complete.

9

NP-complete problems have the interesting property

that a polynomial, deterministic algorithm for one of these problems implies that

all problems in NP can be solved in polynomial time on a deterministic machine,

i.e., it implies that P = NP. Since all attempts of �nding polynomial algorithms

for NP-complete problems have failed so far, the proof that a problem is NP-hard

implies that no e�cient algorithm is known for this problem according to the

current state of the art. Further, because of the large number of unsuccessful

attempts to �nd e�cient methods for solving NP-complete problems in polyno-

mial time it is nowadays believed that it is impossible to solve such problems in

polynomial time.

The prototypical example of an NP-complete problem is SAT. As mentioned

above, this problem is in NP because there exist short proofs for demonstrating

that a given instance is a \yes" instance|a satis�able formula. Showing that

SAT is also NP-hard is much more di�cult. The proof is based on a generic

reduction that assigns to each pair formed by a nondeterministic Turing machine

T and an instance I a boolean formula '

I

that is satis�able if, and only if, I is

accepted by T in polynomial time.

The problem that is complementary to SAT, i.e., the problem to decide

whether a boolean formula is unsatis�able, is called UNSAT. Interestingly, UN-

SAT is not necessarily in NP, since no nondeterministic algorithm is known that

accepts the corresponding language in polynomial time. Alternatively, we know

9

Garey and Johnson

[

1979

]

provide a list of approximately 300 NP-complete problems.

11



of no proof system that guarantees short proofs for demonstrating that a formula

is unsatis�able.

UNSAT and all other problems complementary to problems in NP are assigned

to the class coNP de�ned as

coNP

def

= fP j P 2 NPg; (13)

and it is conjectured that NP 6= coNP. Obviously, UNSAT is a coNP-complete

problem under the de�nitions given above. Similarly, propositional implication

(IMPL) and propositional tautology (TAUT) are also coNP-complete because UN-

SAT, IMPL, and TAUT can be polynomially many-one reduced to each other.

3.4 Complexity Classes above NP

In addition to P and NP, there exist a number of other so-called complexity

classes,

10

some of them below P and others above NP. PSPACE, for instance, is

the class of problems that can be solved in polynomial space on deterministic

sequential machines. While it is relatively easy to show that NP � PSPACE, it is

unknown whether NP is a proper subset of PSPACE. As in the P versus NP case,

however, it is believed that NP is indeed a proper subset of PSPACE.

Between NP and PSPACE there exists an in�nite hierarchy of complexity

classes, called the polynomial hierarchy, denoted by PH. Because the com-

putational problems considered in this paper fall into complexity classes located

at the lower end of this hierarchy, the hierarchy is brie
y sketched

[

Garey and

Johnson, 1979, Sect. 7.2

]

.

Let X be a class of decision problems. Then P

X

denotes the class of decision

problems P that can be decided in polynomial time by a deterministic Turing

machine T that is allowed to use a procedure (a so-called oracle) for deciding

a problem Q 2 X, whereby executing the procedure does only cost constant

time. Similarly, NP

X

denotes the class of decision problems P such that there is

a nondeterministic Turing-machine that solves all instances of P in polynomial

time using an oracle for Q 2 X. Based on these notions, the sets �

p

k

, �

p

k

, and �

p

k

are de�ned as follows:

11

�

p

0

def

= �

p

0

= �

p

0

= P; (14)

�

p

k+1

def

= P

�

p

k

; (15)

�

p

k+1

def

= NP

�

p

k

; (16)

�

p

k+1

def

= co�

p

k+1

: (17)

10

Johnson

[

1990

]

gives a survey of the state of the art.

11

The superscript p is only used to distinguish these sets from the analogous sets in the

Kleene hierarchy.
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Thus, �

p

1

= NP and �

p

1

= coNP. Further note that PH =

S

k�0

�

p

k

=

S

k�0

�

p

k

=

S

k�0

�

p

k

� PSPACE. As with other classes, it is unknown whether the inclusions

between the classes are proper. However, it is strongly believed that this is the

case, i.e., that the hierarchy is truly in�nite.

The role of the \canonical" complete problem (w.r.t. polynomial many-one

reducibility), which is played by SAT for �

p

1

, is played by k-QBF for �

p

k

. k-QBF

is the problem of deciding whether the following quanti�ed boolean formula is

true:

9~p 8~q : : :

| {z }

k alternating quanti�ers starting with 9

'(~p; ~q; : : :): (18)

The complementary problem, denoted by k�QBF, is complete for �

p

k

.

For problems in �

p

2

, it is often di�cult to determine their exact complexity,

i.e., they cannot be shown to be complete for �

p

2

. Restricting the number of

oracle calls and the way the results of these calls can be used are, however, a

useful tool for de�ning complexity classes inside �

p

2

, which turn out to be helpful

for determining the exact complexity of problems in �

p

2

. Most notably, the class

of problems that can be decided in polynomial time by using only logarithmically

many oracle calls �

p

2

[O(logn)]

[

Wagner, 1987

]

(also denoted by P

NP[O(logn)]

and

�

p

2

) plays an important role. Further, inside �

p

2

[O(logn)] are the classes of the

so-called boolean hierarchy

[

Cai et al., 1988

]

. The classes NP(k) and coNP(k)

(also denoted by BH

k

and coBH

k

, respectively) of the boolean hierarchy BH

can be de�ned as follows

[

Cai et al., 1988

]

:

NP(0)

def

= P; (19)

NP(2k + 1)

def

= fP [Qj P 2 NP(2k); Q 2 NPg; (20)

NP(2k + 2)

def

= fP \Qj P 2 NP(2k + 1); Q 2 NPg; (21)

coNP(k)

def

= fP j P 2 NP(k)g: (22)

The boolean hierarchy BH is the union over all sets NP(k) and turns out to be

equivalent to the class of problems that can be solved in deterministic polynomial

time using a constant number of oracle calls.

In Figure 1, all the complexity classes introduced in this section are displayed

with their obvious inclusion relationships depicted by arrows. As mentioned

above, it is not known whether the inclusion relationships are strict, but it is

strongly believed.

From a purely practical point of view, it may not seem to be necessary to

distinguish between complexity classes above NP, since all the problems that

are complete for those classes are NP-hard and not e�ciently solvable for this

reason. In particular, all problems in the boolean and polynomial hierarchy have

the same property as the NP-complete problems, namely, that they can be solved

in polynomial time if and only if P = NP. Further, all these problems can be

solved by an exhaustive search that takes exponential time. This means the

13
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Figure 1: Hierarchy of complexity classes

worst-case behavior of any algorithm for a problem that is complete for some

level of the boolean or polynomial hierarchy is most probably not better or worse

than the worst-case behavior of any propositional proof method. Nevertheless,

a precise classi�cation of a problem in the hierarchy can give us hints about the

relative di�culty of a problem, about the sources of combinatorics it contains,

about possible ways to restrict the problem in order to make it polynomial, and

about whether there are ways to solve aspects of the problem algorithmically.

3.5 Nonuniform Complexity Classes

If we are interested in how much space we need to represent something, so-called

non-uniform complexity classes can help to prove lower bounds. For example, if

we want to know how large a revised belief base could be in the worst case, it

14



turns out that the naive representation can be exponential in some cases. In order

to answer the question how much space the most compact representation needs,

nonuniform classes are useful, which are de�ned using advice-taking machines.

An advice-taking Turing machine is a Turing machine with an advice

oracle, which is a (not necessarily recursive) function a from positive integers to

bit strings. On input I, the machine loads the bit string a(jIj) and then continues

as usual. Note that the oracle derives its bit string only from the length of the

input and not from the contents of the input. An advice is said to be polynomial

if the oracle string is polynomially bounded by the instance size. Further, if X is

a complexity class de�ned in terms of resource-bounded machines, e.g., P or NP,

then X=poly (also called non-uniform X) is the class of problems that can be

decided on machines with the same resource bounds and polynomial advice.

Because of the advice oracle, the class P/poly appears to be much more power-

ful than P. However, it seems to be unlikely that P=poly contains all of NP. More

precisely, it has been shown that NP � P=poly would imply that the polynomial

hierarchy collapses at �

p

2

[

Karp and Lipton, 1980

]

, which is considered to be quite

unlikely. In addition, Yap

[

1993

]

showed that the polynomial hierarchy collapses

at �

p

k+2

if �

p

k

� �

p

k

=poly or if �

p

k

� �

p

k

=poly.

In Section 8, these conditional results are used to demonstrate that assuming

that a revised belief base can always be represented in a compact way leads to

the consequence that the polynomial hierarchy collapses

[

Cadoli et al., 1995

]

. In

other words, it appears to be unlikely that it is possible to �nd a compact form

for revised belief bases in general.

4 Representationally Feasible Revision Schemes

In Section 1, we stated the requirement that a revision scheme should be repre-

sentationally feasible. This means that the revision scheme should be satis�ed

with an amount of preference information that has a size bounded polynomially

in the size of the belief base. The belief revision schemes described in Section 2

obviously do not satisfy this requirement. An epistemic entrenchment ordering,

for example, has a size that is double exponential in the size of the belief base.

Even if we limit the orderings to all maximal disjunctions in the language|from

which the entire ordering can be computed

[

G�ardenfors and Makinson, 1988

]

|the

size would be still exponential.

In general, two methods have been used to construct representationally feasi-

ble revision schemes. The �rst one is to assume that no preference information at

all is given, i.e., the revision operation is solely determined by the logical contents

of the belief base. One example for such a scheme is full meet revision. Other,

more reasonable schemes, are based on identifying models of the revision formula

that are \close" to the models of the belief base, so-called model-based revision

schemes

[

Katsuno and Mendelzon, 1991

]

. The second method to construct repre-
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sentationally feasible revision schemes is to attach preference information to the

formulae in the base by giving a preference relation over the formulae or by par-

titioning the base into priority classes. Since in this case the generated revision

operation depends not only on the logical contents of the belief base but also

on the syntactic form of the base, such schemes are called syntax-based revision

schemes

[

Nebel, 1994

]

.

4.1 Model-Based Revision Schemes

The main idea for model-based revision schemes, which are generally denoted by

�, possibly with a subscript, is that in order to revise a belief base A by a formula

', we select those models from ' that are \closest" or \most similar" to models

in A and regard the resulting set of models as the revised base.

There are a number of proposals that di�er according to how distance between

models is measured and whether we take for each model � of A all the closest

models from ', or if we select only the models � from ' that are closest to all

models of A, where the distance between one model of ' and all models of A is

the minimal distance between � and some model of A.

As an example, let us consider Dalal's

[

1988

]

revision operation. Let mod(C)

and mod(') denote the set of all models of C and ', respectively. Further, if

M is a set of truth assignments, then form(M) denotes a formula such that

mod(form(M)) =M. The function �(�; �) denotes the number of propositional

variables such that � and � map them to di�erent truth-values. The distance

�(A;') between A and ' is then de�ned to be

�(A;')

def

= min(f�(�; �)j � 2 mod(A); � 2 mod(')g): (23)

Now, Dalal's scheme, written C �

D

' is de�ned by:

A �

D

'

def

=

8

>

>

>

<

>

>

>

:

form(f�2 mod(')j

9� 2 mod(A) s.t.

�(�; �) = �(A;')g)

if 6j= :A and 6j= :'

f'g otherwise.

(24)

This revision scheme (which can actually be regarded as one global revision op-

eration) satis�es all rationality postulates.

Other similar schemes have been de�ned in the literature. Satoh's

[

1988

]

scheme uses set-inclusion over sets of propositional variables with di�erent truth

values instead of cardinality to determine distance. This means �(�; �) is the

set of propositional atoms p

i

such that �(p

i

) 6= �(p

i

) and �(A;') contains the

set-inclusion minimal sets �(�; �), where � ranges over M(A) and � over M(').

Borgida's

[

1985

]

scheme also uses set-inclusion for measuring distance, but collects

for each model of A the closest models of '|provided ' is not consistent with

A. Otherwise, it simply uses the intersection over the models, i.e., it expands
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the base by the revision formula. Finally, Weber's

[

1986

]

scheme computes a

revised base by collecting all models from ' that are identical to models of A

when ignoring the atoms that appear in the �(A;') function of Satoh's scheme.

An extensive semantical analysis of these schemes was performed by Katsuno

and Mendelzon

[

1991

]

. The computational complexity of those schemes (and

others) has been thoroughly analyzed by Eiter and Gottlob

[

1992

]

.

4.2 Syntax-Based Revision Schemes

The schemes described in the previous subsection have the disadvantage that they

are in
exible. From a more formal point of view, 
exibility of a revision scheme

may be de�ned as its ability to generate a reasonable large class of revision

operations, for instance, the entire class of revision operations that satisfy all

rationality postulates. Since in all model-based revision schemes the result of

a revision depends only on the logical contents of the belief base and the new

information, it is clear that the class of generated revisions is quite limited. From

a more pragmatic point of view, 
exibility could mean that one has a more �ne-

grained control over what formulae are discarded and what formulae are going

to stay. Although this sense of 
exibility of a revision scheme is captured by the

formal de�nition only in an imperfect way, we will stick to the formal notion.

Flexibility can be achieved by giving preference information that is used by

the revision scheme. Since it is representationally infeasible to use preference

information over all formulae in the logical closure of a belief base, it seems

reasonable to represent preference information only with regard to the formulae

explicitly mentioned in the belief base.

This line of research has been pursued by many researchers

[

Alchourr�on and

Makinson, 1982; Dubois and Prade, 1991; Fagin et al., 1983; Fuhrmann, 1991;

Hansson, 1996; Hannson, 1991; Hansson, 1994b; Nayak, 1994; Nebel, 1989; Nebel,

1991; Nebel, 1992; Rott, 1993

]

. Further, similar approaches have been stud-

ied in the context of evaluating conditionals

[

Ginsberg, 1986; Kratzer, 1981;

Pollock, 1976; Veltman, 1976

]

, hypothetical reasoning

[

Rescher, 1964

]

, and de-

fault reasoning

[

Benferhat et al., 1995; Brewka, 1989; Poole, 1988; Reiter, 1987

]

.

The main idea in all these approaches is to start with a belief base and possibly

a preference ordering over the formulae in the base or other means to express

preferences and to generate a result by operations on the base. However, there

are subtle di�erences in what the objects of interest are and what particular

operations on the base are permitted.

First of all, one may consider the belief base itself as representing a belief state,

implying that the particular syntactic representation of the base is an essential

part of the belief state (see Section 5.6). This view has been adopted by Hansson

[

1991; 1994b; 1996

]

. A revision operation is then an operation on the belief base.

We call such operations base revision operations. This implies in particular

that the result of a base revision operation should again be a belief base and it
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should have some connections to the original belief base. Such connections could

be formalized by rationality postulates similar to those given in Section 2.2. For

example, one such postulate could state that a formula in the revised belief base

should either be a member of the original belief base or be identical with the

revision formula. Such base revision operations can be lifted to belief revision

operations by considering the belief revision operation that corresponds to an

operation on the base that generates the belief set to be revised. In this case,

we speak about base-generated belief revisions

[

Fuhrmann, 1991; Hansson,

1993b; Hansson, 1996

]

. One of the interesting questions in this context is which

of the rationality postulates described in Section 2.2 are satis�ed by the base-

generated belief revisions.

Secondly, one may consider revision schemes that produce belief revision oper-

ations on a belief set by taking into account information about how the belief set

is represented syntactically and some preference information attached to the syn-

tactic representation of the belief set

[

del Val, 1994; Nebel, 1994

]

. Such schemes

are similar to the belief revision schemes as discussed in Section 2 in that they

provide a recipe how belief revision operations are to be generated. The only

di�erence is that the preference information is provided in form of a belief base

(that generates the belief set to be revised) and some extra information. Such

revision schemes are called base revision schemes and if S is a base-revision

scheme the generated belief revision operations are called S base revisions.

The di�erence between base-generated revision and base revision schemesmay

appear to be marginal. However, the crucial di�erence is that a base revision

scheme does not generate a belief base but a belief set, which may not be easily

representable as a belief base. Since we assumed a �nite propositional language

by restricting the set � of variables to be �nite, it is always possible to �nd a

�nite belief base for a belief set. Nevertheless, such a base will most probably not

satisfy the above mentioned postulates for base revisions. Further such a base

may turn out to be di�cult to represent, as will be demonstrated in Section 8.

Regardless of which approach we adopt, the revision will be dependent on the

syntactic form of the belief base that represents the belief set. This means, for two

logically equivalent bases A and B, i.e., Cn(A) = Cn(B), we will in general not

have that Cn(A) revised by ' is identical to Cn(B) revised by '. This sensitivity

to the syntactic form has been extensively criticized in the literature

[

Dalal, 1988;

Winslett, 1988; Katsuno and Mendelzon, 1991

]

. However, from a pragmatic and

application-oriented point of view, syntax-based revision seems to be reasonable

in situations where the formulae in the belief base have a special status, such as

in the case of logical databases

[

Fagin et al., 1983; Gabbay et al., 1994

]

or when

diagnosing possibly defect artifacts

[

Reiter, 1987

]

.

Further, the underlying assumptions in the two approaches sketched above

are, of course, reasonable. In the �rst case, we view belief bases as representing

a belief state, and for this reason, the syntactic form should play an important

role. In the second case, we view the syntactic representation of a belief set as
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one ingredient for generating a belief revision operation on the generated belief

set. Finally, it should be noted that in all syntax-based revision schemes there is

no arbitrary dependence on the syntactic representation

[

Benferhat et al., 1995

]

,

a point we will return to in Section 10.2.

4.3 Analyzing the Computational Complexity of Base Re-

vision Schemes

For analyzing the computational complexity of base revision schemes, we could

consider the problem of generating a belief base resulting from a revision scheme.

However, in this case the complexity may be dominated by producing the revised

base|which might be very large. Further, the problem of generating a revised

base is not a decision problem, which leads to some unnecessary formal problems.

Instead, we will consider the problem of deciding whether a formula  is implied

by a base A revised by '. Denoting a base revision scheme by �, we want to

decide the following problem, which we call revision problem:

A� ' j=  (25)

The instance size is jAj+j'j+j j, where we assume that A includes the preference

information on the base (or, if this is not the case, that the size of this information

is bounded polynomially in jAj).

Since this problem will in general not turn out to be computationally feasible,

some simpli�cations are considered. One way to simplify the revision problem

is to assume that the size of the revision formula is bounded. This restriction

is reasonable when the revision formula is small compared with the size of the

belief base|an assumption that is usually true in a database context

[

Eiter and

Gottlob, 1992; Winslett, 1990

]

.

Another possible way to simplify the revision problem is to restrict the base

logic to a fragment such that satis�ability can be decided in polynomial time.

For instance, for a conjunctive formula consisting only of Horn clauses, i.e.,

disjunctions with at most one positive literal, satis�ability is polynomial. We

will call such formulae Horn formulae and use the term Horn logic when all

formulae are Horn formulae.

4.4 A Lower Bound for Representationally Feasible Revi-

sion Schemes

Assuming a representationally feasible revision scheme, this scheme can be easily

used to decide NP-problems and coNP-problems. According to (

:

+4) and (

:

+5),

satis�ability of a formula ' can be decided by deciding

f'g � > j= ': (26)
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Additionally, using the same postulates and the fact that '! p is always satis-

�able when p does not appear in ', the validity of a formula ' can be decided

by testing

f'! pg � > j= p; (27)

In other words, revision is NP-hard and coNP-hard. From that it follows

that representationally feasible revision schemes are most likely not problems in

NP [ coNP, because this would imply NP = coNP, which is considered unlikely.

Proposition 4.1 (

[

Nebel, 1992

]

) Any representationally feasible revision

scheme is NP-hard and coNP-hard, and it is not a member of NP[coNP (provided

NP 6= coNP).

This means that revision is harder than propositional satis�ability and propo-

sitional implication regardless of what representationally feasible scheme we con-

sider. However, on one hand this result does not tell us how hard it is for partic-

ular schemes and, on the other hand, it does not rule out polynomial algorithms

for simpli�cations.

Restricting the size of the new formula that is to be incorporated into the belief

case does not help. Proposition 4.1 holds even if we assume that the size of the

new formula is constant, which follows from the generic problem instances (26)

and (27), where the revision formula is just \>".

12

Proposition 4.2 Any representationally feasible revision scheme is NP-hard and

coNP-hard, even if the size of the revision formula is bounded by a constant.

A restriction to Horn logic may, however, lead to a lower complexity. Since

the lower complexity bound for belief revision is caused by the problems SAT and

TAUT, a restriction to Horn logic leads obviously to a lower bound of P. As we

will see below, this does not imply that this restriction reduces the complexity

in all cases. However, for some revision schemes the restriction of the base logic

has a positive e�ect.

4.5 Full Meet Revision Scheme

Full meet revision is the simplest way of revising a belief state|and also quite

unreasonable because it deletes too much. Although it is \fully rational" in that

it satis�es all the rationality postulates (see Section 2.2), it only generates a very

small class of revision operations.

13

We will, nevertheless, have a brief look at

this revision scheme and analyze its complexity.

12

At this point, belief revision and belief update di�er. Because of the postulate (U2)

[

Katsuno

and Mendelzon, 1992

]

an unsatis�able belief base stays unsatis�able and (26) cannot be used

to decide satis�ability.

13

From a global perspective quantifying over all belief sets, it actually generates just one

global belief revision operation.
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By the above result, we know that it must be NP-hard and coNP-hard. How-

ever, it is not much harder than propositional satis�ability. In particular, it

is quite obvious that full meet revision is a problem in �

p

2

because the follow-

ing algorithm, which uses SAT-oracle calls, solves the full meet revision problem

 2 Cn(A)

F

+ ':

if A 6j= :'

then A [ f'g j=  

else ' j=  :

(28)

In order to determine the precise complexity of the problem, we use the boolean

hierarchy introduced in Section 3.4.

Theorem 4.3 Full meet revision is coNP(3)-complete.

As is obvious from the reduction used in the proof of the theorem above, the

hardness result holds even if the revision formula is bounded in size by a constant.

Theorem 4.4 Full meet revision is coNP(3)-complete even if the revision for-

mula is restricted in size by a constant.

While this result implies that full meet revision is somewhat harder than

propositional implication, the simple algorithm (28) suggests that full meet re-

vision is easy provided that all formulae belong to a polynomial fragment of

propositional logic.

Proposition 4.5 Full meet revision is polynomial for Horn logic.

5 Meet Base Revision Schemes

In analogy to the partial meet revision scheme described in Section 2.3, one can

try to identify subsets of a base that are consistent with the revision formula and

are most preferred according to some criteria. These most preferred consistent

sets are then used to construct the new base, perhaps implicitly. For example,

the idea of changing a belief base minimally could be formalized by selecting

inclusion-maximal subsets of the belief base not implying the revision formula.

If there is more than one such maximal subset, the intersection of the logical

closures of these subsets is used as the result|an approach analyzed in the next

subsection. Of course, instead of using the intersection over the logical closures of

the inclusion-maximal subsets, one could also use the intersection over the subsets

itself (see Section 5.6). In addition to that, other approaches are possible, which

are also analyzed below.
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5.1 Full Meet Base Revision

Applying the de�nition of remainder sets to belief bases, the full meet base

revision scheme, written as A
F ', could be de�ned as follows

[

Fagin et al.,

1983; Ginsberg, 1986; Nebel, 1989; Nebel, 1991

]

:

A
F '

def

=

�

\

fCn(B)jB 2 (A?:')g

�

+ ': (29)

As shown in

[

Nebel, 1991

]

, the belief revision operations generated by the

full meet base revision scheme are partial meet revisions. Further, it is easy to

verify that the marking o� relation is the complement of (a restricted) subset

relation. i.e., it is negatively transitive. This means that all these revision opera-

tions satisfy the postulates (

:

+1){(

:

+7) together with (

:

+8r) and (

:

+8c)

[

Rott, 1993

]

.

More interestingly, as shown independently by Rott

[

1993

]

and del Val

[

1994

]

, all

revision operations satisfying these postulates can be generated by the full meet

base revision scheme. In other words, this scheme is quite 
exible.

Theorem 5.1 (

[

Rott, 1993; del Val, 1994

]

) The class of revision operations

generated by the full meet base revision scheme coincides with the class of revision

operations satisfying (

:

+1){(

:

+7), (

:

+8r), and (

:

+8c).

Since the full meet base revision scheme allows for more 
exibility than full

meet revision by incorporating preference information, it is not surprising that

it is harder than the full meet revision scheme. In particular, full meet base

revision turns out to be complete for the class �

p

2

, which means that this problem

is complementary to problems that can be solved in polynomial time on non-

deterministic machines using NP-oracles.

Theorem 5.2 (

[

Nebel, 1991; Eiter and Gottlob, 1992

]

) Deciding A
F ' j=

 is �

p

2

-complete.

This result shows that full meet base revision contains two interacting

sources of complexity, namely, propositional satis�ability and the selection of

an inclusion-maximal consistent set. For this reason, we cannot expect to arrive

at a polynomial revision scheme when eliminating only one source, e.g., by re-

stricting the base logic to Horn logic. In fact, as proved by Eiter and Gottlob

[

1992

]

, the restriction to Horn logic results in a coNP-complete problem.

Theorem 5.3 (

[

Eiter and Gottlob, 1992

]

) Deciding A
F ' j=  is coNP-

complete for Horn logic.

Sometimes, size restrictions on the revision formula can be helpful in reducing

the complexity. However, in syntax-based revision schemes this usually does

not hold. The reason is that in most cases it is possible to move the revision
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formula into the belief base using an atomic enabling condition that becomes the

new revision formula without changing the outcome of some interesting results

(necessary for a reduction). In fact, this holds for the full meet base revision

scheme (and all the other schemes we consider).

Theorem 5.4 (

[

Eiter and Gottlob, 1992

]

) The full meet base revision

scheme is �

p

2

-complete for general propositional logic and coNP-complete for Horn

logic even if the revision formula has a size bounded by a constant.

5.2 Prioritized Base Revision

The operation 
F considers all formulae in a base as equally relevant. In most

applications, however, we want to distinguish between the importance or rele-

vance of di�erent formulae. Fagin et al.

[

1983

]

, for instance, assign priorities to

formulae in a logical database in order to re
ect the distinction between facts

and integrity rules. Ginsberg

[

1986

]

makes a distinction between facts that can

change and those that are \protected," and Pollock

[

1976

]

makes a distinction

between strong and weak subjunctive generalizations and simple propositions.

This idea of assigning di�erent priorities to formulae can be formalized by

employing an ordering over the formulae in the belief base. Since we consider only

�nite bases, this can be done by partitioning a base A into n di�erent priority

classes A

i

, 1 � i � n, with the understanding that for i > j the formulae in

class A

i

are more relevant or important than those in A

j

. The associated total

preorder v de�ned by

' v  i� ' 2 A

i

;  2 A

j

; i � j; (30)

is called epistemic relevance ordering

[

Nebel, 1990; Nebel, 1991

]

.

A belief base together with an epistemic relevance ordering will be called

prioritized base. Using the priorization, we de�ne a priority-inclusion pref-

erence ordering \�" on subsets of a base A as follows:

B � C

def

() 9i A

i

\B � A

i

\ C ^ 8j > i : A

j

\B = A

j

\ C: (31)

The prioritized remainder set of A by ', written A # ' is then de�ned as the

priority-inclusion preferred subsets consistent with :':

(A # ')

def

= fB � AjB 6j= '; 8C � A ^B � C ) C j= 'g (32)

Intuitively, the elements of A # ' are constructed by selecting a maximal

subset not implying ' from A

n

, then a maximal subset of A

n�1

such that ' is

not implied by the two subsets, and so on.

14

14

Note that this procedure is quite similar to the construction of an extension in Brewka's

[

1989; 1991

]

level default theories. In fact, cautious reasoning in such theories is identical to

prioritized base revision with a tautology

[

Nebel, 1991

]

.
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As should be obvious, a prioritized remainder set selects a subset of the max-

imal subsets of a base not implying a given proposition. Thus, it makes sense to

use # instead of ? in the de�nition (29). The resulting scheme is called priori-

tized base revision scheme, denoted by 
P :

A
P '

def

=

�

\

fCn(B)jB 2 (A # :')g

�

+ ': (33)

While the priorization of a base is an advantage from a practical point of

view, from a formal point of view, prioritized base revision is almost identical

to full meet base revision. First of all, it o�ers the same 
exibility in the sense

that the same class of revision operations are generated. The main observation is

here that the marking o� relation of the generated partial meet revisions is still

negatively transitive, i.e., we do not get more revisions than in the full meet base

revision case. Further, since full meet base revision is a special case of prioritized

base revision, we get at least all the revision operations generated by full meet

base revision, i.e., we get precisely the same class of revisions.

Theorem 5.5 (

[

Rott, 1993; del Val, 1994

]

) The class of revision operations

generated by the prioritized base revision scheme coincides with the class of revi-

sion operations satisfying (

:

+1){(

:

+7), (

:

+8r), and (

:

+8c).

Further, the computational complexity of the prioritized belief revision scheme

is the same as the computational complexity of full meet base revision.

Theorem 5.6 Deciding A
P ' j=  is �

p

2

-complete for general propositional

logic and coNP-complete for Horn logic. This also holds under the assumption

that the size of the revision formula is bounded by a constant.

Although prioritized base revision does not appear to be much of an improve-

ment, it contains an interesting special case. If we assume that the epistemic

relevance ordering is a total linear ordering, i.e., if all priority classes are single-

ton sets, we get a revision scheme that is quite well-behaved.

5.3 Linear Base Revision

The prioritized base revision scheme specialized to total linear epistemic relevance

orderings will be called linear base revision scheme

[

Nebel, 1994

]

. The corre-

sponding operation on the base is denoted by 
L . Instead of requiring that the

ordering is is a total linear ordering or that each priority class is a singleton set,

we may as well allow total preorders or arbitrary priority classes, respectively,

but discard a priority class entirely if one of the formulae has to go under the

prioritized base revision scheme. The outcome is evidently identical and we will

not distinguish between these cases below.
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As is easy to see, the set (A # ') contains at most one subset of A

[

Nebel,

1989

]

. For this reason, this scheme can be viewed as a maxichoice base revision

scheme. In contrast to a maxichoice belief revision scheme, however, we do not

get the unwanted property that a revised base is a complete theory. Further,

it can be shown that all revision operations generated by this scheme are fully

rational in the sense that they satisfy all rationality postulates for revision.

Theorem 5.7 (

[

Nebel, 1992

]

) Revision operations generated by the linear base

revision scheme satisfy (

:

+1){(

:

+8).

As a matter of fact, all fully rational revision operations can be generated by

this scheme.

Theorem 5.8 (

[

Nebel, 1994; del Val, 1994

]

) The class of revision operations

generated by the linear base revision scheme coincides with the class of revision

operations satisfying (

:

+1){(

:

+8).

In addition, also the computational properties are quite appealing. In general,

we get a reduction of complexity by one level in the polynomial hierarchy. The

obvious reason is that the selection of a consistent subbase is very easy since there

is at most one such subbase.

Theorem 5.9 (

[

Nebel, 1994

]

) The linear base revision scheme is �

p

2

-complete.

This holds even when the revision formula is bounded in size by a constant.

From the algorithm in the proof of the previous Theorem it follows straightfor-

wardly that a restriction to Horn logic leads immediately to an e�ciently solvable

problem.

Theorem 5.10 (

[

Nebel, 1994

]

) For Horn logic, A
L ' j=  can be decided in

O(n

2

) time, where n = jAj+ j'j+ j j.

While these results appear to be quite appealing from a theoretical point

of view, there is the question for the practical relevance. Although it might

be considered to be very unrealistic to require that all formulae in a base are

linearly ordered, there are applications where such an order appears to be natural.

Gabbay et al.

[

1994

]

considered, for instance, hypothetical reasoning in a logic

programming context, where the clauses are tagged with the time they were

entered into the system. These tags are used to assign priorities to the clauses

such that clauses entered later have precedence over the clauses entered earlier.

In evaluating a hypothetical goal that leads to inconsistencies, the prioritized

base revision scheme is used.

One remaining question is whether the positive complexity results could not

be extended to the prioritized base revision scheme with a constant number of

elements in each priority class. However, with at most two elements in each

priority class, the hardness results of the previous subsection apply.
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Theorem 5.11 Theorem 5.6 also holds under the assumption that the cardinality

of the priority classes is bounded by a constant k � 2.

5.4 Cardinality-Maximizing Base Revision

Instead of selecting all inclusion-maximal sets that are consistent with the revision

formula, we might as well consider the cardinality-maximal sets. Such a strategy

might be reasonable, for instance, if we are in a diagnosis context, where we

assume that it is more likely that only a few components are faulty instead of

many

[

Ginsberg, 1986; de Kleer, 1990

]

.

Let (A??') denote the cardinality-maximal subsets of A that are consistent

with :', i.e.,

A??'

def

= fB � AjB 6j= '; 8C:C � A ^ kBk < kCk ) C j= 'g: (34)

Based on this operator, we can de�ne the operation

A
C '

def

=

�

\

fCn(B)jB 2 (A??')g

�

+ '; (35)

which is called cardinality-maximizing base revision scheme. It is obvious

that this revision scheme can be regarded as a re�nement of the full meet base

revision scheme in that we have (A??') � (A?').

Similar to the full meet and prioritized meet base revision scheme, the gen-

erated revision operations can be easily associated with relational partial meet

revisions. Further the marking o� relation generated by the selection function

is transitive, from which we can conclude|using the results sketched in Sec-

tion 2.3|that the cardinality-maximizing scheme is \fully rational," i.e., satis�es

all rationality postulates. By linking it to the linear base revision, we can show

an even stronger result.

Lemma 5.12 Any revision generated by the linear base revision scheme can be

generated by the cardinality-maximizing base revision scheme.

Since the linear base revision scheme generates all \fully rational" revision

operations (Theorem 5.8), this also holds for the cardinality-maximizing scheme.

Theorem 5.13 The class of revision operations generated by the cardinality-

maximizing base revision scheme coincides with the class of revision operations

satisfying (

:

+1){(

:

+8).

Turning now to the computational complexity of the scheme, we notice that

it is somewhat easier than full meet and prioritized meet base revision in the

general case.
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Theorem 5.14 Deciding A
C ' j=  is �

p

2

[O(logn)]-complete, and this holds

even if the size of the revision formula is bounded by a constant.

One might hope that eliminating one source of complexity, namely, reasoning

in full propositional logic, leads to a polynomial-time revision problem. How-

ever, studying the proof of the theorem above carefully, one notes that the algo-

rithm demonstrating membership in �

p

2

[O(logn)] does not become a determin-

istic polynomial-time algorithm when satis�ability becomes a polynomial-time

problem. The algorithm contains also guesses on subsets of the belief base where

only the cardinality of the subset is speci�ed|and this cannot be easily solved

deterministically. As a matter of fact, restricting the logic to Horn logic does not

help in reducing computational complexity.

Theorem 5.15 Deciding A
C ' j=  is �

p

2

[O(logn)]-complete for Horn logic,

and this holds even if the size of the revision formula is bounded by a constant.

5.5 Lexicographic Base Revision

Similar as the move from full meet to prioritized meet base revision, we can extend

the cardinality-maximizing scheme by introducing priority classes. Such a scheme

has been proposed for inference from inconsistent belief bases (which is equivalent

to revising a base with \>")

[

Benferhat et al., 1993

]

and for reasoning in a

nonmonotonic logic

[

Lehmann, 1993

]

. De�ning the lexicographic preference

relation �� on subsets of a belief base A as

B��C

def

() 9i kA

i

\ Bk < kA

i

\ Ck ^ 8j > i : kA

j

\ Bk = kA

j

\ Ck; (36)

the remainder set for the new scheme is de�ned as follows:

(A + ')

def

= fB � AjB 6j= '; 8C � A ^ B��C ) C j= 'g: (37)

Then the lexicographic base revision scheme is de�ned as:

A
X '

def

=

�

\

fCn(B)jB 2 (A + :')g

�

+ ': (38)

Similar to prioritized base revision, we gain more expressiveness from a prac-

tical point of view, but the formal 
exibility does not change by introducing

priority classes. Since the marking o� relation of the partial meet revision op-

erations that are generated by our scheme is still transitive, the scheme satis�es

all rationality postulates. Further, since the cardinality-maximizing scheme is a

special case, the next proposition follows immediately from Theorem 5.13.

Proposition 5.16 The class of revision operations generated by the lexicographic

base revision scheme coincides with the class of revision operations satisfying

(

:

+1){(

:

+8).
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From a computational perspective, however, cardinality-maximizing and lex-

icographic base revisions di�er. The introduction of priority classes implies a

slight increase of complexity, as spelled out in the next two theorems, which are

variations of theorems by Cayrol and Lagasquie-Schiex

[

1993

]

, who analyzed the

complexity of making inferences from inconsistent belief bases.

Theorem 5.17 Deciding A
X ' j=  is �

p

2

-complete, and this holds even if the

size of the revision formula is bounded by a constant.

Not very surprisingly, we do not get a reduction in complexity when the logic

is restricted to Horn logic.

Theorem 5.18 Deciding A
X ' j=  is �

p

2

-complete for Horn logic, and this

holds even if the size of the revision formula is bounded by a constant.

5.6 Base Revision Operations: When in Doubt Throw it

Out

In almost all of the schemes considered above, the remainder sets contain more

than one element, and these elements were combined by using the intersection

over the logical closure of the remainders, leading to a belief set instead of a belief

base.

Instead one may have the perspective that change operations should directly

operate on belief bases, resulting in new belief bases. Adopting this view, Hans-

son developed postulates for such base change operations that are parallel to the

rationality postulates for belief revision

[

Hansson, 1993a

]

. One of these postu-

lates, the inclusion postulate states that the belief base resulting from a base

revision operation should only contain formulae that were already there plus the

new formula. Formally, denoting a base revision operator by

:

�, the postulate

states:

A

:

� ' � A [ f'g: (39)

The base revision schemes considered in this section so far clearly do not

satisfy this postulate since they generate belief sets. However, most of them even

do not satisfy this postulate in a weak sense, namely, in the sense that there

exists a base representing the result of the revision and satisfying the inclusion

postulate. Consider, for example, the base A = fp^r; q^rg and the full meet base

revision of this base by :p _ :q. Clearly, we have A
F ' j= r and A
F ' 6j= p; q.

However, there is no subset of A [ f:p _ :qg that achieves the same e�ect.

A straightforward way to satisfy the inclusion postulate would be to produce

the result of the base revision operation by taking the intersection over the re-

mainder sets (instead of intersecting the logical closures of the remainders). For
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example, corresponding to the full meet base revision scheme, we could de�ne a

full meet base revision operation

F

� by:

A

F

� '

def

=

\

(A?:') [ f'g: (40)

Winslett

[

1990

]

coined the phrase when in doubt, throw it out (widtio) to

describe this approach, because formulae are deleted when they do not appear

in all remainders. Obviously, this approach is applicable to all the base revision

schemes we have considered so far. Viewing such operations as base revision

schemes, we call the resulting operations widtio-revision schemes in order to

distinguish them from the base revision schemes considered so far. The above

de�ned base revision, corresponding to the full meet base revision scheme would

then be called full meet widtio-revision scheme. It is obvious that the

widtio-revision schemes de�ned in this way lead to di�erent results than the base

revision schemes, save the case of the linear base revision, where the remainder

set is a singleton set.

From a computational perspective, the widtio-revision schemes appear to be

not easier than base revision schemes. In fact, all reductions used in the proofs

above apply to widtio-revisions as well, leading to identical hardness results.

Lemma 5.19 For full meet, prioritized, linear, cardinality-maximizing, and lex-

icographic base revision schemes, the corresponding widtio-revision schemes are

as hard as the base revision schemes.

As spelled out above, the linear base revision scheme and the linear widtio-

revision scheme coincide because we get a singleton remainder set in either case.

For this reason, the upper bound is also identical. For the other cases, upper

bounds are not immediate, however. The widtio-revision schemes appear to

be slightly harder than the base revision schemes because non-implication from

one remainder plus the revision formula is not any longer complementary to

implication from the revised base. For full meet widtio-revisions Eiter and

Gottlob

[

1992

]

proved an upper bound of �

p

3

[O(logn)]. As the next lemma shows,

however, we can do better than that. In fact, we achieve tight upper bounds for

all widtio-revision schemes.

Lemma 5.20 For full meet, prioritized, linear, cardinality-maximizing, and lex-

icographic base revision schemes, the corresponding widtio-revision schemes are

in the same complexity class as the base revision schemes.

Hence, from a computational complexity point of view, it does not make a

di�erence whether we use the base revision schemes or the correspondingwidtio-

revision schemes because upper and lower bounds are identical according to the

above two lemmata.
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Theorem 5.21 For full meet, prioritized, linear, cardinality-maximizing, and

lexicographic base revision schemes, the corresponding widtio-revision schemes

have the same computational complexity as the base revision schemes.

However, there are clearly some signi�cant di�erences. First of all, if we view

widtio-revisions as revision schemes, they seem to behave odd compared with

the original base revision schemes. In particular, postulates (

:

+7) and (

:

+8) are in

general not satis�ed by the generated belief revision operations. It is nevertheless

possible to obtain representation results for the generated revision operations, as

shown by Hansson

[

1993b; 1996

]

. Secondly, there is a di�erence when we consider

the space necessary to represent a revised base. For the base revision schemes

considered in 5.1{5.5, it is not obvious that we can obtain a compact form of the

revised belief base (see also Section 8). widtio-revisions lead to compact bases

by de�nition, however.

6 Cut Base Revision Schemes

Comparing the three di�erent ways of generating belief revision operations as

described in Section 2, it is apparent that the cut revision scheme has two ad-

vantages over the other schemes. Firstly, it is fully rational and able to generate

all fully rational revision operations. Secondly, only one subset of the belief set is

generated in computing the revised belief set, while meet and safe revision require

the generation of all maximally preferred consistent subsets or of all inclusion-

minimal entailment sets.

In particular the second property may lead to computational advantages for

cut revision schemes applied to belief bases. However, in order to realize a cut

base revision scheme, we �rst have to identify orderings on a belief base that

correspond to epistemic entrenchment orderings.

6.1 Priority-Consistent Orderings and Ensconcements

It is apparent that the notion of epistemic entrenchment cannot be directly ap-

plied to belief bases since they are not logically closed { which is required, e.g.,

by (�2) and (�3). Instead of a genuine epistemic entrenchment ordering on a

belief base, we will look for total preorders over the base denoted by �. The idea

is that these orderings can be extended to epistemic entrenchment orderings over

the belief set generated by the base. Since such total preorders are equivalent

to a prioritized base as de�ned in Section 5.2, we will use the notion of priority

classes here as well.

If such a relation is to be extended to an epistemic entrenchment ordering,

it should respect logical relationships. For instance, starting with an arbitrary

total preorder � on a base A, we may well have the case that ' j=  but  < ',
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contradicting (�2). In other words, there is no epistemic entrenchment relation

� on Cn(A) that extends the ordering � on A.

In the example above, it does not seem to make much sense that ' is \more

entrenched than"  since ' has to be retracted in any case if  is forced to be

deleted. More generally, if C � A, C j= ' and C is set-inclusion minimal w.r.t.

this property, then it does not make much sense that ' is \less entrenched than"

the \least entrenched" formula in C. For this reason, let us assume that the or-

dering satis�es the following priority consistency condition (PCC)

[

Rescher,

1973; Rott, 1991a

]

:

For all ' 2 A, if C is a nonempty subset of A such that C j= ', then

there exists � 2 C such that � � '.

As has been shown by Rott

[

1991a

]

, this condition is necessary and su�cient

for the extendibility of � on A to an epistemic entrenchment ordering on the

generated belief set Cn(A). For this reason, Rott called belief bases with a PCC-

ordering E-bases.

Williams

[

1994b; 1994a

]

de�ned the almost equivalent notion of an enscon-

cement ordering on a belief base A as a total preorder � satisfying:

15

(�1) For all nontautological ' 2 A: f 2 Aj ' <  g 6j= '.

(�2) For all ' 2 A:  � ' for all  2 A i� j= '.

16

Similar to cut-sets for epistemic entrenchments as de�ned by Equation (9)

one can de�ne cut-sets for ensconcement orderings on a base A:

cut

<

(')

def

=

(

f 2 Aj f� 2 Aj  � �g 6j= 'g if 6j= ';

; otherwise.

(41)

In other words, cut

<

(') selects all the formulae in all high priority classes such

that adding the next lower priority class leads to the implication of '. Based on

this notion, a relation �

�

on L can be generated:

' �

�

 

def

() cut

<

( ) � cut

<

('): (42)

This relation is in fact an epistemic entrenchment ordering on the belief set

Cn(A).

Theorem 6.1 (

[

Nebel, 1994; Williams, 1994a

]

) If � is a ensconcement or-

dering on A, then �

�

as de�ned by Equation (42) extends � and is an epistemic

entrenchment on Cn(A).

15

Williams

[

1994a

]

called the base with its ordering an ensconcement. We will talk about a

base and the ensconcement ordering over this base.

16

This implies that we have at least one tautology in our base, which is necessary for satisfying

(�5) in the construction below.
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This means that we can consider an ensconcement ordering on a base as a con-

cise representation of an epistemic entrenchment ordering on the corresponding

belief set. The interesting question is, whether there is an appropriate base revi-

sion operation that corresponds to the revision generated by this entrenchment

ordering.

Given a base A with ensconcement ordering �, we de�ne the following oper-

ation 
E on a base:

A
E '

def

= cut

<

(:') [ f'g; (43)

which we call cut base revision scheme using ensconcements.

Theorem 6.2 (

[

Nebel, 1994; Williams, 1994a

]

) Let A be a base with en-

sconcement ordering �. Let �

�

be the epistemic entrenchment order generated

from � and

�

+ be the belief revision operation based on �

�

, then

Cn(A)

�

+ ' = Cn(A
E '): (44)

In other words, if we interpret an ensconcement ordering on A as a concise

representation of an epistemic entrenchment ordering for Cn(A), then there is a

very concise and straightforward representation of the revised belief set. Further,

it follows that the cut base revision scheme using ensconcements is fully rational,

because the cut revision scheme using epistemic entrenchments is fully rational

(see Section 2.4).

Corollary 6.3 The cut base revision scheme using ensconcements satis�es (

:

+1){

(

:

+8).

Additionally, every fully rational revision operation on belief sets �nite modulo

logical implication can be generated by the cut base revision scheme. The main

reason is that an epistemic entrenchment ordering on a belief set always satis�es

(PCC) and hence can also be interpreted as an ensconcement ordering on the

belief set viewed as a belief base.

Proposition 6.4 (

[

Nebel, 1994

]

) The class of revision operations generated by

the cut base revision scheme using ensconcements coincides with the class of

revision operations satisfying (

:

+1){(

:

+8).

Furthermore, it seems to be the case that deciding the computational problem

whether a formula follows from a revised belief base is relatively easy, which is

con�rmed by the next theorem.

17

17

While the upper bound was already known

[

Nebel, 1994

]

, the lower bound was unknown

previously.
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Theorem 6.5 Deciding A
E ' j=  is �

p

2

[O(logn)]-complete, and this holds

even if the size of the revision formula is bounded by a constant.

As is evident from the proof of Theorem 6.5, restricting the logical language

to a subset such that satis�ability could be decided in polynomial time leads in

fact to the situation that the revision could be decided in polynomial time. For

Horn logic, we even can come up with an O(n logn) algorithm.

Theorem 6.6 (

[

Nebel, 1994

]

) Provided A is a set of Horn formulae, ' is a

Horn formula and  is a Horn clause, A
E ' j=  can be decided in time

O(n logn), where n = jAj+ j'j+ j j.

6.2 Generating Ensconcement Orderings from Arbitrary

Priorities

The only grain of salt in the above results is the condition that an ensconcement

ordering must be priority-consistent, i.e., satisfy the condition (PCC). Since the

condition involves the problem of deciding propositional implication, it is unlikely

that somebody constructing a belief base is able to generate a priority consistent

ordering.

We may, however, take the perspective that one speci�es priorities on formulae

of a belief base that are interpreted as lower bounds for the intended priorities.

18

Using (41) and (42) on some arbitrary prioritized base A, the resulting relation

�

�

is again an epistemic entrenchment ordering for the generated belief set Cn(A)

and the restriction of �

�

to A, denoted by �, is an ensconcement ordering.

Theorem 6.7 (

[

Nebel, 1994

]

) Let � be an arbitrary total preorder over a be-

lief base A. Then (1) the relation �

�

generated by (41) and (42) is an epistemic

entrenchment over Cn(A) and (2) its restriction to A, denoted by �, is an en-

sconcement ordering on A.

Furthermore, the ensconcement ordering � generated from the arbitrary or-

dering � and � itself are very closely related. The deductive closure of the

cut-sets for all formulae turn out to be equivalent.

Lemma 6.8 Let � be an arbitrary total preorder on the belief base A and � the

restriction of the epistemic entrenchment ordering generated by � to A. Then

for all ' 2 L

Cn(cut

<

(')) = Cn(cut

/

(')): (45)

18

Such an interpretation comes quite close to the semantics of weighted formulae in a pos-

sibilistic knowledge base

[

Dubois and Prade, 1991; Dubois and Prade, 1992

]

, and, in fact, the

construction we will use corresponds to the generation of a \closure of weighted formulae"

[

Dubois and Prade, 1992, p. 165

]

; see also

[

Dubois et al., 1994

]

.
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From that we can conclude that an arbitrary prioritized base has indeed the

property that priorities specify lower bounds. It may be the case that a formula

' is in priority class A

i

but also implied by the classes A

j

[ : : : [ A

n

with j > i,

in which case the \real" priority is j. In fact, removing ' from A

i

and adding it

to A

j

doesn't change anything.

Further, an immediate consequence of Lemma 6.8 is that the cut base revision

scheme applied to a base with an arbitrary total preorder � computes a revision

with respect to the generated epistemic entrenchment ordering �

�

.

19

Theorem 6.9 (

[

Nebel, 1994

]

) Let A be a base with an arbitrary total preorder

�. Let �

�

be the epistemic entrenchment ordering derived from � by (41) and

(42) and let

�

+ be the revision operation generated from �

�

. Then

Cn(A)

�

+ ' = Cn(A
E '): (46)

This means in particular that the representation theorem (Proposition 6.4)

and the complexity results (Theorems 6.5 and 6.6) for cut base revision based on

ensconcements apply in this case as well.

Corollary 6.10 (

[

Nebel, 1994

]

) The class of revisions generated by cut base

revision scheme using arbitrary total preorders coincides with the class of revi-

sions satisfying (

:

+1){(

:

+8). Further, the cut base revision scheme using arbitrary

total preorders has the same complexity as the cut base revision scheme using

ensconcements.

6.3 Cut vs. Linear Base Revision

The basic intuition in cut (base) revisions is that one simply cuts away all for-

mulae at level p and lower if there is contradiction between the new information

and the formulae in level p up to n. In particular, even if a formula in a level

below p does not contribute to the contradiction, it is thrown away|a method

that appears to be quite drastic.

However, being more liberal has its disadvantages. In fact, trying to keep

as many formulae as possible (maximizing high prioritized formulae) results in

the prioritized base revision scheme considered in Section 5.2|which led to very

bad computational properties. In trying to �nd a compromise, one may consider

the method of deleting an entire priority class if one formula in it leads to a

contradiction that cannot be blamed on formulae in lower levels, but keeping as

many of the other classes as possible. This, however, is the linear base revision

scheme (see Section 5.3).

Dubois and Prade

[

1991; 1992

]

also considered a linear base revision scheme

on prioritized bases. They used this scheme to revise a possibilistic knowledge

19

And this revision corresponds exactly to the revision of possibilistic knowledge bases de�ned

in

[

Dubois et al., 1994, Section 3.10

]

, save the case that j= :'.
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base and noted that this revision process is more parsimonious than a cut base

revision that interprets priorities as lower bounds on necessity values (which

are the quantitative counter-parts to epistemic entrenchment). However, they

also remark that the linear base revision scheme has the disadvantage that \the

revision process cannot be expressed at the semantic level"

[

Dubois and Prade,

1992, p. 167

]

, i.e., it is impossible to describe this process as a change of possibility

distributions resulting from conditioning in possibilistic logic.

In fact, it seems to be interesting to relate the linear base scheme to the

scheme considered in the previous section. First of all, it is easy to show that

any revision generated by the cut base revision scheme can be generated by the

linear base revision scheme.

Lemma 6.11 Any revision generated by the cut base revision scheme can be

generated by the linear base revision scheme.

From that and Proposition 6.4, we get as a direct consequence the repre-

sentation theorem for linear base revision (Theorem 5.8) spelled out already in

Section 5.3.

However, does it also work in the other direction? As it turns out, it is possible

to specify a transformation � from bases with an associated linear epistemic

relevance ordering to a prioritized base such that the linear base revision on the

original base gives a result that is logically equivalent to the result achieved by the

cut base revision on the transformed base. Assume a linearly ordered prioritized

base A = hA

i

i with n priority classes. Then we de�ne B = �(A) with 2

n

priority

classes. The priority classes of B are again singletons, and the elements of these

classes are disjunctions of formulae over the formulae in A. In particular, the

priority classes B

l

with 0 � l � 2

n

are de�ned as follows

B

l

=

n

j

k

_

i=j

1

A

i

o

;where (47)

l =

k

X

m=1

2

j

m

�1

: (48)

This means that �(A) has a size that is exponential in the size of A. Ignoring

this for the moment, we will analyze the e�ect of the transformation.

Theorem 6.12 (

[

Nebel, 1994

]

) Let A be a prioritized base with a linear epis-

temic relevance ordering and let � be transformation de�ned by Equations (47)

and (48). Then

Cn(A
L ') = Cn(�(A)
E ') (49)

for all ' 2 L.
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Translating this result to the revision processes employed for possibilistic

knowledge bases

[

Dubois and Prade, 1991; Dubois and Prade, 1992

]

shows that in

order to model the \parsimonious" revision, we would need exponentially many

di�erent necessity values. However, the problem of justifying the \parsimonious"

revision semantically has been solved by this transformation.

The only remaining question is whether it is possible to specify a transforma-

tion that is less expensive. Comparing the complexity results for the two di�erent

revision schemes reveals, however, that a polynomial-time transformation would

only be possible if �

p

2

[O(logn)] = �

p

2

, something which is quite unlikely

[

Johnson,

1990

]

.

7 Safe Base Revision Scheme

Corresponding to the safe revision scheme sketched in Section 2.5, it is, of course,

possible to de�ne a safe base revision scheme, which uses a hierarchy over the

formulae in the belief base

[

Alchourr�on and Makinson, 1985; Fuhrmann, 1991;

Nayak, 1994

]

. This scheme will be denoted by 
S in the following and is de�ned

as follows:

A
S '

def

= Cn(A=:') + ': (50)

In general, this scheme satis�es the basic postulates, but fails on (

:

+7) and (

:

+8).

However, it is possible to restore the latter two postulates by modifying safe

revisions in a way such that it becomes identical to linear base revision

[

Nayak,

1994

]

.

Interestingly, the computational complexity of the safe base revision scheme

(and simpli�cations of it) or of the similar kernel-revision scheme

[

Hansson,

1994a; Hansson, 1996

]

has never been analyzed.

7.1 Safe Base Revisions and widtio-Revisions

In order to achieve a lower bound, we will relate safe base revisions to widtio-

revisions. As it turns out, safe base revision is identical to full meet widtio-

revision, provided the hierarchy is empty. This is no surprise considering the

duality between remainder sets and entailment sets.

Theorem 7.1 Let A be a base with an empty hierarchy. Then

A

F

� ' = A=:' [ f'g (51)

for all ' 2 L.

However, this equivalence does not extend to prioritized and linear base revi-

sion. The reason is that safe revision may remove more formulae than \necessary."
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Consider, e.g., the following base:

A = hA

1

; A

2

; A

3

i; (52)

A

3

= ft! pg; (53)

A

2

= ft! (:q ^ :p)g; (54)

A

1

= ft! qg: (55)

Now revising this base by t under the prioritized base revision scheme gives us:

A
P t = Cn(ft! p; t! q; tg): (56)

Revising the base under the safe base revision scheme interpreting the epistemic

relevance ordering induced by the priority classes as a hierarchy, we get:

A
S t = Cn(ft! p; tg): (57)

The class A

3

is not included because it is the minimal element of an entailment

set. Since the the priority classes are all singletons, it is a counter-example for

prioritized as well as linear base revision.

7.2 Computational Complexity of Safe Base Revision

From Theorem 7.1 it follows straightforwardly, that the safe base revision scheme

is as hard as full meet widtio-revision, even for Horn logic and size-bounded

revision formulae. As it turns out, safe base revision is not harder than full meet

widtio-revision, as well.

Theorem 7.2 The safe base revision scheme is �

p

2

-complete for general propo-

sitional logic and coNP-complete for Horn logic even if the revision formula has

a size bounded by a constant.

Restricting the hierarchy can, of course, lead to computationally better be-

haved revision schemes. For instance, requiring that the hierarchy is a linear

order leads obviously to membership in �

p

2

. However, it should be noted that the

safe base revision scheme on a linear hierarchy is not identical to the linear base

revision scheme, as demonstrated by the example (52){(57) above.

8 Generating Revised Belief Bases

So far, we have only considered the complexity of deciding whether a formula is

implied by a revised belief base. The questions of how such a revised base can

be constructed and what the size of such a base is has been deliberately ignored,

however.
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In some cases, there are immediate answers to these questions. All meet base

revisions schemes that lead to a singleton remainder set, widtio-revisions, as

well as cut and safe base revisions produce by de�nition a revised belief set that

can be represented by a base that contains only formulae from the original belief

base plus the revisions formula. For this reason, the results of these base revision

schemes can be represented in a compact way and the bases can be generated in

time only polynomially longer than the time needed to decide implication from

the revised base.

20

Proposition 8.1 The result of linear base revisions, cut base revisions, safe base

revisions, and of all widtio-revisions can be represented in space polynomially

bounded by the original belief base and the revision formula, and it can be gener-

ated with only polynomial overhead with respect to the time needed to decide the

revision problem.

For the other cases, answers are not obvious, however. If we consider, for

example, the following belief base and revision formula

A = fp

1

; : : : ; p

n

; q

1

; : : : ; q

n

g (58)

' =

^

i

p

i

$ q

i

(59)

then (A?:') clearly contains exponentially many remainders. Nevertheless, in

this case it is possible to �nd a compact base representing the generated belief

set, since the base has to contain only the revision formula. Whether a compact

form of the revised base can always be identi�ed is not clear, however.

8.1 Do Compact Representations for Revised Belief Bases

Exist?

Identifying a compact representation of the result of a full meet base revision, i.e.,

a representation that has size polynomial in the size of the original belief base

and the revision formula, will most probably be very costly from a computational

point of view. For instance, assuming that identifying a compact base can be done

in deterministic polynomial time with polynomially many SAT-oracle calls leads

to the conclusion that �

p

2

= �

p

2

, because A
F ' j=  could then be decided by

the procedure that computes a compact representation plus one extra SAT-call.

So, �nding a compact base is most probably more expensive. However, how much

time should we allow?

In order to answer the question whether a compact form can always be found,

we will abstract from the time necessary to compute such a base and consider

the question of whether such compact representations always exist. This question

20

Usually, one can do better than that, however (see Section 8.2).

38



was �rst posed by Winslett

[

1990

]

and answered for a considerable number of base

revision schemes and belief update operators by Cadoli et al.

[

1995

]

.

A negative answer can be given by using nonuniform complexity classes (see

Section 3.5). One can try to show that assuming compact representations, these

could be used as advice strings for an advice-taking Turing machine, leading to

the conclusion that some relations between uniform and nonuniform complexity

classes are implied, which in turn imply the collapse of the polynomial hierarchy.

Using such an argument, it seems very unlikely that compact representations of

belief bases revised by the full meet base revision can be found.

Theorem 8.2 (

[

Cadoli et al., 1995

]

) Unless NP � coNP=poly, there exists no

polynomial p such that for A
F ' there exists a belief base B with size p(jAj+ j'j)

and the property that A
F ' j=  i� B j=  for all formulae  that use only

variables appearing in A and '.

As mentioned in Section 3.5, NP � coNP=poly implies �

p

3

= �

p

3

by the results

of Yap

[

1993

]

, i.e., it is very unlikely that compact forms of revised bases can

be found|even allowing an unlimited amount of computation. As a corollary, it

follows that the theorem also applies to prioritized base revision, since the full

meet base revision scheme is a special case of the prioritized base revision scheme.

Corollary 8.3 (

[

Cadoli et al., 1995

]

) Unless NP � coNP=poly, there exists no

polynomial p such that for A
P ' there exists a belief base B with size p(jAj+ j'j)

and the property that A
P ' j=  i� B j=  for all formulae  that use only

variables appearing in A and '.

Further, by inspecting the proofs of the above theorem and the proofs of the

theorems for proving �

p

2

-completeness of full meet and prioritized base revision,

one notes that the restriction of the size of the revision formula does not make a

di�erence.

It should be noted that the above theorem is quite general in that it also rules

out compact representations which uses new variables.

21

Cadoli et al. coined the

term query equivalence and logical equivalence in order to distinguish between the

general notion used in the theorem and a stricter notion of equivalence, respec-

tively. A� ' and B are query-equivalent i�

f 2 Lj A� ' j=  g = f 2 LjB j=  g; (60)

where  should contain only variables from A and '. Logical equivalence is

de�ned by the stronger requirement that

Cn(A� ') = Cn(B): (61)

21

In fact the original theorem by Cadoli et al.

[

1995

]

is even more general.
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That this distinction is relevant is demonstrated by the result that one can

�nd compact representations for belief bases revised using Dalal's model-based

scheme if only query-equivalence is required. For logical equivalence, however,

such representations are ruled out, unless NP � P=poly

[

Cadoli et al., 1995

]

. In

addition to these results, Cadoli et al.

[

1995

]

analyzed the e�ect of size restrictions

on the revision formula, which led to positive results for all model-based schemes,

even for logical equivalence. However, a restriction on the base logic and an

analysis of the other syntax-based schemes considered here is still to be done.

8.2 How Hard is it to Generate a Revised Base?

The question of how hard it is to actually generate a base has been addressed

by Gogic et al.

[

1994

]

. One �rst discouraging but expected result is a result on

generating a revised base under the full meet widtio-scheme if only Horn logic

is allowed.

Theorem 8.4 (

[

Gogic et al., 1994

]

) Generating a revised base under the full

meet widtio-scheme for Horn logic is F�

p

2

[O(logn)]-complete.

The pre�x \F" in F�

p

2

[O(logn)] stands for function and is intended to turn a

complexity class for decision problem into one for search problems, i.e., problems

that have answers more informative than \yes" or \no"

[

Johnson, 1990

]

. One

may wonder why O(logn) oracle calls are enough to generate the base since

Proposition 8.1 stated a polynomial overhead.

For generating a base, however, it is enough to determine the number of

\deleted" formulae, which can be computed by binary search usingO(logn) oracle

calls to an oracle that decides non-membership in the revised base. Then we can

guess a subset of the original belief base and a truth assignment and verify in

polynomial time that the set has the right size and together with the revision

formula is satis�ed by the guessed truth-assignment (an NP-problem).

Let us now focus on how hard it is to generate a base under the full meet base

revision scheme for Horn logic. The �rst formal problem is that this base might

be very large. However, we might now be satis�ed with an output-polynomial

algorithm, i.e., an algorithm that needs time polynomial in the output of the

algorithm. Unfortunately, even this possibility can be ruled out (conditionally).

Many enumeration problems arising in Arti�cial Intelligence and Computer

Science have the property that no output-polynomial algorithm is known for

them. A prototypical example is the hypergraph transversal problem

[

Eiter and

Gottlob, 1995

]

. As it turns out, a considerable number of these enumeration

problems can be classi�ed as being TRANSVERSAL-hard, which means that

any output-polynomial algorithm for those problems would lead to an output-

polynomial problem of the hypergraph transversal problem

[

Eiter and Gottlob,

1995

]

. Now, generating a revised base under the full meet base revision scheme

for Horn logic is one of those problems.
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Theorem 8.5 (

[

Gogic et al., 1994

]

) Generating a revised base under the full

meet base revision scheme for Horn logic is TRANSVERSAL-hard.

As a positive result, Gogic et al.

[

1994

]

pointed out that Winslett's

[

1988

]

scheme (see Section 9.1) allows for reasonably behaved updates, when one wants

to compute iterated Horn approximations

[

Selman and Kautz, 1991

]

. It is pos-

sible to do what Gogic et al.

[

1994

]

call incremental knowledge compilation in

polynomial time if the size of the update formula is bounded in size by a constant.

9 Related Work

Related to the problem of belief base revision are the problems of updating a

belief base, evaluating conditionals, and reasoning in nonmonotonic logics. These

problems and their computational properties are brie
y sketched below.

9.1 Belief Updates

As already mentioned, the problem of changing a belief base in order to keep

track of the results of events in the world is called belief update problem

[

Katsuno

and Mendelzon, 1992

]

. One main di�erence to belief revision is that even in the

case that the new information does not contradict the original belief base, it may

nevertheless be changed. Winslett's

[

1988; 1990

]

and Forbus'

[

1989

]

schemes are

prototypical examples of belief updates schemes. They are de�ned in a similar

way as the model-based revision schemes described in Section 4.1. In di�erence to

most model-based revision schemes, however, they use a pointwise combination

of models, collecting for all models of the belief base the closest models of the

update formula, where distance is measured by cardinality or set-inclusion of the

set of variables with di�ering truth values.

Although these schemes are inherently model-based, it is possible to give a

proof-theoretic characterization. Del Val

[

1992

]

gave one such characterization

for Winslett's scheme, which still has a model-based 
avor, however. Fari~nas del

Cerro and Herzog

[

1993

]

provided a proof-theoretic account of Winslett's scheme

by specifying a translation to classical propositional logic|which is, of course,

leads to an exponential blowup. However, this translation is very e�cient if the

update formula is a clause or a conjunction of literals in which case the translation

needs only quadratic space.

The complexity of update schemes has been investigated by Eiter and Gottlob

[

1992

]

. As it turns out, they have a similar complexity as the base revision

schemes, i.e., they are �

p

2

-complete and, similarly to the model-based revision

schemes, decidable in polynomial time if the logic is restricted to Horn logic and

the update formula is bounded in size (cf. Table 3).
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9.2 Evaluating Counterfactual Conditionals

Evaluating conditional statements such as \if ', then  ," where ' is false in the

current context, was one of the motivations behind studying the belief revision

problem in the �rst place

[

G�ardenfors, 1986; Ginsberg, 1986

]

. Conditionals, which

are written ' >  , can be evaluated by using the Ramsey Test. This test can be

roughly described as follows. ' >  is accepted in a belief base describing the

current context if a minimal change to the belief base to accept ' leads necessarily

to the acceptance of  .

Based on this idea, the complexity of evaluating conditionals using di�er-

ent revision and update schemes has been analyzed

[

Eiter and Gottlob, 1992;

Eiter and Gottlob, 1993; Grahne and Mendelzon, 1995

]

. Grahne and Mendelzon

[

1995

]

approached the problem by assuming a model-checking framework in that

the belief base is represented as a set of models. Based on this assumption, they

derive polynomial algorithms for evaluating conditionals under Winslett's update

scheme { provided that the formula is �xed. Evaluating arbitrary (also nested)

conditionals and testing for equivalence of conditionals is PSPACE-complete, how-

ever.

Eiter and Gottlob

[

1993

]

analyzed the complexity of nested conditionals as-

suming a variant of the full meet base revision scheme. A revised base is repre-

sented by a set of belief bases (also called a 
ock of bases

[

Fagin et al., 1986

]

)

consisting of all remainders extended by the revision formula. In evaluating it-

erated revisions { which is necessary for evaluating nested conditionals { they

apply the scheme to all bases in the set. Using this approach, they show that

right-nested conditionals that correspond to iterated base revisions have the same

complexity as single revisions.

22

Arbitrarily nested conditionals can become as

hard as PSPACE-complete, however.

9.3 Nonmonotonic Logics

Belief revision and nonmonotonic logics are also quite closely related. G�ardenfors

[

1990

]

, for example, called belief revision and nonmonotonic logics \two sides of

the same coin." In fact, a number of desirable properties of nonmonotonic logics

[

Kraus et al., 1990; Lehman and Magidor, 1992

]

have direct counter-parts as

postulates in belief revision and vice versa

[

Makinson and G�ardenfors, 1991

]

. This

also translates to concrete instances of revision schemes and nonmonotonic logics.

For example, cautious reasoning in Brewka's level default theories

[

1989; 1991

]

is identical to revising a belief base under the prioritized base scheme by >

[

Nebel, 1991

]

. Also inference from classically inconsistent possibilistic theories

[

Dubois et al., 1994

]

and other syntax-based schemes for inference from classically

inconsistent theories

[

Benferhat et al., 1995

]

are identical to revising a belief base

with > under one of the syntax-base schemes described above.

22

Note that in these cases it is not necessary to compute the revised bases explicitly!
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The complexity of nonmonotonic logics has been extensively analyzed. A

survey is given by Cadoli and Schaerf

[

1993

]

. One interesting result in this context

is the one by Gottlob

[

1992

]

, who showed that the \standard" nonmonotonic logics

have all the same complexity as some of the belief revision schemes described in

this paper, namely, they are �

p

2

-complete.

10 Summary and Discussion

Belief revision is an important problem in Arti�cial Intelligence and in Computer

Science. However, the theory of belief revision as developed in philosophical logic

does not provide us with solutions to this problem because computational aspects

have been abstracted away.

Assuming that a belief revision scheme has to be representationally feasible,

we focussed on methods that revise a belief base using an amount of preference

information with size bounded polynomially in the size of the belief base to be re-

vised. Further, we required a certain 
exibility of a revision scheme, which led us

to focus on syntax-based revision schemes. As it turns out, most of these schemes

are considerably harder than reasoning in classical propositional logic. However,

it is sometimes possible to achieve computational tractability, i.e., polynomial-

time decidability, by restricting the problem.

In this section, the complexity results are summarized and contrasted with

complexity results for model-based schemes. Further, we try to determine the

degree of syntax-sensitivity of the di�erent schemes. Finally, we discuss the

results achieved and point out further research directions.

10.1 Summary of Complexity Results

The computational complexity results from Sections 4{7 are summarized Table 1.

As in the following tables, previously unpublished results are marked by a \?".

In addition to the complexity we also show the 
exibility of a scheme by dis-

playing which of the postulates are satis�ed and whether all of the belief revision

operations satisfying those postulates can be generated.

It is interesting to note that only the linear and cut base revision scheme

become polynomial when the logic is restricted to Horn logic. Further, one should

note that the restriction of the size of the revision formula does obviously not

have an e�ect on the complexity. The reason for that is that we can always \hide"

the revision formula in the belief base|in syntax-based revision schemes.

Table 2 gives the results for the widtio-revision schemes analyzed in Sec-

tion 5.6. These results are all original since either tight bounds were unknown

before or the widtio-scheme was not analyzed at all. As already spelled out in

Section 5.6, the widtio-schemes are identical to the corresponding ordinary base

revision schemes concerning computational complexity. However, from a seman-

43



General case Horn logic Postulates

A� ' j=  ?

any ' j'j � k any ' j'j � k satis�ed gen.

lower bound NP- & coNP-hard in P (

:

+1){(

:

+6) ?

full meet revision coNP(3)-complete

?

in P (

:

+1){(

:

+8) No

full meet base (

:

+1){(

:

+7),

prioritized

�

p

2

-complete coNP-complete

(

:

+8r), (

:

+8c)

Yes

linear �

p

2

-complete in P

cardinality-max. �

p

2

[O(log n)]-complete

?

lexicographic �

p

2

-complete

(

:

+1){(

:

+8) Yes

cut �

p

2

[O(log n)]-comp.

?

in P

safe �

p

2

-complete

?

coNP-complete

?

(

:

+1){(

:

+6) ?

Table 1: Complexity and 
exibility of base revision schemes

tical point of view, there is a de�nite di�erence as is obvious from the columns

about postulates.

General case Horn logic Postulates

A

:

� ' j=  ?

any ' j'j � k any ' j'j � k satis�ed generated

full meet base

prioritized

�

p

2

-complete

?

coNP-complete

?

(

:

+1){(

:

+6) ?

linear �

p

2

-complete

?

in P

?

(

:

+1){(

:

+8) Yes

cardinality-max. �

p

2

[O(log n)]-complete

?

lexicographic �

p

2

-complete

?

(

:

+1){(

:

+6) ?

Table 2: Complexity and 
exibility of widtio-revisions

Having now a good picture of what the complexity of syntax-based revision

schemes is, it may be interesting to compare them with model-based schemes.

As Table 3

[

Eiter and Gottlob, 1992

]

shows, there are some similarities and some

di�erences.

First of all, one notes that in contrast to syntax-based schemes, size restric-

tions on the revision formula have an e�ect. The reason for the drop in complexity

when restricting the size of revision formula in model-based revision schemes is

that we only have to consider a constant number of models for the revision for-

mula.

A further interesting observation is that cardinality-based revision schemes

do not lead to a drop in complexity when the logic is restricted, regardless of

whether we consider syntax-based or model-based revision schemes.
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General case Horn logic Postulates

A � ' j=  ?

any ' j'j � k any ' j'j � k satis�ed

a

Dalal �

p

2

[O(log n)]-c. NP-hard �

p

2

[O(log n)]-c. (

:

+1){(

:

+8)

Satoh coNP- (

:

+1){(

:

+7)

Borgida

�

p

2

-complete

hard &

coNP-complete in P

(

:

+1){(

:

+7), (

:

+8c)

Weber �

p

2

-complete

b;?

in BH coNP-complete

b;?

(

:

+1){(

:

+6)

a

In fact, the postulates hold only if A and ' are satis�able.

b

These results that are tighter than in

[

Eiter and Gottlob, 1992

]

can be achieved using the

same technique as in Lemma 5.20.

Table 3: Complexity of model-based revision schemes

10.2 The Degree of Syntax-Sensitivity of Base Revision

Schemes

The pros and cons of subscribing to a syntax-based view on revision have already

been discussed in Section 4.2. On one hand, it gives us more 
exibility from

a pragmatic and formal point of view. On the other hand, it makes the result

dependent on the syntactic realization. However, not all pieces of the syntax

contribute to the revision and some revision schemes are more sensitive to syntax

than other. For example, the cardinality-based schemes are all sensitive to the

addition of logically equivalent formulae, while the other schemes are insensitive

to that.

Benferhat et al.

[

1995

]

classi�ed nonmonotonic consequence relations accord-

ing to di�erent properties and we will adopt that classi�cation here for base

revision schemes. We will say that a formula ' implied by a prioritized base A

has an argument of priority i i� there exists an entailment set for ' such that

the minimal element in it has priority i. Further, we say that ' is of priority

j i� the argument with the highest priority has priority j. Finally, we de�ne a

prioritized expansion of a belief set by A +

i

' with the meaning that ' is

added to priority class i.

Now let us consider the following properties:

Formula equivalence insensitivity (FEI): Let A and A

0

be two bases such

that for all priority classes A

i

and A

0

i

we have kA

i

k = kA

0

i

k and for all

� 2 A

i

there is a formula �

0

2 A

0

i

with j= � $ �

0

and vice versa. A base

revision scheme � is then said to be an FEI-scheme i� for all ' 2 L

Cn(A� ') = Cn(A

0

� '): (62)

Class equivalence insensitivity (CEI): Let A and and A

0

be two bases such

that for all priority classes Cn(A

i

) = Cn(A

0

i

). Then a base scheme � is

said to be a CEI-scheme i� for all ' 2 L

Cn(A� ') = Cn(A

0

� '): (63)
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Redundancy insensitivity (RI): Let  2 A

i

and let j=  $ �. Then a base

scheme � is said to be an RI-scheme i� for all ' 2 L

Cn(A� ') = Cn((A+

i

�)� '): (64)

Local consequence insensitivity (LCI): Let A j=  with  having an argu-

ment of priority i and let j=  $ �. Then a base scheme � is said to be

an LCI-scheme i� for all ' 2 L

Cn(A� ') = Cn((A+

i

�)� '): (65)

Possibilistic consequence insensitivity (PCI): Let A j=  with  having

priority i and let j=  $ �. Then a base scheme � is said to be a PCI-

scheme i� for all ' 2 L such that A
E ' j=  :

Cn(A� ') = Cn((A+

i

�)� '): (66)

Table 4 summarizes the above de�ned properties for all base revision schemes

that incorporate priorities. The \Yes" entries are almost immediate consequences

of the de�nitions of the schemes while the \No" entries can be veri�ed with simple

counter-examples (for full proofs see

[

?

]

).

Scheme FEI CEI RI LCI PCI

prioritized Yes No Yes No Yes

linear Yes Yes Yes No Yes

lexicographic Yes No No No Yes

cut Yes Yes Yes Yes Yes

safe

a

Yes No Yes No Yes

a

Assuming that the hierarchy corresponds to priority classes.

Table 4: Syntax-sensitivity of base revision schemes

As Table 4 shows, the weakest form of insensitivity FEI is always satis�ed.

Although this might be regarded as a triviality, one could think of base revision

schemes that use weaker logics under which classically equivalent formulae are

not equivalent.

Further, we note that there seems to be a continuum of revision schemes re-

garding syntax sensitivity instead of a sharp distinction between syntax-sensitive

and syntax-insensitive schemes

[

Benferhat et al., 1995

]

. The most syntax-insensitive

scheme according to this classi�cation is the cut-base revision scheme, which for

this reason should hardly be called syntax-based.

46



10.3 Discussion

The extensive complexity analysis of di�erent variants of base revision schemes

and related problems has a value in itself, because it provides us with many

natural problems located in the lower end of the polynomial hierarchy|something

which was thought to be unlikely

[

Stockmeyer, 1987

]

. However, it also helps us

to relate it to other, similar problems, to identify sources of complexity, and to

identify subproblems that are easily solvable

[

Nebel, 1996

]

. In summary, we get a

much better understanding of the problem and its hard and easy to solve aspects,

which helps us to base design decision on a �rm ground.

The general revision problem for propositional logic appears to be hopelessly

infeasible from a computational point of view because they are located on the

second level of the polynomial hierarchy. Interesting research problems in the

area of computational approaches to belief revision that have not been solved yet

are the identi�cation of methods that attack the revision problems that are in

the �rst level of the polynomial hierarchy, i.e., in �

p

2

. For instance, it seems to be

interesting to apply the gsat method

[

Selman et al., 1992; Selman and Kautz,

1993

]

to the revision problems in �

p

2

. Another interesting avenue of research is the

work by Gogic et al.

[

1994

]

, who combined the ideas of knowledge compilation by

Horn approximation

[

Selman and Kautz, 1991

]

and belief revision, showing that

the combination can be computationally feasible under some conditions. Other

forms to approximate the result of a base revision may be perhaps also applicable

[

Cadoli and Schaerf, 1995

]

. Finally, it may interesting to evaluate the empirical

e�ciency of complete (and exponential-time) algorithms for some of the revision

problems, which might be reasonable for moderately sized revision instances.
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Appendix A: Proofs

Theorem 4.3 Full meet revision is coNP(3)-complete.

Proof. We use the UNSAT(3) problem, which can be de�ned as follows:

UNSAT(3)

def

= fh'

1

; '

2

; '

3

ij '

1

2 UNSAT _ ('

2

2 SAT ^ '

3

2 UNSAT)g: (67)
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This problem is coNP(3)-complete as follows from the results by Cai et al

[

1988

]

.

For membership, note that implication of  by the revised belief set in (25) for

a full meet revision operation can be decided by the following UNSAT(3) instance:

(' ^ : ) 2 UNSAT or ((

^

A ^ ') 2 SAT and (

^

A ^ ' ^ : ) 2 UNSAT): (68)

Hardness is proved by reducing UNSAT(3) to full meet revision. Let

h'

1

; '

2

; '

3

i be an UNSAT(3) instance and assume without loss of generality that

the formulae do not have propositional variables in common. Further, let

 = :('

1

^ (p _ '

3

)); (69)

A = f'

2

^ qg; (70)

' = :p _ :q; (71)

where p and q are variables not appearing in '

i

. According to (68), the member-

ship relation  2 Cn(A)

F

+ ' is equivalent to

((:p _ :q) ^ ('

1

^ (p _ '

3

))) 2 UNSAT or

�

('

2

^ q ^ (:p _ :q)) 2 SAT) and

('

2

^ q ^ (:p _ :q) ^ '

1

^ (p _ '

3

)) 2 UNSAT

�

;

(72)

which in turn is equivalent to

'

1

2 UNSAT or ('

2

2 SAT and '

1

^ '

2

^ '

3

2 UNSAT): (73)

Finally, condition (73) is true if and only if

'

1

2 UNSAT or ('

2

2 SAT and '

3

2 UNSAT) (74)

is true, i.e. i�

h'

1

; '

2

; '

3

i 2 UNSAT(3): (75)

Theorem 5.6 Deciding A
P ' j=  is �

p

2

-complete for general propositional

logic and coNP-complete for Horn logic. This also holds under the assumption

that the size of the revision formula is bounded by a constant.

Proof.

The hardness result follows from Theorem 5.4 since full meet base revision is

a special case of prioritized base revision.

Membership of A
P ' 6j=  in �

p

2

follows from the following algorithm that

needs nondeterministic polynomial time using an oracle for SAT

[

Nebel, 1992,

Theorem 20

]

:
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1. Guess a set B � A.

2. Verify that B 2 A # :':

(a) Verify consistency of B with ' using one SAT-oracle call: B 6j= :'.

(b) Verify that B is �-preferred using O(jAj) SAT-oracle calls: For all

priority classes A

i

there is no � 2 A

i

� B such that

n

[

j=i

(B \ A

j

) [ f�g 6j= :': (76)

3. Verify non-implication of  using one SAT-oracle call: B [ f'g 6j=  .

Hence, it follows that the complementary problem is in �

p

2

. For Horn logic all

SAT-oracle calls can be replaced by a procedure that decides satis�ability of Horn

logic, which results in an NP-algorithm.

Theorem 5.8 The class of revision operations generated by the linear base revi-

sion scheme coincides with the class of revision operations satisfying (

:

+1){(

:

+8).

Proof. Because of Theorem 5.7 we only have to show that all \fully rational"

revisions can be generated. This follows, however, from Lemma 6.11, which states

that all revision operations generated by cut base revisions can be generated,

which by Proposition 6.4 coincide with the class of \fully rational" revisions.

Theorem 5.9 The linear base revision scheme is �

p

2

-complete. This holds even

when the revision formula is bounded in size by a constant.

Proof. Membership of deciding A
L ' j=  , where A contains n priority classes,

follows from the following algorithm:

1. Initialize B = ; and i = n.

2. Test B [ A

i

6j= :'. If so, set B = B [ A

i

.

3. Decrement i.

4. If i = 0 return with the result (B [ f'g j=  ).

5. Otherwise continue with step 2.

Using an oracle for SAT, this algorithms runs in polynomial time. Thus, linear

base revision is in �

p

2

.

Hardness follows by a reduction from the �

p

2

-complete problem MAX-SAT-

ASG

odd

[

Wagner, 1987

]

, which can be de�ned as follows:
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Given a propositional formula � in conjunctive normal-form (or a set

of clauses) over the propositional variables p

1

; : : : ; p

n

and a weight

function W over truth assignments �: fp

1

; : : : ; p

n

g ! f0; 1g de�ned

by W (�)

def

= �

i

�(p

i

)� 2

i�1

, has the truth-assignment that satis�es �

with a maximal weight an odd weight value?

Given a formula � over the variables p

1

; : : : ; p

n

, construct the following linear

base revision instance using the following new variables q; r:

A = hA

1

; : : : ; A

n

; A

n+1

i; (77)

A

i

= fp

i

g for 1 � i � n; (78)

A

n+1

= fq ! (� ^ r)g; (79)

' = q; (80)

 = p

1

^ r: (81)

Obviously, A
L ' j=  i� the satisfying truth-assignment with the maximal

weight has an odd weight value. Hence linear base revision is �

p

2

-hard.

Theorem 5.10 For Horn logic, A
L ' j=  can be decided in O(n

2

) time, where

n = jAj+ j'j+ j j.

Proof. Since satis�ability of Horn formulae can be decided in linear time

[

Dowl-

ing and Gallier, 1984

]

, each of the satis�ability tests in step 2 in the algorithm

of Theorem 5.9 require at most O(n) time. Since there are at most n priority

classes, we need at most n such satis�ability tests. Deciding implication in step 4

can be done in at most O((jAj+ j'j)� j j) time, i.e., at most O(n

2

) time. Thus,

overall we need O(n

2

) time.

Theorem 5.11 Theorem 5.6 also holds under the assumption that the cardinality

of the priority classes is bounded by a constant k � 2.

Proof. Membership is obvious. For the hardness part note that the reductions in

the proofs of Theorem 19 in

[

Nebel, 1992

]

(maybe together with Corollary 15 to

obtain a consistent belief base) or Lemma 6.2 in

[

Eiter and Gottlob, 1992

]

for the

general case and Lemma 7.1 in

[

Eiter and Gottlob, 1992

]

for the Horn case can be

reused. The only important point under the assumption that k � 2 formulae can

be in one priority class is that the atomic formulae representing di�erent truth

values, e.g., x

i

and y

i

in the latter Lemma, have to be put in the same priority

class. The other formulae can be placed in priority classes such that the e�ect of

the reduction is not a�ected.

Lemma 5.12 Any revision generated by the linear base revision scheme can be

generated by the cardinality-maximizing base revision scheme.
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Proof. Given a prioritized base A = hA

1

; : : : ; A

n

i, we specify a function � that

generates a new base B as follows:

B = fA

1

� 2

0

; : : : ; A

n

� 2

n

g; (82)

where A

i

� 2

i�1

denotes 2

i�1

syntactically di�erent copies of A

i

(by adding, e.g.,

\^>" 2

i�1

times).

23

Obviously, this translation leads to

Cn(A
L ') = Cn(�(A)
C ') (83)

for all ' 2 L.

Theorem 5.14 Deciding A
C ' j=  is �

p

2

[O(logn)]-complete, and this holds

even if the size of the revision formula is bounded by a constant.

Proof. In order to prove membership in �

p

2

[O(logn)], we �rst introduce the

MAX-SAT problem:

Given a set of propositional formulae C, a formula �, and a positive

integer k, is there a subset B of C with at least k elements such that

V

B ^  is satis�able?

This is clearly a generalization of SAT, hence NP-hard. It is in NP because

by guessing a subset and a truth-assignment, and checking that the truth as-

signment satis�es

V

B ^  and that kBk � k, the problem can be decided in

non-deterministic polynomial time.

Membership of A
L ' 6j=  in �

p

2

[O(logn)] is now demonstrated by the fol-

lowing algorithm:

1. Determine the largest k such that there is a k-element subset of A that is

consistent with ' by using binary search, resulting in O(logn) calls to a

MAX-SAT-oracle.

2. Make one call to the MAX-SAT-oracle to check whether there is a k-element

subset B � A that is consistent with ' ^ : , i.e., B [ f'g 6j=  .

Since the class �

p

2

[O(logn)] is closed under complements, the complementary

problem of deciding implication of  is also in �

p

2

[O(logn)].

Hardness is proved using the �

p

2

[O(logn)]-complete problem UOCSAT

[

Kadin,

1989

]

:

Given a set of clauses C, decide if all truth-assignments that satisfy

a maximum number of clauses in C always satisfy the same clauses.

23

This is not a polynomial-time reduction. However, here we are not concerned about resource

bounds, but only whether it is possible to generate a revision operation in principle.
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Given an instance of UOCSAT C = f�

1

; : : : ; �

m

g over the variables p

1

; : : : ; p

n

,

we construct the following revision instance containing copies of the �

i

's, denoted

by �

0

1

; : : : ; �

0

m

using the variables p

0

1

; : : : ; p

0

n

, and the new variables q

1

; : : : ; q

m

,

q

0

1

; : : : ; q

0

m

, r, s:

A =

n

r ! �

1

; : : : ; r ! �

m

; r ! �

0

1

; : : : ; r ! �

0

m

;

m

^

i=1

(�

i

$ q

i

);

m

^

i=1

(�

0

i

$ q

0

i

);

�

m

^

i=1

(q

i

$ q

0

i

)

�

! s

o

(84)

' = r (85)

 = s (86)

Obviously, this revision instance can be constructed in time polynomial in jCj.

First of all, note that the formulae

V

i

(�

i

$ q

i

);

V

i

(�

0

i

$ q

0

i

); (

V

i

(q

i

$ q

0

i

))!

s are included in all elements of (A??:'). Secondly, note that the subset of

formulae from f(r ! �

i

)g that remain in (A??:') constitutes a subset of C

with a maximum number of satis�able clauses. The same holds, of course, for the

\primed" version of the formulae fr ! �

0

i

g. Since the primed and the unprimed

version are independent of each other,

V

i

(q

i

$ q

0

i

) (and, hence, s) are valid over

all sets (A??:') joined with ' i� (A??:') contains only one element, i.e., if

there is only one subset with a maximal number of satis�able clauses. Hence,

A??' j=  i� C 2 UOCSAT, which proves the hardness claim.

Theorem 5.15 Deciding A
C ' j=  is �

p

2

[O(logn)]-complete for Horn logic,

and this holds even if the size of the revision formula is bounded by a constant.

Proof. Membership in �

p

2

[O(logn)] follows from Theorem 5.14.

For the hardness part, let the set C = f�

1

; : : : ; �

m

g of clauses be an instance

of UOCSAT, where the variables used in C are fp

1

; : : : ; p

n

g. Then we construct

in polynomial time the following revision instance containing in addition to C

a set of clauses C

0

= f�

0

1

; : : : ; �

0

n

g, which are copies of the clauses �

i

using new

variables p

0

1

; : : : ; p

0

n

, Further, we use new variables q

1

; : : : ; q

n

, q

0

1

; : : : ; q

0

n

, r

1

; : : : ; r

m

,

r

0

1

; : : : ; r

0

m

, s. The notation �

i

[+p=:q] means that all positive occurrences of p

j

are replaced by :q

j

in order to turn �

i

into a Horn formula

[

Eiter and Gottlob,

1992, Lemma 7.1

]

. Further, as in the proof of Lemma 5.12, we use the notation

'� n to mean n syntactically di�erent copies of '.

A = fp

1

� (2m+ 1); : : : ; p

n

� (2m+ 1);

p

0

1

� (2m+ 1); : : : ; p

0

n

� (2m+ 1);

r

1

� 2; : : : ; r

m

� 2;

r

0

1

� 2; : : : ; r

0

m

� 2; sg

(87)
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' =

m

^

i=1

(r

i

! �

i

[+p=:q]) ^

m

^

i=1

(r

0

i

! �

0

i

[+p=:q])^

n

^

j=1

(:p

j

_ :q

j

) ^

n

^

j=1

(:p

0

j

_ :q

0

j

)^

m

^

i=1

(((s ^ r

i

)! r

0

i

) ^ ((s ^ r

0

i

)! r

i

))

(88)

 = s (89)

As is easily seen, all formulae are Horn and the entire reduction can be performed

in polynomial time.

In order to see that A
C ' j=  i� C 2 UOCSAT, note that by

V

j

(:p

j

_ :q

j

)

in the revision formula at most one of p

j

� (2m + 1) and q

j

� (2m + 1) can be

valid in each remainder B 2 (A??:'). Further, since removing p

j

� (2m + 1)

and q

j

� (2m + 1) leads to a set with less formulae (even if all r

i

's and s stay)

than a set containing one of the variables, all remainders B 2 (A??:') contain

exactly one of the variables, which can be used to construct a truth-assignment

for the �

i

's. Obviously, each remainder B contains a maximal number of r

i

's

corresponding to clauses satis�ed by the truth-assignment.

All these arguments are, of course, valid for the primed versions of the for-

mulae. Since the primed and unprimed versions are independent of each other, s

can stay if, and only if, always the same subsets of formulae from C are selected

for the primed and unprimed version, i.e., if C 2 UOCSAT.

In order to show that hardness also holds for an atomic revision formula, let

t be a new variable and '

t

the formula ' where each clause '

l

in ' is replaced

by :t _ '

l

(see

[

Eiter and Gottlob, 1992, Theorem 8.4

]

). Given the UOCSAT-

instance C, we construct a revision instance using the reduction above modifying

it as follows:

A

0

= A [ f'

t

� (kAk+ 1)g (90)

'

0

= t (91)

 

0

=  (92)

We have obviously A
C ' j=  i� A

0


C '

0

j=  

0

.

Theorem 5.17 Deciding A
X ' j=  is �

p

2

-complete, and this holds even if the

size of the revision formula is bounded by a constant.

Proof. Membership follows by replacing the MAX-SAT-oracle calls in the mem-

bership proof in Theorem 5.14 by MAX-LEVEL-SAT-oracle calls, where the latter

problem is de�ned as follows:

Given a sequence of sets of formulae C

1

; : : : ; C

l

, a sequence of positive

integers k

1

; : : : ; k

l

, and a formula �, does there exist a sequence of

subsets B

1

; : : : ; B

l

such that B

i

� C

i

and kB

i

k � k

i

for each 1 � i � l

and

S

i

B

i

[ f�g is satis�able?
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Further, step 1 in the algorithm in the proof of Theorem 5.14 has to be repeated

for each priority class, leading to O(n � logn) oracle calls instead of O(logn)

calls.

Hardness follows from Theorem 5.9 because linear base revision is a special

case of lexicographic base revision, where each priority class has just one element.

Theorem 5.18 Deciding A
X ' j=  is �

p

2

-complete for Horn logic, and this

holds even if the size of the revision formula is bounded by a constant.

Proof. Membership follows from Theorem 5.17. Hardness will be shown using

the �

p

2

-complete problem MAX-SAT-ASG

odd

introduced in the proof of Theo-

rem 5.9.

Let C = f�

1

; : : : ; �

m

g be a set of clauses over the variables p

1

; : : : ; p

n

. Let

q

1

; : : : ; q

n

; r

1

; : : : ; r

n

; s; t be new variables, and let �

i

[+p=:q] be the formula �

i

with all positive occurrences of p

j

be replaced by :q

j

, which means that it is a

Horn formula. Now we construct the following revision instance:

A = hA

1

; : : : ; A

n+2

i (93)

A

n+2

=

n

(s ^ p

1

^ r

1

^ : : : ^ r

n

! t)^

n

^

j=1

�

(:s _ :p

j

_ :q

j

) ^ (p

j

! r

j

) ^ (q

j

! r

j

)

�

^

m

^

i=1

(s! �

i

[+p=:q])

o

;

(94)

A

n+1

= fp

1

; : : : ; p

n

; q

1

; : : : ; q

n

g; (95)

A

i

= fp

j

g for 1 � j � n (96)

' = s (97)

 = t (98)

The idea behind this reduction is that the uppermost priority class encodes the

clause set and some tests and the next class encodes truth-assignments in a way

such that we have the same cardinality for all satisfying assignments. The classes

A

1

up to A

n

are then used to single out the truth-assignment with the highest

weight.

By

V

j

((:s_:p

j

_:q

j

) : : :), we enforce that all remainders B 2 (A + :') can

contain at most one of p

j

and q

j

. If at least one of such a pair is in a remainder,

r

j

is implied in this remainder by

V

j

((: : : (p

j

! r

j

) ^ (q

j

! r

j

)). If exactly one

of (p

j

; q

j

) for each j is present in the remainder and p

1

is present, then t|the

query formula|is implied, which is enforced by (s ^ p

1

^ r

1

^ : : : ^ r

n

! t).

First of all, it is obvious that A

n+2

is consistent with s, i.e., it is in each

remainder B 2 (A + :'). Further, if all �

i

's are simultaneously satis�able,

then each satisfying truth-assignment results in a subset fl

1

; : : : ; l

n

g of A

n+1

with
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l

j

= p

j

or l

j

= q

j

that is consistent with the �

i

[+p=:q]s. For each of these

subsets the classes A

n

down to A

1

are added, if consistent. Now, the satisfying

truth-assignment with the highest weight value leads obviously to a set that is

�� -preferred among all possible consistent subbases of A. If this preferred set

contains p

1

(corresponding to an odd weight value), then by the rule (s ^ p

1

^

r

1

^ : : :^ r

n

! t), the query formula is implied. If C is unsatis�able, some of the

r

j

's will not be implied, hence the query-formula will not be implied.

Conversely, a �� -preferred consistent subset that implies t is obviously a set

that corresponds to a satisfying truth-assignment such that the assignment has

the highest possible weight and the weight value is odd.

Lemma 5.19 For full meet, prioritized, linear, cardinality-maximizing, and lex-

icographic base revision schemes, the corresponding widtio-revision schemes are

as hard as the base revision schemes.

Proof. In the hardness proofs for full meet base revision and prioritized base

revision (cf.

[

Nebel, 1992, Theorem 19

]

,

[

Eiter and Gottlob, 1992, Lemma 6.2,

Lemma 7.1, Theorem 8.2

]

) the query-formula is part of the base to be revised.

Hence, the query-formula is in the intersection of the logical closures of the re-

mainders i� it is in the intersection of the remainders.

Since (A
L ') is always a singleton set, the linear base revision scheme is

identical to the a linearwidtio-revision scheme. Thus, the complexity is identical

(Theorems 5.9 and 5.10).

For the cardinality-maximizing base revision scheme note that in the �rst

hardness proof (Theorem 5.14) the query-formula is implied i� the remainder

set is a singleton set. Hence, the reduction works as well for the corresponding

widtio-revision scheme. In the second hardness proof (Theorem 5.15), the query-

formula is again part of the belief base, hence the above arguments apply.

The �rst hardness proof in the case of lexicographic base revision (Theo-

rem 5.17) uses the hardness proof of Theorem 5.9, in which the query formula

is an element of the belief base, hence the above argument apply. The second

hardness proof (Theorem 5.18) is again a reduction that is based on a singleton

remainder set.

Lemma 5.20 For full meet, prioritized, linear, cardinality-maximizing, and lex-

icographic base revision schemes, the corresponding widtio-revision schemes are

in the same complexity class as the base revision schemes.

Proof. Membership of full meet widtio-revision in �

p

2

is demonstrated by the

following algorithm for deciding A

F

� ' 6j=  :

1. Guess a positive integer k � kAk.

2. Guess k sets B

1

; : : : ; B

k

� A and formulae �

1

; : : : ; �

k

.
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3. Verify for each j that �

j

62 B

j

.

4. Verify for each j that B

j

2 (A?:'):

(a) Verify B

j

6j= :' using one SAT-oracle call.

(b) Verify for each ! 2 A � B

j

that B

j

[ f!g j= :' using kA � B

j

k

SAT-oracle calls.

5. Verify that A� f�

1

; : : : ; �

k

g [ f'g 6j=  using a SAT-oracle.

Membership of prioritized widtio-revision in �

p

2

can be shown in a similar

way. In step 4, we have to verify that the guessed sets are in A # :' instead

of checking against A?:'. However, this can also be done in deterministic

polynomial time using a SAT-oracle (see proof of Theorem 5.6).

For linear widtio-revision, the claim follows since it is equivalent to the linear

base revision scheme.

Membership of cardinality-maximizing widtio-revision in �

p

2

[O(logn)] is

demonstrated by the following algorithm that decides the non-implication prob-

lem:

1. Determine the maximal k such that there is a k-element subset B of A that

is consistent with ' using O(logn) calls to a MAX-SAT-oracle.

2. Guess a positive integer m � kAk and subsets B

1

; : : : ; B

m

� A, formulae

�

1

; : : : ; �

m

2 A and truth-assignments �

1

; : : : ; �

m

; �.

3. Verify in polynomial time that kB

j

k = k, that �

j

62 B

j

, and that �

j

satis�es

B

j

[ f'g.

4. Verify in polynomial time that A � f�

1

; : : : ; �

m

g [ f';: g is satis�ed by

�.

Membership of lexicographic widtio-revision in �

p

2

follows from the algorithm

above and the same argument as used in the proof of Theorem 5.17.

Theorem 6.5 Deciding A
E ' j=  is �

p

2

[O(logn)]-complete, and this holds

even if the size of the revision formula is bounded by a constant.

Proof. Membership follows because cut

<

(:') can be computed using binary

search over the priority classes employing a satis�ability test for each step in the

search, resulting in O(logn) calls to a SAT-oracle. The �nal problem of deciding

cut

<

(:') [ f'g j=  can be decided using another call to the SAT-oracle.

Hardness will be shown using the following �

p

2

[O(logn)]-complete problem

from

[

Wagner, 1990

]

:
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Given a sequence �

1

; : : : ; �

n

of propositional formulae such that �

i

62

SAT implies �

i+1

62 SAT, is the maximum index i such that �

i

2 SAT

an odd number?

Given an instance of this problem such that without loss of generality n is even,

construct the following revision instance using p

1

; : : : ; p

n

and q as new variables:

A = hA

1

; : : : ; A

n

; A

n+1

i; (99)

A

i

= fp

i

g for 1 � i � n; (100)

A

n+1

=

n

q !

n

^

j=1

(p

j

! �

j

)

o

; (101)

' = q; (102)

 =

(n�1)=2

_

k=0

�

2k+1

^

l=1

p

l

^

n

^

l=2k+2

:p

l

�

: (103)

Obviously, A
E ' j=  i� the maximum index of �

i

2 SAT is odd for instances of

the given problem, i.e., revisions based on ensconcements are �

p

2

[O(logn)]-hard.

Theorem 6.6 Provided A is a set of Horn formulae, ' is a Horn formula and

 is a Horn clause, A
E ' j=  can be decided in time O(n logn), where n =

jAj+ j'j+ j j.

Proof. Using the algorithm sketched in the proof of Theorem 6.5, computing

cut

<

(:') can be evidently done in O(n logn) time. Additionally, the problem of

deciding cut

<

(:') [ f'g j=  can be done in O(n) time, if  is a Horn clause.

24

Theorem 6.7 Let � be an arbitrary total preorder over a belief base A. Then

(1) the relation �

�

generated by (41) and (42) is an epistemic entrenchment over

Cn(A) and (2) its restriction to A, denoted by �, is an ensconcement ordering

on A.

Proof. First we prove (1).

(�1): Assume ' �

�

 and  �

�

�. By (42) we must have cut

<

(') � cut

<

( )

and cut

<

( ) � cut

<

(�), hence cut

<

(') � cut

<

(�), hence ' �

�

�.

(�2): Assume ' j=  and suppose for contradiction that cut

<

(') � cut

<

( ).

By the de�nition of cut

<

, we must have cut

<

( ) j= ' and by applying our

assumption cut

<

( ) j=  , which is a contradiction. So, cut

<

(') � cut

<

( ) and

by (42) ' �

�

 , as desired.

(�3): Suppose for contraction that cut

<

(') � cut

<

(' ^  ) and cut

<

( ) �

cut

<

('^ ). This, however, implies by the de�nition of cut

<

that cut

<

('^ ) j= '

24

For the last step, we would need O((jAj + j'j)� j j) time, if  were a Horn formula.

57



and cut

<

(' ^  ) j=  , hence cut

<

(' ^  ) j= ' ^  , which is a contradiction.

Hence, we must have cut

<

(') � cut

<

(' ^  ) or cut

<

( ) � cut

<

(' ^  ), and by

the de�nition of �

�

, ' �

�

(' ^  ) or  �

�

(' ^  ), as desired.

(�4): Assume A 6j= ?. If A 6j= ' then cut

<

(') = A, hence ' is minimal

under �

�

. Conversely, if ' is a minimal element under �

�

, then cut

<

(') must

be maximal, i.e, equal to A, and so A 6j= '.

(�5): Follows immediately from De�nition (41).

For proving (2), we show that for the generated ensconcement ordering �

(PCC) is satis�ed for arbitrary ' 2 A and B � A such that B j= '. Since

V

B j= ', it follows by (�2) that

V

B�' and by (�3) there must be  2 B such

that  �

V

B, so by transitivity (�1) there must be a formula  2 B such that

 � ', hence (PCC) is satis�ed.

Lemma 6.8 Let � be an arbitrary total preorder on the belief base A and � the

restriction of the epistemic entrenchment ordering generated by � to A. Then

for all ' 2 L

Cn(cut

<

(')) = Cn(cut

/

(')): (104)

Proof. \�": Let K = Cn(cut

<

(')). By the construction of �

�

, it holds that for

all  2 K:' �

�

 , so for all  2 (K\A):'� . Clearly, we have Cn(K\A) = K,

which implies K � Cn(cut

/

(')), which is the desired conclusion.

\�": Let L = Cn(cut

/

(')). Because � is the restriction of the epistemic

entrenchment ordering �

�

to A, we know that for all  2 L : ' �

�

 . Be-

cause of the construction of �

�

, it follows that cut

<

(') j=  for all  2 L, i.e.,

Cn(cut

<

(')) � Cn(cut

/

(')).

Lemma 6.11 Any revision generated by the cut base revision scheme can be

generated by the linear base revision scheme.

Proof. Given a prioritized base A = hA

1

; : : : ; A

n

i, we specify a function � that

generates a new base B = hB

1

; : : : ; B

n

i as follows:

B

i

=

n

n

^

j=i

A

i

o

: (105)

Obviously, this translation leads to

Cn(A
E ') = Cn(�(A)
L ') (106)

for all ' 2 L.

Theorem 6.12 Let A be a prioritized base with a linear epistemic relevance or-

dering and let � be transformation de�ned by Equations (47) and (48). Then

Cn(A
L ') = Cn(�(A)
E ') (107)

for all ' 2 L.
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Proof. If j= :', then Equality (107) clearly holds. So assume 6j= :'.

We will prove the claim (107) by induction on the number of priority classes

in A.

For n = 1 we have A = hA

1

i and B = �(A) = hB

1

;?i. In this case, the claim

(107) is obviously true.

Now assume that A has n + 1 priority classes. Let A

0

be the base without

priority class A

1

(i.e, A

0

1

= A

2

etc.). Further let B = �(A) and B

0

= �(A

0

) and

let � and �

0

be the orderings associated with the priority classes in B and B

0

,

respectively. Let B

0

q

be the highest class in B

0

such that B

0

q

is not included in

cut

<

0

(:'), i.e.,

C

1

=

2

n

[

i=q+1

B

0

i

6j= :'; (108)

C

2

=

2

n

[

i=q+1

B

0

i

[ B

0

q

j= :': (109)

Now we distinguish the two cases (1) A
L ' j= A

1

and (2) A
L ' j= :A

1

.

(1): Since A

1

is consistent with cut

<

0

(:')[f'g according to the assumption

(1) and the induction hypothesis, we can add any disjunction withA

1

as a disjunct

to C

1

without implying :'. When adding B

0

q

= B

2q

:' is, of course, implied. In

particular, we have

C

3

=

2

n

[

i=2q+2

B

i

6j= :'; (110)

C

4

=

2

n

[

i=2q+1

B

i

6j= :'; (111)

C

5

=

2

n

[

i=2q

B

i

j= :': (112)

So, the highest class not included in cut

<

(:') is B

2q

. Further, Cn(C

3

[ f'g) =

Cn(C

1

[f'g). So, Cn(B 
E ') = Cn((B

0


E ')[fB

0

q

_A

1

g). Since B

0

q

is inconsis-

tent with (B

0


E '), this means Cn(B 
E ') = Cn((B

0


E ')[fA

1

g). Now, we have

obviously Cn(A
L ') = Cn((A

0


L ') [ A

1

). Hence, Cn(A
L ') = Cn(B 
E '),

which proves the induction step for case (1).

(2): Since C

1

does not imply :', we can add any of the components possibly

with another disjunct to C

1

without implying :'. Because A
L ' j= :A

1

, we

must already have A

0


L ' j= :A

1

, so by the induction hypothesis we have C

1

[

f'g j= :A

1

. For this reason, we cannot add B

0

q

_ A

1

without implying :'.

C

3

=

2

n

[

i=2q+2

B

i

6j= :'; (113)
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C

4

=

2

n

[

i=2q+1

B

i

j= :'; (114)

leading to the fact that Cn(B 
E ') = Cn(B

0


E '). Since, as mentioned above,

A

0


L ' j= :A

1

, we also have Cn(A
L ') = Cn(A

0


L '). Hence, also in case (2),

the induction step is valid.

Theorem 7.1 Let A be a base with an empty hierarchy. Then

A

F

� ' = A=:' [ f'g (115)

for all ' 2 L.

Proof. \�": Assume that  2 A

F

� '. If  = ' then the claim clearly holds.

So assume  6= '. This means,  is in all remainders (A?:'). Now suppose

for contradiction that  62 A=:'. This means that  is in one entailment set

E. Let E

j

, 1 � j � n, be the remaining entailment sets. Choose a set of k

formulae �

i

, 1 � i � k � n from these entailment sets that are not identical with

formulae from E such that for each entailment set E

j

there is a formula �

i

2 E

j

.

This is possible because all entailment sets involving formulae from E contain

more than one formula. Now, the set A� f�

1

; : : : ; �

k

g� f g does obviously not

imply :' and adding  leads to the implication of :'. From that it follows that

there exists a remainder that does not contain  , which is a contradiction to our

assumption. So, we must have  2 A=:'.

\�": If  = ', then the claim is obviously true. So assume that this is

not that case and that  2 A=:'. This means that  is in no entailment set.

Suppose for contradiction that  62 A

F

� '. This means there exists a remainder

B 2 (A?:') such that  62 B. Because  is by assumption in no entailment set,

there exists no subset C such that C 6j= :' and C [ f g j= :'. In particular,

this applies to the remainder B, so it must contain  , which is a contradiction.

So, we must have  2 A

F

� '.

Theorem 7.2 The safe base revision scheme is �

p

2

-complete for general propo-

sitional logic and coNP-complete for Horn logic even if the revision formula has

a size bounded by a constant.

Proof. Hardness follows from Theorem 7.1, Lemma 5.19, and Theorem 5.4.

Membership follows for general propositional logic from the following algo-

rithm that decides A
S ' 6j=  :

1. Guess a positive integer k � kAk.

2. Guess k sets B

i

� A and k formulae  

i

.

3. Verify that B

i

j= :' using a SAT-oracle.
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4. Verify that for all � 2 B

i

: B

i

� f�g 6j= :' using a SAT-oracle.

5. Verify that  

i

is a minimal element of the hierarchy restricted to B

i

.

6. Verify that A�

S

i

f 

i

g 6j=  using a SAT-oracle.

This algorithms also demonstrates membership of A
S ' 6j=  in NP if only

Horn logic is allowed, because in this case all veri�cation steps can be performed

in deterministic polynomial time.

Appendix B: Symbol Index

Symbol De�nition Explanation

> p. 42 conditional

� p. 30, p. 31 arbitrary total preorder over a base

or ensconcement ordering

< p. 30 strict part of �

�

p

m

p. 11 polynomial many-one reducibility

�

�

p. 6 marking o� relation

� p. 23, Eq. (31) priority-inclusion ordering

� p. 33 ensconcement ordering generated from �

�j p. 8 hierarchy for safe revision

� p. 6 epistemic entrenchment ordering

� p. 7 strict part of entrenchment ordering �

�

�

p. 31, Eq. (42) epistemic entrenchment generated from �

�� p. 27, Eq. (36) lexicographic preference ordering

v p. 23, Eq. (30) epistemic relevance ordering

:

� p. 3 belief contraction

�

� p. 7, Eq. (7) contraction based on epistemic

entrenchment ordering

+ p. 3 belief expansion

+

i

p. 45 prioritized expansion

:

+ p. 3 belief revision

�

+ p. 7, Eq. (10) revision based on epistemic

entrenchment ordering

F

+ p. 6 full meet revision

� p. 16 model-based revision scheme

�

D

p. 16, Eq. (24) Dalal's revision scheme

:

� p. 28 base revision operation or widtio-scheme

F

� p. 29, Eq. (40) full meet widtio-scheme

� p. 19 base revision scheme


C p. 26, Eq. (35) cardinality-based base revision scheme


E p. 32, Eq. (43) cut base revision scheme
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F p. 22, Eq. (29) full meet base revision scheme


L p. 24 linear base revision scheme


P p. 24 prioritized base revision scheme


S p. 36, Eq. (50) safe base revision scheme


X p. 27, Eq. (38) lexicographic base revision scheme

= p. 8 safe elements under hierarchy �j

+ p. 27, Eq. (37) lexicographic remainder set

# p. 23, Eq. (32) priority-inclusion remainder set

?? p. 26, Eq. (34) cardinality-based remainder set

? p. 5, Eq. (4) set-inclusion remainder set

? p. 3 falsity

> p. 3 truth

j= p. 3 logical implication

:, _, ^, !, $ p. 3 propositional connectives

j � j p. 3 size of a formula, set of formulae,

or instance

k � k p. 3 cardinality of a set

A;B;C; : : : p. 3 belief bases

A

i

; B

i

; C

i

; : : : p. 23 priority class i of a belief base

a(�) p. 15 advice function

�; � p. 3 truth assignment

coNP p. 12, Eq. (13) problems complementary to NP-problems

coNP(k) p. 13, Eq. (22) problems complementary to NP(k)-problems

BH p. 13 boolean hierarchy

Cn(�) p. 3, Eq. (1) logical closure

cut

�

(�) p. 7, Eq. (9) cut-set based on epistemic entrenchment �

cut

<

(�) p. 31, Eq. (41) cut-set based on ensconcement ordering �

cut

/

(�) p. 33 cut-set based on ensconcement ordering �

�(�; �) p. 16, Eq. (23) global distance between a set of formulae

and a formula

�(�; �) p. 16 distance between two models

�

p

k

p. 12, Eq. (15) complexity class in the polynomial hierarchy

�

p

2

[O(logn)] p. 13 �

p

2

with only O(logn) oracle calls

F�

p

2

[O(logn)] p. 40 class of search problems solvable in

deterministic polynomial time using

O(logn) NP-oracle calls

form(�) p. 16 formula equivalent to a �nite set of models


(�) p. 5 selection function

I p. 9 instance of a problem

L p. 3 logical language

K;L;M; : : : p. 3 belief sets

k-QBF p. 13 problem of deciding truth for a quanti�ed boolean
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formula with k alternating quanti�ers

k�QBF p. 13 problem complementary to k-QBF

MAX-SAT p. 51 problem of deciding if k formulae

from a given set are simultaneously satis�able

MAX-SAT-ASG

odd

p. 49 a �

p

2

-complete problem

mod(�) p. 16 all models of a formula or a set of formulae

NP p. 10 class of problems decidable in nondeterministic

polynomial time

NP

X

p. 12 class of problems decidable in nondeterministic

polynomial time using an oracle for a problem in X

NP(k) p. 13, Eq. (19){(21) complexity class in the boolean hierarchy

O(�) p. 9 \big O" notation for runtime requirements

p; q; r; : : : p. 3 propositional variables

P;Q; : : : p. 9 formal languages or decision problems

P p. 9 class of problems decidable in deterministic

polynomial time

P/poly p. 15 nonuniform P

P

X

p. 12 class of problems decidable in deterministic

polynomial time using an oracle for a problem in X

PH p. 12 polynomial hierarchy

PSPACE p. 12 class of problems decidable in polynomial space

�

p

k

p. 12, Eq. (17) complexity class in the polynomial hierarchy

�

p

k

=poly p. 15 nonuniform �

p

k

';  ; �; ! p. 3 propositional formulae

� p. 35, p. 51 translation between belief bases

S p. 3 family of belief bases of belief sets

SAT p. 10 satis�ability problem for propositional formulae

� p. 3 �nite alphabet of propositional variables

�

p

k

p. 12, Eq. (16) complexity class in the polynomial hierarchy

�

p

k

=poly p. 15 nonuniform �

p

k

T p. 9 Turing-machine or other sequential machine

TRANSVERSAL p. 40 hypergraph transversal problem

TAUT p. 12 tautology problem for propositional formulae

UNSAT p. 11 unsatis�ability problem for propositional formulae

UNSAT(3) p. 47, Eq. (67) a coNP(3)-complete problem

UOCSAT p. 51 a �

p

2

[O(logn)]-complete problem

X p. 11 some complexity class

X=poly p. 15 nonuniform complexity class based on X
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